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Partial wave analysis of the first order Born amplitude of a Dirac particle
in an Aharonov-Bohm potential
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A partial wave analysis using the basis of the total angular momentum opégatocarried out for the first
order Born amplitude of a Dirac particle in an Aharonov-Bohm potential. It is demonstrated trapangal
wave contributes to the scattering amplitude in contrast with the case with scalar nonrelativistic particles. We
suggest that this explains the fact that the first order Born amplitude of a Dirac particle coincides with the exact
amplitude expanded to the same order, where it does not for a scalar particle. An interesting algebra involving
the Dirac velocity operator and the angular observables is discovered and its consequences are exploited.
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I. INTRODUCTION Il. PARTIAL WAVE BORN AMPLITUDE FOR
NONRELATIVISTIC SCALAR AND SPIN-1 /2 PARTICLES

The first attempts to calculate the Aharonov-BobhB) Before embarking on the treatment of the Dirac patrticle,

s_cattering[l] amplitude for a spalar particle using pert“r?’a‘ we will first carry out a partial wave analysis for the nonrel-
tion theory [2,3] revealed a discrepancy between the firstygyistic scalar and spin-1/2 particles in the AB potential.
order Born amplitude and the exact amplitude when exyyhjje the results of this discussion are generally known and
panded to the same order. Moreover, the second order Bolhye been mentioned in the literature in various conteéits
amplitude turned out to be divergent. These results were athere is no published work that we know of that contains a
tributed [3] to the fact that the first order Born amplitude systematic and complete treatment. Thus we present it here
based on the Schdinger Hamiltonian of a scalar particle for completeness and to set the stage for the discussion of the
misses the contribution of the=0 partial wave, as it is of relativistic case.

second order. The problem manifested itself also in the field The AB potential in cylindrical coordinates reads

theory models of the AB effect with scalar particles, namely,

the Chern-Simons modeld]. It also appeared in perturba- A ie R

tive calculations in many-body anyon theories near the 2mp ¢’

bosonic end5]. It was noted that introducing a contact in-

teraction into the Hamiltonian remedies these problgfils wherep= N €, is the unit vector along the direc-
Subsequently, this interaction was attributed to a spin-tion, and® is the flux through the tube. The Schiinger
magnetic moment interactiof6]. The first order Born am- equation for a scalar particle in this potential, written in cy-
plitude for a Dirac particle was calculated fi@] and the lindrical coordinates, is{=c=1)

second order i8], where full agreement with the expan- s

2
sions of the exact amplityc{@] to the' corresponding orcljer inr 514_ _12 i-l—ia + iz*‘kz W(r)=0, (2)
was found. Nonrelativistic perturbative calculations within dp= pdp p°\de Iz

the framework of the field theory models of the AB effect ) )

with spin-1/2 particles suffered no problefi,11]. where o= —e®/27. We take G<a<1, as in this work we
No partial wave analysis has been reported in the literaWill be mainly interested in perturbative calculations.

ture of the first order Born amplitude for a Dirac particle AS usual, one can separate thedependence of the wave

where it would be interesting to investigate the behavior offinction and neglect it altogether without any loss of gener-

thel =0 partial wave. The main motivation behind this work ality. The interaction potential in Eq2) can be identified as

is to carry out such an analysis.

In Sec. Il, we present a comprehensive partial wave UZ—i(Ziai +
analysis of the first order Born amplitude for nonrelativistic p° de
scalar and spin-1/2 particles. In Sec. I, we carry out a par-
tial wave analysis of the Born amplitude of a Dirac particle, The first order Born scattering amplitude can now be
using the cylindrical partial modes of the conserved totafeadily constructed, and reads

angular momentum operator. An interesting closed algebra

a2

)

bml

involving the Dirac velocity operator and the angular observ- (1) ,. ' f N LR T
ables of the theory is discovered, and its consequences pur-f (6)= 2(2mik) T2 © p® do e pdpde,
sued. 4
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wherek and k' are, respectively, the wave vectors of the —iTa
incident (from the lefy and scattered waves, witk|=|k’|, WSQW), I#0,

(1) —
and 6 is the scattering angle. A calculation Bf)(6) yields fim (o) (12
[2,3] 0, I=0.
7 \Y2coq 6/2) To compare the above partial amplitudes with the exact
fHg)= —a(m) S (5)  ones expanded in terms of we note that the exact phase

shifts reported irf12,13 read(when 0<a<1)

The exact amplitude first calculated [ih] and corrected in .
[13] for 0<a<1 reads - m=0,

e 02 Om= -
(sinma) ——— ®) Sa,  m<0.

|
£(6)=— .
0 ik o Sin(or2)

For smalla, one gets Therefore, the exact partial amplitudes becdih2]

1/2 0
f(0)2<m> (—acotz—ia

f()(9) given in Eq.(5) clearly misses the-ia term of Eq. \ TR ;
(7). This discrepancy was attributed to the fact that the firstz(g’ fo(0) reduces to—iam/(2aik)™" for small a, while
order Born amplitude misses the contribution of theartial ~ fo () vanishes. o _ _
wave[3]. This can be seen most transparently by looking at We turn now to the nonrelativistic spin-1/2 particles,

the partial Born amplitudes separately, to which we will nowWhere we will see that the=0 partial amplitude is nonvan-
turn. ishing. In addition to this, it will turn out that it is this partial

The plane waves in Eq4) can be expanded in terms of a@mplitude that leads to the modification of the exact ampli-
the conserved orbital angular momentum operhtoby em-  tude when the spin is included.

(e"'m*—1)(2mik) Y2 =0,

+O(a2), 0+0. (7) f|(0): (eiwa—l)(ZWik)_l/z, | <0, (13)

which, for smalla, reduce to Eq(12) whenl#0. Whenl

+ o0 1 2
eikxcosa: 2 ileilaJl(X) (8) %(O'H) Vv=EV, (14)

i wherell=(p—eA), A is the AB potential given in Eql),
yvhereJ,(x) are the Bessel funqtlons of orderAfter carry- 44 o', i=1,2,3, are the Pauli spin matrices. Suppressing
ing out the angular integration in E¢4), we get again thez degree of freedom we get

la io [ dp # 149 1(a 2
(1) - ile | 7 2 .
f12(6) (W)ZI le f p [Ji(kp)]*. ©) W—F;%—F? £+IC¥ _27Tal0'35(r)+k2 ¥(r)=0.
(15
Now, it is obvious that thé=0 partial wave amplitude, _ _
i.e., f{Y(0), vanishes. Integrating over the Bessel functions ~The first order Born amplitude now reads
with the aid of the formula ) )
) f(l)(a):(ﬂ>fe—ik’AxXT(s/) 2I—2ai
* J,(r 2(2mik J
f art '(r)] —[21]7%, 120, (10 (zmio re
0
—277aa'35(r))x(5)e'k'xp dpde, (16)
we get
1 |12 . where y(® and x") are the spinors of the incident and out-
fOg=->" iaﬂ'(m> sgn)e'?, (1)  going waves, respectively. Expanding the plane waves, and
|

carrying out the integrals as before, we get

where sgnlj=I/|l], and the prime denotes that the 0 term 1 . )
is excluded from the summation. Recalling that generally ~ f™(8)= Wil e xS —ima sgn()(1- 8 o)

f(l)(e)zzl fl(l)(a)eiﬁ, _i7Ta’5|’00'3])((s). (17)

Taking x® to be the spin state of a particle polarized
we get the partial amplitudes as along an arbitrary direction specified by a unit veatawith
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polar angleg, and considering transitions to a final state where the operatod* are defined by
polarized along the same direction, we get the amplitude as

f<1>(0)=2 (2mik) "V [ —ima sgr(l)(1— 8 o)

—imad ycospl, (18
—iTa

ngdl), 1 #0,

i Ta (19
— WCOSIB, |=0.

The above results demonstrate thatltke® partial ampli-

+

Yotiys

b 2

(26)

)eii“’.

Prior to carrying out a partial wave analysis of Eg4),

we have to note that an expansion of the incident and outgo-
ing waves in terms of the; eigenstates will be inconclusive

in this case. The reason, physically speaking, is thds not

a constant of the motion in the Dirac theory, not evas is
well known) in the free theory. The spinors® andu{® are
now functions of the angle. So one has to expand the free
spinors in terms of the eigenstates of the conserved total
angular momentum operatds=L 5+ >5/2. We need first to

tude is nonvanishing, the reason being the spin—magnetitnd these states. These will be taken to be simultaneous
moment interaction term. We also note that for our choice okigenstates of the set of commuting operatdegs Jz, Ss

the spin orientations, it is only thewave that flips the spin,

= B33+ épsy/m, andps (whereé=(P})) according to

modifying the unpolarized amplitude only when the incident

particle’s spin has a component perpendicular to the sole-

noid. This result was first reported [9] for the exact am-
plitude, and verified for the first order Born amplitudd .
This is quite natural, as thewave is the only partial wave

that can feel the solenoid; the other waves are banned by the

centrifugal barrier.

Ill. PARTIAL WAVE BORN AMPLITUDES FOR A DIRAC
PARTICLE

The Hamiltonian for a Dirac particle in an electromag-
netic potential is

H=Hy+Hjy, (20
where
Ho=a-p+Bm, (21
and
Hin=eAy—ea-A. (22
Here, o;=B7y; and B=vy,. The y's are the Dirac matrices:
{7, 71=29,,.

The first order Born amplitude for the scattering of a ¥is=

Dirac particle in an electromagnetic field then reads

Si=—i f d*x () (ey, A (x). (23

With the AB potential as given in Eq1), with the choice of
gaugeA,=0, and suppressing thedegree of freedom and
an energy conserving function, we get

Sii'=ia J dp de W )(X)(—sin@ys+cosey2) ¥ (X).
(24

For later convenience, we wrig") as

s —|af dpde ¢4 )(X)(D*+D7)y¥(x), (25

HoWs=EW¥|s,

I +

‘]3\P|S \I,Is-
(27)
PsVis=ps¥is,

SVs=

Here, we are diagonalizing the spin opera&y along
with the Hamiltonian rather than the more conventional he-
licity operator. S; is usually used when one has a magnetic
field along thez axis [14]. In the nonrelativistic limit the
upper components o¥ g are eigenstates af;. The eigen-
values ofS; are

£sVs.

=+\1+(ps/m)?,

which reduce ts= + 1 whenps is set to zero. Th&’ ¢ that
solve the set of equatior(27) read

VE+smys+1J,(p*p)
ie'?esVE—smys—aJd.1(p'p)
esVE+smys—1J(p*p) |’
ie'*VE—smys+1J,,4(p"p)
(

(28)

e {(Et=pgxg—le)

2m\2E |25
29)

wheree;=sgng)sgns), p* is the magnitude of the momen-
tum perpendicular to the solenoid, as@ssumes the values
given in Eq.(28). Settingps to zero one gets th#,; modes
as:

\P|S(X)

VE+smys+13,(p*p)
ie'¢egE—smys—1J,.4(p*p)

esVE+smys—1J(ptp) |’
ie'*VE—smys+1J,,4(p*p)

eille)

2w \2E\2s

(30
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wheres= *1 now, and the cylindrical partial modas;s(x) I 1.
are normalized as 5 D Wis=+5D" s,
t 1 Ll (37)
Pde¢‘P|/s/(X)‘P|5(X):pT5(p —p )61 6s s - 41
(32) |—3D+‘I’|s:( | )D+‘I’|s-
The above partial modes are now the correct expansion
basis that are to be used in the partial wave analysis. Thi follows from Eq. (37) that
incident and outgoing waves which are also eigenstat&s of
are p3=0,s=%1)
1--]+(+1
VE+smys+1 (L 3| 5o ( 2 ( ) D
iptp cos Ir= [a_ 3t 5 |D"VYs= R g
\If-(s)(x)=eipi‘xu»=e | svE-smisTl , 2 S +E +(1) S
| " w25 | eVEt+smys—1 2
VE—smys+1
(32 =1+ 5 thﬁs, (38
V9 (x) = ePrug
as it should be. Therefore, the operat@s acting on the
E+sm/s+1 it should be. Theref h a@s acti h
giptpcote=0) | eigmm Vs modes, project them into eigenstateslof and >4/2
- | =3 such that the sum of the eigenvalues is always equal tdgthe
Vam\2s esVE+smys—1 eigenvaluej +1/2. To get a further insight into the mecha-
e'JVE—smys+1 nism in action, we first note that the 3 modes can be writ-
(33) ten as linear combinations of the eigenstates ofltheand

The incident and outgoing waves given in E(2) and(33)
are normalized as [d "))y (X)=ES(F—p'),
which is the Lorentz-invariant normalization.

We can verify the following expansion o¥;(x) and
W¥;(x) in terms of the cylindrical mode¥ (x):

W= ES (1,

(34)
W00 = VB2 (1)'e T Wig(x).
The amplitudeS{? now takes the form
S(ﬁl)ZiaEEl (i)'; (—)'e'"sMm, (35)
where
M= [ dpde Wya((D7 4D W00, (39
andE=E;=E;.

>4/2 operators. Explicitly,

JEFm(p pre

1 0
'\l} _ —_
Is=+1 AnE 0
0
0
0
+ 0 , (39
iIVE-mJ o (p-p)e'+he
or in a more compact notation
. . 1 .
liz,s=1)= ]3,s=1;l,+§>+ 13,s=1;l+1,—§ ,
(40)

where the quantum numbergl(+ 1) and ¢,— ) above re-
fer to the eigenvalues df; and 25/2, respectively, and the
total orbital angular momentum quantum number is always

Now, the operator® =, being linear combinations of the j;=1+ 3. Similarly, for s=—1, we have

v matrices, will flip the spinorsV . On the other hand,
since[J;,D*]=[S;,D*]=0, thenD*¥, should still be
eigenstates of; andS;. It turns out that thédD* operators

+
together with the angular observables of the theory obey an 2>

1
lisg,s=—1;)=|jg,5=—1;1+1,— =

5=~ i+ >
jg.s=-LiL+3).

interesting algebra which leads to a fulfillment of the above

requirements. Let us first note that-¥, are eigenstates of
L; andX4/2 as can be verified directly, though obviously
is not:

(41

One can verify the following algebra:
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[Ly,D*]==*D",
23 | — =
7,D =xD-, (42
013
[DT,D7]=2 >
Note also that
(D*)?=(D")?=0. (43

This algebra means that the operatdrs are some sort of

PHYSICAL REVIEW 67, 105019 (2003

EZ_ 2
M=(7T)T(25)5|,|/5s,s'f Ji+1(ptp)di(ptp)dp.
(49

The above expression clearly conservesth@ndS; quan-
tum numbers, as it should do. Moreover, theO partial
wave contributes to the amplitude on an equal footing with
the other partial waves.

The Bessel function integral in Eg49) is tabulated for
positive values of (formula 6.512-3 in[15]). For negative
values ofl, we make use of the well-known relation valid for
integrall, J_,(x)=(—1)'J,(x), so that we convert the inte-
gral over Bessel functions of negative order to an integral

raising and lowering operators in the angular momentunPver Bessel functions of positive order, getting an overall
space of the theory. Indeed, denoting the simultaneous eigefinus sign. So we finally get for the first order amplitude

state ofLz and=4/2 as|l3,03), one has

LsD"[l3,03)=(I3+1)D"[l3,03),
(44
23

2 Dt||3,0'3>:(0'31l)Di||3,0'3>.

Therefore,D*|l3,03)=c.|(I3£1),(o5F1)). The complex

numbersc.. are readily verified to be pure phases which we

set to 1. Moreover, note that Eg3) implies

D+

1
1 Oa=+ §> =0. (45

1
|3,0'3:_§> :D_
Thus, we have

Dt||3,0'3>:||3i1,0'311>. (46)

Going back to ounV ¢ functions given in Eqs(40) and
(41), we see now that

j 1;1+1 !
]315_ 1+| E

D+
(5 Jlizs=1)= . @7
j3,s=1;l,+§>

and

jz,s=—1;1+1 L
13,8= ; 5

DY .
5 Jlisis=-1)= @9

13,s=—1;l,+§>

This means that the operatoB™ acting on|js,s=+1)
projects out eigenstates bf and >~5/2 such thal;+ o3=1
+1/2 only, i.e.,J; eigenstates.

This mechanism of conserving thly quantum number

can only be observed upon employing the partial wave ex-

pansion of the Dirac spinors.

Going back to our amplitude, upon substituting the ex-

plicit forms of the partial modes of E¢30) in Eq. (36) and
carrying out theyp integral, we finally get

s}i”:}I‘,' %iasgr(l)e”‘“r '70‘ (50)
The partial amplitudes are therefore
1
§|a, =0,
st=1 _4 (51)
Tia’ | <O.

To compare our final expression in E§1) with the nonrel-
ativistic partial scattering amplitude${")(¢), we note that
the S matrix and the scattering amplitude are related in two
dimensions vigd12]

ik 1/2
(S—l)(k,0)=(z) f(k,0). (52

ExpandingS(k, ) andf(k,#) in powers of the coupling
constant, and imposing the equality for each partial wave, we
get

f(Y(k,0)=\27/ikSY(k,0).

SubstitutingS(?) given in Eq.(51) into Eq.(53), we get the
partial scattering amplitudes

(53

iam

=0,

W (2ik)M’

o= _i.. (54)
————,  1<0.
(2mik)?

Equation(54) comparegup to an overall minus sigrwith
Eq. (19). The discrepancy for the partial amplitudgg’( 6)

is a result of the difference in the spin orientations of the
incident and outgoing particles in the two cases.

IV. CONCLUSIONS

We have demonstrated through an explicit partial wave
analysis that the inclusion of spin into the Hamiltonian of a
nonrelativistic particle in an AB field leads to a nonvanishing
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=0 first order partial Born amplitude. Moreover, this par- tum quantum number upon transitions from the initial to the
ticular amplitude is the one responsible for the modificationfinal states at the level of each partial wave.

of the total amplitude reported 9] as a result of the inclu-

sion of spin. A partial wave analysis of the first order Born

amplitude for a Dirac particle shows that all the partial am- ACKNOWLEDGMENTS
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