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Local Casimir energy for solitons
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Direct calculation of the one-loop contributions to the energy density of bosonic and supersymgfietric
kinks exhibits the following(1) Local mode regularizationRequiring the mode density in the kink and the
trivial sectors to be equal at each point in space yields the anomalous part of the energy 8nBlwgse
space factorizationA striking position-momentum factorization for reflectionless potentials gives the nona-
nomalous energy density a simple relation to that for the bound state. For the supersymmetric kink, our
expression for the energy densifyoth the anomalous and nonanomalous patgees with the published
central charge density, whose anomalous part we also compute directly by point-splitting regularization. Fi-
nally we show that, for a scalar field with arbitrary scalar background potential in one space dimension,
point-splitting regularization implies local mode regularization of the Casimir energy density.
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INTRODUCTION wherem is the renormalized mass of the meson in the trivial
background. This result remains unchallenged.

Quantum corrections to solitons were of great interest in  The supersymmetricCSUSY) case, as well as the general
the 1970s and 1980s, and again in the past few years, due €@se including fermions, proved more difficult. The action
the present activity in quantum field theories with dualitiesand the kink solution read
between extended objects and pointlike objects. Dashen,

Hasslacher, and Nevél], in a 1974 article that has become L= E(O-, b)2— EEW/— EUZ—CE d_U%/l

a classic, computed the one-loop corrections to the mass of 27K 2 2 2de" "

the bosonic kink inp* field theory and to the bosonic soliton (2
in sine-Gordon(SG) theory. For the latter, there exist exact m X

analytical methods associated with the complete integrability Prink(X) = Ktanhﬁ,

of the system, authenticating the perturbative calculation.
Our work here uses general principles but focuses on thﬁ/here—luz——()\/4)(¢2—,u2/)\)2 the meson Mass s
2 - ’

klntkt,hfor vt;/_hlc(h lexa<_:t rleEulti are ngtf_zi\llgllable. Dasg_elal.t =pu+\/2, andc=1 for supersymmetry. Dashest al. did not
put the objectclassical background Ti€ld corresponding o aexplicitly compute the fermionic corrections to the soliton

kink or SG soliton in a box of lengthl to discretize the 355 stating “The actual computation [@he contribution
continuous spectrum, and _used mode ngmber regylgrlzatlo[la] M® [due to fermions can be carried out along the
(equal numbers of modes in the topological and trivial seCjines of the Appendix. As the result is rather complicated
tors, including the zero mode in the topological sector in thisyng not particularly illuminating we will not give it here”
counting for the ultraviolet divergences. They imposed pe-(p. 4137 of[1]).
riodic boundary condition$PBC) on the meson field which Several authors later computédi®) for the SUSY kink
describes the fluctuations around the trivial or topologicaland found different answers. It became clear that the method
vacuum solutions, and added a logarithmically divergenbf Dashen et al. yielded results that depended on the bound-
mass counterterm whose finite part was fixed by requiringary conditions for the fluctuating fields. In fact, repeating
absence of tadpoles in the trivial background. They foundexactly the same steps for the susy kink as taken by Dashen
for the kink, et al. for the bosonic kinKusing PBC also for the fermions,
Y. (—L/2)= . (L/2)], taking equal numbers of modes in
all four sectors, including one term with=0 (due to a
(1) 1 1 ) periodic solution withw?>0) in the bosonic kink sector and
VIOEDS Eﬁwn_E Shoy +AM one term withw=0 in the fermionic kink sectotexplicitly,
there are two real independent solutions witl+=0, one

3 3 localized at the kink and one at the boundary, and the
=—fm om E) coefficient of each satisfiesc?>=3% [2]) gives M)
=xm((1/4)—(1/2m)) [3]. We now know that thisv®) is
<0, (1)  the correct answer to an inappropriate question, because it
includes boundary energy. Schonf¢h finessed the prob-
lem of a single kink with its sensitivity to boundary condi-
*Email address: goldhab@insti.physics.sunysb.edu tions by considering the kink-antikink system with PBC.
"Email address: litvint@insti.physics.sunysb.edu Taking into account two terms witlw~0 in the bosonic
*Email address: vannieu@insti.physics.sunysb.edu kink-antikink sector(due to one periodic solution witw?
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<0 and another antiperiodic solution with*>0) and one central charge density ¢7]. Our proposed principle appears
term with w =0 in the fermionic kink-antikink sectdidue to  new in the literature, and yet has roots in early quantum
two periodic solutions witho =0 [2]), he obtained what we physics.Local mode regularizatioLMR), or mode density
now know to be the correct answer. The problem of bound+egularization, is the local counterpart of the familiglobal)
ary contributions was circumvented by other methodgsin  mode regularization or mode number regularization. The
and[6]. The fermionic contribution tdv (%) is given by principle is that, when fluctuations are expanded into normal-
ized modesp,(x) [i.e., [dx¢y (X) pa(x)=1 for all n], the
MO =%m i_ \/_§ ~0, 3) cutoff local mode density)N(x):Eﬁzqu’;(x)g&n(x) s_hould
f 12 be background independent, i.e., the same in the trigi&l
and kink (p) sectors. For the bosonic kink this implies that
and the total one-loop correction is thus one must truncate the sums at different upper bounds corre-

. sponding to different frequency cutoffs
m

M (sh)sy: - z (4)

pA(X):pgon)rAA(x)(x)' &)
With attention restricted to the kink alone, it was shown inHere thex-independent cutoff\ is given by A=2#N/L to
[2] that one could eliminate boundary contributions from thean accuracy?(1/L). The above equation determin&s\ (x)
fermionic part of the energy by averaging over quartets oin terms of A, and clearlyAA(x) is x dependent. For the
boundary conditions for the fermionic fluctuations— SUSY kink one can begin by fixing the mode number cutoff
periodic, antiperiodic, twisted periodic and twisted antiperi-Ngo) for the bosons andl{”) for the fermions in the trivial
odic, where twisting means interchange of the upper andector such that here the bosonic and fermionic mode densi-
lower components of the fermion wave functigh.— ¢~  ties are equal. From Ed5) one then obtains in the kink
[5]. This averaging is necessary to preserve certain discretector the requirement
symmetries for fermions. The results[i2] give a complete,
though intricate, way to calculats!™ in terms of mode Pap(X) =P+ an00.6(X), (6)
frequenciesw,, .
In light of the complexities which boundary conditions which again determineA A(x) in terms of A. We use this
generate for the problem including fermions, the most imporprinciple to compute the anomalous energy density of the
tant advance sindd] was the approach of Shifman, Vainsh- bosonic kink, as well as of the supersymmetric kink, which
tein, and Voloshin[7], who used higher space-derivative as mentioned was obtained alreadyf 7 through the equal-
regularizatiorwith factors (1— d2/M?) for the kinetic terms ity of energy and central charge densities. We believe that
but not the interactioisto compute the central charge den- LMR is sufficient for regularization of the one-loop Casimir
sities of the SUSY sine-Gordon soliton and kink. Their energy density in one space dimension, and at least necessary
scheme is manifestly SUSY, canonidalo higher time de- in higher dimensions, where further conditions may be
rivative, and independent of boundary conditidibecause needed to specify the regularization completely. It is impor-
it yields a local density* They argued that the energy den- tant to emphasize that LMR, like ordinary mode regulariza-
sity is equal to the central charge dengitgcause the differ- tion, is not easily applied at arbitrary order in perturbation
ence is a SUSY commutajaend they computed the latter— theory, because it is not directly expressed in terms of a
including an anomaly recognizable as 87?/M? effect. = modification of the action. Thus our claim is that for a spe-
They verified that the one-loop correctiat® to the inte-  cialized purpose, namely, calculation of localized Casimir
grated central charge of the kink comes only from theenergy, LMR is the ideal tool, providing maximal simplicity
anomaly and is equal to E¢4). The presence of a topologi- and efficiency. This claim is simultaneously modest, because
cal anomaly was first conjectured [iB]. it is restricted to the computation of one-loop energy densi-
One may compute the energy density for the bosonic sineties, and substantial, because Casimir energy plays such a
Gordon soliton by mapping the system onto another ondarge role in quantum physics.
which exhibits supersymmetry, and computing the central For the non-anomalous contributions to both the bosonic
charge density for that fictitious systel]. Quite possibly and SUSY kink densities, we find empirically another strik-
similar techniques would work for the bosonic kink. Our ing regularity, phase space factorizatioriThe continuum
approach here is instead to attack the Casimir energy densitontribution to the Casimir energy density in phase space
directly, freeing the calculation from dependence on superexhibits a remarkable factorization, involving a few terms
symmetry. In doing so, we have found it helpful to introduceeach with simple momentum-dependent factors multiplying
a simple rule for regularization of energy densities which wefunctions related to the bound-state and zero-mode probabil-
propose as a fundamental principle. At this point, the primaryity densities in coordinate space. We believe this factoriza-
evidence for the validity of the principle is the agreementtion should hold for all reflectionless potentials, but might
between the energy density we compute by its use with theot extend farther. The factorization takes a particularly
simple form for what we call below,{x), a local density

whose integral over a region containing the kink gives the

As [7] points out, Yamagishi8] was perhaps the first to study total quantum correction to the mass of the kink. The local
local densities in this context. energy density has two contributions besideg. First, the
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fundamental definition of Casimir energy density differs 402 [ 462 w? 1

from the usual sum over zero-point energies by an extra |¢(k,x)|2:—2 —2(—2— )— —
piece which is a perfect differential of an expression vanish- N[ m?\m m? cosi(mx/2)
ing far from the kink, so that including this piece does not

alter the mass correction but does alter the local density. +9 1

Secondly, there is an effect which perhaps is best viewed as cos(mx/2)

vacuum polarization—the quantum fluctuations of the Bose

and Fermi fields lead to a local shift in the classical back- md)é(x) 2m¢§(x)

ground field defining the kink. Again, this changes the local =1- W — w? T w2 (10)

density but not the total mass. We check explicitly that the
energy density and the central charge density of the SUSY

kink are equal. As  [* (dK2m)[1/(w?— wd)]=1m, while [ (dk

After these calculations of the anomalous and nonw_y4;,2_1/om/ it is clear that the completeness relation
anomalous contributions to the energy density of the bosonic

(and SUSY kink, we turn to the calculation of the central

charge density of the SUSY kink. From its definition the » dk ) 5 5

central charge density at a points anx integral of a bilocal fﬁxﬂﬂ (K, X)|*= 1} + do(X) + dg(x)=0  (11)
quantity depending o andy times a delta functiony(x

—Yy). Not settingx=y too soon yields the anomaly in the

central charge density near the kink, confirmfig Finally, s satisfied. Equatiof10) may be written in a remarkable

we discuss the physical basis for LMR, observing in particUtormuyla perhaps true for all reflectionless potentials, showing

lar that point-splitting regularization for energy density im- tactorization of the difference in mode densities in phase

plies Imr, at Ie_ast for the bosonic case with arbitrary baCk'space, where the position dependence of each term is given

ground potential. by the corresponding bound-state or zero-mode probability
density,

BOSONIC KINK ENERGY DENSITY

For the energy density of the bosonic kink, one mustRelation 1
evaluate sums (setting A=1 from now on

S3wndr (X) pa(X), where the modesp,(x) are each nor- ZW
malized to unity. As these sums clearly differ from the den- |p(k,x)|2—1= —E B2(x) “j
sity sumsX ¢} (x) ¢n(X), one expects in general a nonvan- T w’—w
ishing one-loop correction to the energy density, and hence
to the quantum mass. Let us begin with explicit expressions
for the mode eigenfunctions, so that one may follow thesatisfying the completeness relation, as one may check by
argument in detail. The wave functions of the continuousPerforming the integration ovec
spectrum[using | ¢,|2(x)=1 away from the kink to deter- Note that all the above expressions for the density do not
mine the normalization Constay\f] obey refer to any partiCUIar choice of bOUndary Conditions, which
of course do affect eigenenergies and the corresponding
K mx wave functions. The reason is that the choice of boundary
+6i—tanh—}, conditions will contribute to the density away from the
m 2 boundary at most terms of orderL1/In the largek or con-
(7)  tinuum limit, in principle such terms might contribute to the
total energy obtained by integration over the entire interval

7 (12
J

ikx

mx Kk
d(K,x)= W[—3 tanﬁ7+1+4 =

2

with w=k?+m? and 2= 16(w?/m?)(w?/m?~w§/Mm?).  between the boundaries. We are unaware of any example of
The zero mode withvy=0 is given by this phenomenon, as a previous clainf2 has been shown
to be incorrec{9].2 Even if the phenomenon were to occur,
3m 1 for the integral just over a finite interval around the kink the
do(X)= Ty~ (8)  effect would be negligible, so that the kink energy density
costf(mx/2) and resulting energy can be computed reliably in terms of the
continuum, modified-plane-wave solutions, unaffected by the
The bound state witwg= (1/3/2)m is given by choice of boundary conditions.
The requirement in Eq(5) that the topological vacuum
\ﬁ sinhmx/2) density and the trivial vacuum density be equal leads via Eq.
=\ 11) to
600= 7 o Rim2) 9 1

The density of the continuous spectrum can be written as?However, the latter work did identify a delocalizedomentum
follows: for certain special boundary conditions.
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wdk ) logarithmic divergence. Again, each term is proportional to a
=j —(1-[a(k,x)[?) bound-state or zero-mode probability density.
AT . ..
The result is finite and reads
Jym?—

AA(X)

T

f dk 2 ¢ (X) 1 fAdk w
0l—w 2 i — 20y} —
ccadX) =5 0adR0 M | S| o — 2 6300
=1(¢2(x)+2¢2(x))+0 L m > 2
AR ° A? = 5 ($5(x) +245(x)). (16)
_ 3m? 1 n 1 13 The last term is the contribution from the term due to
 4mA cosR(mx/2) A2 (13 AA(x), and is the analogue of the term in the central charge

density for the SUSY case identified as the anomaly @y

With this result forAA(x) we can evaluate the energy YSing the integral

densitye(x) in the kink sector. Adding also the countertérm - dk 1 1 1
5= - = : 17)
dk 1 jo 2w(k2+m2/4 K+m?) 23
AM()= 2000 f oo
we obtain

om? 1 Adk 14
4 cosf?(mx/Z) 27)o o

1 m m 5 m
€cadX)= Ews—ﬁ—ﬁ ¢B(X)—;¢0(X)- (18)

and re\gvriting v cos"f(m>d2) as (4/3n) ¢E(X) This formula can be rewritten as follows:

+(8/3m) ¢pp(x) yields
_2 l 1 2 wj 2

€cadX) = : 2 ;arctanm wj¢j ()

1
ecadX) = €(x) = ()= 5w bR(X)

1
A N D[P 2,2
0 27 2
A+AA)dK 1 where in the first sum the contribution with 1 comes from the
- f 5 0+AM(X) bound states, and that with arctan comes from the con-
0 2m 2 tinuum, while the second sum is the anomaly contribution.
Adk 5 o2 Such formulas for the total mass can be found[10],
wB¢B(X) f ( m¢p(X) N m¢o(x)> though we are unaware of local versions in the literature.
k2+m2/4  k?2+m? This kink example might be an illustration of a general fac-
torization rule, valid for a wide class of reflectionless poten-
AA(X) 5 5 Adk 1 tials. While we have not tested it for other cases, and do not
- 2n A+ m(00+265(x)) 02T know how to prove it other than by explicit computation, we
believe that its simplicity and elegance make the rule worthy
(19 of further investigation.
Integration ofec,dX) overx yields

The two quadratic divergences proportionalf@ﬁk o have
canceled because we subtracted the energy density of the 1 2
trivial vacuum, while the counterterm cancels the remaining M ):EwB

in agreement with Eqg(1). For convenience later, let us ex-
3The countertermh M (x) usually is expressed in terms of the kink press Eq(18) as a total derivative:

background field, but it also can be determined by noting that it

should cancel the remaining logarithmic divergence in the differ- m d

ence of the sums over zero point energfés, (dk/2m)| ¢(k,x)|? €cas= 5 gx [tanf(mx/Z)
(— wl2). Equating both expressions yields another formula perhaps

Etank?(mx/Z)— %H

valid for general reflectionless potentials, (21)
Relation 2 The first term gives the non-anomalous contribution, while
52 72 20N 2 the second yields that due to the anomaly.
22X 2m 2“’1 = — ¢K(XZ il 2) ) Equations(19), (21) give compact expressions for the lo-
3;2ym? - o JZ o dX i (X) = e () ] cal energy density, which certainly provide the correct total
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guantum energy of the bosonic kink. However, to obtain thebut of course no shift at this order in the total energy, be-
correct local Casimir energy density, one must start with artause the classical energy is stationary with respect to arbi-
expression for the energy density of each mode including @&ary small variations of the classical field about its equilib-

quadratic term in the gradient of the boson figlfh, 7)?,
whereas our formulas above, giving energigsmultiplying

rium form. Decomposing the Heisenberg fiedel(x,t) as
Drink(X) + d1(X) + 5(x,t), with the quantum fluctuation field

corresponding mode probability densities, implies instead thgpeying( )=0, and taking the expectation value of tike

expression coming from the field equati‘bn,—%naf(n.
Therefore we need to add to E49) the difference, a perfect
differential of a function which vanishes far from the kink

field equation{ — g?® + 920 — (3U?)')=0 gives

(and so does not change the computed mass correction for

the kink),
1 2/ 2
Aecadx)= Zax<77 (X)> (22

The propagator at equal times and positién$(x)) (exclud-

ing the zero mode which solves the homogeneous equatio

[7] can be obtained by integrating|?/2e» in Eq. (10) with
respect tadk/27r and addingg3/2wg . The divergent part in
(7?) corresponds to settingp(k,x)|? equal to its value at
|x|— < in thek integral; as the divergencexdindependent it
cancels in Eq(22). One thus obtains a finitebecause the
logarithmically divergent part has been subtragtexpecta-
tion value

(77(X))=(n*(X) = n*(x=20))
_foc dk 1

T ) .27 20

3 1 1 sinFF(mx2)

" 87 cos(mu2) | 443 cos(mx2)’
(23

1 2
[16(k0=1]+ 50— 650

and therefore,

3

1
—+
4o 2\/§>

1
cosl(mx/2)

d m
AeCaS=d—X tanh(mx/2) 7
m 1

1643 cosR(mx2)

. (24)

As observed in7], besides the Casimir energy density

1
2
2U

1 1 n 1
5(§U2) <772>_ 5Am2¢kink-

(26)

aiqsl—( ) b,

This ¢4 is just what is needed to satisfy the no-tadpole con-

Yition in the kink background. As mentioned above, the sin-

gularity in(%?(x)) is x independent and compensated by the
Am? term, yielding the quantity7%(x)), of Eq. (23).° Solv-
ing Eq. (26) by the ansafz¢;=Ax¢o(x) + Bdydo(x), and
using the fact thatp, is proportional tod, ¢y, one finds

I

m2

1 3

o

1

1= cosif(mx/2)

@l

2 (Mdy,+2N4d,)

Prink - (27)

Through one-loop orddias in the SUSY cag¢]), the effect

of the second term is to replace the renormalized maased
coupling N in ¢y with the bosonic pole masm=m(1
—/3(\/4m?)) given in[3], Eq. (7) and the adjusted cou-
pling A=(m?/m?)\. If we then rewrite the classical energy
in terms ofm and\, the classical mass is multiplied by a
factor 1— 3(\/4m?). As ¢, cannot shift the total mass, we
know even without explicit calculation that the classical en-
ergy density in terms of the barred quantities must be renor-
malized by a compensating factor-1/3(\/4m?). The first
term in Eq.(27) is sensitive only to bosonic fluctuations and
hence unchanged in the SUSY célsecause, as we shall see,

there is another consequence of the zero-point oscillationdl€ feérmionic source foré, includes no terms with

namely, a position-dependent shift in the classical back-
ground field. This in turn implies a further term in the local
energy density, given by

1 2 !
EU d1=0x( ¢1(9x¢kink)1
(25

Ae(qsl)(x) = Ox 19y Diink T

4Our boson fluctuation field is designated by in [7]. Note that,
as utilized just below, for a mode of frequenay, our normalized
mode function is given by),= V2w, 7, .

1/cosi(mx2)]; it contributes according to E@25). The to-
tal one-loop bosonic energy density becomes

5This procedure gives, as a finite, renormalized quantity, while
[7] use an unrenormalized,. Hence the “rescaling” part of their
¢, gives the shift to the pole mass from the unrenormalized mass,
but ours gives only the shift to the pole mass from the renormalized
mass corresponding to the vanishing-tadpole condition in the trivial
sector.

5The term withA is needed for the term in E¢23) proportional to
1/cos(mx2) and the term withB is needed for terms with
1/cosH(mx2).

105021-5



GOLDHABER, LITVINTSEV, AND VAN NIEUWENHUIZEN PHYSICAL REVIEW D 67, 105021 (2003

Relation 3

B0+ 9300+2 [ 5 |tk ?

£(x)=U?\,m, dyinge X, M, X)) | 1+ \/— )+GCas(X) - %d)é(X)

+ 1 2(x)+ _m
2% 8 cosB(mx/2)

m
+ AECa§X) + Z

i+ 1 )07 ( tanf(ﬁx/Z)
4m 23] "\ cos(mx/2)|
(28

A+AAdK
+2fo S (0P + g (kX% (32)

The factor3 in $¢3(x) comes from the mode expansion
The last term in Eq(28) comes from the first term in Eq. %+ (X.t)=Codo(X,t)+ - - - with {co,co}=1." This 3 is the
(27) The second term in qu?) renormalizes the classical analogue for Majorana fermions of the fractional fermion
contribution UZ, as seen in the first term in Eq28) The Charge discovered by Jackiw and Rebbi for Dirac fermions
effect of this renormalization is that the classical energy denk11]. The two terms in parentheses glve the and ¢
sity flattens out a bit. Besides the rescaling, all other contricontributions of the bound statetd, =33 and |yg_|?

butions are of the formy,[ ¢yin(X)/cosi(mx2)], with n  =m/8 cosi(mx2). We obtain
=0,2,4.
1 2 2 2 2 Adk A 2
SUSY KINK ENERGY DENSITY 2000+ ¥4 ()~ [ [1) + fo 27 9+ (AX)]
For the SUSY kink we choose the cutoffs in the trivial
sector in such a way that the bosonic and fermionic densities —|#_(A,x)|?) = T(I e (KX) 2+ - (k,x)]?).
in that sector are equal. To make the bosonic and fermionic
densities also equal in the topological sector, we use a cutoff (33

A for the bosons and +AA(x) for the fermions as in Eq.
(6). The fermion is described by a Majorana two-component . . o
spinonp:(if). As i, (k,x) is proportional tog(k,x) while Using the completeness relation, and taking the l&rienit

i , | (k) |2+ |¢_(k,x)|?>—1, one finds
P (k,x)=(i/w)(dx+mtanhfmx2)), (k,x) for solutions
proportional to expfiwt) according to the Dirac equation
[3], one obtains for the wave functions of the continuous AA(X) Jm

fermionic spectrum
a

dk k,x)|? k,x)|? 4
E(W*( X)2= [ (k,x)[%). (34)

1
¥4 (KX)= —=¢(Kk,Xx) (290  As we are interested only in theAL/term, the calculation is
\/E easy. From Eq(31) we find

p-(kx)= 4k 2itanh x| &, (30) AN m® 1
\/—Nm 2 ' 7 4mA cosR(mx/2)

(39

In the difference of the densities the constant term of course With this result in hand, we compute the difference in

cancels, giving energy densities for the SUSY kink
2 2 2
|k x) 2= (k) *= |- (kX)) "Obtained in[2] from Dirac quantization, this factor equivalently
_ k) 2=l (k.x)|2 can be deduced from the completeness relation for solutions of the
[+ (k)7 = (k )] single-particle  Dirac  equation ¢3(x)+2[| g |2+ | s |?
1 9 o2 1 +[(dki2m) (|, 2+ |0 |2—1)]=0, where |¢_(kx)|?=1/2
= - (—) (3)  —m? (8 cos(mx2)(w?— wd)). The relative factor of two between
2%\ cosH(mx/2) m/ cosi(mx/2) the first term and the later terms in the completeness relation fol-

lows from the fact that, if one sums over a complete set of solutions

of the Dirac equation, all nonzero frequencies lead to equal contri-
For the bosonic and fermionic densities to satisfy 8jone  butions from positive and from negative frequency, while the zero
requires mode contributes only once.
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1
€cas§X) ~ €cas (X) = 5 wa($5(X) ~ Yi5(X) Yig(X))

kL
2 [ koo

2 1 AA(X) 1A
—|_(k,x)| )Ew_ >
+AMgysy(X). (36)
The counterterm in the SUSY case,
AMauerX) m? 1 fAdk 1 -
N=—m———| ——,
sus 2 coslf(mx/2)Jo 27 w

is a factor 1/3 smaller, but still nonvanishing. Again, the

PHYSICAL REVIEW D57, 105021 (2003

(23), as well as include the shift for the SUSY caggx) in
the background field. We compute thig, again using the
second-order field equation fdp, which now has an addi-
tional contribution from fermions:

1 ”n
a§¢1—(§U2) ¢1=

1 1 n 1
Z(Euz) (n°)— EAm§¢kink}

1 "y 1 2
+ EU (¢¢>_§Amf¢kink , (41
with
Smi= 4>\fm dic 1
M= _2T 20
and

(i), = (35 + 2mtantmx/2) ) 7%(X)),

counterterm removes the logarithmic divergence in the inte-

gral, and with Eq(17) one finds

€Cas,sus¥X) = €(X) — €(X)

2\1 2 T
1—§ EwB(¢B(X)_¢B(X)¢B(X))

m? 1

87 cos(mx2)’ 8

where the last term, the contribution frodA, agrees with
the central charge density anomaly E8.38 in [7]. Integra-

foo mdk 6m? X2)/
_wﬁ[ m<tanimx/2)

w
(16(k2+m?/4)costt(mx/2))]

—(\3m/4) tanmx/2)/cosF(mx/2). (42

The last term comes from the bound state, and a term with
(k?+m?/4) in the numerator of the integrand has been can-
celed by the fermionic part of the mass counterterm. Again
using Eq.(17), we find that the fermionic contributions b,
are only proportional to 1/co$mx2), and not

1/cos(mx2), so that the net coefficient of the

tion overx yields the one-loop correction to the mass of the /., Rmy2) term is a factor 2/3 smaller than in the bosonic

SUSY kink

X d
X—‘oof_xdxd_x

@[tanh"(mx/Z) —tanimx/2)]

1 _ .
M(SJSY— lim 78

m

471_tanr(mx/Z)}

_1 1-1 m
—ng( ) pym

m

2w

(39

which of course is the accepted answer. Note that the no
anomalous contributions from the bosons and the fermion

do not cancel locally, but in the integral they dpwg(1
—1)=0. For explicit expressions later it is helpful to rewrite
the first part in the bracket of E439) as

€cas,sus¥NoN-anom

d m

=5 m[—tanr(m></2)/cost‘?(m></2)].

(40

As in the bosonic case we must add the missing term in-y_y, ),

the bosonic Casimir energy densityc,sgiven in Eqs(22),

n_

case. The final result fop, reads

I

¢1,SUSY:_2
m

1
cosH(mx/2)

75+

1
— ——(MJy+2N3y)

23

Note that in Eq.(43) the first term is the same as in the
bosonic caséas mentioned earligrwhile the second term is
smaller by a factor 2/3. This is the same result foun@i7ih
using a first order differential equation based on SUSY con-
siderations. lterating the SUSY relatiga,¢+U)=0, one
confirms that the second-order and first-order approaches are

Prink - (43

onsistent with each othBFor the SUSY energy density we
en find full agreement with the central charge density of
[7], after restoring a missing factor gf in the first line of
Eqg. (5.2 in that work, kindly pointed out to us by the au-
thors.

8The details are as follows. Frofw,¢+U)=0 we haved,ep,
+U" y+ (12U (92 + N 2(— Ap?IN) =0. Differentiating
with respect tax, usingd, di= —U, and eliminatingd, ¢, yields
an equation forg2¢,. That this is equivalent to Eq41) follows
from the identity (7(dy+U")np+((dy+U")p)n)=i(
which in turn is a consequence ofy_
= (il w) (dtanhx2)) ¢, and ., = nw.
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Relation 4 This is an exact result; all terms with bosonic commuta-
- - e tors cancel. The an_ticommutatorém(x)_,4,//,(_y)}_ and
EX)=U?(\g,Mg, Prink(Ns, Mg, X))| 1+ — {(y),_(x)} all vanish, and also the first line iti(y)
2\/§ms vanishes, while the second line would seem to give

+ €cas,sus¥X) T A€cad X)

m.[ 3 1 tanh(myx/2
+—S<—+ )ax( Nmyx/2)
4\4m 23 cosH(mgx/2)

Here we useme=m(1—X/2y3m?) and Ag=A(1—\/
J3m?). Thus the rescaling of the classical density involves a

— oo

= 1
- | dx5<x—y>[§<n<x>n(x>>U"¢'<x>

) L (44

+(n'(X) n(x))U’(x)

+ oo

shift 2/3 as big as for the bosonic case, whilgs sysyin- :f dxﬁ(x—y)iFW(x) n(X)HYU'(x)|, (48
cludes an anomaly 1/3 as big as in the bosonic case and a - x| 2
different finite-energy contribution, as explained above.
Meanwhile, the last two terms, from ec,s and from the ® 1
nonrescaling term inp,,, are the same as in the bosonic f dyg"(y)=§(n(x) n(X)HU’ (X)]% .. . (49
case’ o

CENTRAL CHARGE DENSITY This is the expression obtained [i]. Below we show that

o with appropriate caréi.e., not setting<=y too soon, there

We now compute the anomalous contribution to the denjs an extra term—the anomaly. The naive result in &§)

sity ¢(x). Before regularization one ha${(x)=3¢?  contains a free field propagator fgr because at= * the
+3¢" 2+ FU%+i12(p )+ ' )—iU Y, p_, and {(x) effects of the kink disappear, and, adding the counterterm to
=Ud.¢ (note tha 7] have the opposite sign convention for the central charge due to mass renormalization, all quantum
). Using the equal-time anticommutators of the fermioniccorrections to the central charge would seem to vanish. In the

fields ¢ (x) and ¢»_(x) and the definition approach of 7], on the other hand, the central charge con-
_ 0 tains a naive terng’ U and an explicit correction term which
je=(=(0p+U)y ¢, (45 s also a total derivative and proportional taVi7. Because

their » propagator contains an extra regulating factkf (

one obtains +M?)~ 1 the contribution in Eq(49) now cancels even af-
{Qs,j=(V)}=2H(y) =24(y), ter regularization, but because the correction term contains
_ L2 two extra derivative$to balance the factor 11?) it yields an
je=dpe+ (' EU) -, Qizj' j+dx, (46) extra contribution proportional td?/M?, which is the
- anomaly.
1 In our case we start from E7), but without extra terms
&(y)= f dx 5 (1 00,9 (N} = (- (0, - (Y)}) as in[7]. We keepxy in Eq. (47), giving
1. . 1 1 _ ” ’ 1 2
X Eqﬁ(x)qﬁ(y)—§¢’(x)¢’(y)+§U(x)U(y)) é(y)—f dx6(x—y)[U (X) Brank(Y) 7 (7°(X))
1
+%({wx),w+<y>}+{w_(x>,w_<y>}) + 5" (Y) n(0))U' () + (x=y) + Ap? term).
1 1 (50
x §¢'<x>U<y>+EU<x>¢'<y>”. (47)

We now show that the result is still a total derivative, but
instead of the total derivative in E¢49), rather a total de-
rivative with an extra term. The crucial point is that one

! 1
in their formulation. Also, they give the integral of the density from cannot 2 replace 5(X_y)<.77 (X)_77(y)> . .b),/ 2 9(x
—X to x, while we write the pieces of the quantum correction to the_y) d{n°(x)) because there '_S a Smgu'a”ty<“77, () 7(y))
density as local derivatives, so that our expression for the functio®S X tendsz to y. Setting S(x—y)[(7' (X)n(y))
being differentiated is half theirs for the integral. The specific terms ™ (1/2)dx{ 7(x) %) =0 would mean that all terms vanish as in
in their equation(5.21) are related to ours as follows: The first line [3]. However, the singularity which invalidates this equality
in Eq. (5.21) is simply the integral of what we call2. The first ~ Yields the anomaly
term in the second line is the anomaly. In the final bracket, the first

For comparison withi7] note that our coupling is equal to A2

term receives equal contributions frasp,sandA ec,. The remain- w W'()|*
ing piece receives equal contributions frafeq,s and from the f {(xX)dx= 7 , (51
nonrescaling part of,, the shift in the classical field. - T s

105021-8



LOCAL CASIMIR ENERGY FOR SOLITONS PHYSICAL REVIEW D57, 105021 (2003

where W’ (¢)=U. HenceM®=—71) in agreement with tuations is simply to conserve the total phase space available.
the invariance of the background und®r. (which corre- The work of Einsteir{13] and Debyg14] on crystal vibra-
sponds to the SUSY transformation with paramete)y. Let  tion contributions to heat capacity introduced the concept of

us see this explicitly. a local density of degrees of freedom, codifying a notion
The identity we need is already found in Boltzmann’s lectures on gas thdd®j. As
1 was true for their work, in a lattice approach the number of
_ , _ I YNy degrees of freedom per unit volume evidently does not
S(X X f(x)—f = (X f'(x), ) . .
(=Y {7’ ) ()= F(y)) 2 (x=yT00 change when interactions are introduced, and the local mode

(52 density should be equal to this number of degrees of free-
dom.

Also point splitting methods clarify the meaning of LMR.
Consider the bosonic local mode density regulated by point
splitting

wheref is any smooth function ok. The proof of this iden-
tity follows from (#(x)n(y))=—(1/27)In|x—y|+A(xy),
whereA is a smooth, symmetric function, therefore involv-
ing only nonnegative even powers of{y), as can be seen
from Egs.(7)—(9). The actual calculation of the anomaly is * y
now very simple. Expanding all contributions in termsxof p(k.x)= J'wdyqb*(k,x— E) ¢
—y, and usingd(x—y)(x—y)Au?=0 after regularization

of Au?, while 8(x—Yy)(X—Yy)dx7?*(x))=0 does not need wheref(y) is a function sharply peaked arouge-0, with
regularization becausg( »*(x)) is finite, we have from Eq. fdyf(y)=1. For largek, the JWKB approximation for

k,x+ %)f(y), (59

(52 o(k,X) is
[ conay= [ axaty o= sy 1600 = Blkx) =elre VI, 59
(53)  where
Here we used V(X)=U(p(x)U"(¢(x))+(U")?(¢(x))
U=N2(¢2= uIN), = (/N tank ux/2), —(UNX(|x|==)).

eéubstituting this expression inte(k,x) one finds, for the

andm= /2. Again we have the accepted result, and we Smlntegrand of Eq(54),

that point-splitting regularization yields the same extra ter
in the central charge as does higher-derivative regularization.

Thus we have shown in a simple way that the term

! x))U’(x) produces the anomaly if one does not set . ~ T .
iz)(/yzono( s),c>)on.( I)nF7] a more complica>tled but also more In the trivial SeCtOI’p(k_,X)Zf(k), wheret (k) IS the Fourle_r_
powerful regularization scheme was used to prove this. oufansform off(x), but in the kink sector one finds a modifi-
observation pinpoints the place where naive methods misse&tionp(k,x) = f(k—V(x)/2k). The energy density therefore
the anomaly. As discussed extensively in the previous se@ontains a termSe(x)= [ dp(k,x) 3 w(dk/27), and expand-
tions, one must add to the anomalous part the various Colag F we find®
tributions to the non-anomalous part of the central charge
density. This works exactly as {7], and of course is com-
pletely unaffected by choice of regularization method.

In view of our emphasis on LMR for energy density, it is
reasonable to ask why we do not attempt to apply it to cenfFor the bosonic kink, this is the anomaly in E@6), as one
tral charge density. Looking at E¢50), one sees that the may readily check by direct substitution.
expression to be regulated, the bilocal correlaton(®) and From the JWKB form for the wave function at high ener-
7' (y), which clearly is not determined by insisting that the gies it follows that the quantitydA(x), and hence the
regulated sum Ifwy(x) 7(x)) is unchanged between vacuum anomaly, depends anonly through the potential felt by the
and kink backgroundsthe entire content of the LMR pre- fluctuations. This in turn implies that the local anomaly in
scription. Thus LMR may be applied as a condition on the the energy density is determined at eaddy the value of the
expressions in the central charge density, but is not sufficientlassical background field(x), as stated for the central

X+yl

eikyefifxfylg[V(x’)lzk]dx’f(y)zei(k7V(x)/2k)yf(y). (56)

(2 dkVX) @ g
56(X)——J7xzWgﬁf(k)——V(X)/B’ﬂ. (57)

to regulate them. charge density of the supersymmetric casg7ih
While the above discussion shows that the LMR result for
FOUNDATIONS AND CONCLUSIONS the bosonic kink follows from point-splitting, it is possible to

Finally we comment on the physical basis for LMR. In
Planck’s original formulation of quantum physi¢$2], the  1°The narrowerf(x), the wider the range i contributing to Eq.
number of degrees of freedom is defined by the availables7), so that in the limit the contribution of any finite range around
volume in phase space. To fix the total number of modek=0 becomes negligible. This justifies our use of the JWKB ap-
while introducing a background potential affecting the fluc- proximation, which is valid fok?s>m?,V.
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make a much stronger statement, that point-splitting impliegharge density which should be invariant under supersymme-
LMR for a scalar field in an arbitrary background potential intry. That requirement automatically imposes the constraint
one space dimension. The same JWKB approximation useepresented by LMR.

to determine the shift in effective wave number due to the While all of the above are appealing arguments, the ac-
potential V can be used also to compute the modulation ofcepted criterion for determining the validity of a regulation
the mode density versus enerdgr equivalently, versus procedure is to insert regulators into the action in such a way
asymptotic wave numbek) in the region of nonzero poten- that all relevant symmetries are satisfied at the regulator
tial, compared to the asymptotic density far away. This is devel, and then to deduce consequences for specific quanti-
standard calculation, obtaining the wave function and hencées. Thus in the present case a definitive check on the valid-
the density to one higher order inkithan required for the ity of LMR would be to use, for example, higher-derivative
shift in effective wave number. There is a simple physicalregulation(which obeys supersymmeiryand check that this
mnemonic for the result of the calculation. Treating this sys-scheme implies LMR. This important analysis remains to be
tem as a Schdinger problem with “Hamiltonian”»?, the  done. As an alternative, one might be able to prove that
modulating factor is simply the ratio of the asymptotic clas-point-splitting preserves SUSY in models with solitons, and

sical velocity to the local velocity: then extend our deduction of LMR from point-splitting in the
bosonic case to the SUSY case. This is something to which
p(X)/ p()=vlv(x)=kIk?=V(x), (58  we intend to return in the future.

To summarize, LMR permits one to isolate and then com-

pute directly the anomalous contribution to the energy den-

Sol 0~V (x)/2K2. 59 §|ty of the bosonic or SUS_Y kink. .Expre.ssed most. conserva-
plp=V(X) ©9 tively, LMR at the least gives a simple interpretation of the

Integrating the above expression from a nominal sharp cutofinomaly as the shift in energy density required to equalize
A to =, we see that to have the same integrated mode numnode densities. In fact as we have just seen, at least for Bose
ber density above the cutoff in the presence of a potentidi€lds in one space dimension with arbitrary scalar back-

V(x) as in a trivial background, we must shift the cutoff by ground potential, LMR follows from point-splitting regular-
ization of the energy density. In addition we found remark-

SA=V(X)I2A, (60) able phase space factorization identities for the non-
anomalous contributions to the energy density, which might
exactly the amount implied by point-splitting as found in theno|g for all reflectionless potentials. These non-anomalous
discussion leading to Eq57) above. contributions are independent of the regularization method
The equality between the wave number stilk(x) and  (though sensitive to renormalization conditions because they
the integral over the density shift is reminiscent of an unsubomy are convergent after subtraction of the mass counter-
tracte_d di_spersio_n rela_tion. Possibly the impleme_ntation oferm). Elsewherd 16] we compute the divergent energy den-
LMR in higher dimensions would require the equivalent of sjty at the boundary of the kink with supersymmetric bound-
subtracted dispersion relations to compensate for the increagry conditions, and obtain an analytic expression for the
ing divergence of energy density with cutoff. anomaly near the boundary, which in the limit when the
We have seen that point-splitting, a regularization schemgegulator energy goes to infinity becomes a delta-function
which is local but not necessarily useful beyond one-loopcontripution just at the boundary, in agreement with expec-
order, gives the same anomaly in the central charge found igytions of{7]. It would be interesting to explore local mode
[7] with higher-derivative regularization, and also implies regylarization further, comparing with complete regulariza-
LMR for the bosonic energy density with arbitrary back- tion schemes and studying solitons in higher dimensions
ground potential. As explained above, the converse is nNof;ch as the magnetic monopole, and also explore phase

true: LMR does not contain the full content of point-splitting space factorization, seeking a theoretical basis as well as
regularization. Nevertheless, it is appealing that it captures iRqgjtional examples.

one line the above sequence of equations required to obtain

the anomaly frpm pomt—sphttmg regulquzatpn. Thus, as ACKNOWLEDGMENTS
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