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Nonequilibrium evolution of F4 theory in 1¿1 dimensions
in the two-particle point-irreducible formalism

Jürgen Baacke* and Andreas Heinen†

Institut für Physik, Universita¨t Dortmund, D-44221 Dortmund, Germany
~Received 31 December 2002; published 27 May 2003!

We consider the out-of-equilibrium evolution of a classical condensate field and its quantum fluctuations for
a F4 model in 111 dimensions with a symmetric and a double well potential. We use the two-particle
point-irreducible~2PPI! formalism and go beyond the Hartree approximation by including the sunset term. In
addition to the mean fieldf(t)5^F& the 2PPI formalism uses as a variational parameter a time dependent
massM 2(t) which contains all local insertions into the Green’s function. We compare our results to those
obtained in the Hartree approximation. In the symmetricF4 theory we observe that the mean field shows a
stronger dissipation than the one found in the Hartree approximation. The dissipation is roughly exponential in
an intermediate time region. In the theory with spontaneous symmetry breaking, i.e., with a double well
potential, the field amplitude tends to zero, i.e., to the symmetric configuration. This is expected on general
grounds: in (111)-dimensional quantum field theory there is no spontaneous symmetry breaking forT.0,
and so there should be none at finite energy density~microcanonical ensemble!, either. Within the time range
of our simulations the momentum spectra do not thermalize and display parametric resonance bands.

DOI: 10.1103/PhysRevD.67.105020 PACS number~s!: 03.65.Sq, 05.70.Fh, 11.30.Qc
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I. INTRODUCTION

There has recently been considerable activity in inve
gating the nonequilibrium evolution of quantum field theo
beyond the large-N approximation. In particular, there ha
been formulated@1,2# a systematic approach@two-particle-
irreducible ~2PI! next leading order~NLO!# in which all
next-to-leading order contributions in the 1/N expansion are
included, using the Cornwall-Jackiw-Tomboulis~CJT! or 2PI
formalism @3# generalized to nonequilibrium evolution i
Ref. @4#, and the closed time path~CTP! or Schwinger-
Keldysh @5# formalism. A similar approximation including
some but not all contributions of next-to-next-to-leading
der is the bare vertex approximation~BVA ! @6#. Numerical
simulations have been performed mostly in 111 dimen-
sions, for the classical or quantumF4 theory with a symmet-
ric @1,7–10# and with a double well@11# potential. A first
simulation in anO(N) model forN5” 1 in 311 dimensions
has just appeared@12#, for a symmetric potential. The analy
sis of models withN5” 1 and with spontaneous symmet
breaking, i.e., a Mexican hat potential, should be very imp
tant for understanding the role of the Goldstone modes
their influence on the phase structure of the theory in a
tain approximation.

A more modest step beyond leading order largeN has
been taken in Ref.@13#, where the Hartree approximatio
was used in anO(N) model in 311 dimensions. This ap
proach includes some terms of nonleading order, but no
of them. Our investigation made evident the role of param
ric resonance in the system of ‘‘sigma’’ and ‘‘pion’’ mode
and the role of the Goldstone modes in stabilizing the e
lution in the regions where the equilibrium effective potent
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is complex, features still to be investigated in the system
1/N motivated approximations.

An approach for including nonleading orders in a se
consistent resummation scheme was proposed some time
by Verschelde and collaborators@14,15#, the so-called two-
particle point-irreducible~2PPI! expansion. As in the 2PI o
CJT formalism the mean field and the internal Green’s fu
tions are determined self-consistently. As in the 2PI form
ism, the equations of motion follow from an effective actio
which here is a functional of the mean fieldf5^F& and the
effective massM. In contrast to the 2PI approach, only loc
insertions into the Green’s function are resummed, so
Green’s function is, in all orders, a functional of the loc
mass termM that in general will depend onx5(t,x). In
particular, this Green’s function is different from the physic
Green’s function. As far as the resummation is concerned
approach is less powerful: one has to include more diagr
if one wants to reach the same order in a loop or 1/N expan-
sion as in the 2PI expansion. The fact that the propaga
have a simpler structure may be a disadvantage as becau
this structure the approximation is less flexible than the
expansion. On the other hand, the calculations are tec
cally less involved; in particular, the formalism does not r
quire ladder resummations which complicate the renorm
ization of the 2PI approach@16#. In one-loop order the
approach is equivalent to the Hartree approximation. Rec
progress in the 2PPI formalism includes the demonstratio
renormalizability @17,18# and some finite-temperature two
loop calculations in 311 dimensions. An interesting resu
was that forN51 @19# and forN5” 1 @20# the phase transi-
tion between the spontaneously broken and symme
phases becomes second order in the two-loop approxima
while it is first order in the Hartree approximation. The r
sults for the 2PPI expansion have been compared to e
results in@21# for the anharmonic oscillator; even more r
cently @22#, the two-loop approximation has been compar
©2003 The American Physical Society20-1
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in 111 dimensions, with exact results of the Gross-Nev
model.

In this paper we present the formulation and some
merical results for the nonequilibrium evolution of the me
field and the self-consistent mass in the 2PPI scheme,
plied to F4 theory in 111 dimensions. We go beyond th
one-loop ~Hartree! approximation by including the sunse
graph, which represents the full two-loop contribution in th
formalism. We explicitly formulate a conserved energy fun
tional which is used to monitor the numerical accuracy.
this is the first investigation of the 2PPI formalism at tw
loops out of equilibrium we do not attempt a detailed stu
rather, we aim at presenting the main new features of
approach, as well as a comparison to the one-loop Har
approximation and the other approaches~2PI NLO and BVA!
mentioned above. We consider both the case of the sym
ric F4 potential and the case of the double well poten
which displays spontaneous symmetry breaking on the c
sical as well as on the one-loop level.

The plan of the paper is as follows. In Sec. II we form
late the model and present the 2PPI formalism as applie
a system out of equilibrium. In Sec. III we specify the tw
loop approximation by giving the explicit expressions for t
basic graphs, the equations of motion, and the conse
energy and by discussing the initial conditions and renorm
ization. In Sec. IV we give details of the numerical impl
mentation. The numerical results are presented and discu
in Sec. V. We end with conclusions and an outlook in S
VI. The paper is completed by two Appendixes.

II. FORMULATION OF THE MODEL

We consider theF4 quantum field theory defined by th
Lagrange density

L5
1

2
]mF]mF2

1

2
m2F22

l

24
F4. ~2.1!

If m2.0 we refer to it as the symmetric theory, and wi
m2,0 we refer to it as the theory with spontaneous symm
try breaking. These terms relate to the classical theory an
not imply the occurrence of spontaneous symmetry break
in the quantum field theory.

The 2PPI formalism proposed by Verschelde and Copp
@14,15# is based on an effective action which is formulated
terms of a mean fieldf and a local insertionD. It is the
Legendre transformation of a generating functional with
sourceJ(x) for the fieldf(x) and anotherlocal sourceK(x)
for f2(x). Here lies the difference from the well-known CJ
formalism, where one introduces a bilocal sourceK(x,x8)
for a Green’s functionG(x,x8). Graphically, the 2PPI
scheme resums all local insertions into the Green’s func
which in all orders remains a generalized free parti
Green’s function, or a Green’s function in an external fie
i.e.,

G21~x,x8!5 i @h1M 2~x!#d~x2x8!, ~2.2!

where
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M 2~x!5m21
l

2
f2~x!1

l

2
D~x!. ~2.3!

So in contrast to the 2PI formalism this Green’s function
not a variational object, it is a functional ofM 2(x). It is not
the physical Green’s function.

The 2PPI formalism in its original form is based on th
action

G@f,D#5Sclass@f#1G2PPI@f,M 2#1
l

8E d2xD2~x!.

~2.4!

HereG2PPI@f,M 2# is the sum of all 2PPI graphs; these a
defined as graphs that do not decay into two parts if two li
joining at a pointare cut. In the 2PI formalism one include
in the analogousG2PI all graphs that do not decay into tw
parts ifany two lines are cut. In order to visualize the diffe
ence we show examples of 2PR and 2PPR graphs in Fig
It should be emphasized that in the 2PPI formalism the li
in the graphs are Green’s functions with the variational m
term M 2(x) as defined via Eq.~2.2!, while in the 2PI for-
malism the internal lines refer to the variational Gree
functions induced by thebilocal sources. When comparin
the sets of irreducible graphs in both formalisms one ha
take into account this difference in the meaning of the int
nal lines.

The insertionD(x) is given by

D~x!522
dG2PPI@f,M 2#

dM 2~x!
. ~2.5!

As we have stated before it is simpler to formulate the act
in terms off andM 2. We solve Eq.~2.3! with respect toD
and insert this into Eq.~2.4!. Using the explicit form ofSclass
we obtain

G@f,M 2#5E d2xF1

2
]mf~x!]mf~x!2

1

2
M 2~x!f2~x!

1
l

12
f4~x!G1

1

2lE d2x@M 2~x!2m2#2

1G2PPI@f,M 2#. ~2.6!

FIG. 1. Examples for two-particle point-reducible~2PPR! and
-irreducible~2PPI! diagrams:~a! a diagram that is 2PR and 2PPR
~b! a diagram that is 2PR but 2PPI. Solid lines, internal propagat
dashed lines, external fieldsf.
0-2
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One easily checks that the equations of motion obtained
varying this action with respect tof(x) andM 2(x) take the
form

05hf1M 2~x!f~x!2
l

3
f3~x!2

dG2PPI@f,M 2#

df~x!
,

~2.7!

M 2~x!5m21
l

2
f2~x!2l

dG2PPI@f,M 2#

dM 2~x!
. ~2.8!

Since the last equation is identical to Eq.~2.3!, we will refer
to it as the gap equation.

Here we will consider states of the system that are s
tially homogeneous; so in Eqs.~2.7! and~2.8! the arguments
x5(t,x) should be replaced simply byt. Furthermore, in Eq.
~2.6! the space integration simply gives a volume~length!
factor, and in the nonequilibrium formalism the time integr
tion should be replaced by the closed time path displaye
Fig. 2.

The equation for the Green’s function separates into sp
and time dependence. Using the homogeneity of the sta
space the Green’s function can be written as

G~ t,t8;x,x8!5E
2`

` dp

2p
eip(x2x8)G~ t,t8;p!. ~2.9!

As the equation is local in time, the Green’s functio
G(t,t8;p) can be expressed in terms of mode functions

G~ t,t8;p!5
1

2vp
@ f ~ t,p! f * ~ t8,p!Q~ t2t8!

1 f ~ t8,p! f * ~ t,p!Q~ t82t !# , ~2.10!

wherevp is defined below, and where the mode functio
f (t,p) satisfy

f̈ ~ t,p!1@p21M 2~ t !# f ~ t,p!50. ~2.11!

Here we choose the initial conditions for the mode functio
at t50 as for wave functions of free particles with mass

FIG. 2. The closed time path in the complext plane.
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25M 2~0!5m21

l

2
f2~0!1

l

2
D~0!. ~2.12!

This means thatf (0,p)51 and ḟ (0,p)52 ivp with vp

5Ap21m0
2. This defines an initial Fock space. We contin

the discussion on initial conditions in Sec. III D.
In the CTP formalism@5# one uses Green’s functions wit

different time orderings. The Green’s functionG(t,t8;p) as
defined above is identical to the Green’s functionG.(t,t8;p)
with normal time ordering; the anti-time-ordered Green
function G,(t,t8;p) is given byG,(t,t8;p)5G.(t8,t;p).
In the explicit formulas one can use this identity in order
express all relevant Green’s functions byG(t,t8,p).

III. ONE-LOOP AND TWO-LOOP CONTRIBUTIONS

Having established the general formalism we can n
discuss the leading terms in a loop expansion. The two
evant graphs are depicted in Figs. 3~a! and 3~b!. The leading
bubble diagram is the ‘‘log det’’ contribution. It leads to th
tadpole insertion into the Green’s function. The next diagr
represents the only contribution on the two-loop lev
We will discuss these two contributions separately in
following.

A. The bubble diagram

The bubble diagram defines the leading Hartree contri
tion. It is independent off and so does not yield an explic
contribution to the equation of motion forf. Of course it
enters, indirectly, via its contribution toM 2. Its contribution
to G2PPI(f,M 2) is given by

G (1)@f,M 2#5
i

2
Tr ln†G21@M 2#‡. ~3.1!

Its functional derivative with respect toM 2 is given by

dG (1)@f,M 2#

dM 2~ t !
52

1

2
D (1)~ t !52

1

2E dp

2p
G~ t,t;p!

52
1

2E dp

2p2vp
u f ~ t,p!u2. ~3.2!

The energy density can be derived@23# by considering
a variation of the action undert→t1t(t), which
inducesdf(t)5ḟ(t)t(t), dḟ(t)5f̈(t)t(t)1ḟ(t) ṫ(t), and
dM 2(t)5t(t)dM 2(t)/dt. The one-loop action depend

FIG. 3. Bubble and sunset diagrams. We display the lead
diagrams in the 2PPI actionG2PPI: ~a! the bubble diagram;~b! the
sunset diagram. Solid lines, internal propagators; dashed lines
ternal fieldsf.
0-3
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J. BAACKE AND A. HEINEN PHYSICAL REVIEW D 67, 105020 ~2003!
only on M 2(t). One then finds that the contribution of th
bubble graph to the energy is defined by the relation

dE(1)~ t !

dt
52

dG (1)@f,M 2#

dM 2~ t !

dM 2

dt

5
1

2E dp

2p
G~ t,t;p!

dM 2

dt
. ~3.3!

This equation can be integrated explicitly; indeed, o
checks easily, using the mode equation~2.11!, that the naive
quantum energy defined by

E(1)~ t !5
1

2E dp

2p2vp
$u ḟ ~ t,p!u21@p21M 2~ t !#u f ~ t,p!u2%

~3.4!

is consistent with the defining equation~3.3!. This is of
course well known. If only this one-loop contribution is in
cluded, the approximation is referred to as the Hartree
proximation.

B. The sunset diagram

The unique two-loop contribution toG2PPI is the sunset
diagram which in the CTP formalism is explicitly given by

G (2)@f,M 2#

5 i
l2

12E dxdx8E dtf~ t !E dt8GP
3 ~ t,t8;x,x8!f~ t8!,

~3.5!

where thet and t8 integrations are over a CTP contour a
whereGP is the path-ordered Green function.

The functional derivative with respect tof(t) is given by

dG (2)@f,M 2#

df~ t !
52S~ t ! ~3.6!

with

S~ t !52 i
l2

6 E
0

t

dt8f~ t8!E )
,51

3 S dp,

2p D2pdS (
,51

3

p,D
3F )

,51

3

G~ t,t8;p,!2 )
,51

3

G~ t8,t;p,!G . ~3.7!

This contribution to the equation of motion forf(t), an
amputated sunset diagram, is represented graphically in
4~a!.

The functional derivative with respect toM 2(t) is given
by
10502
e

p-

ig.

dG (2)@f,M 2#

dM 2~ t !

52
1

2
D (2)~ t !

5
l2

2 E
0

t

dt8f~ t8!E
0

t8
dt9f~ t9!

3E )
,51

3 S dp,

2p D2pdS (
,51

3

p,D
3@G~ t,t8;p3!2G~ t8,t;p3!#

3@G~ t8,t9;p1!G~ t8,t9;p2!G~ t,t9;p3!

2G~ t9,t8;p1!G~ t9,t8;p2!G~ t9,t;p3!#.

~3.8!

This graph, which contributes to the gap equation, is
picted in Fig. 4~b!. It is a tadpole diagram with fish insertion

Considering again the variationt→t1t(t), one finds the
contribution of the sunset term to the energy to be defined

dE(2)~ t !

dt
5ḟ~ t !S~ t !1

1

2

dM 2~ t !

dt
D (2)~ t !. ~3.9!

As far as we see this expression cannot be integrated ex
itly; but the relation can be integrated numerically to obta
E(2):

E(2)~ t !5E
0

t

dt8F ḟ~ t8!S~ t8!1
1

2

dM 2~ t8!

dt8
D (2)~ t8!G .

~3.10!

C. Equations of motion and energy

Having determined the functional derivatives of the acti
with respect tof(t) and M 2(t), we can explicitly write
down the equations of motion in the two-loop approxim
tion:

05f̈~ t !1M 2~ t !f~ t !2
l

3
f3~ t !1S~ t !, ~3.11!

FIG. 4. Two-loop graphs in the equations of motion.~a! The
amputated sunset diagram that appears in the equation of m
~2.7! for the mean fieldf; ~b! the tadpole diagram with fish inser
tion that contributes to the gap equation~2.8!; in both diagrams the
solid dots indicate the external time, the time variables of the ot
vertices appear in the internal integrations. Solid lines, inter
propagators; dashed lines, external fieldsf.
0-4
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M 2~ t !5m21
l

2
@f2~ t !1D (1)~ t !1D (2)~ t !#. ~3.12!

We define the ‘‘classical’’ energy as the zero-loop express

E(0)~ t !5
1

2
ḟ2~ t !1

1

2
M 2~ t !f2~ t !2

l

12
f4~ t !

2
1

2l
@M 2~ t !2m2#2. ~3.13!

We have defined the one-loop and two-loop contributions
Eqs.~3.4! and~3.10!. One can check, using the equations
motion, that the total energy

Etot5E(0)1E(1)1E(2) ~3.14!

is conserved.

D. Renormalization and initial conditions

There is a wide choice of initial conditions for the syste
So one may choose an initial mean fieldf(0) and one may
modify the Green’s function by including contributions fro
the kernel ofG21(x,x8). In the one-loop approximation th
latter possibility is equivalent to choosing initial ensemb
for which the modesf (t,p) are populated, or to Bogoliubo
rotations of the initial Fock space. In the two-loop appro
mation this simple particle picture is no longer appropria

However, the choice of initial conditions is not entire
arbitrary because of initial singularities@24–26#. Starting
with some nonzero value off(0) and withm0, a solution of
the gap equation, no initial time singularities are enco
tered. So such a choice is a physically acceptable one
order to solve the gap equation att50 we have to know the
contributionsD (1)(0) and D (2)(0). D (2) has already been
defined such that it vanishes att50; by this choice we eras
the memory of the past.D (1) is given by an integral over the
fluctuations, so it does not vanish. Furthermore, it is div
gent and so we have to discuss renormalization.

In F4 theory in 111 dimensions there is only one prim
tive divergence, that of the tadpole graph. Renormaliza
reduces, therefore, to making a shift in the tadpole te
which can be absorbed by a shift in the mass. Using dim
sional regularization we rewrite the tadpole contributionD (1)

@see Eq.~3.2!# as

D (1)~ t !5Dfin
(1)~ t !1

1

4p H 2

e
2g1 ln

4pm2

m0
2 J ~3.15!

with the finite part ofD (1) defined as

Dfin
(1)~ t !5E dp

2p2vp
@ u f ~ t,p!u221#. ~3.16!

This is the expression used in the numerical computation
Including a mass counterterm the gap equation now ta

the form
10502
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M 2~ t !5m21dm21
l

2 Ff2~ t !1Dfin
(1)~ t !

1
1

4p H 2

e
2g1 ln

4pm2

m0
2 J 1D (2)~ t !G .

~3.17!

Choosing

dm252
l

8p H 2

e
2g1 ln

4pm2

m2 J , ~3.18!

the finite gap equation takes the form

M 2~ t !5m21dmfin
2 1

l

2
@f2~ t !1Dfin

(1)~ t !1D (2)~ t !#

~3.19!

with

dmfin
2 5

l

8p
ln

m2

m0
2

. ~3.20!

The initial conditions and renormalization are equivalent
those in the one-loop approximation, which facilitates a co
parison between the two-loop 2PPI and the Hartree appr
mation.

IV. NUMERICAL IMPLEMENTATION

In the 2PPI approximation the Green’s function factoriz
and so one can work with mode functions. This considera
facilitates the numerical computation of the ‘‘memory’’ inte
grals introduced by the sunset graph. In particular, one ha
store only functions of one time argument, of course still
all times and all momenta. The storage requirements g
only linearly with time, so the evolution can be followed fo
relatively long times. Furthermore, the differential equatio
are ordinary differential equations that can be solved p
cisely using a Runge-Kutta algorithm. This can be import
if one has to trace parametric resonance phenomena
course, if the approximation itself is poor these numeri
advantages are useless. Still, the possibility of doing the
culations with good precision allows one to study the qua
of the approximation reliably, including its possible sho
comings.

The time integration was done in steps
Dt50.001–0.005. The Wronskians of the mode functio
were constant with a relative precision of 1028. For the mo-
mentum cutoff, which is a cutoff of a convergent integral, w
have chosenpmax520. As one can see from the momentu
spectra, this is a rather generous choice. It should be m
tioned that momentum conservation leads to momenta
can be beyond the cutoff. This is a problem that can har
be avoided, and a relatively large momentum range sho
make such ‘‘losses’’ tolerable. A more serious problem is
0-5
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FIG. 5. Time evolution for the symmetricF4 potential. Parameters:m251 ~symmetric potential!, l56, f(0)51.2; ~a! evolution of the
mean field;~b! evolution of the effective massM 2; ~c! evolution of the sunset contribution to the equation of motion off, Eq. ~2.7!; ~d!
evolution of the energy; in~a!–~c! the solid lines relate to the two-loop 2PPI approximation, the dashed lines to the one-loop or H
approximation; in~d! the dashed line is the classical energy~5.1!, and the dotted line is the quantum energy.
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momentum grid. We observe parametric resonance,1 and this
leads to amplitudes that vary strongly in timeand momen-
tum. In the typical large-N studies this fact has led variou
groups to choose much finer grids with several thousand
menta. This is not possible here; we think that the essen
features of the low momentum region with parametric re
nance and/or exponential growth subsist with less refi
grids. This concerns in particular the self-stabilization of t
system in the classically unstable regions. We have cho
Dp50.05, i.e., a grid of 400 equidistant momenta. In pr
ciple such a grid can lead@27# to ‘‘lattice artifacts,’’ corre-
sponding here to a lattice sizeL52p/Dp540p in inverse
mass units. Indeed, we do not observe any phenomena
suggest such artifacts. The choice ofDp is also discussed in
Appendix B.

V. DISCUSSION OF THE RESULTS

We have performed several simulations for the case o
symmetric F4 potential and for a double well potentia
which classically leads to spontaneous symmetry break

1We here use the term parametric resonance in a colloquial
not in the strict sense of a solution of the Mathieu or Lame´ equa-
tions@13,28–30#. Obviously~see Fig. 7! the oscillations of the mas
term lead, in spite of variations in amplitude, to a resonance
enhancement that closely resembles the one found for true para
ric resonance.
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The initial configuration was, in all cases, a mean fieldf
different from its classical expectation value, and a quant
ensemble corresponding to the ground state of a Fock s
characterized by an initial massm05M(0). We have ob-
tained results for the time evolution of the mean fieldf(t),
for the self-consistent massM 2(t), and for the energy. The
relative importance of the two-loop contributions can be se
in their contributions toM 2. In all cases we have compare
the evolution with the one obtained in the Hartree appro
mation.

A. Results for the symmetricF4 potential

In Figs. 5 and 6 we display our numerical results for t
time evolution of the mean field@Figs. 5~a! and 6~a!#, of the
dynamical massM 2(t) @Figs. 5~b! and 6~b!#, of the sunset
contribution S(t) in the classical equation of motion~2.7!
@Figs. 5~c! and 6~c!#, and of the classical and quantum pa
of the energy~3.14! @Figs. 5~d! and 6~d!#. In the last dia-
grams we define the classical energy as the standard ex
sion

Ecl5
1

2
ḟ21

1

2
~m21dmfin

2 !f21
l

24
f4. ~5.1!

Indeed, the repartition between classical and quantum en
is to some extent arbitrary in a self-consistent framew
where, e.g.,M 2 contains classical as well as quantum par

y,

e
et-
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FIG. 6. Same as Fig. 5 forf(0)50.6.
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In Figs. 5~a! and 5~b! and 6~a! and 6~b! we also display the
time evolution in the one-loop or Hartree approximation.

We observe the following characteristic features. After
initial period of time in which the field amplitude stay
roughly constant and close to the Hartree time evolutio
period of effective dissipation sets in. For small initial am
plitudes evidently the dissipative phase ends and the m
field reaches a roughly constant amplitude of oscillat
again. For large initial amplitudes such a ‘‘shut off’’ is les
evident. A closer investigation shows that initially the qua
tum modes build up until the sunset diagram becomes im
tant. From then on the Hartree and two-loop evolutions di
substantially. The increase of the sunset diagram triggers
sipation, until the sunset diagram again becomes small du
the decrease of the external fields. Once the sunset diag
has lost its importance the amplitude of oscillation of t
classical field becomes roughly constant again. This is s
in particular in Fig. 6~a!, where, due to a relatively sma
initial amplitude, the quantum modes and therefore the s
set diagram are less important than for large initial am
tudes~or energy densities!, as, e.g., in Fig. 5~a!. We have not
followed the evolution at really large times. So we cann
decide between a constant and a slowly decreasing ampl
as found, e.g., in the large-N case@31#.

The total energy, displayed in Figs. 5~d! and 6~d!, is con-
stant as it should. Numerically this is the case within fi
significant digits or better; hereE(2) was obtained by Runge
Kutta integration of Eq.~3.9!.

We also present, in Fig. 7, typical momentum spectra.
have chosen the simulation withf(0)51.2 and show the
spectra for an early timet510 and at the end of the simula
10502
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e
FIG. 7. Momentum spectrum at timet510 andt550 for the

parameter set of Fig. 5.
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FIG. 8. Time evolution for the double well potential. Parameters:m2521/6, l51, f(0)51.5; other specifications as in Fig. 5.
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tion. Along with the results for the two-loop approximatio
we display those for the Hartree approximation. Obvious
the spectrum evolves more strongly for the two-loop a
proximation. At late times it shows the typical features o
parametric resonance band@13,28–30#. Above this band the
spectra drop to small values and decrease to zero. It sh
be evident that our momentum cutoff ofpmax520 will be
sufficiently high even for the multiple integrals. On the oth
hand, the numerical integration cannot take into account
finer details of the spectra, in particular at later times.
course to some extent these details are washed out if a
aged over time. Still, to some extent the finer details of
time evolution off(t) show some dependence on the cho
of Dp. However, neither here nor in the case of the dou
well potential are the qualitative features affected by th
details.

We have restricted our presentation to one single coup
parameterl56. We have performed simulations for small
values ofl as well; for such values ofl the time evolution
is stretched; the dissipation sets in later and extends ov
larger span of time. Forl51 the dispersive phase extends
typically t5300. The general, qualitative, characteristics
the time evolution are similar.

B. Results for the double well potential

The numerical simulations for the double well potent
are presented in Figs. 8, 9, and 10. We take the couplinl
51 and m2521/6, so that the classical minimum of th
double well potential is atf5v51. We consider initial val-
uesf(0) equal to 1.5, 1.4, and 1.2. Classically, the syst
can cross the barrier between the two minima forf(0)
10502
,
-

ld

r
e
f
er-
e
e
e
e

g

r a

f

l

.A2. The first of our initial values is above this critica
value, the second one is slightly below it. In the Hartr
approximation the system evolves as expected from this c
sical consideration. In the two-loop 2PPI approximation t
system evolves toward the symmetric phase where the
tem oscillates aroundf50 in the later stages of evolution
The transition between a motion in the region of the class
minimum andf50 is accompanied by an increase of t
sunset contribution and of the massM 2. The transition hap-
pens early forf(0)51.4. In this case we are just below th
critical value; one sees that the transition towardf.0 hap-
pens at a time where the sunset contribution is still small
whereM 2 only slightly deviates from its Hartree value. Fo
f(0)51.2 we are deeply in the well. Here it takes a lo
time before the evolution towardf.0 sets in. If we start
with valuesf(0) even nearer to the classical minimumf
51 the transition happens at even later times and we ex
the discretization of the momentum spectrum to affect
results so as to make them unreliable.

In Fig. 11 we display momentum spectra foru f (t,p)u2
21 for the simulation withf(0)51.4 at t520 and att
550, along with the spectra obtained in the Hartree appro
mation. For the two-loop simulation the spectrum att520 is
characterized by a strong peak at low momentum, wh
apparently is due to a passing ofM 2 to slightly negative
values. Att550 the effective mass of the modes is positiv
the spectrum shows a characteristic band as typical for p
metric resonance.

In all simulations the Hartree approximation displays
rather clean periodicity which signals a strong coherence
tween the evolutions of the classical field and of the quant
0-8
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FIG. 9. Same as Fig. 8 forf(0)51.4.
b

tric
der
n

modes. This effect is much stronger than in 311 dimen-
sions, in the Hartree@13# or large-N @30,32# approximation.

The nonequilibrium evolution ofF4 quantum field theory
with a double well potential has been studied recently
10502
y

Cooper et al. @11#, with somewhat different initial condi-
tions. These authors find a transition toward a symme
phase in the 2PI formalism extended to next-to-leading or
in 1/N ~2PI NLO!, while in the bare vertex approximatio
FIG. 10. Same as Fig. 8 forf(0)51.2.
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the system remains in the broken phase for initial ene
densities below some critical value. The exact theory has
phase transition at finite temperature and, therefore, is
expected to have one at finite energy density@33#.

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

In this paper we have considered the out-of-equilibriu
evolution of a classical condensate fieldf5^F& and its
quantum fluctuations for aF4 model in 111 dimensions,
with a symmetric and a double well potential. Our investig
tion was based on the 2PPI formalism in the two-loop
proximation. We have generalized the 2PPI formalism
nonequilibrium quantum field theory. In order to find th
main features of this approximation we have performe
first set of numerical simulations and compared the result

FIG. 12. A generic 1PI but 2PPR graph, which is produced
the resummation in the gap equation forM 2(t) in the two-loop
approximation in the 2PPI formalism. Thin solid lines denote
free propagator while dashed lines denote the classical fieldf. The
solid dot indicates the external timet.

FIG. 11. Momentum spectrum at timet520 andt550 for the
parameter set of Fig. 9.
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the ones obtained in the Hartree approximation.
We summarize our results as follows.
In the symmetricF4 theory we observe that the mea

field shows a stronger dissipation than the one found in
Hartree approximation. The dissipation is roughly expon
tial in an intermediate time region. This dissipation is ob
ously related to the sunset contributions. As these involve
mean field amplitude they become unimportant when
amplitude goes to zero. Therefore, for later times the sys
seems to develop a stage of weak dissipation. However
have not extended our study to ‘‘late’’ times in the sense
an asymptotic analysis of the evolution.

In the theory with spontaneous symmetry breaking, i
with a double well potential, the field amplitude tends
zero, i.e., to the symmetric configuration. This is expected
general grounds: in (111)-dimensional quantum field
theory there is no spontaneous symmetry breaking foT
.0, and so there should be none at finite energy den
~microcanonical ensemble!, either.

We observe in both cases that parametric resonance
nomena are important, and that the momentum spectra s
no sign of thermalization. In contrast to the 2PI approxim
tion the interaction between the modes is via the spati
homogenous~zero-momentum! mass term; so there is no d
rect momentum exchange between the modes via
Schwinger-Dyson equation and the analysis of Ref.@34# con-
cerning thermalization in the 2PI formalism therefore do
not apply. Our numerical analysis does not allow defin
conclusions about thermalization at later times.

a

FIG. 13. A generic 1PI but 2PR graph, which is hidden in t
resummation via the full Schwinger-Dyson equation~A4! for the
self-energyS (2)(t,t8;p). Thin solid lines denote the free propagat
while dashed lines denote the classical fieldf. The solid dots in-
dicate the external timest and t8.

FIG. 14. Example of a ladder diagram. Thin solid lines den
the free propagator while dashed lines denote the classical fielf.
The solid dots indicate the external timest and t8.
0-10
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In conclusion we have shown that the 2PPI formalism c
be generalized to nonequilibrium quantum field theory a
that the simulations in the two-loop approximation in 111
dimensions show sizable differences when compared to
Hartree approximation. Both the stronger dissipation and
correct symmetry structure overcome obvious deficits of
Hartree approximation. We therefore think that it is wort
while to further investigate the properties of this approxim
tion, in and out of equilibrium.

Obvious generalizations of this investigation include t
analysis of anO(N) model with N.1 in 111 dimensions
and analogous studies in 311 dimensions. The technical re
quirements for such simulations are considerably redu
when compared to the 2PI formalism in the analogous
proximation, due to the factorization of the Green’s fun
tions; moreover, the problem of renormalization in 311 di-
mensions has been solved in equilibrium@17,18#. In the 2PI
approach the three-loop renormalization was considere
@16# for the mean fieldf50 case; an analysis of renorma
ization beyond the Hartree approximation is still lacking f
f5” 0.

We feel that it is very important to accompany the n
merical simulations of nonequilibrium systems in vario
formalisms and approximations by equivalent analyses
systems in thermal equilibrium. Such analyses are still
tirely lacking.
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APPENDIX A: COMPARISON BETWEEN 2PI AND 2PPI

In this section we give some comments on the differen
between the 2PI~two particle-irreducible! and the 2PPI~two-
particle point-irreducible! formalism at the two-loop level.

The 2PI effective action reads@3#

G@f,G#5S@f#1
1

2
i Tr ln G211

1

2
i Tr~D21G!1G2@f,G#,

~A1!

where iD 21(x,x8)52(h1m2)d(x2x8)2(l/2)f2(x)d(x
2x8) is the classical propagator. If we truncateG2 including
two-loop order terms we have

~A2!

The variation ofG2
(2) with respect toG gives the self-energy

~A3!
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The two-point functionG satisfies the Schwinger-Dyso
equation@3#

iG21~x,x8!5 iD 21~x,x8!2 iS (2)~x,x8! ~A4!

and is a variational parameter of the formalism.
The relevant formulas for the 2PPI formalism in the tw

loop approximation are given in Sec. III B. Note that a
though the sunset contribution to the effective action in b
the 2PI and 2PPI approaches is depicted by the same
gram, they have different implications. We think that it
instructive to compare some implicit 1PI graphs of both a
proximations to emphasize the differences. These 1PI gra
are hidden in the resummation and arise via the self con
tent Schwinger-Dyson or gap equation of the 2PI@see Eq.
~A4!# or 2PPI@see Eq.~3.12!# formalism, respectively.

In Fig. 12 we present such a generic 1PI but 2PPR gr
in the two-loop 2PPI approximation. In Fig. 13 we display
similar graph in the two-loop 2PI approach. As the 2P
formalism resums alllocal contributions to the propagatorno
ladder diagramsare introduced via resummation. In the 2
formalism in addition nonlocal insertions are taken into a
count, which leads to infinite ladder resummations. An e
ample for such a ladder diagram is depicted in Fig. 14. It c
be identified in the lower part of Fig. 13.

As ladder diagrams do not fall apart if two lines meeti
at the same point are cut, they are indeed 2PPI and thus
in the 2PPI formalism explicitly as higher order correctio
to the effective action functionalG. We show a three-loop
diagram of ‘‘ladder-type’’ in Fig. 1~b!.

The BVA and NLO 1/N approximations in the 2PI formal
ism sum an even larger class of diagrams as in these app
mations G2PI@f,G# already contains an infinite series o
vacuum diagrams with all loop orders. This infinite series
chain diagrams can be formulated in a very compact w
within the auxiliary field formalism@2,8#. The diagrams have
the topology of chains of bubble graphs~see Fig. 15 for two
generic vacuum graphs contributing toG2PI). Depending on
the given approximation these diagrams contribute in
2PPI formalism as well.

APPENDIX B: SOME MORE COMMENTS
ON THE NUMERICS AND MOMENTUM INTEGRATIONS

In our simulations we have used a momentum cutoff
pmax520 and an equidistant momenum grid withDp
50.05. Both choices are somewhat generous; we have
attempted an optimization with respect to CPU time and s

FIG. 15. Vacuum graphs with a topology of closed chains wh
contribute to the 2PI effective action in the NLO 1/N approxima-
tion; solid lines represent the 2PI propagatorG, while the dashed
lines denote the classical fieldf.
0-11



he

J. BAACKE AND A. HEINEN PHYSICAL REVIEW D 67, 105020 ~2003!
FIG. 16. Detailed study of the dependence on the momentum grid for the simulation with the parameters from Fig. 9.~a! Evolution of
the mean fieldf; ~b! evolution of the effective massM 2. The momentum cutoff is fixed atpmax520 and we vary the distance between t
grid pointsDp; the solid line representsDp50.04, the long dashed lineDp50.067, the short dashed lineDp50.1 and the dotted line
Dp50.2.
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age requirements as one would certainly have to do for si
lations in 311 dimensions. In this appendix we more close
investigate the cutoff and momentum grid dependences.

~i! The choice ofDp. We have repeated the simulation
Fig. 9 for values ofDp between 0.04 and 0.2 while leavin
pmax520 fixed. We display in Fig. 16 the time evolution o
the classical fieldf(t) and of the effective massM 2(t).
The numerical results for these quantities are seen to
verge for Dp&0.07. The curves forDp50.067 andDp
50.04 cannot be distinguished. While the qualitative beh
ior of f(t) does not change even for larger values ofDp, the
late time averages of the massM 2 show a considerable
dependence beyondDp.0.07.

~ii ! The cutoff dependence. The momentum cutoff is
cutoff for convergent integrals. As one may conclude alrea
from the momentum spectra displayed in Fig. 11, the cu
can be reduced appreciably. In Fig. 17 we show the dep
dence ofM 2(t) on pmax. One sees that even for a cutoff a

FIG. 17. Dependence of the time evolution ofM 2(t) on the
momentum cutoffpmax for the simulation with the parameters from
Fig. 9 in the time rangetP@25,50#; in the inset the whole time
range is shown. The momentum distance is fixed atDp50.05 while
pmax varies between 5 and 20; the solid line represents the sim
tion for pmax520, the long dashed linepmax510, the short dashed
line pmax57, and the dotted linepmax55.
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low as pmax55 the deviations are only at the percenta
level and for pmax55 the results are already satisfactor
This may change at later times if the momentum distrib
tions get broader by rescattering.

~iii ! The time grid. For our simulations we have chos
Dt50.001, except for the simulation in Fig. 8 whereDt
50.005. We compare the results for the simulation in Fig
obtained withDt50.0005, 0.001, and 0.005 in Fig. 18. Th
results for the first two values agree very well; those forDt
50.005 start to differ at late times. This means that a cho
Dt50.001 is appropriate. In the case of Fig. 8 the variatio
with time are much slower, so that the choiceDt50.005 is
sufficient.

We would finally like to point out that it is in no way
inherent in our numerical approach to use an equidistant
mentum grid. Indeed, it is more economical to chooseDp
small for small momenta and to let it increase for larger on
as was done, e.g., in previous computations by our group

a-

FIG. 18. Dependence of the time evolution ofM 2(t) on the
time Dt for the simulation with the parameters from Fig. 9 in th
time rangetP@25,50#; in the inset the whole time range is show
The momentum distance is fixed atDp50.05 and the momentum
cutoff pmax510; the solid line represents the simulation forDt
50.0005, the long dashed lineDt50.001, and the short dashed lin
Dt50.005.
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one space dimension the choice of equidistant mome
turns momentum conservation into a trivial algebra of in
ces. In three space dimensions one may use theO(3) invari-
ance of the mode functions as functions ofp. Then, due to
ea

u,

ev

10502
ta
-
angular integrations, the momentum integrals become con
lutions of mode functions with phase space functions, and
equidistant momentum grid does not lead to any major s
plification.
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