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Interaction between vortices in models with two order parameters
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The interaction energy and force between widely separated strings is analyzed in a field theory having
applications to superconducting cosmic strings, thé53@odel of high-temperature superconductivity, and
solitons in nonlinear optics. The field theory has two order parameters, one of which is broken in the vacuum
(giving rise to strings the other of which is unbroken in the vacuum but which could nonetheless be broken
in the core of the string. If this does occur, there is an effect on the energetics of widely separated strings. This
effect is important if the length scale of this second order parameter is longer than that of the other fields in the
problem.
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[. INTRODUCTION ductivity (HTSO) [17] is a “unification” of the two phenom-
ena that occur in these materials at low temperature: antifer-
In at least three very different contexts, nonlinear effectsomagnetism(AF) at low doping (including the undoped
in field theories with spontaneous symmetry breaking givecas@ and superconductivit(SC) at higher doping. The
rise to topological solitons wherein a second order parametabinzburg-LandauGL) model is written in terms of a five-
(unbroken in the vacuumattains a nonzero expectation component real order parameter composed of a three-
value in the core of the soliton. component fieldy describing antiferromagnetism and a two-
First, bosonic superconducting cosmic strifigsarise in  component field describing superconductivity. In the SC
a model with twolJ (1) symmetries. The first of thesehich  phase, the latter field attains an expectation value, and strings
could be gauged or ungauged spontaneously broken by a (vortices exist, just as in conventiong6Q(2)] superconduc-
complex scalar fieldp; this gives rise to the possibility of tivity. It is possible thaty attains a nonzero expectation value
string solutions, where the phase@thanges by 2 around inside the core, making the core AF, which could provide an
a large loop in space. In the core of such a string; 0. The  experimental test of the §6) model[18].
second symmetry is gauged and unbroken, and is identified In this paper, we will study a field theory which applies
with electromagnetism. It is supposed that an electromagiwith minor modification$ to any of the above situations,
netically charged scalar field exists; although its vacuum and will study the energetics of twavidely-separatedvor-
expectation valugVEYV) is zero, the potentiaV/(o,¢) is  tices. In the cosmic string context this has an influence on the
such that if one forces to zero, theriV(o,0) is minimized  dynamics of a network of strindd49-21]; in optics this af-
for 0#0. Thus, it is possible that attains an expectation fects the stability of solitonic waveguidg¢41]; and in the
value inside the core of a string, making the string a supersuperconducting case this is one way to study the type of
conducting wire. Whether or not this actually occurs is asuperconductor described by a given model, which provides
detailed dynamical question. A variety of generalizations ofanother test of the S®) model[22,23.
this idea have been discussed in R¢®s-10]. In the next section, we will establish notation and review
Second, in nonlinear optics, one can consider beams fgsrevious work(expressed in the language of superconductiv-
which the amplitude of the electromagnetic field envelopety, but easily translated into the other contextsherein the
function vanishes and its phase changes by an integer mugffect of the AF phase on the magnetic behavior was studied,
tiple of 27r at a given point. In a nonlinear medium such aand the conditions under which $8) superconductors are
configuration can be a stable solution of the equations ofype | or Il were determined. This was done in two ways.
motion, known as an optical vortex solitésee[11] for ref-  First, the free energl of a vortex as a function of its wind-
erences and review By coupling a second propagating ing numbem was calculated numerical(22]. If the energy
mode to the first, the vortex can act as a waveguide for the@er unit winding numbetF (m)=F(m)/m is a decreasing
second mode, which is confined to the core of the voftex  function of m, type | superconductivity results, since it is
theoretical work, segl2,13; for recent experimental results then energetically preferable for a given flux to penetrate a
see[14-186). The first and second modes are analogous teuperconductor in one large region, inside which supercon-
the fieldse ando above, respectively, although in the optical ductivity is destroyed. On the other hand, f{m) is an
context both fields are ungauge@dt should also be men- increasing function ofm, the superconductor is type Il, since
tioned that the fields are not really order parameters here. the energetics then prefers a given amount of flux to be di-
Finally, the S@5) model of high-temperature supercon- vided into a network of vortices of winding number=1.
Second, the type of superconductor was deduced from a de-
termination[23] of the critical magnetic field¢see, for ex-
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type 1l superconductivity can be made. For simplicity, we have imposed $8 symmetry on the

A third way of differentiating between type | and type Il quartic couplings; the quadratic couplings are negative to
superconductors is through the force between two widelygive rise to symmetry breaking. The ground state depends on
separated vortices: they attract or repel for superconductotiie value of the paramet@=a3/a3, and is SC if3<1. We
of type | or Il, respectively. This approach is very intuitive, are primarily interested in this case; the ground state can be
and is also applicable to both the cosmic strings and nonlingitten (|(}:,|’| ;}|)=(v,0), wherev=a, /\b.

ear optics contextgwhere the notion of critical magnetic The model can be simplified somewhat by rescaling the

fields which restore the symmetry broken in bulk does Nnofje|ds and the position variable. Defining dimensionlass
apply). In this article, we will examine this third approach, hatted quantities

adopting for the most part the language of(SCsupercon-

ductivity, though much of the discussion can easily be ex- m* m* c2
ported to other contexts such as those mentioned above. A=a;c\ /e—*A, d=vd, p=vy, X=\/—>—=S

The method used is essentially that used by Spé¢Rpit 4me*?y?
We write an expression for the energy of two vortices using
a point vortex approximation, wherein the full nonlinear free . aiczm*
energy is replaced by a linearization of it plus point sources ™~ m '

for each vortex. The approximation is expected to be valid if

the intervortex separation is much larger than the core siz€ye nave the dimensionless free energy

The approximate free energy can be written as the sum of the

individual vortex energies and an interaction energy, from 1 1 .

which the intervortex force can easily be found. In conven- F= EJ dZS{(VXA)ZJr 7(|(—IV—KA)¢|2+(V 7))

tional SC, vortices attract or repel one another in type | and

I SC, respectively. As we will see, this is not always the case ) D P

here: for certain values of the parameters of the(30 ¢ B S (T ) 5

model, a superconductor which is typdim the thermody-

namic sensewill have repulsive, not attractive, vortices. whereg=|¢

This unusual behavior is unlikely to be seen in HTSC, how+o s, and

ever, as it occurs only for small values of the GL parameter

[k~0(1)], whereas in all known HTSC%=50. b m*c
K=\ —

4 he*

: @)

, 7=|n|, the derivatives are now with respect

Il. REVIEW OF PREVIOUS WORK .
is the usual GL parametdiA constant has been addedFRo

The model we wish to consider is described by the fol-so that the ground state has zero engrgy.

lowing two-dimensional free energy: From Eq.(2), we see that the behavior of the model is
completely determined by two dimensionless parameters:
. (VXA)2 42 ex |\ |2 and the parameteB, which is the ratio of the quadratic
F:f d*x “8r o (‘iV—%A)QS coefficients ofn and ¢.
2m An observation which will be useful below is that if we

52 set =0, then the free energia function of¢ andA only)

+——(V ;;)2+V(<2>,;7)]. (1)  reduces to that of the 39) model. Thus, for example, the
2m* energy of a static configuration for whicj= 0 in the SQ5)

model will be exactly equal to the energy of the same field

Here ¢ and 7 are the SC and AF order parameters, respecconfiguration in the S@) model with the same value af.
tively. The former is a complex field associated with th@)J Since the complex fiel@ attains a nonzero VEV, vortex

gauge fieldA, while the latter is a real triplet whose £%) solutions exist, v_vhere_m the phase gf changes by &
symmetry is ungaugel. around a large circle in space. One can also consider con-

The potential is taken to be an even, quartic function ofli9urations of higher winding number; a rotationally symmet-
N dlol- ric ansatz of winding numben (* m-vortex”) is essentially
4| and|x: the conventional one fap andA together with a rotationally
) b invariant ansatz forp, whose orientation is taken to be a
a

2

IR ai . R N . R . . . -
V(= 31— [+ 7 (|8l *+2| 3 pf*+ 3" fixed, arbitrary unit vectoe:

. S; -
]
b(9=¢(s)e™’, Ai(s) = € SA(S), m(s)=en(s).
'Hats denote dimensionful quantities. The constants appearing in 3

Eqg. (1) are appropriate to superconductivity; readers unfamiliar
with these conventions will be relieved to learn that the notationAs in the conventional case, these solutions carry a magnetic

will be streamlined presently, when we go to dimensionless variflux proportional tom (specifically, the dimensionless flux is
ables. d=-2mm/«).
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As mentioned in the Introduction, a non-vanishindield  linear equations. These results will be useful for deriving the
may appear inside the core of the vortex due to the compepotential energy between a pair of widely-separated vortices
tition between the potential and gradient energy terms. Byn the next section.
examining the potential, one can see qualitatively that for By studying either the energetics of vortices as a function
fixed k, as g increases, the impetus foy to be nonzero in  of their winding numbef22] or by studying the critical mag-
the core of a vortex grows, since the potential energy savingsetic fields[23], one can determine a curve in tBex plane
gained by havingp#0 increases withB, while the kinetic  indicating the boundary between type | and type Il behavior,
energy cost is independent gf Thus, we can define a criti- which yields a surprising result.
cal value ofg, above which the core of a vortex is AF and  To see this, let us first recall the situation in the conven-
below which it is normal. This critical value depends upontional SA2) model, focusing our attention on vortex ener-
«, and also upon the winding numberof the vortex.(The  getics. There, the only parameterxs and k= 1/\/2=«, is
dependence om can also be argued qualitatively, by noting the critical value separating type k& «.) and type Il
that the larger the winding number, the greater the region in>«.) behavior. For example, one finds that the energy per
which ¢ is nearly zero, and the greater the impetuss#dio  unit magnetic flux of a vorte(m)=F(m)/m decreases or
be nonzerg. Bar(x,m) was found numerically fom=1 to  increases withm according to whethek<k. or k> k.. In

2 1 2
4+ —

12
@+
K2

m
—+ kA
S

The free energy, written as a function of depends also, of
course, on the two parameters of the moaegnd 3.
The equations of motion that follow from E4) are

2
¢

H+1!
2| se

m
—+ kA
S

1

K2

7’//_'_577/
S

m
—+A

ks

need only sep to zero, since then there is never any reasorguaranteed. The reason is that for fixedand 8, asm in-
increases, eventually the core becomes AF, at which point
A
F(m)=7-rf sds{(A’Jrg
superconductor is type Il, and in some cases even changing
goes from an increasingype Il) to a decreasindtype )
+(1—@2— %) =0, (5)  Increase wittmwhile the core is normal and decrease with
+ n(B— ¢?>— 7% =0, (6)  conductivity. This does not cast doubt on the fact that such a
¢?=0 Y ic i ' i
' cal magnetic field# . andH.,. As in conventional SC, the

5 in Ref.[22]. either case,//(m) is a monotonic function ofm, tending
The fact that the model reduces to the(30Omodel if towards a constant value for large
=0 enables us to easily make contact with that model; we In the S@5) case, the monotonicity of(m) is no longer
for 5 to be nonzero in all situations we will consider here. creases one can go from a normal vortex core to an AF core.
Substituting the ansat@) into Eg. (2), we find the fol-  As long as the core is normal, its energy is exactly as in the
lowing free energy: SQO(2) model, as can be seen from H®). However, asm
) the energetic picture changes: in particular, the energy of all
¢ subsequentm-vortices will be reduced[relative to the
equivalent S@) model], lessening the degree to which the
12 2 2 1 2 2\2 1 : H
+ 9’| - = Bp°+ E(go + 9)°+ Ak (4) the superconductor from type Il to type I. For fixed this
effect is stronger the larger the value @f we can therefore
define a critical valueB(«) as that value for whick#(m)
function of m, in the limit of largem.
It is strange, however, thdin contrast with conventional
SO FA(m) is not necessarily a monotonic function: it could
subsequently. The large-behavior indicates a type | super-
conductor, yet the energy of a 2-vortex is more than double
that of a single vortex, which is a feature of type Il super-
SC is indeed type |, in a thermodynamic sense; however, it
will certainly affect vortex dynamics.
The behavior at largmis confirmed by studying the criti-
relative magnitude of these is an indicator of the type of SC.
These equations cannot be solved analytically; howeveth [23] the critical fields were found to be given by the fol-
asymptotic solutions for large can be found. Defining lowing expressions:

1 1
A+ A - ZA-
S SZ

o(s)=1—f(s) and A(s):_%ms), ® Ho(B)=H1= B2, Hey(B)=V2kHY1-p), (10

whereH? is the thermodynamic critical field in the conven-
tional SC model. The border between type | and type Il will
then be given by equating these two fields, leading to the
following expressions foiB.(x) and, by inversionx.(B)
(that value ofxk above which a SC is type I, for fixe@):

the fieldsf, a and » approach zero exponentially as- .
The linearized equations in these fields have solutions

f(5)=CiKo(\2kS), a(s)=C4Ki(s),

7(s)=C,Ko(V1—BkS) 9 2,2—1
ifi 1 = A5 2. A = \ - .
whereK, andK; are modified Bessel functions of the sec- Belr) 2k°+1’ «e(B) (1/\/5) (1+B)IA=p)
ond kind and theC’s are constants not determined by the (11)
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6 7 T will point. The interaction energy between vortices will de-
B".z A'§ C/ pend on the angle between the two AF order parameters. As
5 we will see, the contribution ofy to the vortex interaction
4 ; i / energy is most important if the two orders parameters are
o , ’ / parallel. Our discussion will assume for the most part that
3 8 ‘ this is the case.
/ 4 To clarify the situation, consider the interaction of ordi-
2 it nary vortices(that is, vortices of winding number).1The
/5 ‘ core of these vortices is normal or AF to the left or right of
ot /o curve A of Fig. 1, respectively. Their interaction energy will
.................... N be shown to obey the following behavior. If the core is nor-
00 02 04 0.6 0.8 ] mal (to the left of curve A, the energetics is exactly as

B dictated by the S@) model: attractive fork<1/y/2 and re-

pulsive forx>1/\/2. If the core is AF(to the right of curve
FIG. 1. Stability of vortex lattice in the SG) model. Curves A A), then (except for a very thin transition zone wherein the
and B separate the normal core regi¢eft) from the AF core re-  AF core turns onthe energetics correctly reflects the type of

gion (right) in the case ofn=1 andm=2 vortices, respectively. gyperconductor involvettepulsive or attractive to the left or
Curve C depicts the border between type | and type |l behgsewr right of curve Q

Eq. (11)]. These curves divide th8-« plane into several regions, If we imaaine fixin and increasin then there are
the most interesting of which are regions 5 and 6, where the SC is 9 . ) 9K . @, . ]
type | yet vorticesof winding number 1 repel one another. three cases. First, "t'<.1/‘/§ nothing dramatic h?Ppe”S- for
all B the model describes type | superconductivity and vor-
This line, as well as the lines separating the normal/AF cordices attract. Eventually curve A is crossed, so the vortices

respectively, are shown in Fig. 1. Second, if« lies above its value at the point of intersec-

tion of curves A and C £>2.25), the situation is slightly
more interesting: the core turns AF to the right of curve A,
but the vortices remain repulsive until curve C is crossed,
As mentioned in the Introduction, a third way of deter- after which the superconductor is type | and the vortices
mining the magnetic nature of a superconductor is througlattract.
the interaction energy and force between vortices. We will The third, intermediate case, where curve C is crossed
study the interaction of widely-separated vortices in thebefore curve A a@ increases (42<«<2.25), is the most
SQ(5) model. In conventional superconductivity, vortices of interesting. When curve C is crossed, the superconductor be-
any separation are attractive or repulsive in the case of typedomes type |, so the vorticesight toattract. However, their
or type Il superconductors, respectively, as was shown iigores are normal, their energetics is as in th&2y@odel,
great detail numerically by Jacobs and Rel26]. We would  and they repel, since>1/,/2. This anomalous behavior per-
thus expect the intervortex force in the &D model to  sists until curve A is crossed, when the core becomes AF and
change from repulsive to attractive as we cross curve C iithe vortices start to attract one another—the expected behav-
Fig. 1 from left to right. This turns out to be not always the ior for a type | superconductor.
case. The reason is that vortex energetics does not always In summary, curve C delineates the boundary between
reflect the type of superconductor in the (80Dmodel, as a type | (to the righ) and type ll(to the lefy superconductiv-
comparison of the following two facts demonstrates. On thety; however, in regions 5 and 6 the superconductor has a sort
one hand, the type of an $8) superconductor depends criti- of identity crisis: it is type |, but its vortices behave as type Il
cally on the AF sectofsee[23]). On the other hand, when vortices?
vortices have normal cores, their behavitireir interaction One can also study the interaction energy of vortices of
energy, in particuldris blind to the AF sector of the model,
as was noted in the previous section. Thus, vortices with——
normal cores cannot be expected to necessarily behave in théperhaps some clarification on what is meant by type | vs type Il
fashion dictated by the type of superconductor involved. Insuperconductivity is warranted. In conventional superconductivity,
particular, it is possible that vortices in a typérn the sense type Il superconductivity(for instancé is characterized byk
of bulk thermodynamic propertiesuperconductor repel one >1/y2, negative surface energy at a normal/superconducting
another. boundary, repulsive vortices, aimtl,>H.. These are so inextrica-
One subtlety which arises in the interaction of vorticesbly connected that any of these features could be used as a defini-
once their cores become AF is that while the orientatiosyof tion of type Il; the rest would follow. As we have seen, and as will
can be taken fixed in the core of any given vortex, in thebe argued belowsee als423]), these features no longer imply one
absence of anisotropies, there is no reason to expect the Adnother in S@5) superconductivity. We refer to a superconductor as
cores of different vortices to be oriented in the same directype | or Il according to whether the surface energy is negative or
tion. When it becomes energetically favorable to develop amositive, or equivalently, according to the relative valueHgfand
AF core, each vortex randomly selects a direction in whjch H.,.

Ill. INTERVORTEX FORCE
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higher winding number. The behavior is qualitatively similar Q) =eC Ko(\1— BkS). 1
to that for 1-vortices, although the region of disagreement s Kol Brs) an
between vortex energetics and the type of superconductor is We require sources such that the solutions of Efé)—

reduced. For 2-vortices, for example, the core turns AF at #6) are Eqgs.(17). Forf and 5 the answer is found directly
lower value of 8 for any givenk (curve B rather than A by substitution once we recognize that
and consequently it is only in region 6 that one finds dis-

agreement. This trend continues as the winding number is 2_ .2 _ 2/ -
vl g (V2= u?)Ko(ps)=—2m8(s); (18)
With this summary of the main results concluded, let USe find
describe the calculations involved in determining the inter-
action energy of a pair of vortices. For arbitrary separation,
an analytic solution is not possible; even numerically, the p(9)= —277&52(5) 0(S)=—27Té& 52(s). (19
problem is extremely difficult. However, the interaction be- K2 ' K2
tween widely separated vortices is considerably more trac-
table, and is clearly of interest, in that it is an importantFor the gauge field, differentiation of E(L8) and substitu-
ingredient in determining the dynamics of widely separatedion yields
vortices, and is normally directly related to the type of su-
perconductor involved. ji(s)=27C,e;9,6%(9). (20)
If the vortices are widely separated, one can argue that the
details of the fields in the core ought to be unimportant, andrhe vortex is now described by point sources of magnitudes
we can model them by a simplifying approximation, follow- 27C/«? and 2rC,/«? for f and 7, respectively, and an
ing Speight[25]: we can consider a linearized theory with jnfinitesimal current loop of magnetic dipole moment@,
point sources added at the location of the vortices in such gy A.
way that the long-range fields produced by the point sources \we are now in a position to derive the interaction energy
in.the linear theOI’y agree with those of the vortices in theof two W|de|y Separated Vortices_ Suppose the vortex posi_
original theory. tions ares; ands,. In the point vortex approximation, each
To derive the linearized theory, we must expand the freggrtex is described by sources of the fofa®), (20), dis-
energy(2) around the asymptotic values of the fields. Beforep|aced to the position of the vortex. Linearity of the equa-
doing this, however, it is useful to eliminate the phasepof  tions of motion then implies that the fields will just be the
as this degree of freedom becomes the longitudinal gauggum of the individual vortex fields, and the energy of the
field. Thus, we takep=1—f real, and expand Ed2) in  configuration will be given byFjeet Fsouce With fields
powers off, A and », up to quadratic terms. This results in (f,pA)=(f,+f,, 1+ 1,,A;+A,) and sources [, o.j)
=(p1+p2,00+ 05,j1+]2), where subscript 1,2 indicates

Ffree:Ef d23|(V><A)2+A2+ %(Vf)2+2f2+ iz(vn)z —S—5;,. We can subtract off the energy of each vortex to
2 K K obtain the following interaction energy:

+(1_'8)172]' 12 Fin= f d’s(pyfot oy mptjs-A)=Fi+F,+Fa.

: . 21
To this, we must add couplings to sources: @

To evaluateF; we simply substitutep,;=p(s—s;) and f,

Fsourcé™ f dzs(Pf+ o-ntj-A). (13 =f(s—s,); we find
The equations of motion which follow froffseet+ Fgoyrce@le Fi= J d25< _ 277& 52(s— s.) | CKof \/§K|s— s))

2

K
V2f—2k2f=k?p, (14)
Cf
V2y—(1- B)’y=K’a, (15) = —2m— Ko V2kd), 22)
VEA-A=]. (16 whered= |si—s,| is the separation of the vortices. The same

argument applies t&,,, yieldin
The sources are to be chosen to give rise to fields which g PP Y g

coincide with the asymptotic vortex fields, after elimination c2
of the phase of¢ via a gauge transformation. These F =—2m—-78 . & Kn( 1= Bxd 23
asymptotic fields argsee Eq.(9)] K Tr K2 €2Kof Brd). @3

For F,, a similar(but slightly more complicatedprocedure

5i
f(5)=CiKo(v2ks), Ai(s)zeijECaKl(S)’ leads to

105024-5



MACKENZIE, VACHON, AND WICHOSKI PHYSICAL REVIEW D 67, 105024 (2003

TABLE I. Values ofC, andC; / « for various values ok in the 0.3 Yy
case where the fielgy=0 (achieved by setting to zerg. \ K]E:kc —
0.2 K= e .
K Ca Cilk K Ca Cilk \ """" .
0.1 “ciFype-i
0.4 6.561 2.888 1.0 1.417 2.325 \ .
0.5 4.301 2.635 1.5 0.822 2.851 ) V) SRS S5 SR S——
] f
0.6 3.126 2.486 2.0 0.534 5.061 \ —
0.707 2.388 2388 25 0.402 12.972 -0.1
0.8 1.969 2.340 3.0 0.304 41.688 \/ Type |
0.9 1.651  2.318 0.2 =
-0.3 :
0 2 4 6 8 10

- 2 9 20
Fa= f d 8(277036”8515 (s751)) FIG. 2. Behavior of the potential in the case of théZGnodel

(B=0) for various values ok: «=0.6 (type I), k=« (critical),
X € (s— Sz)kC K (|s— |) and «=1.0 (type Il). Note that agl approaches zero, the exponen-
L %2 tial behavior is lost and the curves cannot be trusted anymore.

_ 2 d (Sl_SZ)k

=2m aglj Is,—s)| CaKi(ls1= ) There are three cases, depending on the value. dfhe
first case isk=«;. At this value, the potential energy is

_ ZchKO(d). (24) exactly zero for all separation. Indeed, the argument of both

Bessel functions takes the same value. Furthermore, the con-
stantsC, and C;/k are equal, as can be see numerically
Thus, the interaction energy of two widely separated vorfrom Table | and also analytically from the following argu-
tices takes the form ment. Atk= k., we can write the free energy in a form due
to Bogomol'nyi[28]; the field equations can then be written

) as first order differential equations:

C
U<d)=2w( C2Ko(d)— —5 Kol y2xd)
K

2 ' m+ A) 0 d A’+A +1(1 =0

C R Qo — |\ K Q= an K — by —@)=U.
— 78, &Ko(V1—Bxd) |. (25) S s/ 2 26
K

The first two terms give the interaction energy in the
SO2) case, and coincide with the results [@5,27. The Linearizing the first equation, we obtafri= —a; substitut-
third term is the effect of the AF cores. As can be seen, iing Eq. (9) into that equation, we find that the second
depends on the angle between the two order parameters. Bogomol'nyi equation is satisfied i{2C;=C,. This argu-
they are parallel the contribution to the interaction energy isment is only valid atx, because Eq(26) are not valid for
maximally negative, resulting in the greatest attraction, whileother values ofk. The potential is shown in Fig. 2.
antiparallel order parameters yield a positivepulsive The second case i8>k, corresponding toconven-
force. If the order parameters are orthogonal the AF contritional) type Il SC. In this case, we note thigt(/2«d) falls
bution to the interaction energy is zero and the results coineff more rapidly tharky(d) so the positive term in Eq25)
cide with the S@2) case. Since the parallel case is the mosiwill dominate over the negative one for large enough sepa-
interesting and is also energetically preferred, we will astation, no matter what the values of the constaBtsand
sume in what follows that the order parameters are parallelc, /. Therefore, as is well known, in conventional type Il

that is, thate;- ,=1. SC vortices are repulsive and give rise to stable vortex lat-
In order to obtain useful information from E(R5), we tice. The resulting potential is displayed in Fig. 2 for 1.
must determine the constar@g, C; andC,, by comparing The third case isk<k., corresponding to type | SC.
Eq. (9 with numerical solutions of the nonlinear equationsHere, the situation is reversely(d) falls off more rapidly
(5—(7), which have been obtained previou$B2,23. thanKo(\/2«d), and we conclude that the long-range poten-

We will first study the conventiond5Q(2)] case to make tial is attractive. Thus, if we start with an initial configuration
contact with previous work; this can be achieved within theformed by a number of widely-separated vortices, ultimately
SO(5) model by takingB=0. Subsequently, we will exam- they will collapse into a single vortex of large winding num-
ine the general SG) case given by Eq(25). The coeffi-  ber. This case is illustrated in Fig. 2 far=0.6. The result
cientsC,, C; are displayed for a variety ot (and for 3 (25 and the above discussion are in full agreement with
=0) in Table I. [20,25 and[26].
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TABLE Il. Values of C,, Ct/k, andC,/« for various values ok and g for m=1 in the case of the

SQ(5) model.

K B C, Cilk C,lk K B C, Cilk C,lx

1.0 0.000 1.417 2.325 0.000 3.0 0.00 0.362 41.688 0.000
0.881 1.419 2.401 0.049 0.81 0.362 45.742 0.083
0.882 1.422 2.604 0.081 0.82 0.364 52.005 0.119
0.884 1.428 3.382 0.122 0.83 0.364 61.320 0.145
0.886 1.434 4.765 0.152 0.85 0.368 74.346 0.185
0.888 1.440 6.915 0.177 0.87 0.371 88.687 0.216
0.890 1.446 10.044 0.198 0.90 0.379 132.886 0.249
0.900 1.481 52.036 0.281

Let us now turn our attention to the $8) case. The co-

type Il manner, increasing the degree to which it behaves in

efficientsC,, C¢ andC, are displayed for a variety of and  a type | manner, ofthe most interesting possibiliychang-
B in Table II. ing the vortices from repulsive to attractive.

The possibility of an AF core gives rise to the surprising We can read at which point this occurs from E2f). The
results mentioned at the beginning of this section. As ha$orce between widely separated vortices depends on which of
already been noted, if the core of the vortices is normal, therthe fields is longest in range: the gauge field, which provides
is no difference between the energetics of thg®B®nodel a repulsive force, or one of the scalar fields, whose forces are
and the S@) model, since the third term of E¢R5) is zero.  attractive. The range of the gauge field is 1, while that of the
Thus, the interaction energy of a pair &P vortices (of 7 field (the longest range of the two scalar fields, assuming it
winding number 1lis unchanged from that described above,is nonzero in magnitudes (yJ1—B8«) *. These forces are
to the left of curve A in Fig. 1. To the right of this curve, equal for a certai, which we denotes3*:
however, they field is nonzero and the third term makes an
attractive contribution to the interaction force, either lessen-

ing the degree to which the vortex energetics behave in a B* =1—1/k2. (27)
k=1, m=1 ®=3, m=1
0.15 £ B=0. 01 B=0.
B=0. 0.08 p=0.
ANEI: =
=0. 0.06 =0.
0.1 E=8' [%:0_
=0. 0.04 =0.
5 F /M p=0.888 - 5 B=0.
35 005 / ; 5 o002
0 e ]
0 I i
i ¥ -0.02
o/ -0.04
-0.05 e
0 2 4 6 8 10 0 4 6 8 10
d d
k=1, m=2 K=2, m=2
{e) o1 {d)
0.15 3 E=8'88 ' | g=8.gg —
=0.60 - 0.08 =0.60 - .
\ T — I L —
=0.68 -~ | 0.06 { =0.79 -~
0.1 B=0.69 // \ B=0.80 -
g=8;‘2’ 0.04 B=0.85 -
) =0.72 - <)
5 0.05 /\ \ 3 0.02
I 0 S ———
{ / e Ny 1/ """"
H g ’;
| ] -0.04 /]
-0.05 . T
0 2 4 6 8 10 0 2 4 6 8 10
d

FIG. 3. Intervortexpotential foxk=1 (a) and«x=3 (b) for m=1, and fork=1 (c) andx=2 (d) for m=2.
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The long-range vortex potential will be repulsivegk g* temg, since all known HTSCs have quite large valuescof
and attractive if3> B*. (k=50). However, in the case of superconducting cosmic
Note that the caveat “assuming it is nonzero in magni-strings and optical vortex solitons, there are no restrictions

tude” is essential: if the range of is longer than that of,  On the value ofc and the effect may be relevant.

butC, =0, it will obviously not have an effect on the vortex It is interesting to note that the results obtained above
interaZ:tion, complement those obtained in previous work where the con-

A couple of case studies will help illustrate the situation ditions under which SG) superconductors are type | or type

- : ; , "Il were determined. In Ref22], the distinction between type
it is useful to see how the interaction energy varies vth | ;4 type Il behavior was determined by analysing the en-

for fixed « (see Fig. 3 In Fig. 3b), the casex=3.0is  grgy per unit flux of vortices as a function of their winding
displayed(This corresponds to the second of the three casegymper. In Ref[23], this distinction was obtained by study-
mentioned near the beginning of this sectjofhe first two  ing the energy density of a surface separating superconduct-
curves (3=0.0 andB=0.8) coincide, since the core has yet ing and normal regions at critical applied magnetic fields.
to become ARas can be ascertained from Fig. 1, since theserhe results stemming from both methods are in agreement
points lie to the left of curve A The subsequent curves show and reveal, unexpectedly, that superconductors wkosa-
a decrease in the potential as thdield turns on, along with  ues would normally be associated with type Il superconduc-
its attractive contribution to the vortex energy. Eventuallytivity may in fact be type | superconductors. The surprising
when 8=0.92, the potential goes from repulsive to attrac-region isx>1/y/2 (conventionally type Il and to the right of
tive, in agreement with Eq27), and also with Eq(11). curve C in Fig. 1. The underlying reason is the possibility of
In Fig. 3@), the casex=1.0 (the third case mentioned an AF vortex core, or equivalently, the fact that an applied
near the beginning of this sectipis displayed. The first two magnetic field induces a transition between SC and#dt
curves, corresponding to parameters lying to the left of curvéorma) phases.
Ain Fig. 1, coincide, since the core of the vortices is normal;
subsequent increases ghproduce a drop in the interaction
energy, as expected singenow contributes. It is important In this paper we have derived an expression for the po-
to note, however, that fok= 1.0 the superconductor is type tential energy of two widely separated vortices within the
| starting atB.=0.33. We would thus expect the vortices to framework of a model with two order parameters, one of
attract for3>0.33. This is not the case: as can be seen fronwhich is complex and attains a nonzero expectation value.
Fig. 3(@), the attraction begins only arourg=0.883, some- Examples of physical contexts where such a situation occurs
what to the right of curve Ag,-=0.881).[That it is some- are bosonic superconducting cosmic strings, optical vortex
what to the right of curve A is simply due to the fact that  solitons and the S®) model of HTSC. The approach used
(at the center of the vortex, for examplevolves continu- was a point vortex approximation, due to Speif#]. Our
ously with 8 and is strictly zero up until curve A; it is there- starting point was a linearization of the free ene(@®) to
fore small and will have a negligible effect on the vortex which source termg§l3) were added; the form of the sources
interaction until it has time to grow to an appreciable valuewas given in Eqs(19), (20). The main result is the two-
(see the values o€, given in Table I).] Thus, there is a vortex interaction energy, E§25). The constants appearing
zone (between curves A and)Qvherein the superconductor in this expression were chosen so that the long-range fields
is type |, but wherein nonetheless vortices repel one anotheaf a vortex in the point vortex approximation agree with the
this is the identity crisis referred to earlier. The point is thatfull nonlinear model.
in this region they field would produce an attractive long- The behavior of the vortices is for the most part in agree-
range interaction, but it has not yet attained a nonzero valument with previous work, described in Sec. Il, namely, that
in the core and therefore has no effect on the vortex interador fixed «, type Il behavior(stable vortex latticeturns into

IV. CONCLUSION

tion. type | behaviounstable latticgfor 8 sufficiently close to 1,
The situation is even stranger if we consider vortices ofprovided that the vortices have AF cores.
winding number 2, for which curve B delineates norrttal This caveat, although apparently innocent, is actually

the lef) vs AF (to the righ} cores. Fork=2.0[Fig. 3(d)], the  quite important, and yields a surprising result. Namely, for
vortex turns AF ajB,e=0.562, but vortices remain repulsive certain regions in parameter spdoegions 5 and 6 in Fig.)1
until the value corresponding to the type I-type Il transitionthe superconductor is type I, yet vortices have nortnak
(B:,=0.78). Fork=1.0[Fig. 3(c)], the vortices develop an AF) cores and repel one another, a behavior normally asso-
AF core at roughlyB,r=0.659 but remain repulsive until ciated with type Il superconductors. It would appear that in
just to the right of curve C, as expected given that curve Gsuch a case a vortex lattice would be metastable rather than
separates type Il from type | superconductivity. However, attable(the free energy of a macroscopic non-SC region con-
a lower value ofx we would find that the interaction energy taining the same flux being lower than that of the vortex
of 2-vortices in region 6 is repulsive, which is incommensu-lattice). It is ironic and amusing that the surprising behavior
rate with the fact that the superconductor is type | there. uncovered if22,23 (type | SC fork>1/y/2) can be thought
Note that these “identity crises” only occur for certain of as being due to the fact that vortices have AF cores,
values of the parameters, and in particular k6£2.25, so  whereas the surprising behavior uncovered hm@tices
this does not appear to be relevant to HT[8Gpposing that which repel one another in type | $& due to the fact that
the SA5) model provides a good description of these sys-vortices have normal, not AF cores.
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