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Partial wave analysis of the first order Born amplitude of a Dirac particle
in an Aharonov-Bohm potential
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A partial wave analysis using the basis of the total angular momentum operatorJ3 is carried out for the first
order Born amplitude of a Dirac particle in an Aharonov-Bohm potential. It is demonstrated that thes partial
wave contributes to the scattering amplitude in contrast with the case with scalar nonrelativistic particles. We
suggest that this explains the fact that the first order Born amplitude of a Dirac particle coincides with the exact
amplitude expanded to the same order, where it does not for a scalar particle. An interesting algebra involving
the Dirac velocity operator and the angular observables is discovered and its consequences are exploited.
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I. INTRODUCTION

The first attempts to calculate the Aharonov-Bohm~AB!
scattering@1# amplitude for a scalar particle using perturb
tion theory @2,3# revealed a discrepancy between the fi
order Born amplitude and the exact amplitude when
panded to the same order. Moreover, the second order B
amplitude turned out to be divergent. These results were
tributed @3# to the fact that the first order Born amplitud
based on the Schro¨dinger Hamiltonian of a scalar particl
misses the contribution of thel 50 partial wave, as it is of
second order. The problem manifested itself also in the fi
theory models of the AB effect with scalar particles, name
the Chern-Simons models@4#. It also appeared in perturba
tive calculations in many-body anyon theories near
bosonic end@5#. It was noted that introducing a contact in
teraction into the Hamiltonian remedies these problems@4#.
Subsequently, this interaction was attributed to a sp
magnetic moment interaction@6#. The first order Born am-
plitude for a Dirac particle was calculated in@7# and the
second order in@8#, where full agreement with the expan
sions of the exact amplitude@9# to the corresponding orde
was found. Nonrelativistic perturbative calculations with
the framework of the field theory models of the AB effe
with spin-1/2 particles suffered no problems@10,11#.

No partial wave analysis has been reported in the lite
ture of the first order Born amplitude for a Dirac partic
where it would be interesting to investigate the behavior
the l 50 partial wave. The main motivation behind this wo
is to carry out such an analysis.

In Sec. II, we present a comprehensive partial wa
analysis of the first order Born amplitude for nonrelativis
scalar and spin-1/2 particles. In Sec. III, we carry out a p
tial wave analysis of the Born amplitude of a Dirac partic
using the cylindrical partial modes of the conserved to
angular momentum operator. An interesting closed alge
involving the Dirac velocity operator and the angular obse
ables of the theory is discovered, and its consequences
sued.
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II. PARTIAL WAVE BORN AMPLITUDE FOR
NONRELATIVISTIC SCALAR AND SPIN-1 Õ2 PARTICLES

Before embarking on the treatment of the Dirac partic
we will first carry out a partial wave analysis for the nonre
ativistic scalar and spin-1/2 particles in the AB potenti
While the results of this discussion are generally known a
have been mentioned in the literature in various contexts@6#,
there is no published work that we know of that contains
systematic and complete treatment. Thus we present it
for completeness and to set the stage for the discussion o
relativistic case.

The AB potential in cylindrical coordinates reads

A5
F

2pr
ew , ~1!

wherer5Ax21y2, ew is the unit vector along thew direc-
tion, andF is the flux through the tube. The Schro¨dinger
equation for a scalar particle in this potential, written in c
lindrical coordinates, is (\5c51)

F ]2

]r2 1
1

r

]

]r
1

1

r2 S ]

]w
1 ia D 2

1
]2

]z2 1k2GC~r !50, ~2!

wherea52eF/2p. We take 0,a,1, as in this work we
will be mainly interested in perturbative calculations.

As usual, one can separate thez dependence of the wav
function and neglect it altogether without any loss of gen
ality. The interaction potential in Eq.~2! can be identified as

U52
1

r2 S 2ia
]

]w D1
a2

r2 . ~3!

The first order Born scattering amplitude can now
readily constructed, and reads

f ~1!~u!5S i

2~2p ik !1/2D E e2 ik8•xS 2ia

r2

]

]w Deik•xr dr dw,

~4!
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where k and k8 are, respectively, the wave vectors of t
incident ~from the left! and scattered waves, withuku5uk8u,
andu is the scattering angle. A calculation off (1)(u) yields
@2,3#

f ~1!~u!52aS p

2ik D 1/2cos~u/2!

sin~u/2!
, uÞ0. ~5!

The exact amplitude first calculated in@1# and corrected in
@13# for 0,a,1 reads

f l~u!52
i

A2p ik
~sinpa!

e2 iu/2

sin~u/2!
. ~6!

For smalla, one gets

f ~u!5S p

2ik D 1/2S 2a cot
u

2
2 ia D1O~a2!, uÞ0. ~7!

f (1)(u) given in Eq.~5! clearly misses the2 ia term of Eq.
~7!. This discrepancy was attributed to the fact that the fi
order Born amplitude misses the contribution of thes partial
wave @3#. This can be seen most transparently by looking
the partial Born amplitudes separately, to which we will no
turn.

The plane waves in Eq.~4! can be expanded in terms o
the conserved orbital angular momentum operatorL3 by em-
ploying the well-known expansion

eikx cosa5 (
l 52`

1`

i leil aJl~x!, ~8!

whereJl(x) are the Bessel functions of orderl. After carry-
ing out the angular integration in Eq.~4!, we get

f ~1!~u!5S ia

~2p ik !1/2D(
l

leil uE dr

r
@Jl~kr!#2. ~9!

Now, it is obvious that thel 50 partial wave amplitude
i.e., f 0

(1)(u), vanishes. Integrating over the Bessel functio
with the aid of the formula

E
0

`

dr
@Jl~r !#2

r
5u2l u21, lÞ0, ~10!

we get

f ~1!~u!52(
l

8 iapS 1

2p ik D 1/2

sgn~ l !eil u, ~11!

where sgn(l)5l/ulu, and the prime denotes that thel 50 term
is excluded from the summation. Recalling that generally

f ~1!~u!5(
l

f l
~1!~u!eiu,

we get the partial amplitudes as
10501
t

t

s

f l
~1!~u!5H 2 ipa

~2p ik !1/2sgn~ l !, lÞ0,

0, l 50.

~12!

To compare the above partial amplitudes with the ex
ones expanded in terms ofa, we note that the exact phas
shifts reported in@12,13# read~when 0,a,1)

dm5H 2
p

2
a, m>0,

p

2
a, m,0.

Therefore, the exact partial amplitudes become@12#

f l~u!5H ~e2 ipa21!~2p ik !21/2, l>0,

~eipa21!~2p ik !21/2, l ,0,
~13!

which, for smalla, reduce to Eq.~12! when lÞ0. When l
50, f 0(u) reduces to2 iap/(2p ik)1/2 for small a, while
f 0

(1)(u) vanishes.
We turn now to the nonrelativistic spin-1/2 particle

where we will see that thel 50 partial amplitude is nonvan
ishing. In addition to this, it will turn out that it is this partia
amplitude that leads to the modification of the exact am
tude when the spin is included.

The starting point is the Pauli equation

1

2m
~s•P!2C5EC, ~14!

whereP5(p2eA), A is the AB potential given in Eq.~1!,
and s i , i 51,2,3, are the Pauli spin matrices. Suppress
again thez degree of freedom we get

F ]2

]r2 1
1

r

]

]r
1

1

r2 S ]

]w
1 ia D 2

22pas3d~r !1k2GC~r !50.

~15!

The first order Born amplitude now reads

f ~1!~u!5S i

2~2p ik !1/2D E e2 ik8•xx†~s8!S 2ia

r2

]

]w

22pas3d~r ! Dx~s!eik•xr dr dw, ~16!

wherex (s) andx (s8) are the spinors of the incident and ou
going waves, respectively. Expanding the plane waves,
carrying out the integrals as before, we get

f ~1!~u!5
1

~2p ik !1/2(
l

eil ux†~s8!@2 ipa sgn~ l !~12d l ,0!

2 ipad l ,0s3#x~s!. ~17!

Taking x (s) to be the spin state of a particle polarize
along an arbitrary direction specified by a unit vectorn with
9-2
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polar angleb, and considering transitions to a final sta
polarized along the same direction, we get the amplitude

f ~1!~u!5(
l

~2p ik !21/2eil u@2 ipa sgn~ l !~12d l ,0!

2 ipad l ,0 cosb#, ~18!

f l
~1!~u!5H 2 ipa

~2p ik !1/2sgn~ l !, lÞ0,

2
ipa

~2p ik !1/2cosb, l 50.

~19!

The above results demonstrate that thel 50 partial ampli-
tude is nonvanishing, the reason being the spin–magn
moment interaction term. We also note that for our choice
the spin orientations, it is only thes wave that flips the spin
modifying the unpolarized amplitude only when the incide
particle’s spin has a component perpendicular to the s
noid. This result was first reported in@9# for the exact am-
plitude, and verified for the first order Born amplitude in@7#.
This is quite natural, as thes wave is the only partial wave
that can feel the solenoid; the other waves are banned by
centrifugal barrier.

III. PARTIAL WAVE BORN AMPLITUDES FOR A DIRAC
PARTICLE

The Hamiltonian for a Dirac particle in an electroma
netic potential is

H5H01H int , ~20!

where

H05a•p1bm, ~21!

and

H int5eA02ea•A. ~22!

Here,a i5bg i and b5g4 . The g’s are the Dirac matrices
$gm ,gn%52gmn .

The first order Born amplitude for the scattering of
Dirac particle in an electromagnetic field then reads

Sf i
~1!52 i E d4x c̄ f

~s8!~x!~egmAm!c i
~s!~x!. ~23!

With the AB potential as given in Eq.~1!, with the choice of
gaugeA050, and suppressing thez degree of freedom and
an energy conservingd function, we get

Sf i
~1!5 iaE dr dw C̄ f

~s8!~xW !~2sinwg11coswg2!c i
~s!~xW !.

~24!

For later convenience, we writeSf i
(1) as

Sf i
~1!5 iaE dr dw c̄ f

~s8!~xW !~D11D2!c i
~s!~xW !, ~25!
10501
s
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where the operatorD6 are defined by

D65S g26 ig1

2 De6 iw. ~26!

Prior to carrying out a partial wave analysis of Eq.~24!,
we have to note that an expansion of the incident and ou
ing waves in terms of theL3 eigenstates will be inconclusiv
in this case. The reason, physically speaking, is thatL3 is not
a constant of the motion in the Dirac theory, not even~as is
well known! in the free theory. The spinorsui

(s) anduf
(s) are

now functions of the anglew. So one has to expand the fre
spinors in terms of the eigenstates of the conserved t
angular momentum operatorJ35L31(3/2. We need first to
find these states. These will be taken to be simultane
eigenstates of the set of commuting operatorsH0 , J3 , S3

5b(31jp3 /m, andp3 ~wherej5( I 0
0 I)) according to

H0C ls5EC ls ,

J3C ls5S l 1
1

2DC ls ,

~27!
p3C ls5p3C ls ,

S3C ls56sC ls .

Here, we are diagonalizing the spin operatorS3 along
with the Hamiltonian rather than the more conventional h
licity operator. S3 is usually used when one has a magne
field along thez axis @14#. In the nonrelativistic limit the
upper components ofC ls are eigenstates ofs3 . The eigen-
values ofS3 are

s56A11~p3 /m!2, ~28!

which reduce tos561 whenp3 is set to zero. TheC ls that
solve the set of equations~27! read

C ls5
e2 i ~Et2p3x32 lw!

A2pA2EA2s S AE1smAs11Jl~p'r!

ieiwe3AE2smAs2aJl 11~p'r!

e3AE1smAs21Jl~p'r!

ieiwAE2smAs11Jl 11~p'p!

D ,

~29!

wheree35sgn(s)sgn(p3), p' is the magnitude of the momen
tum perpendicular to the solenoid, ands assumes the value
given in Eq.~28!. Settingp3 to zero one gets theC ls modes
as:

C ls~x!

5
ei ~ lw!

A2pA2EA2sS AE1smAs11Jl~p'r!

ieiwe3AE2smAs21Jl 11~p'r!

e3AE1smAs21Jl~p'r!

ieiwAE2smAs11Jl 11~p'r!

D ,

~30!
9-3
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wheres561 now, and the cylindrical partial modesC ls(x)
are normalized as

E r dr dwC l 8s8
†

~x!C ls~x!5
1

p' d~p'2p'8!d l ,l 8ds,s8 .

~31!

The above partial modes are now the correct expan
basis that are to be used in the partial wave analysis.
incident and outgoing waves which are also eigenstates oS3
are (p350, s571)

C i
~s!~x!5eipi•xui5

eip'r cosw

A4pA2s S AE1smAs11

e3AE2smAs21

e3AE1smAs21
AE2smAs11

D ,

~32!

C f
~s!~x!5eipf•xuf

5
eip'r cos~w2u!

A4pA2s S AE1smAs11

e3eiuAE2smAs21

e3AE1smAs21

eiuAE2smAs11

D .

~33!

The incident and outgoing waves given in Eqs.~32! and~33!

are normalized as *d2x c†(s8)(xW )c (s)(xW )5Ed(pW 2pW 8),
which is the Lorentz-invariant normalization.

We can verify the following expansion ofC i(x) and
C f(x) in terms of the cylindrical modesC ls(x):

C i
~s!~x!5AEi(

l
~ i ! lC ls~x!,

~34!

C f
~s!~x!5AEf(

l
~ i ! le2 i l uC ls~x!.

The amplitudeSf i
(1) now takes the form

Sf i
~1!5 iaE(

l
~ i ! l(

l 8
~2 i ! l 8eil 8sM, ~35!

where

M5E dr dw C̄ l 8s8~x!~D11D2!C ls~x!, ~36!

andE5Ei5Ef .
Now, the operatorsD6, being linear combinations of th

g matrices, will flip the spinorsC ls . On the other hand
since @J3 ,D6#5@S3 ,D6#50, then D6C ls should still be
eigenstates ofJ3 andS3 . It turns out that theD6 operators
together with the angular observables of the theory obey
interesting algebra which leads to a fulfillment of the abo
requirements. Let us first note thatD6C ls are eigenstates o
L3 and(3/2 as can be verified directly, thoughC ls obviously
is not:
10501
n
he

n
e

(3

2
D6C ls57

1

2
D6C ls ,

~37!

L3D6C ls5S l 11
l DD6C ls .

It follows from Eq. ~37! that

S L31
(3

2 DD6C ls5S S 12
1

2D1~ l 11!

S 1
1

2D1~ l !
D D6C ls

5S l 1
1

2DD6C ls , ~38!

as it should be. Therefore, the operatorsD6 acting on the
C ls modes, project them into eigenstates ofL3 and (3/2
such that the sum of the eigenvalues is always equal to thJ3
eigenvalue;l 11/2. To get a further insight into the mecha
nism in action, we first note that theC ls modes can be writ-
ten as linear combinations of the eigenstates of theL3 and
(3/2 operators. Explicitly,

C ls5115
1

A4pE F S AE1mJl~p'r!ei ~ lw!

0
0
0

D
1S 0

0
0

iAE2mJl 11~p'r!ei ~ l 11!w

D G , ~39!

or in a more compact notation

u j 3 ,s51&5U j 3 ,s51;l ,1
1

2L 1U j 3 ,s51;l 11,2
1

2L ,

~40!

where the quantum numbers (l ,l 11) and (12 ,2 1
2 ) above re-

fer to the eigenvalues ofL3 and (3/2, respectively, and the
total orbital angular momentum quantum number is alwa
j 35 l 1 1

2 . Similarly, for s521, we have

u j 3 ,s521;&5U j 3 ,s521;l 11,2
1

2L 1U j 3 ,s521;l ,1
1

2L .

~41!

One can verify the following algebra:
9-4
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@L3 ,D6#56D6,

F(3

2
,D6G57D6, ~42!

@D1,D2#52S (3

2 D .

Note also that

~D1!25~D2!250. ~43!

This algebra means that the operatorsD6 are some sort of
raising and lowering operators in the angular moment
space of the theory. Indeed, denoting the simultaneous ei
state ofL3 and(3/2 asu l 3 ,s3&, one has

L3D6u l 3 ,s3&5~ l 361!D6u l 3 ,s3&,
~44!

(3

2
D6u l 3 ,s3&5~s371!D6u l 3 ,s3&.

Therefore,D6u l 3 ,s3&5c6u( l 361),(s371)&. The complex
numbersc6 are readily verified to be pure phases which
set to 1. Moreover, note that Eq.~43! implies

D1U l 3 ,s352
1

2L 5D2U l 3
,s351

1

2L 50. ~45!

Thus, we have

D6u l 3 ,s3&5u l 361,s371&. ~46!

Going back to ourC ls functions given in Eqs.~40! and
~41!, we see now that

S D1

D2 D u j 3 ,s51&5S U j 3 ,s51;l 11,2
1

2L
U j 3 ,s51;l ,1

1

2L D ~47!

and

S D1

D2 D u j 3 ,s521&5S U j 3 ,s521;l 11,2
1

2L
U j 3 ,s521;l ,1

1

2L D . ~48!

This means that the operatorsD6 acting on u j 3 ,s561&
projects out eigenstates ofL3 and (3/2 such thatl 31s35 l
11/2 only, i.e.,J3 eigenstates.

This mechanism of conserving theJ3 quantum number
can only be observed upon employing the partial wave
pansion of the Dirac spinors.

Going back to our amplitude, upon substituting the e
plicit forms of the partial modes of Eq.~30! in Eq. ~36! and
carrying out thew integral, we finally get
10501
n-

-

-

M5~p!
AE22s2m2

2E
~2s!d l ,l 8ds,s8E Jl 11~p'r!Jl~p'r!dr.

~49!

The above expression clearly conserves theJ3 andS3 quan-
tum numbers, as it should do. Moreover, thel 50 partial
wave contributes to the amplitude on an equal footing w
the other partial waves.

The Bessel function integral in Eq.~49! is tabulated for
positive values ofl ~formula 6.512-3 in@15#!. For negative
values ofl, we make use of the well-known relation valid fo
integral l, J2 l(x)5(21)lJl(x), so that we convert the inte
gral over Bessel functions of negative order to an integ
over Bessel functions of positive order, getting an over
minus sign. So we finally get for the first order amplitude

Sf i
~1!5(

l
8

1

2
ia sgn~ l !eil u1

ia

2
. ~50!

The partial amplitudes are therefore

Sl
~1!5H 1

2
ia, l>0,

21

2
ia, l ,0.

~51!

To compare our final expression in Eq.~51! with the nonrel-
ativistic partial scattering amplitudes,f l

(1)(u), we note that
the S matrix and the scattering amplitude are related in t
dimensions via@12#

~S21!~k,u!5S ik

2p D 1/2

f ~k,u!. ~52!

ExpandingS(k,u) and f (k,u) in powers of the coupling
constant, and imposing the equality for each partial wave,
get

f l
~1!~k,u!5A2p/ ikSl

~1!~k,u!. ~53!

SubstitutingSl
(1) given in Eq.~51! into Eq. ~53!, we get the

partial scattering amplitudes

f l
~1!~u!5H iap

~2p ik !1/2, l>0,

2 iap

~2p ik !1/2, l ,0.

~54!

Equation~54! compares~up to an overall minus sign! with
Eq. ~19!. The discrepancy for the partial amplitudesf 0

(1)(u)
is a result of the difference in the spin orientations of t
incident and outgoing particles in the two cases.

IV. CONCLUSIONS

We have demonstrated through an explicit partial wa
analysis that the inclusion of spin into the Hamiltonian o
nonrelativistic particle in an AB field leads to a nonvanishi
9-5
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l 50 first order partial Born amplitude. Moreover, this pa
ticular amplitude is the one responsible for the modificat
of the total amplitude reported in@9# as a result of the inclu-
sion of spin. A partial wave analysis of the first order Bo
amplitude for a Dirac particle shows that all the partial a
plitudes, including thel 50, are nonvanishing and contribu
equally to the total amplitude. An interesting algebra invo
ing the Dirac velocity operator and the angular observab
of the Dirac theory was discovered, and shown to lead t
mechanism for the conservation of the total angular mom
10501
n

-

-
s
a

n-

tum quantum number upon transitions from the initial to t
final states at the level of each partial wave.
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