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Nonequilibrium evolution of ®* theory in 1+1 dimensions
in the two-particle point-irreducible formalism

Jirgen Baacke and Andreas Heinén
Institut fur Physik, Universita Dortmund, D-44221 Dortmund, Germany
(Received 31 December 2002; published 27 May 2003

We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for
a ®* model in 1+1 dimensions with a symmetric and a double well potential. We use the two-particle
point-irreducible(2PP) formalism and go beyond the Hartree approximation by including the sunset term. In
addition to the mean field(t) =(®) the 2PPI formalism uses as a variational parameter a time dependent
massM 2(t) which contains all local insertions into the Green’s function. We compare our results to those
obtained in the Hartree approximation. In the symmefrfttheory we observe that the mean field shows a
stronger dissipation than the one found in the Hartree approximation. The dissipation is roughly exponential in
an intermediate time region. In the theory with spontaneous symmetry breaking, i.e., with a double well
potential, the field amplitude tends to zero, i.e., to the symmetric configuration. This is expected on general
grounds: in (} 1)-dimensional quantum field theory there is no spontaneous symmetry breaking- fr
and so there should be none at finite energy dertsitgrocanonical ensembleeither. Within the time range
of our simulations the momentum spectra do not thermalize and display parametric resonance bands.
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[. INTRODUCTION is complex, features still to be investigated in the systematic
1/N motivated approximations.

There has recently been considerable activity in investi- An approach for including nonleading orders in a self-
gating the nonequilibrium evolution of quantum field theory consistent resummation scheme was proposed some time ago
beyond the larg&d approximation. In particular, there has by Verschelde and collaboratof$4,15], the so-called two-
been formulated1,2] a systematic approadhtwo-particle- particle point-irreducibl€2PP) expansion. As in the 2PI or
irreducible (2Pl) next leading ordefNLO)] in which all ~ CJT formalism the mean field and the internal Green'’s func-
next-to-leading order contributions in theNLexpansion are tions are determined self-consistently. As in the 2P| formal-
included, using the Cornwall-Jackiw-TomboulBJT) or 2Pl ism, the equations of motion follow from an effective action,
formalism [3] generalized to nonequilibrium evolution in which here is a functional of the mean fietg=(®) and the
Ref. [4], and the closed time pattCTP) or Schwinger- effective mass\. In contrast to the 2PI approach, only local
Keldysh [5] formalism. A similar approximation including insertions into the Green's function are resummed, so the
some but not all contributions of next-to-next-to-leading or-Green’s function is, in all orders, a functional of the local
der is the bare vertex approximati¢BVA) [6]. Numerical mass termM that in general will depend orR=(t,X). In
simulations have been performed mostly ir-1 dimen-  particular, this Green’s function is different from the physical
sions, for the classical or quantubf theory with a symmet-  Green’s function. As far as the resummation is concerned the
ric [1,7-10 and with a double wel[11] potential. A first  approach is less powerful: one has to include more diagrams
simulation in anO(N) model forN+#+1 in 3+1 dimensions if one wants to reach the same order in a loop & &xpan-
has just appeardd 2], for a symmetric potential. The analy- sion as in the 2Pl expansion. The fact that the propagators
sis of models withN+1 and with spontaneous symmetry have a simpler structure may be a disadvantage as because of
breaking, i.e., a Mexican hat potential, should be very importhis structure the approximation is less flexible than the 2PI
tant for understanding the role of the Goldstone modes andxpansion. On the other hand, the calculations are techni-
their influence on the phase structure of the theory in a cereally less involved; in particular, the formalism does not re-
tain approximation. quire ladder resummations which complicate the renormal-

A more modest step beyond leading order laMjdas ization of the 2Pl approachl6]. In one-loop order the
been taken in Ref[13], where the Hartree approximation approach is equivalent to the Hartree approximation. Recent
was used in arO(N) model in 3+1 dimensions. This ap- progress in the 2PPI formalism includes the demonstration of
proach includes some terms of nonleading order, but not allenormalizability[17,18 and some finite-temperature two-
of them. Our investigation made evident the role of parametioop calculations in 3-1 dimensions. An interesting result
ric resonance in the system of “sigma” and “pion” modes, was that forN=1 [19] and forN# 1 [20] the phase transi-
and the role of the Goldstone modes in stabilizing the evotion between the spontaneously broken and symmetric
lution in the regions where the equilibrium effective potential phases becomes second order in the two-loop approximation,

while it is first order in the Hartree approximation. The re-

sults for the 2PPI expansion have been compared to exact
*Electronic address: baacke@physik.uni-dortmund.de results in[21] for the anharmonic oscillator; even more re-
"Electronic address: andreas.heinen@uni-dortmund.de cently[22], the two-loop approximation has been compared,
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in 1+1 dimensions, with exact results of the Gross-Neveu /

model. s '
In this paper we present the formulation and some nu-

merical results for the nonequilibrium evolution of the mean

field and the self-consistent mass in the 2PPI scheme, ap-

plied to ®* theory in 1+1 dimensions. We go beyond the

one-loop (Hartreg approximation by including the sunset SN

graph, which represents the full two-loop contribution in this  (a) (b)

formalism. We explicitly formulate a conserved energy func-

tional which is used to monitor the numerical accuracy. As FIG. 1. Examples for two-particle point-reducib2PPR and

this is the first investigation of the 2PPI formalism at two -irreducible(2PP) diagramsi(a) a diagram that is 2PR and 2PPR;

loops out of equilibrium we do not attempt a detailed Study’(b) a diagram that is 2PR but 2PPI. Solid lines, internal propagators;

rather, we aim at presenting the main new features of thigashed lines, external fields.

approach, as well as a comparison to the one-loop Hartree

approximation and the other approack2Bl NLO and BVA ) , N, A

mentioned above. We consider both the case of the symmet- MEX)=m+ 5 () + 5 A(X). 2.3

ric ®* potential and the case of the double well potential

which displays spontaneous symmetry breaking on the classg in contrast to the 2PI formalism this Green’s function is

sical as well as on the one-loop level. not a variational object, it is a functional @# 2(x). It is not
The plan of the paper is as follows. In Sec. Il we formu- the physical Green’s function.

late the model and present the 2PPI formalism as applied to The 2Pp| formalism in its original form is based on the

a system out of equilibrium. In Sec. lll we specify the two- gc¢tion

loop approximation by giving the explicit expressions for the

basic graphs, the equations of motion, and the conserved \

energy and by discussing the initial conditions and renormal-  I'[ ¢,A]=Sgask ¢1+ TP ¢, M 2]+ §j d?xA%(x).

ization. In Sec. IV we give details of the numerical imple- 2.4

mentation. The numerical results are presented and discussed '

in Sec. V. We end with conclusions and an outlook in SecHererzpp[(f),Mz] is the sum of all 2PPI graphs; these are

V1. The paper is completed by wo Appendixes. defined as graphs that do not decay into two parts if two lines
joining at a pointare cut. In the 2Pl formalism one includes
Il. FORMULATION OF THE MODEL in the analogoud ™ all graphs that do not decay into two
; 4 - - parts ifanytwo lines are cut. In order to visualize the differ-
Lagygn;%nzgjf;it?@ quantum field theory defined by the ence we show examples of 2PR and 2PPR graphs in Fig. 1.
It should be emphasized that in the 2PPI formalism the lines
1 1 A in the graphs are Green'’s functions with the variational mass
L= E&quﬂqb— §m2¢2_ﬂ¢4' (2.1)  term M2(x) as defined via Eq(2.2), while in the 2PI for-
malism the internal lines refer to the variational Green’s
functions induced by théilocal sources. When comparing

If 2m2>0 we refer to it as the symmetric theory, and with y,¢ et of irreducible graphs in both formalisms one has to
m~<0 we refer to it as the theory with spontaneous symmesayq into account this difference in the meaning of the inter-
try breaking. These terms relate to the classical theory and dQ, |ines.
not imply the occurrence of spontaneous symmetry breaking 1,4 insertionA (x) is given by
in the quantum field theory.

The 2PPI formalism proposed by Verschelde and Coppens PP 2
[14,15 is based on an effective action which is formulated in A(x)=— 25F L4, M?] _
terms of a mean fields and a local insertior. It is the SM?(X)

Legendre transformation of a generating functional with a
sourcel(x) for the field(x) and anothetocal sourceK(x)  As we have stated before it is simpler to formulate the action
for ¢(x). Here lies the difference from the well-known CJT in terms of¢p and M 2. We solve Eq(2.3) with respect taA

formalism, where one introduces a bilocal soukcéx,x’)  and insert this into Eq2.4). Using the explicit form 0B ,es
for a Green's functionG(x,x’). Graphically, the 2PPI we obtain
scheme resums all local insertions into the Green’s function

(2.9

which in all orders remains a generalized free particle 1 1
Green’s function, or a Green’s function in an external field, F[¢,M2]=f d?x 5 9up(X)“P(X) = M 2(x) ()
ie.,
A 4 L 2 2 272
G (x,x)=i[O0+MAx)]8(x—x"), (2.2) + 59 0| o [ dXIME() —m7]
where +I2PPLp, M 2] (2.6)
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A FIG. 3. Bubble and sunset diagrams. We display the leading
- /" Ret diagrams in the 2PPI actioR*""* (a) the bubble diagram(b) the
Cc_ sunset diagram. Solid lines, internal propagators; dashed lines, ex-
ternal fieldse.

2 2 2 A 2 A
mg=M*<(0)=m +§¢ (0)+ EA(O)' (2.12
FIG. 2. The closed time path in the compleglane.

This means thatf(0,0)=1 and f(0,p)= —lw, with w,

One easily checks that the equations of motion obtained by VP +m0 This defines an initial Fock space. We continue

form In the CTP formalisnj5] one uses Green s functions with
different time orderings. The Green'’s functi@{t,t’;p) as
ST2PPL b, M ] defined above is identical to the Green'’s funct®n(t,t’;p)
0=0¢+ M3(x)p(x)— §¢3(X) T s with normal time ordering; the anti-time-ordered Green’s

(2.7 function G(t,t";p) is given by G(t,t';p)=G-(t'.t;p).
' In the explicit formulas one can use this identity in order to
express all relevant Green’s functions Gyt,t’,p).

2 2 A 2 5F2PP[¢1M 2]
M) =2+ 5 20—\ 2 (2.8)
2 OM “(X) IIl. ONE-LOOP AND TWO-LOOP CONTRIBUTIONS
Since the last equation is identical to &g.3), we will refer Having established the general formalism we can now
to it as the gap equation. discuss the leading terms in a loop expansion. The two rel-

Here we will consider states of the system that are spaevant graphs are depicted in Figgéa)3and 3b). The leading
tially homogeneous; so in EqR.7) and(2.8) the arguments  bubble diagram is the “log det” contribution. It leads to the
x=(t,x) should be replaced simply yFurthermore, in Eq. tadpole insertion into the Green’s function. The next diagram
(2.6) the space integration simply gives a volurtiength  represents the only contribution on the two-loop level.
factor, and in the nonequilibrium formalism the time integra-We will discuss these two contributions separately in the
tion should be replaced by the closed time path displayed ifollowing.

Fig. 2.

The equation for the Green’s function separates into space A. The bubble diagram

and time dependence. Using the homogeneity of the state in

space the Green’s function can be written as The bubble diagram defines the leading Hartree contribu-

tion. It is independent of and so does not yield an explicit
= dp , contribution to the equation of motion fap. Of course it
G(t,t’;x,x’)=f Z—e'p("‘x )G(t,t";p). (2.9  enters, indirectly, via its contribution t&1 2. Its contribution
S to I'PP{ ¢, M ?) is given by

As the equation is local in time, the Green’s function ) oo PP
G(t,t’;p) can be expressed in terms of mode functions g, M7 ]= ETrIn[G [M=]]. CHY

) 1 .o , Its functional derivative with respect t&1 2 is given by
G(tt';p)= 5 —[F(LP)F*(t',p)O(t—t)
P

’ * r__ R _ t
where w, is defined below, and where the mode functions 1 )
f(t,p) satisfy =—§f 2m2a, [f(t,p)|*. (3.2
f(t,p)+[p?+ M?2(t)]f(t,p)=0. (2.11)  The energy density can be derivgd3] by considering

a variation of the action undert—t+ 7(t), which
Here we choose the initial conditions for the mode functionsinducessg(t) = ¢(t) 7(t), Sp(t) = d(t) 7(t) + H(t) 7(t), and
att=0 as for wave functions of free particles with mass M ?(t)= r(t)d M ?(t)/dt. The one-loop action depends
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only on M 2(t). One then finds that the contribution of the
bubble graph to the energy is defined by the relation

dE®M(t) T M[¢, M?] dM?

dt  sm¥y dt (a) (b)
ZE @G(t t )dMZ 3.3 FIG. 4. Two-loop graphs in the equations of motida) The
2 P dt ) amputated sunset diagram that appears in the equation of motion

(2.7) for the mean fieldp; (b) the tadpole diagram with fish inser-

tion that contributes to the gap equati¢h8); in both diagrams the

This equation can be integrated explicitly; indeed, onesgjig dots indicate the external time, the time variables of the other
checks easily, using the mode equati@rll), that the naive  yertices appear in the internal integrations. Solid lines, internal

quantum energy defined by propagators; dashed lines, external fiefels
1 dp ST p,M?]
E(l)tz—f f(t,p)|2+[p?+ M2(1)]|f(t,p)|? _—
O=5| 355 {I( P)I*+Lp O]t SMED
(3.9
1
: : . - . . =— AP
is consistent with the defining equatidB.3). This is of 2
course well known. If only this one-loop contribution is in- N2 [t v
cluded, the approximation is referred to as the Hartree ap- = _f dt’qﬁ(t’)j dt” (")
proximation. 2 Jo 0
3 dp, 3
B. The sunset diagram X 451;[1 ( oy )2775( Z )
The unique two-loop contribution t62°"'is the sunset
diagram which in the CTP formalism is explicitly given by X[G(t,t";p3) — G(t',t;p3)]
r@re,m? X[G(L1";p1) G(L ;o) (L, P3)
)\ _ "ot "ogr. "ot
-z dxde dt(p(t)f At G3(Lt;x,X) (1), GLEEP) G tip2) BT tipg) .
(3.9

(3.5

This graph, which contributes to the gap equation, is de-
. . picted in Fig. 4b). It is a tadpole diagram with fish insertion.
where thet andt’ integrations are over a CTP contour and  considering again the variatidn-t+ 7(t), one finds the

whereGp is the path-ordered Green function. contribution of the sunset term to the energy to be defined by
The functional derivative with respect t(t) is given by

dE@(t) . LM
D 2 —gr —¢SH+3 AP (39
ST, M?]
————=-38(1) (3.6
op(1) As far as we see this expression cannot be integrated explic-
itly; but the relation can be integrated numerically to obtain
with E):
3 E(Z)(t)—f {qﬁ(t )S(t")+ MA )A(Z)( t')|.
S(t)——|—f dt’ $(t") fl'[ ( )2775(2 p() 2 g
=t (3.10
3 3
x| T ct,t”:p)— 11 Gt ,t;po) |. (3.7) C. Equations of motion and energy
=1 =1 )

Having determined the functional derivatives of the action
with respect tog(t) and M?(t), we can explicitly write
This contribution to the equation of motion faf(t), an  down the equations of motion in the two-loop approxima-
amputated sunset diagram, is represented graphically in Figion:

4(a).
byThe functional derivative with respect 1 (t) is given 0= a(t) + M2(t) () — §¢>3(t)+8(t), (3.11)
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M2(t)=m’+ 5[¢2<t)+A‘1’(t)+A<2><t>] (3.12 2 24 sm2t ~| 42 (1)
We define the “classical” energy as the zero-loop expression 1 (2 A
+-—{——y+In +A®(t)].
47| € m2
EO() =2 520+ M) $(0) 5 (1) i
2 2 12 (3.17
1 .
_ E[M Z(t)_m2]2. (313) ChOOS|ng
. L , N2 4aru?
We have defined the one-loop and two-loop contributions in ome=— e v+In > () (3.18
Egs.(3.4) and(3.10. One can check, using the equations of m

motion, that the total ener
o the finite gap equation takes the form

E=E@+EM+E®? (3.149 N

is conserved MP(t)=m?+ smi,+ E[d’z(t) +ARD +AP(1)]

(3.19
D. Renormalization and initial conditions with
There is a wide choice of initial conditions for the system.

So one may choose an initial mean fied0) and one may N m?

modify the Green'’s function by including contributions from b‘mﬁnzs—ln—z. (3.20

the kernel ofG~%(x,x’). In the one-loop approximation the ™ my

latter possibility is equivalent to choosing initial ensembles

for which the modes(t,p) are populated, or to Bogoliubov The initial conditions and renormalization are equivalent to

rotations of the initial Fock space. In the two-loop approxi-those in the one-loop approximation, which facilitates a com-

mation this simple particle picture is no longer appropriate. parison between the two-loop 2PPI and the Hartree approxi-
However, the choice of initial conditions is not entirely mation.

arbitrary because of initial singularitig®4—26. Starting

with some nonzero value @$(0) and withmg, a solution of IV. NUMERICAL IMPLEMENTATION

the gap equation, no initial time singularities are encoun-

tered. So such a choice is a physically acceptable one. In In the 2PPI approximation the Green’s function factorizes

order to solve the gap equationtat 0 we have to know the and so one can work with mode functions. This considerably

contributionsA®M(0) and A®(0). A® has already been facilitates the numerical computation of the “memory” inte-

defined such that it vanishestat 0; by this choice we erase grals introduced by the sunset graph. In particular, one has to

the memory of the pasﬁ(l) is given by an integral over the Store only functions of one time argument, of course still for

fluctuations, so it does not vanish. Furthermore, it is diver2ll times and all momenta. The storage requirements grow
gent and so we have to discuss renormalization. only linearly with time, so the evolution can be followed for

In ®* theory in 1+ 1 dimensions there is only one primi- relatively long times. Furthermore, the differential equations

tive divergence, that of the tadpole graph. Renormalizatiorre ordinary differential equations that can be solved pre-
reduces, therefore, to making a shift in the tadpole ternfisely using a Runge-Kutta algorithm. This can be important
which can be absorbed by a shift in the mass. Using dimenf one has to trace parametric resonance phenomena. Of

sional regularization we rewrite the tadpole contributidd) ~ course, if the approximation itself is poor these numerical
[see Eq(3.2)] as advantages are useless. Still, the possibility of doing the cal-

culations with good precision allows one to study the quality
of the approximation reliably, including its possible short-

} (3.19  comings.
The time integration was done in steps of
At=0.001-0.005. The Wronskians of the mode functions

41 p?

mg

1 (2
()= AW (1) +—| =
A®t) Afln(t)+4ﬂ_{e y+In

. . . 1 .
with the finite part ofA™") defined as were constant with a relative precision of £0 For the mo-
q mentum cutoff, which is a cutoff of a convergent integral, we
p have chose =20. As one can see from the momentum
Al =f f(t,p)[2—1]. 31 a >Pma= 2 .
fn (V) 2772wp[| p)| ] (3.19 spectra, this is a rather generous choice. It should be men-

tioned that momentum conservation leads to momenta that

This is the expression used in the numerical computation. can be beyond the cutoff. This is a problem that can hardly
Including a mass counterterm the gap equation now takelse avoided, and a relatively large momentum range should
the form make such “losses” tolerable. A more serious problem is the
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FIG. 5. Time evolution for the symmetrid* potential. Parameterm?=1 (symmetric potentia) A\=6, ¢(0)=1.2; (a) evolution of the
mean field;(b) evolution of the effective mas$1 2; (c) evolution of the sunset contribution to the equation of motiompfEg. (2.7); (d)
evolution of the energy; irfa)—(c) the solid lines relate to the two-loop 2PPI approximation, the dashed lines to the one-loop or Hartree
approximation; in(d) the dashed line is the classical enet§yl), and the dotted line is the quantum energy.

momentum grid. We observe parametric resonadrare] this ~ The initial configuration was, in all cases, a mean field
leads to amplitudes that vary strongly in timed momen- different from its classical expectation value, and a quantum
tum In the typical largeN studies this fact has led various ensemble corresponding to the ground state of a Fock space
groups to choose much finer grids with several thousand mceharacterized by an initial masga,=.M(0). We have ob-
menta. This is not possible here; we think that the essentiahined results for the time evolution of the mean fidit),
features of the low momentum region with parametric resofor the self-consistent mas$t ?(t), and for the energy. The
nance and/or exponential growth subsist with less refinedelative importance of the two-loop contributions can be seen
grids. This concerns in particular the self-stabilization of thein their contributions toM 2. In all cases we have compared
system in the classically unstable regions. We have chosehe evolution with the one obtained in the Hartree approxi-
Ap=0.05, i.e., a grid of 400 equidistant momenta. In prin-mation.
ciple such a grid can lea®7] to “lattice artifacts,” corre-

sponding here to a lattice size=27/Ap=407x in inverse

o, .
mass units. Indeed, we do not observe any phenomena that A. Resullts for the symmetric®” potential

suggest such artifacts. The choiceAgb is also discussed in In Figs. 5 and 6 we display our numerical results for the
Appendix B. time evolution of the mean fielgFigs. 5a) and Ga)], of the
dynamical mass\ ?(t) [Figs. 5b) and &b)], of the sunset
V. DISCUSSION OF THE RESULTS contribution S(t) in the classical equation of motiof2.7)

) ) [Figs. 5c) and 6c¢)], and of the classical and quantum parts
We have performed several simulations for the case of @t the energy(3.14 [Figs. 5d) and &d)]. In the last dia-

. 4 . H - .
symmetric @ potential and for a double well potential, grams we define the classical energy as the standard expres-
which classically leads to spontaneous symmetry breakingjon

1. 1 A
We here use the term parametric resonance in a colloquial way, Ed:§¢2+ E(mz_" 5mf2in) ¢2+ﬂ¢4' 5.9
not in the strict sense of a solution of the Mathieu or Lag@a-
tions[13,28—-30Q. Obviously(see Fig. 7 the oscillations of the mass
term lead, in spite of variations in amplitude, to a resonancelikdndeed, the repartition between classical and quantum energy
enhancement that closely resembles the one found for true paramé$- to some extent arbitrary in a self-consistent framework
ric resonance. where, e.g. M ? contains classical as well as quantum parts.
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"2 loop 2ppi "2 loop 2ppi ——
Hartree ---------- 3.5 + Hartree ----------- 4

$ =
-1
1.5 —_—
0 5 10 15 20 25 30 35 40 45 50
(a) t (b) |
0.6 R e — 0.25
0.4t 1 02}
02t 1 0.15
s 0 g o1t
02 f 1 0.05 |
0.4 ot
06— 005 b L
0 5 10 15 20 25 30 35 40 45 50 0O 5 10 15 20 25 30 35 40 45 50
(C) t (d) t

FIG. 6. Same as Fig. 5 fap(0)=0.6.

In Figs. 5a) and 8b) and Ga) and Gb) we also display the
time evolution in the one-loop or Hartree approximation.

We observe the following characteristic features. After an
initial period of time in which the field amplitude stays
roughly constant and close to the Hartree time evolution a
period of effective dissipation sets in. For small initial am-
plitudes evidently the dissipative phase ends and the mean
field reaches a roughly constant amplitude of oscillation
again. For large initial amplitudes such a “shut off” is less
evident. A closer investigation shows that initially the quan-
tum modes build up until the sunset diagram becomes impor-
tant. From then on the Hartree and two-loop evolutions differ
substantially. The increase of the sunset diagram triggers dis-
sipation, until the sunset diagram again becomes small due to
the decrease of the external fields. Once the sunset diagram
has lost its importance the amplitude of oscillation of the (a)
classical field becomes roughly constant again. This is seen
in particular in Fig. 6a), where, due to a relatively small
initial amplitude, the quantum modes and therefore the sun-
set diagram are less important than for large initial ampli-
tudes(or energy densitigsas, e.g., in Fig. &). We have not
followed the evolution at really large times. So we cannot
decide between a constant and a slowly decreasing amplitude
as found, e.g., in the largd-case[31].

The total energy, displayed in Figsd® and Gd), is con-
stant as it should. Numerically this is the case within five
significant digits or better; hef&(®) was obtained by Runge-
Kutta integration of Eq(3.9). (b)

We also present, in Fig. 7, typical momentum spectra. We
have chosen the simulation wit$y(0)=1.2 and show the FIG. 7. Momentum spectrum at tinte= 10 andt=>50 for the
spectra for an early time=10 and at the end of the simula- parameter set of Fig. 5.

"2 loop 2ppi, t=10 ——
Hartree, t=10Q ---rver

(RLpI-1)26

"2 loop 2ppi, t=50 ——
Hartree, t=50 -~

(RLpE-12w
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FIG. 8. Time evolution for the double well potential. Parameters= —1/6, A=1, ¢(0)=1.5; other specifications as in Fig. 5.

tion. Along with the results for the two-loop approximation >/2. The first of our initial values is above this critical
we display those for the Hartree approximation. Obviouslyyalue, the second one is slightly below it. In the Hartree
the spectrum evolves more strongly for the two-loop ap-approximation the system evolves as expected from this clas-
proximation. At late times it shows the typical features of asjcal consideration. In the two-loop 2PPI approximation the
parametric resonance bafitB,28—3Q. Above this band the = system evolves toward the symmetric phase where the sys-
spectra drop to small values and decrease to zero. It shouldy oscillates arounés=0 in the later stages of evolution.

be evident that our momentum cutoff pf,,=20 will be  he yransition between a motion in the region of the classical
sufficiently high even for the multiple integrals. On the Otherminimum and$=0 is accompanied by an increase of the

hand, the numerical integration cannot take into account thg, oo contripution and of the mass2. The transition hap-
finer details of the spectra, in particular at later times. O

: i avdens early forp(0)=1.4. In this case we are just below the
course to some extent these details are washed out if av rFiti [ value: on that the transition toware0 hap-
aged over time. Still, to some extent the finer details of theT!tical value, one sees that the transition to .aSr 0 hap

ens at a time where the sunset contribution is still small and

time evolution of¢(t) show some dependence on the choiceP A ) . .
of Ap. However, neither here nor in the case of the doubldVhereM ~ only slightly deviates from its Hartree value. For
well potential are the qualitative features affected by thes¢’(0)=1.2 we are deeply in the well. Here it takes a long
details. time before the evolution towargp=0 sets in. If we start
We have restricted our presentation to one single couplind/ith values¢(0) even nearer to the classical minimugn
parametei =6. We have performed simulations for smaller =1 the transition happens at even later times and we expect
values of\ as well; for such values of the time evolution the discretization of the momentum spectrum to affect our
is stretched; the dissipation sets in later and extends overr&sults so as to make them unreliable.
larger span of time. For=1 the dispersive phase extends to  In Fig. 11 we display momentum spectra fdi(t,p)|?
typically t=300. The general, qualitative, characteristics of—1 for the simulation with¢(0)=1.4 att=20 and att
the time evolution are similar. =50, along with the spectra obtained in the Hartree approxi-
mation. For the two-loop simulation the spectrunat20 is
characterized by a strong peak at low momentum, which
apparently is due to a passing 82 to slightly negative
The numerical simulations for the double well potential values. Att=50 the effective mass of the modes is positive,
are presented in Figs. 8, 9, and 10. We take the coupling the spectrum shows a characteristic band as typical for para-
=1 andm?=—1/6, so that the classical minimum of the metric resonance.
double well potential is ah=v =1. We consider initial val- In all simulations the Hartree approximation displays a
ues¢(0) equal to 1.5, 1.4, and 1.2. Classically, the systenrather clean periodicity which signals a strong coherence be-
can cross the barrier between the two minima #(0)  tween the evolutions of the classical field and of the quantum

B. Results for the double well potential
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FIG. 9. Same as Fig. 8 fap(0)=1.4.

modes. This effect is much stronger than i B dimen-  Cooperet al. [11], with somewhat different initial condi-
sions, in the Hartregl3] or largeN [30,32 approximation. tions. These authors find a transition toward a symmetric

The nonequil

ibrium evolution ob* quantum field theory phase in the 2PI formalism extended to next-to-leading order

with a double well potential has been studied recently byin 1/N (2PI NLO), while in the bare vertex approximation

15
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FIG. 10. Same as Fig. 8 fap(0)=1.2.
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"2 loop 2ppi, t=20 ——
Hartree, t=2Q —--—----- |

(fepE-1)20

p -

"2 loop 2ppi, t=50 ——
Hartree, t=50 —-——— 4 FIG. 13. A generic 1PI but 2PR graph, which is hidden in the
4 resummation via the full Schwinger-Dyson equati@#) for the
self-energy® (3)(t,t"; p). Thin solid lines denote the free propagator
while dashed lines denote the classical figld The solid dots in-
dicate the external timesandt’.

GRLpY-1)/26

the ones obtained in the Hartree approximation.
We summarize our results as follows.
: In the symmetricd* theory we observe that the mean
4 field shows a stronger dissipation than the one found in the
(b) P Hartree approximation. The dissipation is roughly exponen-
tial in an intermediate time region. This dissipation is obvi-
FIG. 11. Momentum spectrum at tinte=20 andt=50 for the  ously related to the sunset contributions. As these involve the
parameter set of Fig. 9. mean field amplitude they become unimportant when the
amplitude goes to zero. Therefore, for later times the system
the system remains in the broken phase for initial energypeems to develop a stage of weak dissipation. However, we
densities below some critical value. The exact theory has nfave not extended our study to “late” times in the sense of
phase transition at finite temperature and, therefore, is ngn asymptotic analysis of the evolution.

expected to have one at finite energy dengag]. In the theory with spontaneous symmetry breaking, i.e.,
with a double well potential, the field amplitude tends to
VI. SUMMARY. CONCLUSIONS. AND OUTLOOK zero, i.e., to the symmetric configuration. This is expected on

general grounds: in (%1)-dimensional quantum field

In this paper we have considered the out-of-equilibriumtheory there is no spontaneous symmetry breaking Tfor
evolution of a classical condensate fiefi=(®) and its >0, and so there should be none at finite energy density
quantum fluctuations for &% model in 1+1 dimensions, (microcanonical ensembleeither.
with a symmetric and a double well potential. Our investiga- We observe in both cases that parametric resonance phe-
tion was based on the 2PPI formalism in the two-loop apnomena are important, and that the momentum spectra show
proximation. We have generalized the 2PPI formalism tono sign of thermalization. In contrast to the 2P| approxima-
nonequilibrium quantum field theory. In order to find the tion the interaction between the modes is via the spatially
main features of this approximation we have performed gomogenougzero-momentummass term; so there is no di-
first set of numerical simulations and compared the results teect momentum exchange between the modes via a
Schwinger-Dyson equation and the analysis of IR&4] con-
cerning thermalization in the 2PI formalism therefore does
not apply. Our numerical analysis does not allow definite
conclusions about thermalization at later times.

FIG. 12. A generic 1Pl but 2PPR graph, which is produced via
the resummation in the gap equation & 2(t) in the two-loop
approximation in the 2PPI formalism. Thin solid lines denote the FIG. 14. Example of a ladder diagram. Thin solid lines denote
free propagator while dashed lines denote the classicaldielthe  the free propagator while dashed lines denote the classicaldield
solid dot indicates the external tinte The solid dots indicate the external timeandt’.
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In conclusion we have shown that the 2PPI formalism carThe two-point functionG satisfies the Schwinger-Dyson
be generalized to nonequilibrium quantum field theory andequation[3]
that the simulations in the two-loop approximation i1
dimensions show sizable differences when compared to the iG1(x,x")=iD "Y(x,x")—i2@(x,x") (A4)
Hartree approximation. Both the stronger dissipation and the
correct symmetry structure overcome obvious deficits of theand is a variational parameter of the formalism.
Hartree approximation. We therefore think that it is worth-  The relevant formulas for the 2PPI formalism in the two-
while to further investigate the properties of this approxima-loop approximation are given in Sec. IlIB. Note that al-
tion, in and out of equilibrium. though the sunset contribution to the effective action in both
Obvious generalizations of this investigation include thethe 2PI and 2PPI approaches is depicted by the same dia-
analysis of anO(N) model withN>1 in 1+1 dimensions gram, they have different implications. We think that it is
and analogous studies int3L dimensions. The technical re- instructive to compare some implicit 1PI graphs of both ap-
quirements for such simulations are considerably reducegroximations to emphasize the differences. These 1PI graphs
when compared to the 2Pl formalism in the analogous apare hidden in the resummation and arise via the self consis-
proximation, due to the factorization of the Green’s func-tent Schwinger-Dyson or gap equation of the 2&8se Eq.
tions; moreover, the problem of renormalization i B di-  (A4)] or 2PPI[see Eq.3.12] formalism, respectively.
mensions has been solved in equilibrii?,18. In the 2PI In Fig. 12 we present such a generic 1P| but 2PPR graph
approach the three-loop renormalization was considered im the two-loop 2PPI approximation. In Fig. 13 we display a
[16] for the mean fieldp=0 case; an analysis of renormal- similar graph in the two-loop 2P| approach. As the 2PPI
ization beyond the Hartree approximation is still lacking for formalism resums albcal contributions to the propagatap
¢#+0. ladder diagramsare introduced via resummation. In the 2Pl
We feel that it is very important to accompany the nu-formalism in addition nonlocal insertions are taken into ac-
merical simulations of nonequilibrium systems in variouscount, which leads to infinite ladder resummations. An ex-
formalisms and approximations by equivalent analyses foample for such a ladder diagram is depicted in Fig. 14. It can
systems in thermal equilibrium. Such analyses are still enbe identified in the lower part of Fig. 13.
tirely lacking. As ladder diagrams do not fall apart if two lines meeting
at the same point are cut, they are indeed 2PPI and thus join
ACKNOWLEDGMENTS in the 2PPI formalism explicitly as higher order corrections
to the effective action functiondl. We show a three-loop
The authors take pleasure in thanking Stefan Michalskidiagram of “ladder-type” in Fig. 1b).
Hendrik van Hees, and Henri Verschelde for useful and The BVAand NLO 1N approximations in the 2P| formal-
stimulating discussions and the Deutsche Forschungsgemeigm sum an even larger class of diagrams as in these approxi-

schaft for financial support under contract Ba703/6-1. mations I'?F[ ¢,G] already contains an infinite series of
vacuum diagrams with all loop orders. This infinite series of
APPENDIX A: COMPARISON BETWEEN 2P| AND 2PPI chain diagrams can be formulated in a very compact way

) ) ] ) within the auxiliary field formalisnj2,8]. The diagrams have
In this section we give some comments on the differenceg,q topology of chains of bubble grapteee Fig. 15 for two
between the 2Rltwo particle-irreduciblgand the 2PP(two- generic vacuum graphs contributing £8”). Depending on

particle point-irreducibl);formalism at the two-loop level.  ihe given approximation these diagrams contribute in the
The 2PI effective action read$] 2PPI formalism as well.

1 1
I[¢,G]=S ¢]+5i Trin G '+ 5 Tr(D™'G)+T,[¢,G], APPENDIX B: SOME MORE COMMENTS
(A1)  ON THE NUMERICS AND MOMENTUM INTEGRATIONS

N , ) ) ) In our simulations we have used a momentum cutoff of
wh(?re_ ID2(x,x") == (L +m9)o(x=x") = (M2)¢=(x) (X p  —20 and an equidistant momenum grid withp
—x') is the classical propagator. If we truncdtgincluding  — 05, Both choices are somewhat generous; we have not
two-loop order terms we have attempted an optimization with respect to CPU time and stor-

r91e.01=-C0 . O (#2)

The variation ofl"(zz) with respect taG gives the self-energy

(2)
$O(xx") =2 22 1G] (b)
6G(x,x")
FIG. 15. Vacuum graphs with a topology of closed chains which
contribute to the 2PI effective action in the NLONLApproxima-
O O tion; solid lines represent the 2P| propaga@rwhile the dashed
= +

(A3) lines denote the classical fielfl.
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FIG. 16. Detailed study of the dependence on the momentum grid for the simulation with the parameters fronfaFigv@ution of
the mean fieldp; (b) evolution of the effective mas#1 2. The momentum cutoff is fixed git,,,= 20 and we vary the distance between the
grid pointsAp; the solid line representAp=0.04, the long dashed lindp=0.067, the short dashed lifep=0.1 and the dotted line
Ap=0.2.

age requirements as one would certainly have to do for simuow as p,,.,=5 the deviations are only at the percentage
lations in 3+ 1 dimensions. In this appendix we more closely level and forp,,=5 the results are already satisfactory.
investigate the cutoff and momentum grid dependences. This may change at later times if the momentum distribu-

(i) The choice ofAp. We have repeated the simulation of tions get broader by rescattering.

Fig. 9 for values ofAp between 0.04 and 0.2 while leaving (i) The time grid. For our simulations we have chosen
Pmax= 20 fixed. We display in Fig. 16 the time evolution of At=0.001, except for the simulation in Fig. 8 whena

the classical field(t) and of the effective masa1%(t).  =0.005. We compare the results for the simulation in Fig. 9
The numerical results for these quantities are seen to combtained withAt=0.0005, 0.001, and 0.005 in Fig. 18. The
verge for Ap=<0.07. The curves foAp=0.067 andAp  results for the first two values agree very well; those £or
=0.04 cannot be distinguished. While the qualitative behav—=0.005 start to differ at late times. This means that a choice
ior of ¢(t) does not change even for larger valuea\@f, the  At=0.001 is appropriate. In the case of Fig. 8 the variations
late time averages of the mags(? show a considerable with time are much slower, so that the choise=0.005 is
dependence beyonslp=0.07. sufficient.

(il) The cutoff dependence. The momentum cutoff is @ We would finally like to point out that it is in no way
cutoff for convergent integrals. As one may conclude alreadynherent in our numerical approach to use an equidistant mo-
from the momentum spectra displayed in Fig. 11, the cutofinentum grid. Indeed, it is more economical to chodge
can be reduced appreciably. In Fig. 17 we show the depersmall for small momenta and to let it increase for larger ones,
dence ofM ?(t) on pmay. One sees that even for a cutoff as as was done, e.g., in previous computations by our group. In

T 6 T ny T 6 T
I i s - ATt 2 3L e
s S:::f < é MAJMI ] 6L d=0.0050 b of A ]
5t 0 25 50 St
o 4r ! = 4r
s S Ll
2l
'l
or L L .

25 30 35 40 45 50 25 30 35 40 45 50
t t

FIG. 17. Dependence of the time evolution & 2(t) on the FIG. 18. Dependence of the time evolution & %(t) on the
momentum cutofp,, for the simulation with the parameters from time At for the simulation with the parameters from Fig. 9 in the
Fig. 9 in the time range €[25,50; in the inset the whole time time ranget €[25,50; in the inset the whole time range is shown.
range is shown. The momentum distance is fixeAat0.05 while ~ The momentum distance is fixed Ap=0.05 and the momentum
Pmax Varies between 5 and 20; the solid line represents the simulecutoff p,,,,=10; the solid line represents the simulation fivt
tion for ppa= 20, the long dashed ling,,,,= 10, the short dashed =0.0005, the long dashed limet=0.001, and the short dashed line
line pma= "7, and the dotted lin@,,,=5- At=0.005.
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one space dimension the choice of equidistant momentangular integrations, the momentum integrals become convo-
turns momentum conservation into a trivial algebra of indi-lutions of mode functions with phase space functions, and an
ces. In three space dimensions one may us®it8 invari-  equidistant momentum grid does not lead to any major sim-
ance of the mode functions as functionspfThen, due to  plification.
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