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Noncommutative U„1… instantons in eight dimensional Yang-Mills theory

Yoshiki Hiraoka*
Department of Physics, Tohoku University, Sendai 980-8578, Japan

~Received 31 January 2003; published 29 May 2003!

We study the noncommutative version of the extended ADHM construction in eight dimensionalU(1)
Yang-Mills theory. This construction gives rise to the solutions of the BPS equations in Yang-Mills theory, and
these solutions preserve at least 3/16 of supersymmetries. In a wide subspace of the extended ADHM data, we
show that the integerk which appears in the extended ADHM construction should be interpreted as the
D4-brane charge rather than theD0-brane charge by explicitly calculating the topological charges in the case
that the noncommutativity parameter is anti-self-dual. We also find the relationship with the solution generating
technique and show that the integerk can be interpreted as the charge of theD0-brane bound to theD8-brane
with the B field in the case that the noncommutativity parameter is self-dual.
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I. INTRODUCTION

Noncommutative geometry has played an important r
in the study of string or M theory@1#. In particular,D-branes
with a constant Neveu-Schwarz~NS! B field are of interest in
the context of understanding the nonperturbative aspect
string theory. The effective world-volume field theory o
D-branes with aB field turns out to be the noncommutativ
Yang-Mills theory@2#, which has an interesting feature th
the singularity of the instanton moduli space is naturally
solved@3#.

Four dimensionalU(N), k instantons are realized a
k D0-branes withinN D4-branes in type IIA string theory
When we turn on a constantB field which preserves 1/4 o
supersymmetries, the moduli space of the noncommuta
instantons is resolved and theD0-branes cannot escape fro
the D4-branes. From the viewpoint ofD0-brane theory, the
Higgs branch of the moduli space coincides with the mod
space of the noncommutative instantons and theB field cor-
responds to the Fayet-Iliopoulos parameters.

The instanton solutions of Yang-Mills theory are co
structed by the well-known Atiyah-Drinfeld-Hitchin-Mani
~ADHM ! method. There is the one-to-one corresponde
between the moduli space of the instantons and that of
ADHM data in the commutative case@4,5#. On the other
hand, most of the noncommutative instantons in four dim
sions have been obtained by modifying the ADHM constr
tion. See, e.g.@3,6–23# and references therein. In particula
it has been proven that the instanton number is generall
integer in the noncommutativeU(N) gauge theory by Sako
@17#.

It is also of interest to generalize the above system
higher dimensions in the context of bothD-brane dynamics
and the world-volume theories. The systems of theD0-D6
and theD0-D8 with a B field have been investigated b
several authors@24–37#. Especially we consider the syste
of the D0-brane and theD8-brane with aB field. These
studies reduce to finding the solutions of the higher dim
sional analogue of the ‘‘self-duality’’ equations which are t
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first order linear relations amongst the components of
field strength@36,38–40#. It has been shown that there a
many kinds of the BPS equations which preser
1/16,2/16, . . . ,6/16 of supersymmetries and these equatio
are related to the subgroupSO(7),SO(6), . . . ,SO(2) of the
eight dimensional rotation groupSO(8).

In this paper, we focus on the case that is related to
SO(5)5Sp(2) symmetry. In this case the configuration
the gauge field preserves at least 3/16 of supersymmetrie
is known that there is the extended ADHM constructi
which gives rise to the solutions of the 3/16 BPS equation
eight dimensions@41#. We consider the noncommutativ
U(1) gauge theory and study the noncommutative version
this extended ADHM construction@30#. It is worth construct-
ing the simple solutions explicitly and investigating the
properties such as the topological charges since little ab
the noncommutative version of the extended ADHM co
struction is known until now. This subject has been stud
in some references@30,31,34#.

This paper is organized as follows. In Sec. II, we revie
the Bogomol’nyi-Prasad-Sommerfield~BPS! equations and
the extended ADHM construction in eight dimensions.
Sec. III, we briefly review the Yang-Mills theory on the non
commutative space. As in the four dimensional case, it is
important difference whether the noncommutativity para
eter is anti-self-dual or self-dual. In Sec. IV we consider t
case that the noncommutativity parameter is anti-self-d
In a wide subspace of the extended ADHM data, we sh
that the integerk which appears in the extended ADHM con
struction should be interpreted as theD4-brane charge rathe
than theD0-brane charge by explicitly calculating the top
logical charges. In Sec. V, we consider the case that the n
commutativity parameter is self-dual. We find the relatio
ship with the solution generating technique and show that
integerk can be interpreted as the charge of theD0-brane
bound to theD8-brane with aB field. The final section is
devoted to the conclusion.

II. EXTENDED ADHM CONSTRUCTION OF EIGHT
DIMENSIONAL INSTANTONS

In this section, we review the BPS equations and the
tended ADHM construction of the instantons in eight dime
©2003 The American Physical Society25-1
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sions. The instantons in higher dimensions are defined as
solutions of the BPS equations. This definition is the natu
generalization of the four dimensionalU(N), k instantons
which are constructed by the ADHM construction with t
gauge groupU(N) and the ADHM parameterk. These in-
stantons have theD-brane interpretation as the bound sta
of k D0-branes andN D4-branes.

Therefore, in the following, we consider the extend
ADHM construction with the gauge groupU(N) and the
extended ADHM parameterk since these situations are e
pected to correspond to the systems ofk D0-branes and
N D8-branes.

A. BPS equations in eight dimensions

In this subsection, we briefly review the BPS equations
the eight dimensional Yang-Mills theory. These equatio
were studied in Refs.@38–40#, and systematically classifie
by the authors of@36#. The BPS equations are the high
dimensional analogue of the ‘‘self-duality’’ equations, whic
are the linear relations amongst the components of the
strength

1

2
TmnrsFrs5Fmn ~m,n,r,s51, . . . ,8!, ~2.1!

with the constant 4-form tensorTmnrs . These equations ar
the natural generalizations of the four dimensional s
duality equations:

1

2
eabcdFcd5Fab ~a,b,c,d51, . . . ,4!. ~2.2!

When the equations~2.1! hold, the equations of motion
DmFmn50, are automatically satisfied due to the Jac
identity, and the lower bound of the action is reached. T
bound is obtained as in the four dimensional case by
identity

2
1

4
FmnFmn52

1

16S Fmn2
1

2
TmnrsFrsD 2

2
1

8
TmnrsFmnFrs , ~2.3!

where the gauge field is taken to be anti-Hermitian. T
identity was shown by the authors of@36#.

It was also shown in Ref.@36# that there are many kind
of the BPS equations which preserve 1/16,2/16, . . . ,6/16 of
supersymmetries and these equations are related to the
group SO(7),SO(6) . . . ,SO(2) of the eight dimensiona
rotation groupSO(8). Especially in this paper we concen
trate on the case that is related to theSO(5)5Sp(2) sym-
metry. In this case the configuration of the gauge field p
serves at least 3/16 of supersymmetries.

B. Extended ADHM construction on R8

The ADHM construction is a powerful tool to constru
the Yang-Mills instantons in four dimensions@4,5#. Espe-
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cially, it is well known that the instanton moduli space a
the ADHM moduli space completely coincide in four dime
sions. It is also known that there exists the extended ADH
construction which gives rise to solutions of the 3/16 B
equations in eight dimensions. This extended ADHM co
struction was investigated by several authors@30,31,33–
35,41#.

In this subsection, we review this extended ADHM co
struction of the eight dimensional ‘‘self-dual’’ instantons a
sociated with theSp(2) group given in@39,41#. This con-
struction of the instantons is the slight extension of the fo
dimensional ADHM construction. When we takeB50, or
B850 which are defined in the following, we reproduce t
four dimensional ADHM construction.

In order to treat the eight dimensional space, it is usefu
regard eight coordinates of theR8 as two quaternionic coor
dinates:

x5 (
m51

8

s̃mxm5S z2 z1

2 z̄1 z̄2
D ,

x85 (
m51

8

s̃m8 xm5S z4 z3

2 z̄3 z̄4
D . ~2.4!

Here we defined the eight vector matrices using the P
matricest i ( i 51,2,3) by

s̃m5~ i t1,0,i t2,0,i t3,0,12,0!,
~2.5!

s̃m8 5~0,i t1,0,i t2 ,0,i t3,0,12!,

and the four complex coordinates by

z15x31 ix1, z25x71 ix5, z35x41 ix2, z45x81 ix6.

~2.6!

The four dimensional ADHM construction gives rise
the instantons through the zero mode of a zero dimensio
massless Dirac-like operator. This construction can be ea
extended to the eight dimensional case. At first we define
Dirac-like operator

Dz5A1B¢ •X¢ , ~2.7!

using the (N12k)32k matricesA, B andB8. Here we also
defineB¢ 5(B,B8) andX¢ 5(x,x8). Then we can construct th
U(N) gauge field as

Am5c†]mc, ~2.8!

where the (N12k)3N matrix c is the solution of the fol-
lowing Dirac-like equation

Dz
†c50, ~2.9!

and is normalized asc†c51N3N .
We can see that the gauge field~2.8! gives the ‘‘self-dual’’

field strength as
5-2
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NONCOMMUTATIVE U(1) INSTANTONS IN EIGHT . . . PHYSICAL REVIEW D 67, 105025 ~2003!
Fmn52c†S ] [mDz

1

Dz
†Dz

]n]Dz
†D c52c†B¢ N̄mn

1

Dz
†Dz

B¢ †c,

~2.10!

where we used the completeness relation

1N12k5cc†1Dz

1

Dz
†Dz

Dz
† , ~2.11!

and defined the ‘‘self-dual’’ tensorN̄mn . This tensor is ex-
plicitly written as

N̄mn5
1

2
~SmSn

†2SnSm
† !, ~2.12!

by using the following quantity:

Sm[]mX¢ 5S s̃m

s̃m8
D , ~2.13!

and satisfies the ‘‘self-duality’’ equation,

1

2
TmnrsN̄rs5N̄mn , ~2.14!

whereTmnrs is theSp(2) invariant tensor.
The identity~2.14! is surely identical to the ‘‘self-duality’’

equation~2.1!. Therefore we can automatically construct t
solutions of the 3/16 BPS equations through the exten
ADHM construction given above. In our choice of the com
plex coordinates~2.6!, we can write down the general form
of the field strength which satisfies the ‘‘self-duality’’ equ
tion ~2.14! as

F5Fz1z̄1
~dz1`dz̄11dz2`dz̄2!1Fz3z̄3

~dz3`dz̄3

1dz4`dz̄4!1Fz1z̄3
~dz1`dz̄31dz2`dz̄4!

1Fz̄1z3
~dz̄1`dz31dz̄2`dz4!

1Fz1z4
~dz1`dz41dz3`dz2!

1Fz̄1z̄4
~dz̄1`dz̄41dz̄3`dz̄2!

1Fz1z2
dz1`dz21Fz̄1z̄2

dz̄1`dz̄2

1Fz3z4
dz3`dz41Fz̄3z̄4

dz̄3`dz̄4 . ~2.15!

C. Extended ADHM equations

It is crucial that theDz
†Dz is invertible and commutes with

Sm . This is a necessary condition to obtain the ‘‘self-dua
gauge field strength on theR8. This condition corresponds t
the extended ADHM equations in eight dimensions both
the commutative and the noncommutative case.

Before writing this condition, we notice that there a
equivalence relations between different sets ofA, B, andB8,
10502
d
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r

A;UAM , B;UBM , B8;UB8M , ~2.16!

whereUPU(N12k) and MPGL(2k,C). The gauge field
is invariant under this transformation. Using these relatio
we can reduceA, B, andB8 in the form

A5S A2 A1

2A1
† A2

†

I J
D , B5S 1k 0

0 1k

0 0
D ,

B85S B2 B1

2B1
† B2

†

K L
D . ~2.17!

HereAi andBi ( i 51,2) arek3k matrices, andI , J, K, and
L are N3k matrices. In this representation, we can wr
down the condition that theDz

†Dz commutes withSm @30#.
In this way, the extended ADHM equations in the com

mutative case can be obtained as

mR
1 5mC

1 5mC
2 5mC

285mR
3 5mC

3 50, ~2.18!

where several quantities are defined by

mR
1 5@A2

† ,A2#2@A1
† ,A1#1I †I 2J†J,

mC
1 5@A2

† ,A1#1I †J,

mC
2 5@A2

† ,B2#2@B1
† ,A1#1I †K2L†J,

~2.19!

mC
285@A2

† ,B1#1@B2
† ,A1#1I †L1K†J,

mR
3 5@B2

† ,B2#2@B1
† ,B1#1K†K2L†L,

mC
3 5@B2

† ,B1#1K†L.

There are two real and four complex equations, which
related to the adjoint representation10 of Sp(2). Therefore
the moduli space of the eight dimensional instantons we c
sider here is expected to have the structure of theSp(2)
holonomy. Examples of theSp(2) holonomy manifold are
given in Refs.@42,43#.

III. YANG-MILLS THEORY ON
NONCOMMUTATIVE SPACE

In this section, we briefly review the Yang-Mills theory o
the noncommutative space. A field theory on the noncomm
tative space is defined by deforming the ring of functions
it. More concretely, the product of functionsf and g is re-
placed with the Moyal star product that is defined by

~ f !g!~x![e( i /2)umn]m]n8 f ~x!g~x8!ux5x8 . ~3.1!

This equation implies that

@xm,xn#5xm!xn2xn!xm5 iumn. ~3.2!
5-3
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This commutation relation characterizes the noncommuta
space we treat in this paper. The constantumn is called the
noncommutativity parameter.

There is another equivalent description of the noncomm
tative space, which is called the operator formalism and
useful for explicit calculations. These two descriptions a
related via the Moyal-Weyl correspondence. In the opera
formalism, we regard the coordinates as operators. In
section, we denote the hat on the operators in order to
phasize that they are operators. The commutation rela
between coordinates becomes as follows:

@ x̂m,x̂n#5 iumn. ~3.3!

This relation is represented by using operators which ac
the Hilbert spaceH.

The derivative of an operatorO is defined by

]mO[@]̂m ,O# where ]̂m[2 i ~u21!mn x̂n. ~3.4!

This derivative satisfies the Leibniz rule and the relations

]mx̂n5dm
n and @ ]̂m ,]̂n#5 i ~u21!mn . ~3.5!

The integral of an operatorO is defined by the trace over th
Hilbert spaceH as follows:

E dDxO~x![~2p!DAdetu TrHO~x!. ~3.6!

We note that the strength of the gauge fieldÂm can be
written as

F̂mn5@X̂m ,X̂n#2 i ~u21!mn , ~3.7!

where the anti-Hermitian operatorX̂m is defined by

X̂m[]̂m1Âm . ~3.8!

In this way the action of the noncommutative Yang-Mi
theory is expressed by

S52
1

4
~2p!DAdetu TrH trU(N) F̂mnF̂mn . ~3.9!

Here trU(N) denotes the trace over theU(N) matrix. In the
following sections, we omit the hat on operators for simpl
ity of the description.

IV. U„1… INSTANTON IN THE CASE OF ANTI-SELF-DUAL
NONCOMMUTATIVITY

In this section, we study the noncommutativeU(1) in-
stantons onR8 in the case that the noncommutativity para
eter is anti-self-dual. In a wide subclass of the extend
ADHM data, we show that the integerk which appears in the
extended ADHM construction should be interpreted as
D4-brane charge rather than theD0-brane charge.

As in the four dimensional case, it is easy to genera
the extended ADHM construction in eight dimensions to
noncommutative space because of its algebraic nature. S
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we define the instantons as ‘‘self-dual’’ configurations, t
‘‘anti-self-dual’’ noncommutativity parameter is expected
be of interest from the viewpoint of the resolution of th
instanton moduli space.

Concretely, we introduce the anti-self-dual noncommu
tivity parameter as follows:

u1352u575u2452u685
z

4
~z.0!. ~4.1!

This implies the commutation relations of the complex co
dinates:

@z1 ,z̄1#52@z2 ,z̄2#5@z3 ,z̄3#52@z4 ,z̄4#

52
z

2
, others are zero. ~4.2!

These relations are the same as those of the harmonic o
lators up to the multiplication of constants. Therefore w
define the creation and annihilation operators by

am
† 5A2

z
zm , am5A2

z
z̄m for m51,3, ~4.3!

as well as

am
† 5A2

z
z̄m , am5A2

z
zm for m52,4. ~4.4!

The number operators can also be defined as

nm5am
† am5H 2

z
zmz̄m for m51,3,

2

z
z̄mzm for m52,4.

~4.5!

The Fock spaceH on which the creation and annihilatio
operators~4.3! and~4.4! act is spanned by the direct produ
of the Fock state:un1 :n2 :n3 :n4&[un1& ^ un2& ^ un3& ^ un4&.
The creation and annihilation operators act on each F
state as follows:

amunm&5Anmunm21&,

am
† unm&5Anm11unm11& for m51, . . . ,4. ~4.6!

The noncommutativity of the complex coordinates~4.2!
deforms the extended ADHM equations~2.18! as follows:

mR
1 5z~1k3k1J!, mC

1 5mC
2 5mC

285mR
3 5mC

3 50,

~4.7!

whereJ is defined by

J[
1

2
~$B2

† ,B2%1$B1
† ,B1%1K†K1L†L !. ~4.8!

These equations were originally obtained in Ref.@30#.
5-4
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A. U„1…, kÄ1 solution

In this subsection, we start by constructing theU(1), k
51 solution explicitly and discuss itsD-brane interpretation
by calculating the topological charges and the value of
action. It becomes clear that theU(1), k51 solution should
be interpreted as the bound state of theD4-brane and the
D8-brane with aB field rather than that of theD0-brane and
the D8-brane with aB field.

An important fact for theU(1) case is that we are allowe
to takeJ5K5L50 @7#. Then we can obtain the nontrivia
solution of the noncommutative version of the extend
ADHM equations~4.7! by

A15A25B150, B25a, I 5Az~11a2!, ~4.9!

where the parametera is an arbitrary real number. The Dirac
like operator becomes as follows:

Dz
†5S z̄21az̄4 2z12az3 Az~11a2!

z̄11az̄3 z21az4 0
D . ~4.10!

The zero modec of Dz
† is a 331 matrix which is written as

c[(c1 c2 j)T. Each component ofc is explicitly calcu-
lated as

c152
I

d1ah1I 2/2

1

A11I 2~d1ah1I 2/2!21
~z21az4!,

c25
I

d1ah1I 2/2

1

A11I 2~d1ah1I 2/2!21
~ z̄11az̄3!,

~4.11!

j5
1

A11I 2~d1ah!21
,

where we defined the quantitiesd andh by

d[z1z̄11 z̄2z21a2~z3z̄31 z̄4z4!, ~4.12!

h[ z̄4z21 z̄2z41z1z̄31z3z̄1 . ~4.13!

The following formulas are useful for the calculations:

~ z̄11az̄3! f ~d1ah!5 f ~d1ah1I 2/2!~ z̄11az̄3!,
~4.14!

~ z̄21az̄4! f ~d1ah!5 f ~d1ah2I 2/2!~ z̄21az̄4!.

Substituting the zero modec into the equations~2.10!, the
field strength form is explicitly obtained as follows:

F5Fz1z̄1
@dz1`dz̄11dz2`dz̄21a2~dz3`dz̄31dz4`dz̄4!

1a~dz1`dz̄31dz2`dz̄41dz3`dz̄11dz4`dz̄2!#

1Fz1z2
@dz1`dz21a~dz1`dz41dz3`dz2!

1a2dz3`dz4#1Fz̄1z̄2
@dz̄1`dz̄21a~dz̄1`dz̄4

1dz̄3`dz̄2!1a2dz̄3`dz̄4#, ~4.15!
10502
e

d

where the nontrivial components are explicitly given by

Fz1z̄1
5

I 4

~d1ah!~d1ah1I 2/2!~d1ah1I 2!
J3 ,

Fz1z2
52

A2I 4

~d1ah!~d1ah1I 2/2!~d1ah1I 2!
J1 ,

~4.16!

Fz̄1z̄2
5

A2I 4

~d1ah!~d1ah1I 2/2!~d1ah1I 2!
J2 .

Here as in the case of the four dimensional noncommuta
instantons, we introduced the operatorsJ1 , J2 , andJ3 @11#
by

J15
A2

I 2
~ z̄21az̄4!~ z̄11az̄3!,

J25
A2

I 2
~z11az3!~z21az4!, ~4.17!

J35
1

I 2
@~ z̄21az̄4!~z21az4!

2~z11az3!~ z̄11az̄3!#.

These operators are found to satisfy the Lie algebra
SU(2):

@J1 ,J2#5J3 , @J3 ,J6#56J6 . ~4.18!

In the rest of this subsection, we discuss the propertie
the above solution~4.15!. At first, we can explicitly calculate
the eight form chargeQ(8):

Q(8)[
1

4!~2p!4ER8
F`F`F`F50. ~4.19!

Therefore the solution~4.15! does not have theD0-brane
charge.

We can also calculate the value of the action of the so
tion as

S52
2I 4

z2 E d8x~Fz1z2
Fz̄1z̄2

1Fz̄1z̄2
Fz1z2

22Fz1z̄1
Fz1z̄1

!

5p2I 8S pz

2 D 2

TrH
1

~d1ah!~d1ah1I 2/2!2~d1h1I 2!
.

~4.20!

Here we used the integral formula~3.6! and the identity

J1J21J2J11J3
25

1

I 4
~d1ah!~d1ah1I 2!. ~4.21!
5-5
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To carry out the trace over the Hilbert spaceH, we have to
make the quantityd1ah diagonal. So we make the unitar
transformation and define new creation and annihilation
erators:

ã15
1

A11a2
~a11aa3!, ã25

1

A11a2
~a21aa4!,

~4.22!

ã35
1

A111/a2
~a12a21a3!, ã45

1

A111/a2
~a22a21a4!.

These new operators also satisfy the commutation relat
of the harmonic oscillators,

@ ãm ,ãn
†#5dm,n for m,n51, . . . ,4, others are zero,

~4.23!

and the quantityd1ah is made diagonal in the number bas
of new harmonic oscillators~4.22! as

d1ah5
I 2

2
~ ã1

†ã11ã2
†ã2![

I 2

2
~ ñ11ñ2!. ~4.24!

Then we are able to carry out the calculation as follows:

S516p2S pz

2 D 2

(
(ñ1 ,ñ2 ,ñ3 ,ñ4)5” (0,0,0,0)

`

3
1

~ ñ11ñ2!~ ñ11ñ211!2~ ñ11ñ212!

516p2S pz

2 D 2

(
(ñ3 ,ñ4)

`

(
N51

`
1

N~N11!~N12!

54p2S pz

2 D 2

(
(ñ3 ,ñ4)

`

54p2V4 , ~4.25!

where we used the formula of the summation:

(
(ñ1 ,ñ2)5” (0,0)

`

^NuO~ ñ11ñ2!uN&5 (
N51

`

~N11!^NuO~N!uN&,

~4.26!

and the formula of the four dimensional volumeV4 in the
operator formalism:

V4[E d4x5S pz

2 D 2

(
(ñ3 ,ñ4)

`

. ~4.27!

The appearance of the four dimensional volumeV4 suggests
that the solution~4.15! has a four dimensional nature. Ther
fore it is natural to interpret the solution~4.15! as the non-
commutative version of the four dimensional instantons.

This four dimensional nature can be seen more explic
by transforming the solution. Now let us define new coor
natesz̃m (m51, . . . ,4) by
10502
-
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z̃15
1

A11a2
~z11az3!, z̃25

1

A11a2
~z21az4!,

~4.28!

z̃35
1

A111/a2
~z12a21z3!, z̃45

1

A111/a2
~z22a21z4!.

These new coordinates also satisfy the same commuta
relations as~4.2!:

@ z̃1 ,zD1#52@ z̃2 ,zD2#5@ z̃3 ,zD3#52@ z̃4 ,zD4#

52
z

2
, others are zero. ~4.29!

Then the solution~4.15! can be rewritten in these new coo
dinates as

F5
z2

D~D1z/2!~D1z!
@ J̃3~dz̃1`dzD11dz̃2`dzD2!

2A2J̃1dz̃1`dz̃21A2J̃2dzD1`dzD2#, ~4.30!

where we defined the quantityD[ z̃1zD11zD2z̃2 and the fol-
lowing operators:

J̃15
A2

z
zD2zD1 , J̃25

A2

z
z̃1z̃2 , J̃35

1

z
~zD2z̃22 z̃1zD1!.

~4.31!

These operators satisfy the Lie algebra~4.18! of SU(2). The
above expression~4.30! is surely theU(1) one instanton
solution on the four dimensional spaceR̃4 spanned by the
coordinates:z̃1 , zD1 , z̃2, andzD2. So the solution~4.30! has the
four form charge over the four dimensional subspaceR̃4 as

Q(4)[2
1

2~2p!2ER̃4
F`F54 (

N51

`
1

N~N11!~N12!
511.

~4.32!

From the results~4.19!, ~4.25! and ~4.32!, the solution
~4.30! should be interpreted as the bound state of
D4-brane and theD8-brane with aB field, and we can natu-
rally interpret the total value of the action~4.25! as the prod-
uct of the action of the four dimensional instanton overR̃4

and the volume of the four dimensional space spanned by
coordinates:z̃3 , zD3 , z̃4, andzD4.

Here we comment on the problem associated with
zero mode, which we encounter when we normalize thec. If
we rewrite the Dirac-like operator~4.10! by new coordinates
~4.28!, then the extended ADHM construction reduces to
ADHM construction of the noncommutative instanton in t
four dimensional subspaceR̃4. Therefore this problem of the
zero mode is essentially the same as that of the noncom
5-6
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tative instanton inR̃4 @7#. We have used this fact and th
procedure of Ref.@11# when we calculate the value of th
action ~4.25! and the four form charge~4.32!.

B. Generalization to U„1…, multi-k case

An important point in the previous subsection is that
are able to reduce the extended ADHM construction to
four dimensional ADHM construction by the unitary tran
formation of the coordinates. In this subsection, we comm
on the generalization of this scenario to the more gen
case.

It is difficult to solve the noncommutative version of th
extended ADHM equations~4.7! generally. However there is
an interesting subspace in the moduli space of the exten
ADHM data. If we take

B15w11k3k , B25w21k3k , K5L5013k ,
~4.33!

wherewi ( i 51,2) are arbitrary complex parameters, then
extended ADHM equations reduce to the equations simila
the four dimensional deformed ADHM equations:

mR
1 5z~11uw1u21uw2u2!1k3k , mC

1 50k3k . ~4.34!

Here013k and0k3k denote respectively 13k andk3k ma-
trices whose components are all zero, and1k3k denotes a
k3k unit matrix. It is an easy problem to solve these reduc
equations~4.34! since the solutions of the deformed ADHM
equations in four dimensional case are well known. So
relevant references are@3,6–23#.

We can generalize the procedure of the previous sub
tion to the present case. We are able to extend the defin
~4.28! of new coordinates to the case~4.33! straightfor-
wardly. Then the extended Dirac-like operator~2.7! reduces
to that of the ADHM construction of the instantons over t
four dimensional subspaceR̃4. Therefore we can naturally
interpret the solution~4.33! as the bound state of th
k D4-branes and theD8-brane with aB field, and we can
show that the integerk which appears in the extende
ADHM construction should be interpreted as theD4-brane
charge rather than theD0-brane charge when the noncom
mutativity parameter is anti-self-dual.

V. RELATIONSHIP WITH SOLUTION
GENERATING TECHNIQUE

In this section, we consider the case that the noncom
tativity parameter is self-dual. We find the relationship w
the solution generating technique and show that the integk
can be interpreted as the charge of theD0-brane bound to
the D8-brane with aB field. In four dimensions, this rela
tionship was established by Hamanaka@13#. However in the
eight dimensions this relationship has not yet been found.
construct the solution of the extended ADHM equatio
which corresponds to the localized instanton solution
tained by using the solution generating technique, and in
pret it as the system ofk D0-branes and theD8-brane with
a B field.
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We introduce the self-dual noncommutativity parame
as

u135u575u245u685
z

4
~z.0!. ~5.1!

This implies the following commutation relations of th
complex coordinates:

@z1 ,z̄1#5@z2 ,z̄2#5@z3 ,z̄3#5@z4 ,z̄4#

52
z

2
, others are zero. ~5.2!

These relations are the same as those of the harmonic o
lators up to the multiplication of constants. Therefore w
define the creation and annihilation operators by

am
† 5A2

z
zm , am5A2

z
z̄m for m51, . . . ,4. ~5.3!

The number operators can also be defined as

nm5am
† am5

2

z
zmz̄m for m51, . . . ,4. ~5.4!

As in the previous section, the Fock spaceH on which the
creation and annihilation operators~5.3! act is spanned by
the direct product of the Fock state:un1 :n2 :n3 :n4&[
un1& ^ un2& ^ un3& ^ un4&. The creation and annihilation opera
tors act on each Fock state in the same way as Eq.~4.6!.

It is easily found that the extended ADHM equatio
~2.18! in the commutative case are not deformed by the n
commutativity of the coordinates~5.2!,

mR
1 5mC

1 5mC
2 5mC

285mR
3 5mC

3 50. ~5.5!

Now let us find the solution of the extended ADHM equ
tions ~5.5!, which is related to the localized instanton sol
tion obtained by using the solution generating technique.
consider the case of the gauge groupU(1) and multik. It is
allowed to takeJ5K5L5013k for theU(1) case. Then the
extended ADHM equations~5.5! are simply solved and the
solution which might correspond to the localized instant
solution is obtained by

A15A25B150k3k , I 5013k , B251k3k . ~5.6!

The extended ADHM construction gives rise to the insta
tons through the zero mode of the Dirac-like operator. So
need to look for the zero mode of the Dirac-like operator

Dz
†5S ~ z̄21 z̄4!1k3k 2~z11z3!1k3k 0k31

~ z̄11 z̄3!1k3k ~z21z4!1k3k 0k31
D . ~5.7!

Seemingly the Dirac-like operator~5.7! has the only trivial
solution. We are however able to construct the nontriv
zero mode of the Dirac-like operator~5.7! by using the par-
5-7
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tial isometry in the noncommutative setting. Here, in order
write down the zero mode ofDz

† , we prepare an ordering o
the states:

un1 :n2 :n3 :n4&5)
i 51

4
1

Ani !
~ai

†!niu0:0:0:0& . ~5.8!

Two sets of four non-negative integers,m5(m1 , . . . ,m4)
andn5(n1 , . . . ,n4), for which we definem̄j5( i 5 j

4 mi , and

n̄ j5( i 5 j
4 ni with j 51, . . . ,4, areordered by the following

rules: ~1! If m̄j5n̄ j for all 1< j <4, m5n; ~2! if m̄j

5n̄ j ( j 51, . . . ,k21) and m̄k.n̄k for some k (1<k

<4), m.n; ~3! if m̄j5n̄ j ( j 51, . . . ,k21) and m̄k,n̄k
for somek (1<k<4), m,n.

We can order all the states by these rules. For exam
these rules order the states as

u0&&5u0:0:0:0&,

u1&&5u1:0:0:0&, u2&&5u0:1:0:0&, u3&&5u0:0:1:0&,

u4&&5u0:0:0:1&, u5&&5u2:0:0:0&, . . . . ~5.9!

The zero modec of Dz
† is a (2k11)31 matrix which is

written asc[(c1 c2 j)T. Herec1 andc2 arek31 matri-
ces respectively, andj is a 131 matrix. Each component o
c is explicitly obtained as

c15S u0&&^^0u

u0^^1u

]

u0&&^^k21u
D , c25S 0

0

]

0
D , j5Sk ,

~5.10!

where we defined the shift operator:

Sk[(
i 50

`

u i &&^^ i 1ku. ~5.11!

This shift operator is the typical example of the partial iso
etry, which is used in the construction by using the solut
generating technique, and satisfies

SkSk
†51, Sk

†Sk512Pk . ~5.12!

Here we defined the projection operator of rankk by

Pk[(
i 50

k21

u i &&^^ i u, ~5.13!

which satisfies

SkPk5PkSk
†50. ~5.14!

Then we can easily write down the explicit expression
the gauge field~3.8!:
10502
o
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Xm5c†@ ]̂m ,c#1 ]̂m5c†]̂mc

5Sk
†]̂mSk , ~5.15!

and the strength of gauge field~3.7!:

Fmn5 i ~u21!mn~SkSk
†21!52 i ~u21!mnPk . ~5.16!

From the noncommutativity parameter~5.1! in this case, the
field strength form is written as

F5
2

z
Pk~dz1`dz̄11dz2`dz̄21dz3`dz̄31dz4`dz̄4!.

~5.17!

The solution~5.15! for k51 was originally obtained in Ref
@29# by using the solution generating technique, and it w
confirmed that the solution~5.15! preserves 3/16 of super
symmetries by investigating small fluctuations around
solution. The condition for preserving 3/16 of supersymm
tries, which was found in Ref.@29#, corresponds to choosin
the noncommutativity parameter as Eq.~5.1!. Then it is con-
firmed that the solution~5.6! of the extended ADHM equa
tions corresponds to the solution constructed by using
solution generating technique.

In the rest of this section, we study the properties of
above solution~5.15!. At first, we are able to calculate th
eight form chargeQ(8) as

Q(8)[
1

4!~2p!4ER8
F`F`F`F5TrH Pk5k,

~5.18!

where we used the formula

dz1`dz̄1`dz2`dz̄2`dz3`dz̄3`dz4`dz̄4

516~volume form!. ~5.19!

Therefore the integerk which appears in the extende
ADHM construction can be regarded as theD0-brane
charge. We can also calculate the value of the action for
solution,

S52
1

2E d8x~F13
2 1F57

2 1F24
2 1F68

2 !

52p4z2 TrH Pk

52p4z2k. ~5.20!

From the results~5.18! and~5.20!, the solution can be inter
preted as the system of thek D0-branes and theD8-brane
with a B field.

VI. CONCLUSION

In this paper, we have studied the noncommutative v
sion of the extended ADHM construction in the eight dime
sionalU(1) Yang-Mills theory. We have found that it is a
important difference whether the noncommutativity para
5-8
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eter is anti-self-dual or self-dual. In the case that the n
commutativity parameter is anti-self-dual, we have sho
that the integerk which appears in the extended ADHM co
struction should be interpreted as theD4-brane charge rathe
than theD0-brane charge. We have confirmed this fact in
wide subspace of the extended ADHM data by calculat
the topological charges.

We have found the relationship with the solution gener
ing technique in the case that the noncommutativity para
eter is self-dual. The shift operator of the solution generat
technique has naturally appeared in the extended AD
construction. We have also shown in this case that the inte
k can be interpreted as the charge of theD0-brane bound to
the D8-brane with aB field.

The natural generalization of our study is to consider
gauge group of the higher rank since our study has b
restricted to the case of theU(1) gauge group. It should b
checked whether the qualitative nature we have fou
changes or not. For example, it is of interest whether
rg

.

ive

er

y
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integerk which appears in the extended ADHM constructi
becomes to be interpreted as theD0-brane charge or not in
the case that the noncommutativity parameter is anti-s
dual. Another generalization of our study is to construct
solutions of the BPS equations~2.1! except for the case re
lated to theSp(2) symmetry in the noncommutative Yang
Mills theory.

The moduli space of the noncommutative instantons
eight dimensions is expected to have much richer struc
than that of the noncommutative instantons in four dime
sions. Therefore further investigation is necessary to un
stand the topological structure of gauge fields on the n
commutativeR8.
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@43# M. Cvetič, G. W. Gibbons, H. Lu¨, and C. N. Pope, Nucl. Phys

B617, 151 ~2001!.
5-9


