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Interaction between vortices in models with two order parameters
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The interaction energy and force between widely separated strings is analyzed in a field theory having
applications to superconducting cosmic strings, the SO~5! model of high-temperature superconductivity, and
solitons in nonlinear optics. The field theory has two order parameters, one of which is broken in the vacuum
~giving rise to strings!, the other of which is unbroken in the vacuum but which could nonetheless be broken
in the core of the string. If this does occur, there is an effect on the energetics of widely separated strings. This
effect is important if the length scale of this second order parameter is longer than that of the other fields in the
problem.
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I. INTRODUCTION

In at least three very different contexts, nonlinear effe
in field theories with spontaneous symmetry breaking g
rise to topological solitons wherein a second order param
~unbroken in the vacuum! attains a nonzero expectatio
value in the core of the soliton.

First, bosonic superconducting cosmic strings@1# arise in
a model with twoU(1) symmetries. The first of these~which
could be gauged or ungauged! is spontaneously broken by
complex scalar fieldw; this gives rise to the possibility o
string solutions, where the phase ofw changes by 2p around
a large loop in space. In the core of such a string,w→0. The
second symmetry is gauged and unbroken, and is ident
with electromagnetism. It is supposed that an electrom
netically charged scalar fields exists; although its vacuum
expectation value~VEV! is zero, the potentialV(s,w) is
such that if one forcesw to zero, thenV(s,0) is minimized
for sÞ0. Thus, it is possible thats attains an expectation
value inside the core of a string, making the string a sup
conducting wire. Whether or not this actually occurs is
detailed dynamical question. A variety of generalizations
this idea have been discussed in Refs.@2–10#.

Second, in nonlinear optics, one can consider beams
which the amplitude of the electromagnetic field envelo
function vanishes and its phase changes by an integer
tiple of 2p at a given point. In a nonlinear medium such
configuration can be a stable solution of the equations
motion, known as an optical vortex soliton~see@11# for ref-
erences and review!. By coupling a second propagatin
mode to the first, the vortex can act as a waveguide for
second mode, which is confined to the core of the vortex~for
theoretical work, see@12,13#; for recent experimental result
see@14–16#!. The first and second modes are analogous
the fieldsw ands above, respectively, although in the optic
context both fields are ungauged.~It should also be men
tioned that the fields are not really order parameters her!

Finally, the SO~5! model of high-temperature superco
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ductivity ~HTSC! @17# is a ‘‘unification’’ of the two phenom-
ena that occur in these materials at low temperature: ant
romagnetism~AF! at low doping ~including the undoped
case! and superconductivity~SC! at higher doping. The
Ginzburg-Landau~GL! model is written in terms of a five-
component real order parameter composed of a th
component fieldh describing antiferromagnetism and a tw
component fieldf describing superconductivity. In the S
phase, the latter field attains an expectation value, and str
~vortices! exist, just as in conventional@SO~2!# superconduc-
tivity. It is possible thath attains a nonzero expectation valu
inside the core, making the core AF, which could provide
experimental test of the SO~5! model @18#.

In this paper, we will study a field theory which applie
~with minor modifications! to any of the above situations
and will study the energetics of two~widely-separated! vor-
tices. In the cosmic string context this has an influence on
dynamics of a network of strings@19–21#; in optics this af-
fects the stability of solitonic waveguides@11#; and in the
superconducting case this is one way to study the type
superconductor described by a given model, which provi
another test of the SO~5! model @22,23#.

In the next section, we will establish notation and revie
previous work~expressed in the language of superconduc
ity, but easily translated into the other contexts!, wherein the
effect of the AF phase on the magnetic behavior was stud
and the conditions under which SO~5! superconductors are
type I or II were determined. This was done in two way
First, the free energyF of a vortex as a function of its wind
ing numberm was calculated numerically@22#. If the energy
per unit winding numberF(m)[F(m)/m is a decreasing
function of m, type I superconductivity results, since it
then energetically preferable for a given flux to penetrat
superconductor in one large region, inside which superc
ductivity is destroyed. On the other hand, ifF(m) is an
increasing function ofm, the superconductor is type II, sinc
the energetics then prefers a given amount of flux to be
vided into a network of vortices of winding numberm51.
Second, the type of superconductor was deduced from a
termination@23# of the critical magnetic fields~see, for ex-
ample, @24#!. While this approach is perhaps less intuitiv
than the previous one, it has the advantage that a sim
analytical determination of the boundary between type I a
©2003 The American Physical Society24-1
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type II superconductivity can be made.
A third way of differentiating between type I and type

superconductors is through the force between two wide
separated vortices: they attract or repel for superconduc
of type I or II, respectively. This approach is very intuitiv
and is also applicable to both the cosmic strings and non
ear optics contexts~where the notion of critical magneti
fields which restore the symmetry broken in bulk does
apply!. In this article, we will examine this third approac
adopting for the most part the language of SO~5! supercon-
ductivity, though much of the discussion can easily be
ported to other contexts such as those mentioned above

The method used is essentially that used by Speight@25#.
We write an expression for the energy of two vortices us
a point vortex approximation, wherein the full nonlinear fr
energy is replaced by a linearization of it plus point sour
for each vortex. The approximation is expected to be vali
the intervortex separation is much larger than the core s
The approximate free energy can be written as the sum o
individual vortex energies and an interaction energy, fr
which the intervortex force can easily be found. In conve
tional SC, vortices attract or repel one another in type I a
II SC, respectively. As we will see, this is not always the ca
here: for certain values of the parameters of the SO~5!
model, a superconductor which is type I~in the thermody-
namic sense! will have repulsive, not attractive, vortices
This unusual behavior is unlikely to be seen in HTSC, ho
ever, as it occurs only for small values of the GL parame
@k;o(1)#, whereas in all known HTSCs,k*50.

II. REVIEW OF PREVIOUS WORK

The model we wish to consider is described by the f
lowing two-dimensional free energy:

F̂5 E d2xH ~¹3Â!2

8p
1

\2

2m*
US 2 i¹2

e*

\c
ÂD f̂U2

1
\2

2m*
~¹ĥ!21V~f̂,ĥ!J . ~1!

Here f̂ and ĥ are the SC and AF order parameters, resp
tively. The former is a complex field associated with the U~1!

gauge fieldÂ, while the latter is a real triplet whose SO~3!
symmetry is ungauged.1

The potential is taken to be an even, quartic function
uf̂u and uĥu:

V~f̂,ĥ!52
a1

2

2
uf̂u22

a2
2

2
uĥu21

b

4
~ uf̂u412uf̂u2uĥu21uĥu4!.

1Hats denote dimensionful quantities. The constants appearin
Eq. ~1! are appropriate to superconductivity; readers unfami
with these conventions will be relieved to learn that the notat
will be streamlined presently, when we go to dimensionless v
ables.
10502
-
rs

-

t

-

g

s
if
e.
he

-
d
e

-
r

-

c-

f

For simplicity, we have imposed SO~5! symmetry on the
quartic couplings; the quadratic couplings are negative
give rise to symmetry breaking. The ground state depend
the value of the parameterb[a2

2/a1
2, and is SC ifb,1. We

are primarily interested in this case; the ground state can
written (uf̂u,uĥu)5(v,0), wherev[a1 /Ab.

The model can be simplified somewhat by rescaling
fields and the position variable. Defining dimensionless~un-
hatted! quantities

Â5a1cAm*

e*
A, f̂5vf, ĥ5vh, x5A m* c2

4pe* 2v2
s,

F̂5
a1

2c2m*

4pe* 2
F,

we have the dimensionless free energy

F5
1

2 E d2sH ~¹3A!21
1

k2 „u~2 i¹2kA!fu21~¹h!2
…

2f22bh21
1

2
~f21h2!21

1

2J , ~2!

wheref5ufu, h5uhu, the derivatives are now with respe
to s, and

k5A b

4p

m* c

\e*

is the usual GL parameter.~A constant has been added toF
so that the ground state has zero energy.!

From Eq. ~2!, we see that the behavior of the model
completely determined by two dimensionless parametersk
and the parameterb, which is the ratio of the quadratic
coefficients ofh andf.

An observation which will be useful below is that if w
seth50, then the free energy~a function off andA only!
reduces to that of the SO~2! model. Thus, for example, the
energy of a static configuration for whichh50 in the SO~5!
model will be exactly equal to the energy of the same fi
configuration in the SO~2! model with the same value ofk.

Since the complex fieldf attains a nonzero VEV, vortex
solutions exist, wherein the phase off changes by 2p
around a large circle in space. One can also consider c
figurations of higher winding number; a rotationally symme
ric ansatz of winding numberm ~‘‘ m-vortex’’! is essentially
the conventional one forf andA together with a rotationally
invariant ansatz forh, whose orientation is taken to be
fixed, arbitrary unit vectorê:

f~s!5w~s!eimu, Ai~s!5e i j

sj

s
A~s!, h~s!5êh~s!.

~3!

As in the conventional case, these solutions carry a magn
flux proportional tom ~specifically, the dimensionless flux i
F522pm/k).
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INTERACTION BETWEEN VORTICES IN MODELS WITH . . . PHYSICAL REVIEW D67, 105024 ~2003!
As mentioned in the Introduction, a non-vanishingh field
may appear inside the core of the vortex due to the com
tition between the potential and gradient energy terms.
examining the potential, one can see qualitatively that
fixed k, asb increases, the impetus forh to be nonzero in
the core of a vortex grows, since the potential energy sav
gained by havinghÞ0 increases withb, while the kinetic
energy cost is independent ofb. Thus, we can define a criti
cal value ofb, above which the core of a vortex is AF an
below which it is normal. This critical value depends up
k, and also upon the winding numberm of the vortex.~The
dependence onm can also be argued qualitatively, by notin
that the larger the winding number, the greater the regio
which w is nearly zero, and the greater the impetus forh to
be nonzero.! bAF(k,m) was found numerically form51 to
5 in Ref. @22#.

The fact that the model reduces to the SO~2! model if h
50 enables us to easily make contact with that model;
need only setb to zero, since then there is never any reas
for h to be nonzero in all situations we will consider here

Substituting the ansatz~3! into Eq. ~2!, we find the fol-
lowing free energy:

F~m!5p E sdsH S A81
A

s D 2

1
1

k2 Fw821S m

s
1kAD 2

w2

1h82G2w22bh21
1

2
~w21h2!21

1

2J . ~4!

The free energy, written as a function ofm, depends also, o
course, on the two parameters of the model,k andb.

The equations of motion that follow from Eq.~4! are

1

k2 Fw91
1

s
w82S m

s
1kAD 2

wG1w~12w22h2!50, ~5!

1

k2 S h91
1

s
h8D1h~b2w22h2!50, ~6!

A91
1

s
A82

1

s2
A2S m

ks
1ADw250. ~7!

These equations cannot be solved analytically; howe
asymptotic solutions for larges can be found. Defining

w~s!512 f ~s! and A~s!52
m

ks
1a~s!, ~8!

the fieldsf , a andh approach zero exponentially ass→`.
The linearized equations in these fields have solutions

f ~s!5CfK0~A2ks!, a~s!5CaK1~s!,

h~s!5ChK0~A12bks! ~9!

whereK0 andK1 are modified Bessel functions of the se
ond kind and theC’s are constants not determined by t
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linear equations. These results will be useful for deriving
potential energy between a pair of widely-separated vorti
in the next section.

By studying either the energetics of vortices as a funct
of their winding number@22# or by studying the critical mag-
netic fields@23#, one can determine a curve in theb-k plane
indicating the boundary between type I and type II behav
which yields a surprising result.

To see this, let us first recall the situation in the conve
tional SO~2! model, focusing our attention on vortex ene
getics. There, the only parameter isk, andk51/A2[kc is
the critical value separating type I (k,kc) and type II (k
.kc) behavior. For example, one finds that the energy
unit magnetic flux of a vortexF(m)5F(m)/m decreases or
increases withm according to whetherk,kc or k.kc . In
either case,F(m) is a monotonic function ofm, tending
towards a constant value for largem.

In the SO~5! case, the monotonicity ofF(m) is no longer
guaranteed. The reason is that for fixedk and b, as m in-
creases one can go from a normal vortex core to an AF c
As long as the core is normal, its energy is exactly as in
SO~2! model, as can be seen from Eq.~2!. However, asm
increases, eventually the core becomes AF, at which p
the energetic picture changes: in particular, the energy o
subsequentm-vortices will be reduced@relative to the
equivalent SO~2! model#, lessening the degree to which th
superconductor is type II, and in some cases even chan
the superconductor from type II to type I. For fixedk, this
effect is stronger the larger the value ofb; we can therefore
define a critical valuebc(k) as that value for whichF(m)
goes from an increasing~type II! to a decreasing~type I!
function of m, in the limit of largem.

It is strange, however, that~in contrast with conventiona
SC! F(m) is not necessarily a monotonic function: it cou
increase withm while the core is normal and decrease withm
subsequently. The large-m behavior indicates a type I supe
conductor, yet the energy of a 2-vortex is more than dou
that of a single vortex, which is a feature of type II supe
conductivity. This does not cast doubt on the fact that suc
SC is indeed type I, in a thermodynamic sense; howeve
will certainly affect vortex dynamics.

The behavior at largem is confirmed by studying the criti-
cal magnetic fieldsHc andHc2. As in conventional SC, the
relative magnitude of these is an indicator of the type of S
In @23# the critical fields were found to be given by the fo
lowing expressions:

Hc~b!5Hc
0A12b2, Hc2~b!5A2kHc

0~12b!, ~10!

whereHc
0 is the thermodynamic critical field in the conven

tional SC model. The border between type I and type II w
then be given by equating these two fields, leading to
following expressions forbc(k) and, by inversion,kc(b)
~that value ofk above which a SC is type II, for fixedb):

bc~k!5
2k221

2k211
, kc~b!5~1/A2!A~11b!/~12b!.

~11!
4-3
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This line, as well as the lines separating the normal/AF c
boundary form51 and m52 vortices, lines C, A, and B
respectively, are shown in Fig. 1.

III. INTERVORTEX FORCE

As mentioned in the Introduction, a third way of dete
mining the magnetic nature of a superconductor is thro
the interaction energy and force between vortices. We
study the interaction of widely-separated vortices in
SO~5! model. In conventional superconductivity, vortices
any separation are attractive or repulsive in the case of ty
or type II superconductors, respectively, as was shown
great detail numerically by Jacobs and Rebbi@26#. We would
thus expect the intervortex force in the SO~5! model to
change from repulsive to attractive as we cross curve C
Fig. 1 from left to right. This turns out to be not always th
case. The reason is that vortex energetics does not alw
reflect the type of superconductor in the SO~5! model, as a
comparison of the following two facts demonstrates. On
one hand, the type of an SO~5! superconductor depends crit
cally on the AF sector~see@23#!. On the other hand, whe
vortices have normal cores, their behavior~their interaction
energy, in particular! is blind to the AF sector of the mode
as was noted in the previous section. Thus, vortices w
normal cores cannot be expected to necessarily behave i
fashion dictated by the type of superconductor involved.
particular, it is possible that vortices in a type I~in the sense
of bulk thermodynamic properties! superconductor repel on
another.

One subtlety which arises in the interaction of vortic
once their cores become AF is that while the orientation oh
can be taken fixed in the core of any given vortex, in t
absence of anisotropies, there is no reason to expect th
cores of different vortices to be oriented in the same dir
tion. When it becomes energetically favorable to develop
AF core, each vortex randomly selects a direction in whichh

FIG. 1. Stability of vortex lattice in the SO~5! model. Curves A
and B separate the normal core region~left! from the AF core re-
gion ~right! in the case ofm51 andm52 vortices, respectively
Curve C depicts the border between type I and type II behavior@see
Eq. ~11!#. These curves divide theb-k plane into several regions
the most interesting of which are regions 5 and 6, where the S
type I yet vortices~of winding number 1! repel one another.
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will point. The interaction energy between vortices will d
pend on the angle between the two AF order parameters
we will see, the contribution ofh to the vortex interaction
energy is most important if the two orders parameters
parallel. Our discussion will assume for the most part t
this is the case.

To clarify the situation, consider the interaction of ord
nary vortices~that is, vortices of winding number 1!. The
core of these vortices is normal or AF to the left or right
curve A of Fig. 1, respectively. Their interaction energy w
be shown to obey the following behavior. If the core is no
mal ~to the left of curve A!, the energetics is exactly a
dictated by the SO~2! model: attractive fork,1/A2 and re-
pulsive fork.1/A2. If the core is AF~to the right of curve
A!, then ~except for a very thin transition zone wherein th
AF core turns on! the energetics correctly reflects the type
superconductor involved~repulsive or attractive to the left o
right of curve C!.

If we imagine fixingk and increasingb, then there are
three cases. First, ifk,1/A2 nothing dramatic happens: fo
all b the model describes type I superconductivity and v
tices attract. Eventually curve A is crossed, so the vorti
develop AF cores; they remain attractive, however.

Second, ifk lies above its value at the point of interse
tion of curves A and C (k.2.25), the situation is slightly
more interesting: the core turns AF to the right of curve
but the vortices remain repulsive until curve C is cross
after which the superconductor is type I and the vortic
attract.

The third, intermediate case, where curve C is cros
before curve A asb increases (1/A2,k,2.25), is the most
interesting. When curve C is crossed, the superconductor
comes type I, so the vorticesought toattract. However, their
cores are normal, their energetics is as in the SO~2! model,
and they repel, sincek.1/A2. This anomalous behavior pe
sists until curve A is crossed, when the core becomes AF
the vortices start to attract one another—the expected be
ior for a type I superconductor.

In summary, curve C delineates the boundary betw
type I ~to the right! and type II~to the left! superconductiv-
ity; however, in regions 5 and 6 the superconductor has a
of identity crisis: it is type I, but its vortices behave as type
vortices.2

One can also study the interaction energy of vortices

2Perhaps some clarification on what is meant by type I vs typ
superconductivity is warranted. In conventional superconductiv
type II superconductivity~for instance! is characterized byk
.1/A2, negative surface energy at a normal/superconduc
boundary, repulsive vortices, andHc2.Hc . These are so inextrica
bly connected that any of these features could be used as a d
tion of type II; the rest would follow. As we have seen, and as w
be argued below~see also@23#!, these features no longer imply on
another in SO~5! superconductivity. We refer to a superconductor
type I or II according to whether the surface energy is negative
positive, or equivalently, according to the relative value ofHc and
Hc2.
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higher winding number. The behavior is qualitatively simil
to that for 1-vortices, although the region of disagreem
between vortex energetics and the type of superconduct
reduced. For 2-vortices, for example, the core turns AF a
lower value ofb for any givenk ~curve B rather than A!,
and consequently it is only in region 6 that one finds d
agreement. This trend continues as the winding numbe
increased.

With this summary of the main results concluded, let
describe the calculations involved in determining the int
action energy of a pair of vortices. For arbitrary separati
an analytic solution is not possible; even numerically,
problem is extremely difficult. However, the interaction b
tween widely separated vortices is considerably more t
table, and is clearly of interest, in that it is an importa
ingredient in determining the dynamics of widely separa
vortices, and is normally directly related to the type of s
perconductor involved.

If the vortices are widely separated, one can argue tha
details of the fields in the core ought to be unimportant, a
we can model them by a simplifying approximation, follow
ing Speight@25#: we can consider a linearized theory wi
point sources added at the location of the vortices in suc
way that the long-range fields produced by the point sour
in the linear theory agree with those of the vortices in
original theory.

To derive the linearized theory, we must expand the f
energy~2! around the asymptotic values of the fields. Befo
doing this, however, it is useful to eliminate the phase off,
as this degree of freedom becomes the longitudinal ga
field. Thus, we takef512 f real, and expand Eq.~2! in
powers off, A andh, up to quadratic terms. This results i

F free5
1

2 E d2sH ~¹3A!21A21
1

k2 ~¹ f !212 f 21
1

k2~¹h!2

1~12b!h2J . ~12!

To this, we must add couplings to sources:

Fsource5 E d2s~r f 1s•h1 j•A!. ~13!

The equations of motion which follow fromF free1Fsourceare

¹2f 22k2f 5k2r, ~14!

¹2h2~12b!k2h5k2s, ~15!

¹2A2A5 j . ~16!

The sources are to be chosen to give rise to fields wh
coincide with the asymptotic vortex fields, after eliminatio
of the phase off via a gauge transformation. Thes
asymptotic fields are@see Eq.~9!#

f ~s!5CfK0~A2ks!, Ai~s!5e i j

sj

s
CaK1~s!,
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h~s!5êChK0~A12bks!. ~17!

We require sources such that the solutions of Eqs.~14!–
~16! are Eqs.~17!. For f andh the answer is found directly
by substitution once we recognize that

~¹22m2!K0~ms!522pd2~s!; ~18!

we find

r~s!522p
Cf

k2
d2~s!, s~s!522pê

Ch

k2
d2~s!. ~19!

For the gauge field, differentiation of Eq.~18! and substitu-
tion yields

j i~s!52pCae i j ] jd
2~s!. ~20!

The vortex is now described by point sources of magnitu
2pCf /k2 and 2pCh /k2 for f and h, respectively, and an
infinitesimal current loop of magnetic dipole moment 2pCa
for A.

We are now in a position to derive the interaction ener
of two widely separated vortices. Suppose the vortex po
tions ares1 ands2. In the point vortex approximation, eac
vortex is described by sources of the form~19!, ~20!, dis-
placed to the position of the vortex. Linearity of the equ
tions of motion then implies that the fields will just be th
sum of the individual vortex fields, and the energy of t
configuration will be given byF free1Fsource, with fields
( f ,h,A)5( f 11 f 2 ,h11h2 ,A11A2) and sources (r,s,j )
5(r11r2 ,s11s2 ,j11 j2), where subscript 1,2 indicatess
→s2s1,2. We can subtract off the energy of each vortex
obtain the following interaction energy:

F int5 E d2s~r1f 21s1•h21 j1•A2![F f1Fh1FA .

~21!

To evaluateF f we simply substituter15r(s2s1) and f 2
5 f (s2s2); we find

F f5 E d2sS 22p
Cf

k2
d2~s2s1!D CfK0~A2kus2s2u!

522p
Cf

2

k2
K0~A2kd!, ~22!

whered5us12s2u is the separation of the vortices. The sam
argument applies toFh , yielding

Fh522p
Ch

2

k2
ê1•ê2K0~A12bkd!. ~23!

For Fa , a similar~but slightly more complicated! procedure
leads to
4-5
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Fa5 E d2s„2pCae i j ]sj
d2~s2s1!…

3e ik

~s2s2!k

us2s2u
CaK1~ us2s2u!

52pCa
2 ]

]s1 j
S ~s12s2!k

us12s2u
CaK1~ us12s2u! D

52pCa
2K0~d!. ~24!

Thus, the interaction energy of two widely separated v
tices takes the form

U~d!52pS Ca
2K0~d!2

Cf
2

k2
K0~A2kd!

2
Ch

2

k2
ê1•ê2K0~A12bkd!D . ~25!

The first two terms give the interaction energy in t
SO~2! case, and coincide with the results of@25,27#. The
third term is the effect of the AF cores. As can be seen
depends on the angle between the two order paramete
they are parallel the contribution to the interaction energy
maximally negative, resulting in the greatest attraction, wh
antiparallel order parameters yield a positive~repulsive!
force. If the order parameters are orthogonal the AF con
bution to the interaction energy is zero and the results c
cide with the SO~2! case. Since the parallel case is the m
interesting and is also energetically preferred, we will
sume in what follows that the order parameters are para
that is, thatê1•ê251.

In order to obtain useful information from Eq.~25!, we
must determine the constantsCa , Cf andCh by comparing
Eq. ~9! with numerical solutions of the nonlinear equatio
~5!–~7!, which have been obtained previously@22,23#.

We will first study the conventional@SO~2!# case to make
contact with previous work; this can be achieved within t
SO~5! model by takingb50. Subsequently, we will exam
ine the general SO~5! case given by Eq.~25!. The coeffi-
cients Ca , Cf are displayed for a variety ofk ~and for b
50) in Table I.

TABLE I. Values ofCa andCf /k for various values ofk in the
case where the fieldh50 ~achieved by settingb to zero!.

k Ca Cf /k k Ca Cf /k

0.4 6.561 2.888 1.0 1.417 2.325
0.5 4.301 2.635 1.5 0.822 2.851
0.6 3.126 2.486 2.0 0.534 5.061
0.707 2.388 2.388 2.5 0.402 12.972
0.8 1.969 2.340 3.0 0.304 41.688
0.9 1.651 2.318
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There are three cases, depending on the value ofk. The
first case isk5kc . At this value, the potential energy i
exactly zero for all separation. Indeed, the argument of b
Bessel functions takes the same value. Furthermore, the
stantsCa and Cf /k are equal, as can be see numerica
from Table I and also analytically from the following argu
ment. Atk5kc , we can write the free energy in a form du
to Bogomol’nyi @28#; the field equations can then be writte
as first order differential equations:

w82S m

s
1kADw50 and kS A81

A

s D1
1

2
~12w2!50.

~26!

Linearizing the first equation, we obtainf 852a; substitut-
ing Eq. ~9! into that equation, we find that the secon
Bogomol’nyi equation is satisfied ifA2Cf5Ca . This argu-
ment is only valid atkc because Eq.~26! are not valid for
other values ofk. The potential is shown in Fig. 2.

The second case isk.kc , corresponding to~conven-
tional! type II SC. In this case, we note thatK0(A2kd) falls
off more rapidly thanK0(d) so the positive term in Eq.~25!
will dominate over the negative one for large enough se
ration, no matter what the values of the constantsCa and
Cf /k. Therefore, as is well known, in conventional type
SC vortices are repulsive and give rise to stable vortex
tice. The resulting potential is displayed in Fig. 2 fork51.

The third case isk,kc , corresponding to type I SC
Here, the situation is reversed:K0(d) falls off more rapidly
thanK0(A2kd), and we conclude that the long-range pote
tial is attractive. Thus, if we start with an initial configuratio
formed by a number of widely-separated vortices, ultimat
they will collapse into a single vortex of large winding num
ber. This case is illustrated in Fig. 2 fork50.6. The result
~25! and the above discussion are in full agreement w
@20,25# and @26#.

FIG. 2. Behavior of the potential in the case of the S0~2! model
(b50) for various values ofk: k50.6 ~type I!, k5kc ~critical!,
andk51.0 ~type II!. Note that asd approaches zero, the expone
tial behavior is lost and the curves cannot be trusted anymore.
4-6
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TABLE II. Values of Ca , Cf /k, andCh /k for various values ofk andb for m51 in the case of the
SO~5! model.

k b Ca Cf /k Ch /k k b Ca Cf /k Ch /k

1.0 0.000 1.417 2.325 0.000 3.0 0.00 0.362 41.688 0.00
0.881 1.419 2.401 0.049 0.81 0.362 45.742 0.083
0.882 1.422 2.604 0.081 0.82 0.364 52.005 0.119
0.884 1.428 3.382 0.122 0.83 0.364 61.320 0.145
0.886 1.434 4.765 0.152 0.85 0.368 74.346 0.185
0.888 1.440 6.915 0.177 0.87 0.371 88.687 0.216
0.890 1.446 10.044 0.198 0.90 0.379 132.886 0.24
0.900 1.481 52.036 0.281
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Let us now turn our attention to the SO~5! case. The co-
efficientsCa , Cf andCh are displayed for a variety ofk and
b in Table II.

The possibility of an AF core gives rise to the surprisi
results mentioned at the beginning of this section. As
already been noted, if the core of the vortices is normal, th
is no difference between the energetics of the SO~5! model
and the SO~2! model, since the third term of Eq.~25! is zero.
Thus, the interaction energy of a pair SO~5! vortices ~of
winding number 1! is unchanged from that described abov
to the left of curve A in Fig. 1. To the right of this curve
however, theh field is nonzero and the third term makes
attractive contribution to the interaction force, either less
ing the degree to which the vortex energetics behave
10502
s
re

,

-
a

type II manner, increasing the degree to which it behave
a type I manner, or~the most interesting possibility! chang-
ing the vortices from repulsive to attractive.

We can read at which point this occurs from Eq.~25!. The
force between widely separated vortices depends on whic
the fields is longest in range: the gauge field, which provid
a repulsive force, or one of the scalar fields, whose forces
attractive. The range of the gauge field is 1, while that of
h field ~the longest range of the two scalar fields, assumin
is nonzero in magnitude! is (A12bk)21. These forces are
equal for a certainb, which we denoteb* :

b* 5121/k2. ~27!
FIG. 3. Intervortexpotential fork51 ~a! andk53 ~b! for m51, and fork51 ~c! andk52 ~d! for m52.
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The long-range vortex potential will be repulsive ifb,b*
and attractive ifb.b* .

Note that the caveat ‘‘assuming it is nonzero in mag
tude’’ is essential: if the range ofh is longer than that ofA,
but Ch50, it will obviously not have an effect on the vorte
interaction.

A couple of case studies will help illustrate the situatio
it is useful to see how the interaction energy varies withb
for fixed k ~see Fig. 3!. In Fig. 3~b!, the casek53.0 is
displayed.~This corresponds to the second of the three ca
mentioned near the beginning of this section.! The first two
curves (b50.0 andb50.8) coincide, since the core has y
to become AF~as can be ascertained from Fig. 1, since th
points lie to the left of curve A!. The subsequent curves sho
a decrease in the potential as theh field turns on, along with
its attractive contribution to the vortex energy. Eventua
when b.0.92, the potential goes from repulsive to attra
tive, in agreement with Eq.~27!, and also with Eq.~11!.

In Fig. 3~a!, the casek51.0 ~the third case mentione
near the beginning of this section! is displayed. The first two
curves, corresponding to parameters lying to the left of cu
A in Fig. 1, coincide, since the core of the vortices is norm
subsequent increases inb produce a drop in the interactio
energy, as expected sinceh now contributes. It is importan
to note, however, that fork51.0 the superconductor is typ
I starting atbc50.33. We would thus expect the vortices
attract forb.0.33. This is not the case: as can be seen fr
Fig. 3~a!, the attraction begins only aroundb.0.883, some-
what to the right of curve A (bAF50.881).@That it is some-
what to the right of curve A is simply due to the fact thath
~at the center of the vortex, for example! evolves continu-
ously withb and is strictly zero up until curve A; it is there
fore small and will have a negligible effect on the vort
interaction until it has time to grow to an appreciable va
~see the values ofCh given in Table II!.# Thus, there is a
zone~between curves A and C! wherein the superconducto
is type I, but wherein nonetheless vortices repel one anot
this is the identity crisis referred to earlier. The point is th
in this region theh field would produce an attractive long
range interaction, but it has not yet attained a nonzero va
in the core and therefore has no effect on the vortex inte
tion.

The situation is even stranger if we consider vortices
winding number 2, for which curve B delineates normal~to
the left! vs AF ~to the right! cores. Fork52.0 @Fig. 3~d!#, the
vortex turns AF atbAF50.562, but vortices remain repulsiv
until the value corresponding to the type I–type II transiti
(bc.0.78). Fork51.0 @Fig. 3~c!#, the vortices develop an
AF core at roughlybAF50.659 but remain repulsive unt
just to the right of curve C, as expected given that curve
separates type II from type I superconductivity. However
a lower value ofk we would find that the interaction energ
of 2-vortices in region 6 is repulsive, which is incommens
rate with the fact that the superconductor is type I there.

Note that these ‘‘identity crises’’ only occur for certa
values of the parameters, and in particular fork,2.25, so
this does not appear to be relevant to HTSC@supposing that
the SO~5! model provides a good description of these s
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tems#, since all known HTSCs have quite large values ofk
(k*50). However, in the case of superconducting cosm
strings and optical vortex solitons, there are no restrictio
on the value ofk and the effect may be relevant.

It is interesting to note that the results obtained abo
complement those obtained in previous work where the c
ditions under which SO~5! superconductors are type I or typ
II were determined. In Ref.@22#, the distinction between type
I and type II behavior was determined by analysing the
ergy per unit flux of vortices as a function of their windin
number. In Ref.@23#, this distinction was obtained by study
ing the energy density of a surface separating supercond
ing and normal regions at critical applied magnetic field
The results stemming from both methods are in agreem
and reveal, unexpectedly, that superconductors whosek val-
ues would normally be associated with type II supercond
tivity may in fact be type I superconductors. The surprisi
region isk.1/A2 ~conventionally type II! and to the right of
curve C in Fig. 1. The underlying reason is the possibility
an AF vortex core, or equivalently, the fact that an appl
magnetic field induces a transition between SC and AF~not
normal! phases.

IV. CONCLUSION

In this paper we have derived an expression for the
tential energy of two widely separated vortices within t
framework of a model with two order parameters, one
which is complex and attains a nonzero expectation va
Examples of physical contexts where such a situation occ
are bosonic superconducting cosmic strings, optical vor
solitons and the SO~5! model of HTSC. The approach use
was a point vortex approximation, due to Speight@25#. Our
starting point was a linearization of the free energy~12! to
which source terms~13! were added; the form of the source
was given in Eqs.~19!, ~20!. The main result is the two-
vortex interaction energy, Eq.~25!. The constants appearin
in this expression were chosen so that the long-range fi
of a vortex in the point vortex approximation agree with t
full nonlinear model.

The behavior of the vortices is for the most part in agre
ment with previous work, described in Sec. II, namely, th
for fixed k, type II behavior~stable vortex lattice! turns into
type I behavior~unstable lattice! for b sufficiently close to 1,
provided that the vortices have AF cores.

This caveat, although apparently innocent, is actua
quite important, and yields a surprising result. Namely,
certain regions in parameter space~regions 5 and 6 in Fig. 1!,
the superconductor is type I, yet vortices have normal~not
AF! cores and repel one another, a behavior normally as
ciated with type II superconductors. It would appear that
such a case a vortex lattice would be metastable rather
stable~the free energy of a macroscopic non-SC region c
taining the same flux being lower than that of the vort
lattice!. It is ironic and amusing that the surprising behav
uncovered in@22,23# ~type I SC fork.1/A2) can be thought
of as being due to the fact that vortices have AF cor
whereas the surprising behavior uncovered here~vortices
which repel one another in type I SC! is due to the fact that
vortices have normal, not AF cores.
4-8
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While the attraction or repulsion of vortices is clearly
interest in any physical situation described by the ab
work, the unexpected behavior uncovered here is unlikel
be seen in HTSC, as it occurs in the wrong region of para
eter space.
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