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We study the noncommutative version of the extended ADHM construction in eight dimen&l¢hl
Yang-Mills theory. This construction gives rise to the solutions of the BPS equations in Yang-Mills theory, and
these solutions preserve at least 3/16 of supersymmetries. In a wide subspace of the extended ADHM data, we
show that the integek which appears in the extended ADHM construction should be interpreted as the
D4-brane charge rather than tB®-brane charge by explicitly calculating the topological charges in the case
that the noncommutativity parameter is anti-self-dual. We also find the relationship with the solution generating
technique and show that the intedecan be interpreted as the charge of Ehn@-brane bound to thB8-brane
with the B field in the case that the noncommutativity parameter is self-dual.
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I. INTRODUCTION first order linear relations amongst the components of the
field strength[36,38—4Q. It has been shown that there are
Noncommutative geometry has played an important rolenany kinds of the BPS equations which preserve
in the study of string or M theorf]. In particular,D-branes ~ 1/16,2/16. .. ,6/16 of supersymmetries and these equations
with a constant Neveu-SchwafXS) B field are of interestin ~ are related to the subgro(7),SQ(6), . . . ,.SX(2) of the
the context of understanding the nonperturbative aspects &ght dimensional rotation groupQ(8). .
string theory. The effective world-volume field theory on _ In this paper, we focus on the case that is related to the
D-branes with B field turns out to be the noncommutative S(5)=Sp(2) symmetry. In this case the configuration of

Yang-Mills theory[2], which has an interesting feature that € gauge field preserves at least 3/16 of supersymmetries. It
the singularity of the instanton moduli space is naturally reS known that there is the extended ADHM construction

solved[3]. which gives rise to the solutions of the 3/16 BPS equations in
Four dimensionalU(N), k instantons are realized as &gt dimensions41]. We consider the noncommutative

k DO-branes withinN D4-branes in type IIA string theory. Y(1) gauge theory and study the noncommutative version of

When we turn on a constagt field which preserves 1/4 of this extended ADHM constructidr30]. It is worth construct-

supersymmetries, the moduli space of the noncommutativi?d the simple solutions explicitly and investigating their

instantons is resolved and tBe-branes cannot escape from Properties such as the topological charges since little about

the D4-branes. From the viewpoint &0-brane theory, the the noncommutative version of the extended ADHM con-

Higgs branch of the moduli space coincides with the modu"_struction is known until now. This subject has been studied

space of the noncommutative instantons andBHield cor- In some refere_nce[§0,31,34. .
responds to the Fayet-lliopoulos parameters. This paper is organized as follows. In Sec. I, we review

The instanton solutions of Yang-Mills theory are con- the Bogomol'nyi-Prasad-Sommerfiel@PS equations and

structed by the well-known Atiyah-Drinfeld-Hitchin-Manin (e extended ADHM construction in eight dimensions. In
(ADHM) method. There is the one-to-one correspondenc@ec' I, we briefly review the Yang-Mills theory on the non-

between the moduli space of the instantons and that of thE°Mmutative space. As in the four dimensional case, it is an
ADHM data in the commutative cade,5]. On the other important difference whether the noncommutativity param-

hand. most of the noncommutative instantons in four dimen&ter is anti-self-dual or self-dual. In Sec. IV we consider the
sions have been obtained by modifving the ADHM construc-Sase that the noncommutativity parameter is anti-self-dual.
y fying In a wide subspace of the extended ADHM data, we show

tion. See, e.g.3,6—23 and references therein. In particular, he i Kk which inth ded
it has been proven that the instanton number is generally aijat the integek which appears in the extended ADHM con-

integer in the noncommutative (N) gauge theory by Sako struction should be interpreted as thd-brane charge rather
[17]. than theD0-brane charge by explicitly calculating the topo-

It is also of interest to generalize the above system tdogical charges. In Sec. V, we consider the case that the non-

higher dimensions in the context of baEhbrane dynamics commutativity parameter is self-dual. We find the relation-
and the world-volume theories. The systems of EH@-D6 ship with the solution generating technique and show that the

and theD0-D8 with a B field have been investigated by Nt€gerk can be interpreted as the charge of h6-brane
several author§24—37. Especially we consider the system bound to theD8-brane_W|th aB field. The final section is
of the DO-brane and thd8-brane with aB field. These ~devoted to the conclusion.

S.t“d'els re‘ljuce tofflﬂd'f?g Itfhg S?.'t”t,fons Otf. the h'hg.hﬁr d'”:ﬁ”' Il. EXTENDED ADHM CONSTRUCTION OF EIGHT
Sional analogue o € 'self-auality” equations wnich are the DIMENSIONAL INSTANTONS

In this section, we review the BPS equations and the ex-
*Email address: hiraoka@tuhep.phys.tohoku.ac.jp tended ADHM construction of the instantons in eight dimen-
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sions. The instantons in higher dimensions are defined as tlwally, it is well known that the instanton moduli space and
solutions of the BPS equations. This definition is the naturathe ADHM moduli space completely coincide in four dimen-
generalization of the four dimensiondl(N), k instantons sions. It is also known that there exists the extended ADHM
which are constructed by the ADHM construction with the construction which gives rise to solutions of the 3/16 BPS
gauge groupgJ(N) and the ADHM parametek. These in- equations in eight dimensions. This extended ADHM con-
stantons have thB-brane interpretation as the bound statesstruction was investigated by several authd®,31,33—

of k DO-branes andN D4-branes. 35,41].

Therefore, in the following, we consider the extended In this subsection, we review this extended ADHM con-
ADHM construction with the gauge group (N) and the struction of the eight dimensional “self-dual” instantons as-
extended ADHM parametek since these situations are ex- sociated with theSp(2) group given in[39,41]. This con-
pected to correspond to the systemskoDO-branes and struction of the instantons is the slight extension of the four

N D8-branes. dimensional ADHM construction. When we talg=0, or
B’ =0 which are defined in the following, we reproduce the
A. BPS equations in eight dimensions four dimensional ADHM construction.

. . . , ) . Inorder to treat the eight dimensional space, it is useful to
In this subsection, we briefly review the BPS equations Negard eight coordinates of thR? as two quaternionic coor-

the eight dimensional Yang-Mills theory. These equationsyintes:
were studied in Refd.38-4(, and systematically classified
by the authors 0f36]. The BPS equations are the higher & L 7
dimensional analogue of the “self-duality” equations, which X= 2 aﬂxf‘z( — _),
are the linear relations amongst the components of the field n=1 4 2
strength
8 2, Z3
1 X'= > o;x“:( — _>. (2.9
ETWP‘,FP,,ZFW (m,v,p,0=1,...,8, (2] u=1 —Z3 Z4

. . Here we defined the eight vector matrices using the Pauli
with the constant 4-form tensdr,,,,. These equations are matricesr; (i=1,2,3) by

the natural generalizations of the four dimensional self-

duality equations: }#:(i 71,00 79.0i 73,015.0).

1 (2.9
5 €ancdca=Fap  (a,b,c,d=1,....4. (2.2 7! =(0ji71,0i75,0j73,01,),

When the equation&.1) hold, the equations of motion, and the four complex coordinates by
D,F,,=0, are automatically satisfied due to the Jacobi — . 4o 8 6
identity, and the lower bound of the action is reached. ThigZ1 =X TIX%, = Zz=X"+IX7,  Zz3=X"+IX%,  Z4=X"+IX".

bound is obtained as in the four dimensional case by the (2.6
identity The four dimensional ADHM construction gives rise to
1 1 1 2 the instantons through the zero mode of a zero dimensional
- ZFMvoz 16 Fu— ETI—"VPU'FPU massless Dirac-like operator. This construction can be easily
extended to the eight dimensional case. At first we define the
1 Dirac-like operator
= 5 TurpoF o 2.3 .
D,=A+B-X, (2.7

where the gauge field is taken to be anti-Hermitian. This _ ,

identity was shown by the authors [g6]. using tbe N+ 2k) ><2k»matr|cesA, B andB’. Here we also
It was also shown in Ref36] that there are many kinds defineB=(B,B’) andX=(x,x"). Then we can construct the

of the BPS equations which preserve 1/16,2/16,6/16 of  U(N) gauge field as

supersymmetries and these equations are related to the sub-

group SQ(7),SQ(6) ...,SO2) of the eight dimensional A=, (2.8

rotation groupSQ(8). Especially in this paper we concen- ) _ _

trate on the case that is related to ®&(5)=Sp(2) sym- whgre th_e (\I+_2k)><N r_natrlx ¢ is the solution of the fol-

metry. In this case the configuration of the gauge field prelowing Dirac-like equation

serves at least 3/16 of supersymmetries. T

D,y4=0, (2.9

B. Extended ADHM construction on R® and is normalized a$1'(//: Luxn -
The ADHM construction is a powerful tool to construct  We can see that the gauge fi¢&i8) gives the “self-dual”

the Yang-Mills instantons in four dimensiorid,5]. Espe- field strength as
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=241 ! 9,0} |y=24'BN,,, BTy
[u ZDTD v] Z !
(2.10
where we used the completeness relation
t 1 4
It ok=oy +DZDTD D,, (211

z-z

and defined the “self-dual” tensdﬁﬂ
plicitly written as

,- This tensor is ex-

lastos st (2.12
_2( n=y v ,u)v .
by using the following quantity:
. (5
=0, X=. |, (2.13
Ou
and satisfies the “self-duality” equation
ZTWWNM= Ny, (2.19
whereT ,,,, is the Sp(2) invariant tensor.

The identity(2.14) is surely identical to the “self-duality”
equation(2.1). Therefore we can automatically construct the

solutions of the 3/16 BPS equations through the extended

ADHM construction given above. In our choice of the com-
plex coordinate$2.6), we can write down the general form
of the field strength which satisfies the “self-duality” equa-
tion (2.14 as

F, 2 (dzi/\dz +dz/\dz,) +F, 7 (dzs/\dzg

+dz\dzy) +F, 5 (dz\dzg +dz/\dzy)
+ F;lz3(d71/\d z3+dz,/\dz,)
F2,(dz1/\dZ,+d2z3/\d2,)

ZlZ4(dzl/\dz4+ dz3/\d Z,)

Fiz,d2/\dz+F; dz,/\dz

F,.,d z;/\dz,+ F;aztd;g/\dzl. (2.15

C. Extended ADHM equations

It is crucial that theD D, is invertible and commutes with
2, . This is a necessary condition to obtain the “self-dual”
gauge field strength on tHR®. This condition corresponds to

PHYSICAL REVIEW D 67, 105025 (2003

A~UAM, B~UBM, B'~UB'M, (2.1
whereU e U(N+2k) and M € GL(2k,C). The gauge field
is invariant under this transformation. Using these relations,

we can reducé\, B, andB’ in the form

Ay Ay 1, O
A=| —-A] Al|, B=|0 1],
N 0 0
B> B:
B'=| —-B] B} (2.17
K L

HereA; andB; (i=1,2) arekxXk matrices, and, J, K, and
L are NXk matrices. In this representation, we can write
down the condition that thB!D, commutes with, , [30].

In this way, the extended ADHM equations in the com-
mutative case can be obtained as

BR=HE= ue=pe = pi=ui=0, (2.18
where several quantities are defined by
pr=[AS Al =[A] Al +1T1-313,
pe=[A7 A +113,
p&=[A},Bo]~[B] Al +1TK-L",
(2.19

wZ =[A} B, ]+[B],A]+1TL+KTJ,

p3=[B},B,1-[B! B, +KK-L'L,

wi=[B},B]+KIL.

There are two real and four complex equations, which are
related to the adjoint representatitf of Sp(2). Therefore

the moduli space of the eight dimensional instantons we con-
sider here is expected to have the structure of $ipe2)
holonomy. Examples of th&p(2) holonomy manifold are
given in Refs[42,43.

Ill. YANG-MILLS THEORY ON
NONCOMMUTATIVE SPACE

In this section, we briefly review the Yang-Mills theory on
the noncommutative space. A field theory on the noncommu-
tative space is defined by deforming the ring of functions on
it. More concretely, the product of functiorisand g is re-
placed with the Moyal star product that is defined by

the extended ADHM equations in eight dimensions both for

the commutative and the noncommutative case.
Before writing this condition, we notice that there are
equivalence relations between different setépB, andB’,

(F*@)(x) =MD" T (x)g(X") s - (3.9)
This equation implies that
[X# XY =XFx XY = X"%XH =1 61", (3.2

105025-3
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This commutation relation characterizes the noncommutativeve define the instantons as “self-dual” configurations, the
space we treat in this paper. The constéfit is called the “anti-self-dual” noncommutativity parameter is expected to
noncommutativity parameter. be of interest from the viewpoint of the resolution of the
There is another equivalent description of the noncommuinstanton moduli space.

tative space, which is called the operator formalism and is Concretely, we introduce the anti-self-dual noncommuta-
useful for explicit calculations. These two descriptions aretivity parameter as follows:

related via the Moyal-Weyl correspondence. In the operator
formalism, we regard the coordinates as operators. In this

{

13_ _ p57_ p24_ _ 68_5
section, we denote the hat on the operators in order to em- o7=—0 4 4 4 (£>0). (4.2)
phasize that they are operators. The commutation relation

between coordinates becomes as follows: This implies the commutation relations of the complex coor-

o dinates:
[x*,x"]=i6"". (3.3 o o o o
21,211=—125,2,]=[23,23]=—[ 24,2
This relation is represented by using operators which act on [2,2,] 22,22 =123 23] [24.24]

the Hilbert spacéH. _
The derivative of an operatd is defined by =~ 5. othersare zero. (4.2

9,0=[3,,0] where J,=—i(6"Y),,X". (3.4  These relations are the same as those of the harmonic oscil-

. L L o . lators up to the multiplication of constants. Therefore we
This derivative satisfies the Leibniz rule and the relations yefine the creation and annihilation operators by

(7;/4;(]/2 5IU,V and [é,u 1;?1/] =i ( 071)}“’ : (35) 2 Z
a;]Z \/%Zm, am= \[sz form=13, (4.3

The integral of an operat@? is defined by the trace over the
Hilbert spaceH as follows:

as well as
f dPxO(x)=(2m)Pdetd Tr;,O(x). (3.6) ) 2 2
an= sz, am= zzm form=2,4. (4.9
We note that the strength of the gauge fiélg can be
written as The number operators can also be defined as
s oo Lo 2 —
Fun=[X, . X,]—-i(0 1)/w' 3.7) —ZnZym form=1.3,
where the anti-Hermitian operatdt, is defined by Nm=anman= . (4.9
o szzm for m=2,4.
X, =d,+A,. (3.9

In this way the action of the noncommutative Yang-Mills The Fock spacé? on which the creation and annihilation
theory is expressed by operatord4.3) and(4.4) act is spanned by the direct product

of the Fock state|n;:n,:nzing)=[n;)®[n,)®|n3)®|n,).

1 b A oa The creation and annihilation operators act on each Fock
S=- Z(ZT’) vdeto Try tryn F ok .- B9  state as follows:

Here ty;yy denotes the trace over th¢(N) matrix. In the amNm) = \/n_m|nm—1>,
following sections, we omit the hat on operators for simplic-
ity of the description. allnm=Vnn+1n,+1) for m=1,...,4. (4.6
IV. U(1) INSTANTON IN THE CASE OF ANTI-SELF-DUAL The noncommutativity of the complex coordinat@s2)
NONCOMMUTATIVITY deforms the extended ADHM equatiof 18 as follows:
In this segt_ion, we study the noncommutatiVe{l) in- Mé=§(1kxk+ =), M}:ZM%:M%/:M%:M%:Q
stantons orR® in the case that the noncommutativity param- .7

eter is anti-self-dual. In a wide subclass of the extended
ADHM data, we show that the integkmwhich appears in the whereZE is defined by
extended ADHM construction should be interpreted as the
D4-brane charge rather than tB&-brane charge.

As in the four dimensional case, it is easy to generalize
the extended ADHM construction in eight dimensions to the
noncommutative space because of its algebraic nature. Sindénese equations were originally obtained in R&0].

1
H= E({BT,|32}+{|3T,Bl}+ K'K+L™L). (4.8

105025-4
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A. U(1), k=1 solution

In this subsection, we start by constructing thél), k
=1 solution explicitly and discuss if3-brane interpretation
by calculating the topological charges and the value of the
action. It becomes clear that th€1), k=1 solution should
be interpreted as the bound state of thé-brane and the
D8-brane with & field rather than that of thB0-brane and
the D8-brane with aB field.

An important fact for théJ(1) case is that we are allowed
to takeJ=K=L=0 [7]. Then we can obtain the nontrivial
solution of the noncommutative version of the extended

PHYSICAL REVIEW D 67, 105025 (2003

where the nontrivial components are explicitly given by

|4

F,y= Js,
4 (stan)(o+an+I22)(s+ap+l?) S

V214

F._=— J.,
% (s+an)(s+an+122)(s+an+1?)

(4.16
__ Vit

ADHM equations(4.7) by
A;=A,=B;=0, B,=a, |=y{(1+a°, (4.9

where the parameteris an arbitrary real number. The Dirac-

like operator becomes as follows:

ot Z,+az, —z1—az; J{(1+ad) 410
“ \zjtazz zt+az 0 S

The zero modey of D] is a 3x 1 matrix which is written as
=y ¥, €)T. Each component of is explicitly calcu-
lated as

I 1
=— Z,+azy),
¥ S+an+122 \/1+I2(5+a77+I2/2)’1( 2+ az)
I 1 -
o= (z1+az),
S+an+122 J1+1%(5+an+1%/2) 1
(4.11
1
£= —,
VI+12(5+an)
where we defined the quantitiésand » by
0=2121+ 252+ 8%(2323+ 2424), (4.12
N=242y+ ZpZy+ 1123+ 237, . (4.13

The following formulas are useful for the calculations:

(z,+azs)f(S+an)=f(5+an+12/2)(z,+azs),

o (419
(z,+az)f(8+an)=f(5+an—1%12)(z,+az,).

Substituting the zero modg into the equation$2.10), the
field strength form is explicitly obtained as follows:

F=F,[dz/\dz;+dz/\dz+a%(dzy/\dz;+dzy/\dzy)

+a(dz/\dzz+dz,/\dz,+dzz/\dz +dz,/\dz,)]
+ FZlZz[dzl/\dzer a(dz;/\dz,+dz;/\dz,)

+a%dzy/\dz,]+F; [dz/\dz, +a(dzA\dz,

+dzs/\dzy) +a2dzz/\dz], (4.19

F..= J_.
2 (s+an)(s+an+122)(5+an+1?)

Here as in the case of the four dimensional noncommutative
instantons, we introduced the operatdrs, J_, andJ; [11]
by

2 . _
Ji= |—2(22+ azy)(z;+az),

4.1

2
J_= |—2(21+ az)(z,+azy),

R
J3= l_z[(22+ azy)(z,+az,)

—(z,+az)(z;+az)].

These operators are found to satisfy the Lie algebra of
SU(2):
[J+.d-1=d3, [J3,d:]=%J.. (4.18
In the rest of this subsection, we discuss the properties of
the above solutiofd.15. At first, we can explicitly calculate
the eight form charg®(®):

fRsF/\F/\F/\on. (4.19

(8)—
Q 41(27)%

Therefore the solutiort4.15 does not have th®O0-brane
charge.

We can also calculate the value of the action of the solu-
tion as

214
__ - 8 S _ . -
S= gz f d X(lezzelzz—i_lezzelz2 2lelezlzl)
w2 1
:772|8<—§) Try :
2 (5+an)(s+an+12/2)%(6+ p+1?)
(4.20

Here we used the integral formu(@.6) and the identity

1
J+J,+J,J++J§=|—4(6+ an)(s+an+1?). (4.21)

105025-5
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To carry out the trace over the Hilbert spaide we have to

make the quantityp+az diagonal. So we make the unitary z,=
transformation and define new creation and annihilation op-

erators:
a ! (a;+aag), a ! (ap+aay)
a;= a aas), ar,= a aa,),
T 2 1va2 2 o™
(4.22
5 1 N 1
=———(a;—a 'ay), =————(a,—a la,).
Ji+1a *t ¥ T 1r1a? 2 4

These new operators also satisfy the commutation relations

of the harmonic oscillators,

[@m,at]=68nn formn=1,...,4, others are zero,

(4.23

and the quantityy+a» is made diagonal in the number basis

of new harmonic oscillatoré4.22) as

| 2 2

~ ~ < - -
o+an=7(aja;+azay)=7(n+ny).

5 (4.29

Then we are able to carry out the calculation as follows:

2 o0
S= 16772( %g)
(n1.np.,n3,n4)#(0,0,0,0)

1
Xo——=——=——= — =
(n;+n,)(Ng+n,+1)2(ny+Nny+2)

w2 - ” 1

7) (;3%4) N; N(N+1)(N+2)
,

A3

(713 ,714)

= 1672

=47\,, (4.25

where we used the formula of the summation:

o0 [’

> (NJO(n+ny)|Ny= > (N+1)(N|O(N)|N),
(ny.n5)#(0,0) N=1
(4.26

and the formula of the four dimensional volurivg in the
operator formalism:

V4Efd4x=<%§>2 i

(?13 ,714)

(4.27)

The appearance of the four dimensional voluvesuggests

PHYSICAL REVIEW D 67, 105025 (2003

1 ~ 1

m(zl—’_aZS)r 22:m(22+az4)1
1

(4.28

1
In=——(Z1—Qa —(Z _a_lz .
N a2 A ST +

These new coordinates also satisfy the same commutation
relations ag4.2):

-1 S o
Z3), 24=

[El vil] == [Ez afz] = [Es afs] == [24,54]

— g others are zero. (4.29

Then the solutior{4.15 can be rewritten in these new coor-
dinates as

é«Z
TAA+I2)(AFD)

F [J3(dz;/\dZ +dz,/\dZ,)

— 23 dzNdZ+ V23 _dZA\d ], (4.30

where we defined the quantity=2z,7,+7,z, and the fol-
lowing operators:

~ 2. . . 2. 1

J+=—2221, \]_:_lez, \]3:_(2222_2121).

¢ ¢ ¢
(4.3)

These operators satisfy the Lie algebtal8 of SU(2). The
above expressiot4.30 is surely theU(1) one instanton

solution on the four dimensional spa&¥ spanned by the
coordinatesz;, Z;, Z,, andZ,. So the solutior{4.30 has the
four form charge over the four dimensional subspRéeas

- 1
(@)= _ _ _
© 2(2w)2fﬁ4FAF 42 NNFD(NFZ) ~ T

(4.32

From the resultg4.19, (4.25 and (4.32), the solution
(4.30 should be interpreted as the bound state of the
D4-brane and th®8-brane with &B field, and we can natu-
rally interpret the total value of the actida.25 as the prod-

uct of the action of the four dimensional instanton ofér
and the volume of the four dimensional space spanned by the
coordinateszs, 73, Z;, andz,.

Here we comment on the problem associated with the

that the solutior(4.15 has a four dimensional nature. There- zero mode, which we encounter when we normalizejth#

fore it is natural to interpret the solutiod.15 as the non-
commutative version of the four dimensional instantons.

we rewrite the Dirac-like operat@#.10 by new coordinates
(4.28), then the extended ADHM construction reduces to the

This four dimensional nature can be seen more explicityADHM construction of the noncommutative instanton in the
by transforming the solution. Now let us define new coordi-four dimensional subspad®®. Therefore this problem of the

natesz,, (m=1, ... ,4) by

zero mode is essentially the same as that of the noncommu-

105025-6
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tative instanton inR* [7]. We have used this fact and the We introduce the self-dual noncommutativity parameter
procedure of Ref[11] when we calculate the value of the &S
action (4.25 and the four form chargét.32.

0'%=6°"= 6*'= 068:2 (£>0). (5.1)
B. Generalization to U(1), multi-k case

An important point in the previous subsection is that weThjs implies the following commutation relations of the
are able to reduce the extended ADHM construction to thegomplex coordinates:

four dimensional ADHM construction by the unitary trans-
formation of the coordinates. In this subsection, we comment
on the generalization of this scenario to the more general
case.

It is difficult to solve the noncommutative version of the =— 5, othersare zero. (5.2
extended ADHM equationgt.7) generally. However there is
an interesting subspace in the moduli space of the extendethese relations are the same as those of the harmonic oscil-
ADHM data. If we take lators up to the multiplication of constants. Therefore we
define the creation and annihilation operators by

[21,21)=[25,2,)=[25,23]=[24,24]

Bi=wiliwk, Bo=Woliyk, K=L=01x,

(4.33 \/E \/E
t_ L= — /= =
wherew; (i=1,2) are arbitrary complex parameters, then the am gzm’ am gz”‘ form=1,....4.(53
extended ADHM equations reduce to the equations similar to

the four dimensional deformed ADHM equations: The number operators can also be defined as
1 2 2 1
=1+ |wy| Wyl ) Lxk s =0Oxi- (4.39 2
pr= (14 [Wa|?+ |Wal*) L, =0k - a:namzzzmzm form=1... .4 5.4

Here 0, and Oy« denote respectively 2 k andk <Xk ma-

trices whose components are all zero, dnd, denotes a  Ag in the previous section, the Fock spakieon which the
kX k unit matrix. It is an easy problem to solve these reducedeation and annihilation operatofs.3 act is spanned by
equationg4.34 since the solutions of the deformed ADHM {he direct product of the Fock statén;:n,:ng:n,)=
equations in four dimensional case are well known. Som?n1)®|n2)®|n3)®|n4>. The creation and annihilation opera-
relevant references af8,6-23. _ tors act on each Fock state in the same way as(£6).

We can generalize the procedure of the previous subsec- |; ig easily found that the extended ADHM equations

tion to the present case. We are able to extend the definitio&.la in the commutative case are not deformed by the non-
(4.28 of new coordinates to the cadd.33 straightfor- commutativity of the coordinate.2)
wardly. Then the extended Dirac-like operat@r7) reduces '

to that of the ADHM construction of the instantons over the
four dimensional subspade®. Therefore we can naturally

interpret the solution(4.33 as the bound state of the  Now let us find the solution of the extended ADHM equa-
k D4-branes and th®8-brane with aB field, and we can tions (5.5), which is related to the localized instanton solu-
show that the integek which appears in the extended tion obtained by using the solution generating technique. We
ADHM construction should be interpreted as thd-brane  consider the case of the gauge grauil) and multik. It is
charge rather than thB0-brane charge when the noncom- gllowed to takel=K =L =0, for theU(1) case. Then the

1,1 2_ 2 3_ 3
MR= Mc=He= pE = Hr=pc=0. (5.9

mutativity parameter is anti-self-dual. extended ADHM equationé5.5) are simply solved and the
solution which might correspond to the localized instanton
V. RELATIONSHIP WITH SOLUTION solution is obtained by

GENERATING TECHNIQUE
, , _ A=A,=B;=0cx, =01, By=1. (5.6
In this section, we consider the case that the noncommu- LT ek Lk 2 ek
tativity parameter is self-dual. We find the relationship with  The extended ADHM construction gives rise to the instan-
the solution generating technique and show that the integerons through the zero mode of the Dirac-like operator. So we

can be interpreted as the charge of Mié-brane bound to nee( to look for the zero mode of the Dirac-like operator:
the D8-brane with aB field. In four dimensions, this rela-

tionship was established by Haman4#&]. However in the sy _

eight dimensions this relationship has not yet been found. We DZ: (i2+3)1kx" (21429 Lok O )
construct the solution of the extended ADHM equations, (z1+23) Lk (Z2+Z) Lk Okxa
which corresponds to the localized instanton solution ob-

tained by using the solution generating technique, and inteiSeemingly the Dirac-like operatdb.7) has the only trivial
pret it as the system d&f DO-branes and thB8-brane with  solution. We are however able to construct the nontrivial
a B field. zero mode of the Dirac-like operat@.7) by using the par-

(5.7
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tla! isometry in the noncommqrtatlve setting. Here, in Qrder to X, = lﬁT[ﬂu W1+39,= Wﬁ,dﬂ
write down the zero mode @, , we prepare an ordering of
the states: =819,S, (5.15

4

1 and the strength of gauge fie{@.7):
|n1:n2:n3:n4>=1—[l \/—_(a?)“i|0:0:0:0>. (5.9
j=

! Fu=i(07,(SS-1)=-i(67",,Pc. (516
Two sets of four non-negative integers,=(my, ...,Ms)  From the noncommutativity parameté.1) in this case, the
andn=(ny, ... ,ny), for which we defin&nj=2f‘:jmi ,and field strength form is written as
nj=2i4:jni with j=1,...,4, areordered by the following 2
rules: (1) If my=n; for all 1<j<4, m=n; (2) if m, F= ZPk(dzl/\c];pL dz,/\dz,+dzs/\dzz+dz,/\dz,).
=n; (j=1,... k=1) and mZ>ng for some k (1<k (5.17
<4), m>n; ) if m=n; (j=1,... k=1) and m<ny
for somek (1<k=4), m<n. The solution(5.15 for k=1 was originally obtained in Ref.
We can order all the states by these rules. For examplé29] by using the solution generating technique, and it was
these rules order the states as confirmed that the solutio5.15 preserves 3/16 of super-
symmetries by investigating small fluctuations around the
|0))=10:0:0:0), solution. The condition for preserving 3/16 of supersymme-

tries, which was found in Ref29], corresponds to choosing
|1))=[1:0:0:0), [2))=1]0:1:0:0), |3))=|0:0:1:0), the noncommutativity parameter as E§.1). Then it is con-
firmed that the solutiori5.6) of the extended ADHM equa-

|4))=10:0:0:1), |5))=[2:0:0:0,... . (5.9 tions corresponds to the solution constructed by using the
. _ o solution generating technique.
The zero modey of D, is a (X+1)X1 matrix which is In the rest of this section, we study the properties of the

written asy= (i ¢, £)T. Hereyy and 4, arekX 1 matri-  above solution5.15. At first, we are able to calculate the
ces respectively, anglis a 1X 1 matrix. Each component of eight form chargeQ® as
¢ is explicitly obtained as

0))((0 0 ®)= f FAFAFAF=Tr, P=k,
ol 0 Tt T e
5.1
= : y = : L §: 1
" | >><<’ | & ’ > where we used the formula
0))((k—1 0
(5.10 S PaTAN PVAN: P IAN PTAN- PFAN PPAN- PovAN - Pl
=1 I form. 5.19
where we defined the shift operator: 8(volume form) .19
. Therefore the integek which appears in the extended
_ N ADHM construction can be regarded as tli0-brane
S“_izo )i +K]. (5.19 charge. We can also calculate the value of the action for the

solution,
This shift operator is the typical example of the partial isom-

etry, which is used in the construction by using the solution S= _f dgx(F§3+ F§7+ F§4+ Féa)

generating technique, and satisfies 2
SSi=1, SlS=1-Py. (5.12 =2m % Ty Py
— 4 2
Here we defined the projection operator of rdnky =2k (5.20
k-1 From the result$5.18 and(5.20, the solution can be inter-
— - : preted as the system of theDO-branes and th®8-brane

Pi= 2, (il 13 Lith a8 field.
which satisfies VI. CONCLUSION

SP=PSI=0. (5.19 In this paper, we have studied the noncommutative ver-

sion of the extended ADHM construction in the eight dimen-
Then we can easily write down the explicit expression ofsionalU(1) Yang-Mills theory. We have found that it is an
the gauge field3.8): important difference whether the noncommutativity param-
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eter is anti-self-dual or self-dual. In the case that the nonintegerk which appears in the extended ADHM construction
commutativity parameter is anti-self-dual, we have showrbecomes to be interpreted as fh@-brane charge or not in
that the integek which appears in the extended ADHM con- the case that the noncommutativity parameter is anti-self-
struction should be interpreted as hd-brane charge rather dual. Another generalization of our study is to construct the
than theDO-brane charge. We have confirmed this fact in asolutions of the BPS equatiorig.1) except for the case re-
wide subspace of the extended ADHM data by calculatingated to theSp(2) symmetry in the noncommutative Yang-
the topological charges. Mills theory.

We have found the relationship with the solution generat- The moduli space of the noncommutative instantons in
ing technique in the case that the noncommutativity paramgjght dimensions is expected to have much richer structure
eter is self-dual. The shift Operator of the solution generating_han that of the noncommutative instantons in four dimen-
technique has naturally appeared in the extended ADHMjons. Therefore further investigation is necessary to under-

constructi.on. We have also shown in this case that the integ&fand the topological structure of gauge fields on the non-
k can be interpreted as the charge of B@-brane bound t0  commutativeR®.

the D8-brane with aB field.
The natural generalization of our study is to consider the
gauge group of the higher rank since our study has been ACKNOWLEDGMENTS
restricted to the case of thé(1) gauge group. It should be
checked whether the qualitative nature we have found We would like to thank S. Watamura for useful comments,
changes or not. For example, it is of interest whether theeading manuscripts and encouragement.

[1] A. Connes, M. R. Douglas, and A. Schwarz, J. High Energy[21] K. Lee, D. Tong, and S. Yi, Phys. Rev. &, 065017(200J).

Phys.02, 003(1998. [22] K. Kim, B. Lee, and H. Yang, Phys. Rev. &, 025034(2002.

[2] N. Seiberg and E. Witten, J. High Energy Phy®, 032 [23] B. Lee and H. Yang, Phys. Rev. 86, 045027(2002.
(1999. [24] N. Ohta and P. K. Townsend, Phys. Lett4B8 77 (1998.

[3] N. Nekrasov and A. Schwarz, Commun. Math. PHy&8 689  [25] B. Chen, H. Itoyama, T. Matsuo, and K. Murakami, Nucl.
(1998. Phys.B576, 177 (2000.

[4] M. Atiyah, N. Hitchin, V. Drinfeld, and Y. Manin, Phys. Lett. [26] M. Mihailescu, I. Y. Park, and T. A. Tran, Phys. Rev. @3,
65B, 185(1978. 046006(2001).

[5] E. Corrigan and P. Goddard, Ann. Phy@.Y.) 154 253  [27] E. Witten, J. High Energy Phy€4, 012(2002.
(1984. [28] M. Sato, Int. J. Mod. Phys. A6, 4069(200J).

[6] N. Nekrasov, “Trieste lectures on solitons in noncommutative[29] A. Fuijii, Y. Imaizumi, and N. Ohta, Nucl. PhyB615 61
gauge theories,” hep-th/0011095. (2002.

[7] K. Furuuchi, Prog. Theor. Phys. Supf#4, 79 (2003). [30] K. Ohta, Phys. Rev. 34, 046003(2001).

[8] K. Furuuchi, Prog. Theor. Phyd03 1043(2000. [31] M. Hamanaka, Y. Imaizumi, and N. Ohta, Phys. Lett589,

[9] K. Furuuchi, J. High Energy Phy83, 033(2002). 163(2002.

[10] M. Aganagic, R. Gopakumar, S. Minwalla, and A. Strominger, [32] C. Kim, K. Lee, and S. H. Yi, Phys. Lett. B43 107 (2002.
J. High Energy Phys04, 001 (200J). [33] G. Papadopoulos and A. Teschendorff, Phys. Let#1B 115

[11] K. Kim, H. Lee, and H. S. Yang, J. Korean Phys. Sét,. 290 (1998.
(2002. [34] Y. Hiraoka, Phys. Lett. B536, 147 (2002.

[12] C. H. Chu, V. V. Khoze, and G. Travaglini, Nucl. Phyg621, [35] Y. Hiraoka, “BPS Solutions of Noncommutative Gauge Theo-
101 (2002. ries in Four and Eight Dimensions,” hep-th/0205283.

[13] M. Hamanaka, Phys. Rev. 856, 085022(2002. [36] D. Bak, K. Lee, and J. H. Park, Phys. Rev. @8, 025021

[14] O. Lechtenfeld and A. D. Popov, J. High Energy PH3%.040 (2002.
(2002. [37] P. Valtancoli, Int. J. Mod. Phys. A8, 1125(2003.

[15] T. Ishikawa, S. Kuroki, and A. Sako, J. High Energy Phi. [38] E. Corrigan, C. Devchand, D. B. Fairlie, and J. Nuyts, Nucl.
068 (2001). Phys.B214, 452(1983.

[16] T. Ishikawa, S. Kuroki, and A. Sako, J. High Energy PH}&.  [39] R. S. Ward, Nucl. Phys3239 381 (1984).
028 (2002. [40] C. M. Hull, Adv. Theor. Math. Phys2, 619(1999.

[17] A. Sako, “Instanton Number of Noncommutativgiy Gauge  [41] E. Corrigan, P. Goddard, and A. Kent, Commun. Math. Phys.
Theory,” hep-th/0209139. 100, 1 (1985.

[18] F. Franco-Sollova and T. lvanova, J. Phys3@ 4207 (2003. [42] J. P. Gauntlett, G. W. Gibbons, G. Papadopoulos, and P. K.
[19] Z. Horvah, O. Lechtenfeld, and M. Wolf, J. High Energy Townsend, Nucl. Phy€B500, 133(1997.

Phys.12, 060(2002. [43] M. Cvetic, G. W. Gibbons, H. Luand C. N. Pope, Nucl. Phys.
[20] K. Lee and P. Yi, Phys. Rev. B1, 125015(2000). B617, 151 (2001).

105025-9



