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Local Casimir energy for solitons
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Direct calculation of the one-loop contributions to the energy density of bosonic and supersymmetricf4

kinks exhibits the following.~1! Local mode regularization. Requiring the mode density in the kink and the
trivial sectors to be equal at each point in space yields the anomalous part of the energy density.~2! Phase
space factorization. A striking position-momentum factorization for reflectionless potentials gives the nona-
nomalous energy density a simple relation to that for the bound state. For the supersymmetric kink, our
expression for the energy density~both the anomalous and nonanomalous parts! agrees with the published
central charge density, whose anomalous part we also compute directly by point-splitting regularization. Fi-
nally we show that, for a scalar field with arbitrary scalar background potential in one space dimension,
point-splitting regularization implies local mode regularization of the Casimir energy density.

DOI: 10.1103/PhysRevD.67.105021 PACS number~s!: 11.10.Lm, 05.45.Yv, 11.10.Gh
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INTRODUCTION

Quantum corrections to solitons were of great interes
the 1970s and 1980s, and again in the past few years, du
the present activity in quantum field theories with dualit
between extended objects and pointlike objects. Das
Hasslacher, and Neveu@1#, in a 1974 article that has becom
a classic, computed the one-loop corrections to the mas
the bosonic kink inf4 field theory and to the bosonic solito
in sine-Gordon~SG! theory. For the latter, there exist exa
analytical methods associated with the complete integrab
of the system, authenticating the perturbative calculat
Our work here uses general principles but focuses on
kink, for which exact results are not available. Dashenet al.
put the object~classical background field corresponding to
kink or SG soliton! in a box of lengthL to discretize the
continuous spectrum, and used mode number regulariza
~equal numbers of modes in the topological and trivial s
tors, including the zero mode in the topological sector in t
counting! for the ultraviolet divergences. They imposed p
riodic boundary conditions~PBC! on the meson field which
describes the fluctuations around the trivial or topologi
vacuum solutions, and added a logarithmically diverg
mass counterterm whose finite part was fixed by requir
absence of tadpoles in the trivial background. They fou
for the kink,
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wherem is the renormalized mass of the meson in the triv
background. This result remains unchallenged.

The supersymmetric~SUSY! case, as well as the gener
case including fermions, proved more difficult. The acti
and the kink solution read

L52
1

2
~]mf!22

1

2
c̄]”c2

1

2
U22c

1

2

dU

df
c̄c,

~2!

fkink~x!5
m

Al
tanh

mx

A2
,

where2 1
2 U252(l/4)(f22m2/l)2, the meson mass ism

5mA2, andc51 for supersymmetry. Dashenet al. did not
explicitly compute the fermionic corrections to the solito
mass, stating ‘‘The actual computation of@the contribution
to# M (1) @due to fermions# can be carried out along th
lines of the Appendix. As the result is rather complicat
and not particularly illuminating we will not give it here’
~p. 4137 of@1#!.

Several authors later computedM (1) for the SUSY kink
and found different answers. It became clear that the met
of Dashen et al. yielded results that depended on the bou
ary conditions for the fluctuating fields. In fact, repeati
exactly the same steps for the susy kink as taken by Das
et al. for the bosonic kink@using PBC also for the fermions
c6(2L/2)5c6(L/2)], taking equal numbers of modes i
all four sectors, including one term withv.0 ~due to a
periodic solution withv2.0) in the bosonic kink sector an
one term withv50 in the fermionic kink sector~explicitly,
there are two real independent solutions withv50, one
localized at the kink and one at the boundary, and
coefficient of each satisfiesc25 1

2 @2#! gives M (1)

5\m„(1/4)2(1/2p)… @3#. We now know that thisM (1) is
the correct answer to an inappropriate question, becau
includes boundary energy. Schonfeld@4# finessed the prob-
lem of a single kink with its sensitivity to boundary cond
tions by considering the kink-antikink system with PBC
Taking into account two terms withv;0 in the bosonic
kink-antikink sector~due to one periodic solution withv2
©2003 The American Physical Society21-1
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,0 and another antiperiodic solution withv2.0) and one
term withv50 in the fermionic kink-antikink sector~due to
two periodic solutions withv50 @2#!, he obtained what we
now know to be the correct answer. The problem of bou
ary contributions was circumvented by other methods in@5#
and @6#. The fermionic contribution toM (1) is given by

M f
(1)5\mS 1

p
2

A3

12D .0, ~3!

and the total one-loop correction is thus

Msusy
(1) 52

\m

2p
. ~4!

With attention restricted to the kink alone, it was shown
@2# that one could eliminate boundary contributions from t
fermionic part of the energy by averaging over quartets
boundary conditions for the fermionic fluctuations—
periodic, antiperiodic, twisted periodic and twisted antipe
odic, where twisting means interchange of the upper
lower components of the fermion wave functionc6→c7

@5#. This averaging is necessary to preserve certain disc
symmetries for fermions. The results in@2# give a complete,
though intricate, way to calculateM (1) in terms of mode
frequenciesvn .

In light of the complexities which boundary condition
generate for the problem including fermions, the most imp
tant advance since@1# was the approach of Shifman, Vains
tein, and Voloshin@7#, who used higher space-derivativ
regularization@with factors (12]x

2/M2) for the kinetic terms
but not the interactions# to compute the central charge de
sities of the SUSY sine-Gordon soliton and kink. The
scheme is manifestly SUSY, canonical~no higher time de-
rivatives!, and independent of boundary conditions~because
it yields a local density!.1 They argued that the energy de
sity is equal to the central charge density~because the differ-
ence is a SUSY commutator! and they computed the latter—
including an anomaly recognizable as anM2/M2 effect.
They verified that the one-loop correctionZ(1) to the inte-
grated central charge of the kink comes only from t
anomaly and is equal to Eq.~4!. The presence of a topolog
cal anomaly was first conjectured in@5#.

One may compute the energy density for the bosonic s
Gordon soliton by mapping the system onto another
which exhibits supersymmetry, and computing the cen
charge density for that fictitious system@7#. Quite possibly
similar techniques would work for the bosonic kink. O
approach here is instead to attack the Casimir energy de
directly, freeing the calculation from dependence on sup
symmetry. In doing so, we have found it helpful to introdu
a simple rule for regularization of energy densities which
propose as a fundamental principle. At this point, the prim
evidence for the validity of the principle is the agreeme
between the energy density we compute by its use with

1As @7# points out, Yamagishi@8# was perhaps the first to stud
local densities in this context.
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central charge density of@7#. Our proposed principle appear
new in the literature, and yet has roots in early quant
physics.Local mode regularization~LMR!, or mode density
regularization, is the local counterpart of the familiar~global!
mode regularization or mode number regularization. T
principle is that, when fluctuations are expanded into norm
ized modesfn(x) @i.e., *dxfn* (x)fn(x)51 for all n], the
cutoff local mode densityrN(x)5(n51

N fn* (x)fn(x) should
be background independent, i.e., the same in the trivial (r (0))
and kink (r) sectors. For the bosonic kink this implies th
one must truncate the sums at different upper bounds co
sponding to different frequency cutoffs

rL~x!5rL1DL(x)
(0) ~x!. ~5!

Here thex-independent cutoffL is given byL52pN/L to
an accuracyO(1/L). The above equation determinesDL(x)
in terms ofL, and clearlyDL(x) is x dependent. For the
SUSY kink one can begin by fixing the mode number cut
Nb

(0) for the bosons andNf
(0) for the fermions in the trivial

sector such that here the bosonic and fermionic mode de
ties are equal. From Eq.~5! one then obtains in the kink
sector the requirement

rL,b~x!5rL1DL(x), f~x!, ~6!

which again determinesDL(x) in terms ofL. We use this
principle to compute the anomalous energy density of
bosonic kink, as well as of the supersymmetric kink, whi
as mentioned was obtained already in@7# through the equal-
ity of energy and central charge densities. We believe t
LMR is sufficient for regularization of the one-loop Casim
energy density in one space dimension, and at least nece
in higher dimensions, where further conditions may
needed to specify the regularization completely. It is imp
tant to emphasize that LMR, like ordinary mode regulariz
tion, is not easily applied at arbitrary order in perturbati
theory, because it is not directly expressed in terms o
modification of the action. Thus our claim is that for a sp
cialized purpose, namely, calculation of localized Casim
energy, LMR is the ideal tool, providing maximal simplicit
and efficiency. This claim is simultaneously modest, beca
it is restricted to the computation of one-loop energy den
ties, and substantial, because Casimir energy plays su
large role in quantum physics.

For the non-anomalous contributions to both the boso
and SUSY kink densities, we find empirically another str
ing regularity, phase space factorization. The continuum
contribution to the Casimir energy density in phase sp
exhibits a remarkable factorization, involving a few term
each with simple momentum-dependent factors multiply
functions related to the bound-state and zero-mode proba
ity densities in coordinate space. We believe this factori
tion should hold for all reflectionless potentials, but mig
not extend farther. The factorization takes a particula
simple form for what we call beloweCas(x), a local density
whose integral over a region containing the kink gives
total quantum correction to the mass of the kink. The lo
energy density has two contributions besideseCas. First, the
1-2



rs
xtr
sh
o

sit
d
s

ck
ca
th
S

on
n
l
e

e

cu
-

ck

us

n
n-
nc
on
h
u

-

a

ing
se
iven
ility

by

not
ch
ding
ary
e

e
val
le of

r,
he
ity
the
the

Eq.

LOCAL CASIMIR ENERGY FOR SOLITONS PHYSICAL REVIEW D67, 105021 ~2003!
fundamental definition of Casimir energy density diffe
from the usual sum over zero-point energies by an e
piece which is a perfect differential of an expression vani
ing far from the kink, so that including this piece does n
alter the mass correction but does alter the local den
Secondly, there is an effect which perhaps is best viewe
vacuum polarization—the quantum fluctuations of the Bo
and Fermi fields lead to a local shift in the classical ba
ground field defining the kink. Again, this changes the lo
density but not the total mass. We check explicitly that
energy density and the central charge density of the SU
kink are equal.

After these calculations of the anomalous and n
anomalous contributions to the energy density of the boso
~and SUSY! kink, we turn to the calculation of the centra
charge density of the SUSY kink. From its definition th
central charge density at a pointy is anx integral of a bilocal
quantity depending onx and y times a delta functiond(x
2y). Not settingx5y too soon yields the anomaly in th
central charge density near the kink, confirming@7#. Finally,
we discuss the physical basis for LMR, observing in parti
lar that point-splitting regularization for energy density im
plies lmr, at least for the bosonic case with arbitrary ba
ground potential.

BOSONIC KINK ENERGY DENSITY

For the energy density of the bosonic kink, one m
evaluate sums ~setting \51 from now on!

( 1
2 vnfn* (x)fn(x), where the modesfn(x) are each nor-

malized to unity. As these sums clearly differ from the de
sity sums(fn* (x)fn(x), one expects in general a nonva
ishing one-loop correction to the energy density, and he
to the quantum mass. Let us begin with explicit expressi
for the mode eigenfunctions, so that one may follow t
argument in detail. The wave functions of the continuo
spectrum@using ufnu2(x)51 away from the kink to deter
mine the normalization constantN ] obey

f~k,x!5
eikx

N F23 tanh2
mx

2
1114S k

mD 2

16i
k

m
tanh

mx

2 G ,
~7!

with v5Ak21m2 and N 2516(v2/m2)(v2/m22vB
2/m2).

The zero mode withv050 is given by

f0~x!5A3m

8

1

cosh2~mx/2!
. ~8!

The bound state withvB5(A3/2)m is given by

fB~x!5A3m

4

sinh~mx/2!

cosh2~mx/2!
. ~9!

The density of the continuous spectrum can be written
follows:
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uf~k,x!u25
1

N 2 F4v2

m2 S 4v2

m2
23D 212

v2

m2

1

cosh2~mx/2!

19
1

cosh4~mx/2!
G

512
mfB

2~x!

v22vB
2

2
2mf0

2~x!

v2
. ~10!

As *2`
` (dk/2p)@1/(v22vB

2)#51/m, while *2`
` (dk/

2p)1/v251/2m, it is clear that the completeness relation

E
2`

` dk

2p
$uf~k,x!u221%1f0

2~x!1fB
2~x!50 ~11!

is satisfied. Equation~10! may be written in a remarkable
formula perhaps true for all reflectionless potentials, show
factorization of the difference in mode densities in pha
space, where the position dependence of each term is g
by the corresponding bound-state or zero-mode probab
density,

Relation 1:

uf~k,x!u22152(
j

f j
2~x!

2Am22v j
2

v22v j
2

, ~12!

satisfying the completeness relation, as one may check
performing the integration overk.

Note that all the above expressions for the density do
refer to any particular choice of boundary conditions, whi
of course do affect eigenenergies and the correspon
wave functions. The reason is that the choice of bound
conditions will contribute to the density away from th
boundary at most terms of order 1/L. In the large-L or con-
tinuum limit, in principle such terms might contribute to th
total energy obtained by integration over the entire inter
between the boundaries. We are unaware of any examp
this phenomenon, as a previous claim in@2# has been shown
to be incorrect@9#.2 Even if the phenomenon were to occu
for the integral just over a finite interval around the kink t
effect would be negligible, so that the kink energy dens
and resulting energy can be computed reliably in terms of
continuum, modified-plane-wave solutions, unaffected by
choice of boundary conditions.

The requirement in Eq.~5! that the topological vacuum
density and the trivial vacuum density be equal leads via
~11! to

2However, the latter work did identify a delocalizedmomentum
for certain special boundary conditions.
1-3
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DL~x!

p
5E

L

`dk

p
„12uf~k,x!u2…

5E
L

`

dk
2

p (
j

Am22v j
2

v22v j
2

f j
2~x!

5
m

pL
„fB

2~x!12f0
2~x!…1OS 1

L2D
5

3m2

4pL

1

cosh2~mx/2!
1OS 1

L2D . ~13!

With this result forDL(x) we can evaluate the energ
densitye(x) in the kink sector. Adding also the counterterm3

DM ~x!5(
j

2f j
2~x!Am22v j

2E
0

L dk

2p

1

v

5
m2

4

1

cosh2~mx/2!

3

2pE0

Ldk

v
, ~14!

and rewriting 1/cosh2(mx/2) as (4/3m)fB
2(x)

1(8/3m)f0
2(x) yields

eCas~x!5e~x!2e (0)~x!5
1

2
vBfB

2~x!

12E
0

L dk

2p
uf~k,x!u2

1

2
v

22E
0

L1DL(x) dk

2p

1

2
v1DM ~x!

5
1

2
vBfB

2~x!2E
0

L dk

2p S mfB
2~x!

k21m2/4
1

2mf0
2~x!

k21m2 D v

2
DL~x!

2p
L1m~fB

2~x!12f0
2~x!!E

0

L dk

2p

1

v
.

~15!

The two quadratic divergences proportional to*0
Ldk v have

canceled because we subtracted the energy density o
trivial vacuum, while the counterterm cancels the remain

3The countertermDM (x) usually is expressed in terms of the kin
background field, but it also can be determined by noting tha
should cancel the remaining logarithmic divergence in the diff
ence of the sums over zero point energies*2`

` (dk/2p)uf(k,x)u2

(2v/2). Equating both expressions yields another formula perh
valid for general reflectionless potentials,

Relation 2:

( j2f j
2~x!Am22v j

2

( j2Am22v j
2

5
fK

2 ~x!2fK
2 ~`!

*2`
` dx@fK

2 ~x!2fK
2 ~`!#

.

10502
the
g

logarithmic divergence. Again, each term is proportional t
bound-state or zero-mode probability density.

The result is finite and reads

eCas~x!5
1

2
vBfB

2~x!2mE
0

L dk

2p S v

k21m2/4
2

1

v D fB
2~x!

2
m

2p
„fB

2~x!12f0
2~x!…. ~16!

The last term is the contribution from the term due
DL(x), and is the analogue of the term in the central cha
density for the SUSY case identified as the anomaly by@7#.
Using the integral

E
0

` dk

2p S 1

k21m2/4
2

1

k21m2D v5
1

2A3
, ~17!

we obtain

eCas~x!5S 1

2
vB2

m

2A3
2

m

2p D fB
2~x!2

m

p
f0

2~x!. ~18!

This formula can be rewritten as follows:

eCas~x!5(
j

1

2 S 12
2

p
arctan

v j

Am22v j
2D v jf j

2~x!

2(
j

1

p
Am22v j

2f j
2~x!, ~19!

where in the first sum the contribution with 1 comes from t
bound states, and that with arctan comes from the c
tinuum, while the second sum is the anomaly contributi
Such formulas for the total mass can be found in@10#,
though we are unaware of local versions in the literatu
This kink example might be an illustration of a general fa
torization rule, valid for a wide class of reflectionless pote
tials. While we have not tested it for other cases, and do
know how to prove it other than by explicit computation, w
believe that its simplicity and elegance make the rule wor
of further investigation.

Integration ofeCas(x) over x yields

M (1)5
1

2
vBS 12

2

3D2
m

2p
2

m

p
5

A3m

12
2

3m

2p
, ~20!

in agreement with Eq.~1!. For convenience later, let us ex
press Eq.~18! as a total derivative:

eCas5
m

2

d

dx H tanh~mx/2!FA3

12
tanh2~mx/2!2

3

2pG J .

~21!

The first term gives the non-anomalous contribution, wh
the second yields that due to the anomaly.

Equations~19!, ~21! give compact expressions for the lo
cal energy density, which certainly provide the correct to

it
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LOCAL CASIMIR ENERGY FOR SOLITONS PHYSICAL REVIEW D67, 105021 ~2003!
quantum energy of the bosonic kink. However, to obtain
correct local Casimir energy density, one must start with
expression for the energy density of each mode includin
quadratic term in the gradient of the boson field1

2 (]xh)2,
whereas our formulas above, giving energiesvn multiplying
corresponding mode probability densities, implies instead
expression coming from the field equation,4 2 1

2 h]x
2h.

Therefore we need to add to Eq.~19! the difference, a perfec
differential of a function which vanishes far from the kin
~and so does not change the computed mass correctio
the kink!,

DeCas~x!5
1

4
]x

2^h2~x!&. ~22!

The propagator at equal times and positions^h2(x)& ~exclud-
ing the zero mode which solves the homogeneous equa!
@7# can be obtained by integratingufu2/2v in Eq. ~10! with
respect todk/2p and addingfB

2/2vB . The divergent part in
^h2& corresponds to settinguf(k,x)u2 equal to its value at
uxu→` in thek integral; as the divergence isx independent it
cancels in Eq.~22!. One thus obtains a finite~because the
logarithmically divergent part has been subtracted! expecta-
tion value

^h2~x!& r[^h2~x!2h2~x5`!&

5E
2`

` dk

2p

1

2v
@ uf~k,x!u221#1

1

2vB
fB

2~x!

52
3

8p

1

cosh4~mx/2!
1

1

4A3

sinh2~mx/2!

cosh4~mx/2!
,

~23!

and therefore,

DeCas5
d

dx H tanh~mx/2!Fm

4 S 3

4p
1

1

2A3
D 1

cosh4~mx/2!

2
m

16A3

1

cosh2~mx/2!
G J . ~24!

As observed in@7#, besides the Casimir energy dens
there is another consequence of the zero-point oscillati
namely, a position-dependent shiftf1 in the classical back-
ground field. This in turn implies a further term in the loc
energy density, given by

De (f1)~x!5]xf1]xfkink1S 1

2
U2D 8

f15]x~f1]xfkink!,

~25!

4Our boson fluctuation fieldh is designated byx in @7#. Note that,
as utilized just below, for a mode of frequencyvn our normalized
mode function is given byfn5A2vnhn .
10502
e
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e
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n
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but of course no shift at this order in the total energy, b
cause the classical energy is stationary with respect to a
trary small variations of the classical field about its equil
rium form. Decomposing the Heisenberg fieldF(x,t) as
fkink(x)1f1(x)1h(x,t), with the quantum fluctuation field
obeying^h&50, and taking the expectation value of theF

field equation̂ 2] t
2F1]x

2F2( 1
2 U2)8&50 gives

]x
2f12S 1

2
U2D 9

f15
1

2! S 1

2
U2D-

^h2&2
1

2
Dm2fkink .

~26!

This f1 is just what is needed to satisfy the no-tadpole co
dition in the kink background. As mentioned above, the s
gularity in ^h2(x)& is x independent and compensated by t
Dm2 term, yielding the quantitŷh2(x)& r of Eq. ~23!.5 Solv-
ing Eq. ~26! by the ansatz6 f15Axf0(x)1B]xf0(x), and
using the fact thatf0 is proportional to]xfkink , one finds

f15
l

m2 F S 1

2A3
1

3

4p D 1

cosh2~mx/2!

2
A3

4
~m]m12l]l!Gfkink . ~27!

Through one-loop order~as in the SUSY case@7#!, the effect
of the second term is to replace the renormalized massm and

coupling l in fkink with the bosonic pole massm̄5m„1
2A3(l/4m2)… given in @3#, Eq. ~7! and the adjusted cou

pling l̄5(m̄2/m2)l. If we then rewrite the classical energ

in terms ofm̄ and l̄, the classical mass is multiplied by
factor 12A3(l/4m2). As f1 cannot shift the total mass, w
know even without explicit calculation that the classical e
ergy density in terms of the barred quantities must be ren
malized by a compensating factor 11A3(l/4m2). The first
term in Eq.~27! is sensitive only to bosonic fluctuations an
hence unchanged in the SUSY case@because, as we shall se
the fermionic source forf1 includes no terms with
1/cosh4(mx/2)]; it contributes according to Eq.~25!. The to-
tal one-loop bosonic energy density becomes

5This procedure givesf1 as a finite, renormalized quantity, whil
@7# use an unrenormalizedf1. Hence the ‘‘rescaling’’ part of their
f1 gives the shift to the pole mass from the unrenormalized m
but ours gives only the shift to the pole mass from the renormali
mass corresponding to the vanishing-tadpole condition in the tri
sector.

6The term withA is needed for the term in Eq.~23! proportional to
1/cosh2(mx/2) and the term withB is needed for terms with
1/cosh4(mx/2).
1-5
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Relation 3:

E~x!5U2
„l̄,m̄,fkink~ l̄,m̄,x!…S 11A3

l̄

4m̄2D 1eCas~x!

1DeCas~x!1
m̄

4 S 3

4p
1

1

2A3
D ]xS tanh~m̄x/2!

cosh4~m̄x/2!
D .

~28!

The last term in Eq.~28! comes from the first term in Eq
~27!. The second term in Eq.~27! renormalizes the classica
contributionU2, as seen in the first term in Eq.~28!. The
effect of this renormalization is that the classical energy d
sity flattens out a bit. Besides the rescaling, all other con
butions are of the form]x@fkink(x)/coshn(mx/2)#, with n
50,2,4.

SUSY KINK ENERGY DENSITY

For the SUSY kink we choose the cutoffs in the trivi
sector in such a way that the bosonic and fermionic dens
in that sector are equal. To make the bosonic and fermio
densities also equal in the topological sector, we use a cu
L for the bosons andL1DL(x) for the fermions as in Eq
~6!. The fermion is described by a Majorana two-compon
spinorc5(c2

c1). As c1(k,x) is proportional tof(k,x) while

c2(k,x)5( i /v)(]x1m tanh(mx/2))c1(k,x) for solutions
proportional to exp(2ivt) according to the Dirac equatio
@3#, one obtains for the wave functions of the continuo
fermionic spectrum

c1~k,x!5
1

A2
f~k,x! ~29!

c2~k,x!5
1

A2

v

Nm S 24
k

m
22i tanh

mx

2 Deikx. ~30!

In the difference of the densities the constant term of cou
cancels, giving

uf~k,x!u22uc1~k,x!u22uc2~k,x!u2

5uc1~k,x!u22uc2~k,x!u2

5
1

2N 2 S 9

cosh4~mx/2!
28S v

mD 2 1

cosh2~mx/2!
D . ~31!

For the bosonic and fermionic densities to satisfy Eq.~6! one
requires
10502
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f0
2~x!1fB

2~x!12E
0

L dk

2p
uf~k,x!u2

5
1

2
f0

2~x!1S 1

2
fB

2~x!1
m

8 cosh2~mx/2!
D

12E
0

L1DL dk

2p
$uc1~k,x!u21uc2~k,x!u2%. ~32!

The factor 1
2 in 1

2 f0
2(x) comes from the mode expansio

c1(x,t)5c0f0(x,t)1••• with $c0 ,c0%51.7 This 1
2 is the

analogue for Majorana fermions of the fractional fermi
charge discovered by Jackiw and Rebbi for Dirac fermio
@11#. The two terms in parentheses give thec1 and c2

contributions of the bound state:cB1
2 5 1

2 fB
2 and ucB2u2

5m/8 cosh2(mx/2). We obtain

1

2
f0

2~x!1cB1
2 ~x!2ucB2u2~x!12E

0

L dk

2p
~ uc1~L,x!u2

2uc2~L,x!u2!5
DL~x!

p
~ uc1~k,x!u21uc2~k,x!u2!.

~33!

Using the completeness relation, and taking the largek limit
uc1(k,x)u21uc2(k,x)u2→1, one finds

DL~x!

p
522E

L

` dk

2p
~ uc1~k,x!u22uc2~k,x!u2!. ~34!

As we are interested only in the 1/L term, the calculation is
easy. From Eq.~31! we find

DL~x!

p
5

m2

4pL

1

cosh2~mx/2!
. ~35!

With this result in hand, we compute the difference
energy densities for the SUSY kink

7Obtained in@2# from Dirac quantization, this factor equivalentl
can be deduced from the completeness relation for solutions o
single-particle Dirac equation f0

2(x)12@ ucB1u21ucB2u2

1*(dk/2p)(uc1u21uc2u221)#50, where uc2(k,x)u251/2
2m2/„8 cosh2(mx/2)(v22vB

2)…. The relative factor of two between
the first term and the later terms in the completeness relation
lows from the fact that, if one sums over a complete set of soluti
of the Dirac equation, all nonzero frequencies lead to equal con
butions from positive and from negative frequency, while the z
mode contributes only once.
1-6
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eCas,b~x!2eCas,f~x!5
1

2
vB„fB

2~x!2cB
†~x!cB~x!…

12E
0

L dk

2p
~ uc1~k,x!u2

2uc2~k,x!u2!
1

2
v2

DL~x!

p

1

2
L

1DMSUSY~x!. ~36!

The counterterm in the SUSY case,

DMSUSY~x!5
m2

2

1

cosh2~mx/2!
E

0

L dk

2p

1

v
, ~37!

is a factor 1/3 smaller, but still nonvanishing. Again, t
counterterm removes the logarithmic divergence in the in
gral, and with Eq.~17! one finds

eCas,SUSY~x!5eb~x!2e f~x!

5S 12
2

3D 1

2
vB~fB

2~x!2cB
†~x!cB~x!!

2
m2

8p

1

cosh2~mx/2!
, ~38!

where the last term, the contribution fromDL, agrees with
the central charge density anomaly Eq.~3.38! in @7#. Integra-
tion overx yields the one-loop correction to the mass of t
SUSY kink

MSUSY
(1) 5 lim

X→`
E

2X

X

dx
d

dx FA3m

48
@ tanh3~mx/2!2tanh~mx/2!#

2
m

4p
tanh~mx/2!G

5
1

6
vB~121!2

m

2p

52
m

2p
, ~39!

which of course is the accepted answer. Note that the n
anomalous contributions from the bosons and the fermi
do not cancel locally, but in the integral they do:1

6 vB(1
21)50. For explicit expressions later it is helpful to rewri
the first part in the bracket of Eq.~39! as

eCas,SUSY~non-anom!

5
d

dx

m

16A3
@2tanh~mx/2!/cosh2~mx/2!#.

~40!

As in the bosonic case we must add the missing term
the bosonic Casimir energy densityDeCasgiven in Eqs.~22!,
10502
-

n-
s

in

~23!, as well as include the shift for the SUSY casef1(x) in
the background field. We compute thisf1, again using the
second-order field equation forF, which now has an addi-
tional contribution from fermions:

]x
2f12S 1

2
U2D 9

f15H 1

2! S 1

2
U2D-

^h2&2
1

2
Dmb

2fkinkJ
1H 1

2
U9^c̄c&2

1

2
Dmf

2fkinkJ , ~41!

with

dmF
2524lE

2`

` dk

2p

1

2v

and

^c̄c& r5„]x12m tanh~mx/2!…^h2~x!& r

5E
2`

` mdk

2pv
@6m2tanh~mx/2!/

„16~k21m2/4!cosh2~mx/2!…#

2~A3m/4! tanh~mx/2!/cosh2~mx/2!. ~42!

The last term comes from the bound state, and a term w
(k21m2/4) in the numerator of the integrand has been c
celed by the fermionic part of the mass counterterm. Ag
using Eq.~17!, we find that the fermionic contributions tof1
are only proportional to 1/cosh2(mx/2), and not
1/cosh4(mx/2), so that the net coefficient of th
1/cosh2(mx/2) term is a factor 2/3 smaller than in the boson
case. The final result forf1 reads

f1,SUSY5
l

m2 F S 1

2A3
1

3

4p D 1

cosh2~mx/2!

2
1

2A3
~m]m12l]l!Gfkink . ~43!

Note that in Eq.~43! the first term is the same as in th
bosonic case~as mentioned earlier!, while the second term is
smaller by a factor 2/3. This is the same result found in@7#
using a first order differential equation based on SUSY c
siderations. Iterating the SUSY relation^]xf1U&50, one
confirms that the second-order and first-order approaches
consistent with each other.8 For the SUSY energy density w
then find full agreement with the central charge density
@7#, after restoring a missing factor of1

2 in the first line of
Eq. ~5.21! in that work, kindly pointed out to us by the au
thors.

8The details are as follows. From̂]xf1U&50 we have]xf1

1U8f11(1/2!)U9^h2&1Al/2(2Dm2/l)50. Differentiating
with respect tox, using]xfkink52U, and eliminating]xf1 yields
an equation for]x

2f1. That this is equivalent to Eq.~41! follows
from the identity ^h(]x1U8)h1„(]x1U8)h…h&5 i ^c1c2

2c2c1&, which in turn is a consequence ofc2

5( i /v)„]xtanh(mx/2)…c1 andc15hAv.
1-7
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Relation 4:

E~x!5U2
„l̄s ,m̄s ,fkink~ l̄s ,m̄s ,x!…S 11

l̄s

2A3m̄s
2D

1eCas,SUSY~x!1DeCas~x!

1
m̄s

4 S 3

4p
1

1

2A3
D ]xS tanh~m̄sx/2!

cosh4~m̄sx/2!
D . ~44!

Here we use m̄s5m(12l/2A3m2) and l̄s5l(12l/
A3m2). Thus the rescaling of the classical density involve
shift 2/3 as big as for the bosonic case, whileeCas,SUSYin-
cludes an anomaly 1/3 as big as in the bosonic case a
different finite-energy contribution, as explained abo
Meanwhile, the last two terms, fromDeCas and from the
nonrescaling term inf1r , are the same as in the boson
case.9

CENTRAL CHARGE DENSITY

We now compute the anomalous contribution to the d
sity z(x). Before regularization one hasH(x)5 1

2 ḟ2

1 1
2 f821 1

2 U21 i /2(c1c18 1c2c28 )2 iU 8c1c2 , and z(x)
5U]xf ~note that@7# have the opposite sign convention f
z). Using the equal-time anticommutators of the fermion
fields c1(x) andc2(x) and the definition

j 65~2~]”f1U !g0c6 , ~45!

one obtains

$Q6 , j 6~y!%52H~y!62z~y!,

j 65ḟc61~f86U !c7 , Q65E
2L/2

L/2

j 6dx, ~46!

z~y!5E dxF1

2
„$c1~x!,c1~y!%2$c2~x!,c2~y!%…

3S 1

2
ḟ~x!ḟ~y!2

1

2
f8~x!f8~y!1

1

2
U~x!U~y! D

1
1

2
„$c1~x!,c1~y!%1$c2~x!,c2~y!%…

3S 1

2
f8~x!U~y!1

1

2
U~x!f8~y! D G . ~47!

9For comparison with@7# note that our couplingl is equal to 2l2

in their formulation. Also, they give the integral of the density fro
2x to x, while we write the pieces of the quantum correction to t
density as local derivatives, so that our expression for the func
being differentiated is half theirs for the integral. The specific ter
in their equation~5.21! are related to ours as follows: The first lin
in Eq. ~5.21! is simply the integral of what we callU2. The first
term in the second line is the anomaly. In the final bracket, the
term receives equal contributions fromeCasandDeCas. The remain-
ing piece receives equal contributions fromDeCas and from the
nonrescaling part off1, the shift in the classical field.
10502
a

a
.

-

This is an exact result; all terms with bosonic commu
tors cancel. The anticommutators$c1(x),c2(y)% and
$c1(y),c2(x)% all vanish, and also the first line inz(y)
vanishes, while the second line would seem to give

z~y!5E
2`

1`

dxd~x2y!F1

2
^h~x!h~x!&U9f8~x!

1^h8~x!h~x!&U8~x!G
5E

2`

1`

dxd~x2y!
]

]x F1

2
^h~x!h~x!&U8~x!G , ~48!

E
2`

`

dyz~y!5
1

2
^h~x!h~x!&U8~x!u2`

` . ~49!

This is the expression obtained in@3#. Below we show that
with appropriate care~i.e., not settingx5y too soon!, there
is an extra term—the anomaly. The naive result in Eq.~49!
contains a free field propagator forh, because atx56` the
effects of the kink disappear, and, adding the counterterm
the central charge due to mass renormalization, all quan
corrections to the central charge would seem to vanish. In
approach of@7#, on the other hand, the central charge co
tains a naive termf8U and an explicit correction term which
is also a total derivative and proportional to 1/M2. Because
their h propagator contains an extra regulating factor (k2

1M2)21, the contribution in Eq.~49! now cancels even af
ter regularization, but because the correction term conta
two extra derivatives~to balance the factor 1/M2) it yields an
extra contribution proportional toM2/M2, which is the
anomaly.

In our case we start from Eq.~47!, but without extra terms
as in @7#. We keepxÞy in Eq. ~47!, giving

z~y!5E dxd~x2y!FU9~x!fkink8 ~y!
1

4
^h2~x!&

1
1

2
^h8~y!h~x!&U8~x!1~x↔y!1Dm2 termG .

~50!

We now show that the result is still a total derivative, b
instead of the total derivative in Eq.~49!, rather a total de-
rivative with an extra term. The crucial point is that on
cannot replace d(x2y)^h8(x)h(y)& by 1

2 d(x
2y)]x^h

2(x)& because there is a singularity in^h8(x)h(y)&
as x tends to y. Setting d(x2y)@^h8(x)h(y)&
2(1/2)]x^h(x)2&50 would mean that all terms vanish as
@3#. However, the singularity which invalidates this equal
yields the anomaly

E
2`

`

z~x!dx5
W9~f!

4p U
2`

`

, ~51!

n
s

st
1-8
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LOCAL CASIMIR ENERGY FOR SOLITONS PHYSICAL REVIEW D67, 105021 ~2003!
where W8(f)5U. HenceM (1)52Z(1) in agreement with
the invariance of the background underQ1 ~which corre-
sponds to the SUSY transformation with parametere2). Let
us see this explicitly.

The identity we need is

d~x2y!^h8~x!h~y!&„f ~x!2 f ~y!…52
1

2p
d~x2y! f 8~x!,

~52!

wheref is any smooth function ofx. The proof of this iden-
tity follows from ^h(x)h(y)&52(1/2p)lnux2yu1A(x,y),
whereA is a smooth, symmetric function, therefore invol
ing only nonnegative even powers of (x2y), as can be seen
from Eqs.~7!–~9!. The actual calculation of the anomaly
now very simple. Expanding all contributions in terms ofx
2y, and usingd(x2y)(x2y)Dm250 after regularization
of Dm2, while d(x2y)(x2y)]x^h

2(x)&50 does not need
regularization because]x^h

2(x)& is finite, we have from Eq.
~52!

E
2`

`

z~y!dy5E
2`

`

dxdyF 1

4p
d~x2y!U9~f!f8~x!G5

m

2p
.

~53!

Here we used

U5Al/2~f22m2/l!, f5~m/Al!tanh~mx/A2!,

andm5mA2. Again we have the accepted result, and we
that point-splitting regularization yields the same extra te
in the central charge as does higher-derivative regularizat

Thus we have shown in a simple way that the te
^h8(y)h(x)&U8(x) produces the anomaly if one does not s
x5y too soon. In@7# a more complicated but also mor
powerful regularization scheme was used to prove this.
observation pinpoints the place where naive methods mis
the anomaly. As discussed extensively in the previous s
tions, one must add to the anomalous part the various c
tributions to the non-anomalous part of the central cha
density. This works exactly as in@7#, and of course is com
pletely unaffected by choice of regularization method.

In view of our emphasis on LMR for energy density, it
reasonable to ask why we do not attempt to apply it to c
tral charge density. Looking at Eq.~50!, one sees that the
expression to be regulated, the bilocal correlator inh(x) and
h8(y), which clearly is not determined by insisting that th
regulated sum Im̂h(x)ḣ(x)& is unchanged between vacuu
and kink backgrounds~the entire content of the LMR pre
scription!. Thus LMR may be applied as a condition on t
expressions in the central charge density, but is not suffic
to regulate them.

FOUNDATIONS AND CONCLUSIONS

Finally we comment on the physical basis for LMR.
Planck’s original formulation of quantum physics@12#, the
number of degrees of freedom is defined by the availa
volume in phase space. To fix the total number of mo
while introducing a background potential affecting the flu
10502
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tuations is simply to conserve the total phase space availa
The work of Einstein@13# and Debye@14# on crystal vibra-
tion contributions to heat capacity introduced the concep
a local density of degrees of freedom, codifying a noti
already found in Boltzmann’s lectures on gas theory@15#. As
was true for their work, in a lattice approach the number
degrees of freedom per unit volume evidently does
change when interactions are introduced, and the local m
density should be equal to this number of degrees of fr
dom.

Also point splitting methods clarify the meaning of LMR
Consider the bosonic local mode density regulated by p
splitting

r~k,x!5E
2`

`

dyf* S k,x2
y

2DfS k,x1
y

2D f ~y!, ~54!

where f (y) is a function sharply peaked aroundy50, with
*dy f(y)51. For large k, the JWKB approximation for
f(k,x) is

f~k,x!5eikxe2 i *xdx8V(x8)/2k, ~55!

where

V~x!5U„f~x!…U9„f~x!…1~U8!2
„f~x!…

2~U8!2
„f~ uxu→`!….

Substituting this expression intor(k,x) one finds, for the
integrand of Eq.~54!,

eikye2 i *x2y/2
x1y/2[V(x8)/2k]dx8 f ~y!.ei „k2V(x)/2k…yf ~y!. ~56!

In the trivial sectorr(k,x)5 f̃ (k), where f̃ (k) is the Fourier
transform off (x), but in the kink sector one finds a modifi
cationr(k,x)5 f̃ (k2V(x)/2k). The energy density therefor

contains a termde(x)5*dr(k,x) 1
2 v(dk/2p), and expand-

ing f̃ we find10

de~x!52E
2`

` dk

2p

V~x!

2k

v

2

]

]k
f̃ ~k!52V~x!/8p. ~57!

For the bosonic kink, this is the anomaly in Eq.~16!, as one
may readily check by direct substitution.

From the JWKB form for the wave function at high ene
gies it follows that the quantityDL(x), and hence the
anomaly, depends onx only through the potential felt by the
fluctuations. This in turn implies that the local anomaly
the energy density is determined at eachx by the value of the
classical background fieldf(x), as stated for the centra
charge density of the supersymmetric case in@7#.

While the above discussion shows that the LMR result
the bosonic kink follows from point-splitting, it is possible t

10The narrowerf (x), the wider the range ink contributing to Eq.
~57!, so that in the limit the contribution of any finite range arou
k50 becomes negligible. This justifies our use of the JWKB a
proximation, which is valid fork2@m2,V.
1-9
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GOLDHABER, LITVINTSEV, AND VAN NIEUWENHUIZEN PHYSICAL REVIEW D 67, 105021 ~2003!
make a much stronger statement, that point-splitting imp
LMR for a scalar field in an arbitrary background potential
one space dimension. The same JWKB approximation u
to determine the shift in effective wave number due to
potentialV can be used also to compute the modulation
the mode density versus energy~or equivalently, versus
asymptotic wave numberk) in the region of nonzero poten
tial, compared to the asymptotic density far away. This i
standard calculation, obtaining the wave function and he
the density to one higher order in 1/k than required for the
shift in effective wave number. There is a simple physi
mnemonic for the result of the calculation. Treating this s
tem as a Schro¨dinger problem with ‘‘Hamiltonian’’v2, the
modulating factor is simply the ratio of the asymptotic cla
sical velocity to the local velocity:

r~x!/r~`!5v/v~x!5k/Ak22V~x!, ~58!

or

dr/r;V~x!/2k2. ~59!

Integrating the above expression from a nominal sharp cu
L to `, we see that to have the same integrated mode n
ber density above the cutoff in the presence of a poten
V(x) as in a trivial background, we must shift the cutoff b

dL5V~x!/2L, ~60!

exactly the amount implied by point-splitting as found in t
discussion leading to Eq.~57! above.

The equality between the wave number shiftdk(x) and
the integral over the density shift is reminiscent of an uns
tracted dispersion relation. Possibly the implementation
LMR in higher dimensions would require the equivalent
subtracted dispersion relations to compensate for the incr
ing divergence of energy density with cutoff.

We have seen that point-splitting, a regularization sche
which is local but not necessarily useful beyond one-lo
order, gives the same anomaly in the central charge foun
@7# with higher-derivative regularization, and also impli
LMR for the bosonic energy density with arbitrary bac
ground potential. As explained above, the converse is
true: LMR does not contain the full content of point-splittin
regularization. Nevertheless, it is appealing that it capture
one line the above sequence of equations required to ob
the anomaly from point-splitting regularization. Thus,
stated already in the Introduction, LMR is a simple, eas
used tool for a special but extremely important applicati
the computation of local one-loop energy densities.

For the supersymmetric case, one gains insight into
requirement of equal bosonic and fermionic mode densi
by considering theN52 theory, where there is an Abelia
n
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charge density which should be invariant under supersym
try. That requirement automatically imposes the constra
represented by LMR.

While all of the above are appealing arguments, the
cepted criterion for determining the validity of a regulatio
procedure is to insert regulators into the action in such a w
that all relevant symmetries are satisfied at the regula
level, and then to deduce consequences for specific qu
ties. Thus in the present case a definitive check on the va
ity of LMR would be to use, for example, higher-derivativ
regulation~which obeys supersymmetry!, and check that this
scheme implies LMR. This important analysis remains to
done. As an alternative, one might be able to prove t
point-splitting preserves SUSY in models with solitons, a
then extend our deduction of LMR from point-splitting in th
bosonic case to the SUSY case. This is something to wh
we intend to return in the future.

To summarize, LMR permits one to isolate and then co
pute directly the anomalous contribution to the energy d
sity of the bosonic or SUSY kink. Expressed most conser
tively, LMR at the least gives a simple interpretation of t
anomaly as the shift in energy density required to equa
mode densities. In fact as we have just seen, at least for B
fields in one space dimension with arbitrary scalar ba
ground potential, LMR follows from point-splitting regular
ization of the energy density. In addition we found rema
able phase space factorization identities for the n
anomalous contributions to the energy density, which mi
hold for all reflectionless potentials. These non-anomal
contributions are independent of the regularization meth
~though sensitive to renormalization conditions because t
only are convergent after subtraction of the mass coun
term!. Elsewhere@16# we compute the divergent energy de
sity at the boundary of the kink with supersymmetric boun
ary conditions, and obtain an analytic expression for
anomaly near the boundary, which in the limit when t
regulator energy goes to infinity becomes a delta-funct
contribution just at the boundary, in agreement with exp
tations of@7#. It would be interesting to explore local mod
regularization further, comparing with complete regulariz
tion schemes and studying solitons in higher dimensi
such as the magnetic monopole, and also explore ph
space factorization, seeking a theoretical basis as wel
additional examples.
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