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Decoherence and records for the case of a scattering environment
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Using nonrelativistic many body quantum field theory, a master equation is derived for the reduced density
matrix of a dilute gas of massive particles undergoing scattering interactions with an environment of light
particles. The dynamical variable that naturally decohéites pointer basisis essentially the local number
density of the dilute gas. Earlier master equations for this sort of sysiech as that derived by Joos and Zeh
are recovered on restricting to the one-particle sector for the distinguished system. The derivation shows
explicitly that the scattering environment stores information about the system by “measuring” the number
density. This therefore provides an important example of the general connection between decoherence and
records indicated by the decoherent histories approach to quantum theory. It also brings the master equation for
this system into a form emphasizing the role of local densities, which is relevant to current work in deriving
hydrodynamic equations from quantum theory.
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[. INTRODUCTION and a denotes the stringy,a,, ... ,a,. We are interested
in sets of histories which satisfy the condition of decoher-
The notion of decoherence plays a central role in studiegnce, which is that the decoherence functional
of emergent classicality and the foundations of quantum ;
theory generallyf1]. While it is usually regarded as signify- D(a,a")=Tr(C,pC,,) ()
ing the loss of quantum coherence for a system of interest, it
may also usefully be regarded as an indication of the degrelé zero whena# a’. Decoherence implies the weaker con-
to which information about the system is stored somewherdlition that R® (a, a') 0 for a#a’, and this is equivalent
in the system or in its immediate environm¢t3)]. It is in  to the requirement that the above probabilities satisfy the
this way that decoherence is related to “generalized meaProbability sum rules.
surements.” An important application of these ideas is in The stronger condition of decoherence is the more inter-
quantum cosmology4]. In applying quantum theory to the €sting one since it is related to the existence of records—
very early universe, there are no actual measuring devices fgformation storage about the histories somewhere in the
measure what was happening. The process of decoheren&stem. More precisely, if the initial state is pure, decoher-
however, guarantees that measurements we make in tigHCe means that there exist a set of alternatives at the final
present are correlated with alternatives in the past. time t,, which are perfectly correlated with the alternatives
These ideas are perhaps most transparent when form@a, - - - @, at timesty, ... t, [5,14]. This follows because,
lated in terms of the decoherent histories approach to quarwith a pure initial staté‘lf} the decoherence condition im-
tum theory[2,4—8. Other approaches to decoherence, suclplies that the state§,|¥) are an orthogonal set. It is there-
as Zurek’s “einselection” approacfi,9,10, related density fore possible to introduce a projection opera®yy (which is
matrix approache$l1] or quantum state diffusiofil2,13,  generally not uniquesuch that
may be equally useful for analyzing these issues, but will not
be explored here. It is the aim of this paper, continuing in the RpCal W)= 06,5C|W). (4)
spirit of Ref. [3]’.t0 Investigate the connection between .de'lt follows that the extended histories characterized by the
coherence and information storage. To fix ideas, we b”eﬂychamR C.|W) are decoherent, and one can assign a prob-
review the decoherent histories appro&atthough the gen- i s ﬁ hi h 9 P
eral results of this paper are by no means specific to th "ilb' ity 0 the histories» and the record, given by

approach o o
In the decoherent histories approd2M—§, probabilities Plav,az, ... aniBu B .. B
are assigned to histories via the formula =Tr(Rg,p,, ... 5,CaPCL). (5)
This probability is then zero unless,= B, for all k, in
_ T k k
Play,az, ...)=Tr(CepC,y) @ which case it is equal to the original probability
p(ay, ...,x,). Hence, either the’s or the 8’s can be com-
whereC,, denotes a time-ordered string of projectors at timegPletely summed out of Eq5) without changing the prob-
ty, ..t ability, so the probability for the histories can be entirely

replaced by the probability for the records at a fixed moment
) of time at the end of the history:
Co=P, € (i) H(th—th_ 1)P e (IHE-t)p
1 1

) (@) =TI Rp(t))]=Tr(C,pCl). (6)
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Conversely, the existence of recorfs, ... B, at some fi-  wherep,=mgq,. From this solution, one can see that at the
nal time perfectly correlated with earlier alternativesfinal time 7, the positions and momenta of the environment
@y, ...,anatty, ... t, implies decoherence of the histo- of oscillators depend on the particle’s trajectouf) via the

ries. . _ . . temporally nonlocal quantities
These issues are most usefully investigated in the context

of particular models, and it then becomes possible to ask 7

some more precise questions: Which dynamical variables in Xﬁ=f dt x(t) sinw,(7—1t) (12
the environment store the information about the decoherent 0
histories? Or what is essentially the same thing, how are the
“pointer basis” variables stored in the environment? How is
the amount of decoherence related to the amount of informa-
tion stored?

Reference 3] investigated these questions in the contextthese are essentially the Fourier modes of the particle’s tra-
of the quantum Brownian modeQBM), which consists of a  jectory x(t). Hence, each oscillator stores a single Fourier
particle of large mas$1 moving in a potentiaV(x) and  mode of the trajectory, and therefore by using a large number
linearly coupled to a bath of harmonic oscillators. The totalpf oscillators, information about many Fourier modes is

XE,=JTdt X(t) cosw,(7—t). (13
0

system is therefore described by the action stored from which the approximate trajectory may be recov-
1 1 ered. Furthermore, since it is the Fourier modes that are natu-
_ SN2 o2 rally registered in the environment, rather than positions at
ST[X(t)’q"(t)]_f dt ZMX V) +§n: fdt[Zm”q” each moment of time, decoherence is in fact most clearly
seen in terms of the variablé$2), (13), rather than position,
_ Em 202 ¢ g x ) as shown in Ref[3]. The variables are nonlocal in time so it
2 Mn@nGn ™ CnlnX | can only be seen at the level of an influence functional ex-

pressed in path integral language, rather than a master equa-
In the traditional discussion of decoherence in this model, ition. Hence, in this model, it was possible to see exactly how
is shown that for a continuum of oscillators in a thermalthe environment stored the information about the system’s
state, the influence functional or density matrix become aptrajectory in configuration space. Furthermore, a detailed
proximately diagonalized in position. This may be seen, forquantitative estimate of the information content was also car-
example, through the master equation for the reduced densitjed out in Ref.[3].
matrix p(x,y) of the distinguished systefd5], which in the Although a very illustrative model, the quantum Brown-
high temperature limit is ian motion model is not the most relevant model for deco-

herence in physically interesting situations. Far more physi-

ap ik [dPp Pp i cally significant is the case in which the environment is a set
T oml 2 vz T 7 V)= V(y)lp— v(x—y) of light particles which interact with the distinguished par-
at  2m\dxc oy h . | . !
ticle by a scattering process. The resulting master equation,
dp dp| 2mykT ) first derived by Joos and Zeh, is very similar in form to the
“ox EV ) (x=y)%p. ®  QBM case, Eq(8) [11,16,17. But the dynamics of the en-

vironment, and therefore the means of information storage,

In Ref.[3], the issue of how the information about position is are rather different. o _ .
stored in the environment was addressed. The system is lin- The aim of this paper is to investigate the connection
ear in the oscillators, so the classical and quantum dynamid2etween decoherence and records in the case of decoherence

coincide for the environment. Classically, the equations oy & scattering environment. In some ways it is simpler,
motion of the environment of oscillators are since, in the usual assumption of widely separated time

scales for system and environment dynamics, each environ-
mental particle scatters briefly off the distinguished particles,
and moves freely thereafter, carrying some information about
the distinguished particles. This process can therefore be de-
scribed by a Markovian master equation, and the process of
information storage and decoherence may be described in a

mndn+mnw§qn: —CpX(1). 9

The solution to this equation, with fixeal,(0), g,(0) is

dn(7)=q,(0)coSw, 7+ pn(O)SinwnT moment by moment mannéunlike the quantum Brownian
Mpwn motion case, where the environment oscillators store infor-
c , mation about the entire historyThis means in fact that we
__n f dt x(t) sinw,(7—t) (10) do not need to make use of the full machinery of the deco-
MywnJo herence functional—it is sufficient in fact to look at the evo-
lution of the reduced density operator.
Pn(7) =pn(0)cosw,7— M,w,0,(0)Sinw,7 In the quantum Brownian motion model case, the system
variables that the environment measures were actually iden-
—cnffdt X(1) cosw(7—1) (11) tified quite _simply, from the classical_equations of mation. In .
0 the scattering case, the system variables measured most di-
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rectly by the environment are also determined quite easilymay be seen from the formal solution to the Lindblad equa-
by examining simple scattering processes. In particular, supgion [21]. Consider the case of a single Lindblad operator
pose we consider the scattering of some light particles off a=Lg+iL,, whereLg, L, are Hermitian. Divide the finite
dilute gas of a set of more massive particles with coordinateime interval[0,t] into K subintervals, so that=Két, and

g;. Then, it follows quite straightforwardly from simple let 6t—0, K—c, holdingt constant. Then, the formal solu-
scattering theoryand we will in fact demonstrate thishat  tion to the Lindblad equation is obtained by taking the limit
the scattering amplitude is proportional to the Fourier transst—0, K—oo (with t fixed) of the expression

form of the number density of the massive particles,

St\K K St
I 21 ...d2 —p* t
Ne=3) ea. 14 ”(t)‘(w> J ot e exp<2<€mL b ))
J

This means that, loosely speaking, for a known interaction Xex;{ —%IL—%F)ex;{ - %—H’&t)p(O)
potential, measurements of the initial and final momenta of
the scattering environment determine the number density of K i St
the distinguished system. x I1 ex;{—H’&t)ex;{ — —|L—€m|2)
Of course, the number density is closely related to posi- m=1 h 2
tion, which is normally held to be the preferred basis in these St
calculations. But, following the lead of the oscillator model, xex;< - —(e*r;]L—emLT))_ (17)
we expect decoherence to look simplest in terms of the dy- 2

namical variables which are most simply and directly storeohere H'=H+ (i%/4)[L,L'] and the¢,, are complex num
I - [} m -

in the environment. Our aim is therefore to give a derivation ers at the discrete moments of time labelednbyWe use
of the master equation which emphasizes the central rol e notation

played by the number density. We have found that the deri-
vation is in fact most transparent in terms of nonrelativistic 12— _ 2 _ 2
many body quantum field theory, where the number density L= nl"= (L= Re€m) ™ (Ly=Im £m)°. (18)
appears very naturally. We will give an alternative and morer,q ordering of the operators at each moment of time is
general derivation of the master equation, using many bodyejevant in the limitst— 0 (although the operators at dif-
theory, which brings out the role of local number densityterent times are time ordered, according to increasig
more clearly, hence showing the connection with records. Tha; this is the solution is readily verified by explicit com-
It is pertinent at this stage to mention the Lindblad form putation. The solution has the form of a “measurement pro-
of the master equatiofL8], which is the most general pos- (egs" of thel 's, continuous in time, with “feedback” via the
sible form a master equation can take under the assumptio[%rmS (€§1L—€mLT) [22]. That is, one can see that the effect

that.the evplunon IS Markpwa(a condition yvell satisfied in of the environment is to produce a tendency towards diago-
a wide variety of interesting modeglsThe Lindblad master nality in L

equation is We shall show that a many-body theory derivation of the
d 10 master equation in the case of a scattering environment leads
—p=—i[H,p]—— > ({LJTLJ- ,p}—ZLijJ-T). (15)  to a master equation of the Lindblad forfander the as-
dt 2= sumption that the environment dynamics are much faster

] o o than the system dynamigsand that the Lindblad operators
Here,H is the Hamiltonian of the distinguished subsystemye essentially the local number density. The previous forms
(sometimes modified by terms depending onltheand the  of the master equation are recovered in the one-particle sec-
n operatorsL; model the effects of the environment. The (or for the system of massive particles.

is of this form with context of the decoherent histories approach to quantum
12 o theory, which aims to give a very general account of emer-
_ [ AmykT i 0 (1  gent classicality. In particular, it is asserted that at suffi-

#2 2mkT ciently coarse-grained scales, the local densitimamber,

momentum, energydefine a set of habitually decohering

as described in Ref$19,13. [Actually, the master equation variables, even in the absence of an environm2y23]. This
(8) is not strictly of the Lindblad form, and as a consequencéds because they are locally conserved, and therefore slowly
can suffer from a violation of positivity20]. However, the varying when coarse grained over sufficiently large volumes,
difference between Eq8) and the Lindblad form with. ~ and thus are expected to be approximately decohébemnt
given by Eq.(16) is of the order of I which does not cause exactly conserved quantities are exactly decoherent in
matter for high temperaturgs. the histories approa¢hThis is therefore a different mecha-

The Lindblad operators; determine the basis in which nism for decoherence than the usual mechanism of decoher-
the density operator tends to become approximately diagence through an environment. Hence, in order to close the
nal, or what is essentially the same, the sets of variablegap between the familiar system-environment models and
describing an approximately decoherent set of histories. Thithe less familiar hydrodynamic models without an obvious
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environment, it is useful to rewrite the system-environmentwhere Eq=q2/2M, wq=q2/2m, V is the spatial volume of
models in terms of local densities as we do here. the system(which we assume is in a bpand

In Sec. Il, we briefly review many body field theory, and
carry out the simple scattering calculation leading to the re- e —iK-x
sult that the scattering particles effectively measure the local ”(k):f d*xe " e(x). (23
number density, Eq14).

In Sec. Ill, we use many body field theory to derive the The Fourier transformed number densities are
master equation for the system, using a slow motion limit for
the gas of massive particles. As anticipated it has the Lind- "
blad form with the Lindblad operators proportional to the Ne=2 ajag: (24)
Fourier-transformed number denshy, . I

In Sec. IV, we show that our master equation reduces to
an earlier result of Gallis and Flemind7] in the one- Ne=> b;r]bq+k (25)
particle sector for the gas of massive particlgshis is es- q
sentially the same as the master equation of Joos and Zeh
[11] but the comparison with Gallis and Fleming is more and one may see that the Hamiltonian has the more concise
direct) form

The master equation of Secs. Il and IV does not have any
dissipation and is analogous to the Lindblad equation of N t 1
guantum Brownian motion with proportional tox. In Sec. HZ% (Eqagaqt @qhghq) + Vi ; v(K)Ngn— (26)
V, we go beyond the slow-motion limit to derive a master
equation with dissipative terms.

We summarize and conclude in Sec. VI. =Ho+Hint. (27)

From these relations we see that the environment couples to
Il. MANY BODY FIELD THEORY the number density of the system. It is this feature of many
The dynamics of a many body system is very conve-bOdy figld _theory that makes it th.e appropria_tg medium for
niently handled using many body quantum field theory. Wethe derlvatlon_ of the master equation emphasizing the role of
now set up the formalism of many body field the¢gg,25 number dens!ty._
which we will use to derive the master equation. We consider The Smatrix is
a set of nonrelativistic system particles described by a field .
¥(X) interacting through a potentiab(x) with an environ- S=Texp{ _if dt Hint(t)> (29)
ment described by a fielg(x). The total system is described —o
by the Hamiltonian
where

1 1
H= d3x<_V¢T(X)‘V¢//(X)+_VXT(X)'VX(X)
J am Hin(0= 3 2 NGO (0) (29

+ f d3xd® T () (X" ) p(x—x)xT (X ) x(x) (19

and here

(for simplicity, we seth =1 hereafter. In this language, the _
number densitiedl(x) andn(x) of the system and environ- Nk(t)=2 agawk e'(Ba~Eqrit (30
ment fields are d

N(X)ZI»[/T(X)I//(X) (20) nk(t)zz bgbq+k ei(wqqu+k)t. (31)
q

n()=x"00x(x). (21)
We may now use this formalism to look at a simple scat-
[This is the field-theoretic version of E¢l4).] tering situation to determine how the environment stores in-
The above relations are also more conveniently written irformation about the system. In the quantum Brownian mo-
terms ofa, andb,, the annihilation operators for the system tion case, the nature of information storage was determined
and environment, respectively, and the Hamiltonian then isin essence by solving the classical equations of motion. A
similar strategy works here too. Let us suppose that the dis-

; ; 1 tinguished system is classical, and consider what happens
H=2> (Eq@qaq T @gbghg) + 5 > when the environment scatters off it. Suppose the environ-
d ky+ky=kitka ment starts in an initial momentum stdie,) and scatters
;L t ot into a final statdk;). The scattering amplitude for this pro-
X v(ky—kz)ay by, ay; by (22 (ess, to first order, is
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i [ (where we are using the interaction picturExpanding Eq.
(k| Slko)y= vﬁ dtg v(K)Ng () (k¢[n_(t)|ko) (35) to second order, th&matrix may be written as
— oy, — oK
Vy(k)j dtN,(t)e' (k™K (32 where

where k=Kk;—Kky. This simple result shows that a single 0

scattering event by the environment stores information about Up=— fﬁmdt Hind(t) (37)

the Fourier transforniin space and timeof the number den-

sity. It is in this sense that the number density has a preferreging

status—this is the variable that is measured most directly by

the environment and is the exact analogy of the relations 1

Egs.(12), (13) in the quantum Brownian case. UZZEJ dtlf dtz T(Hin(t)Hini(t2))- (38)
The measured variables above are, of course, nonlocal in

time, involving a temporal Fourier transform of the numberThe requirement of unitarityS '=S', implies that U,

density, so they cannot, in fact, be compatible with a Mar-= UI and

kovian master equation. Under a reasonable slow motion as-

sumption, the system time scale is much slower than the Up+Uj=U1. (39

environment time scale, and we may ignore the time depen- . )
dence inN(t), vielding We will therefore write

; 1
(il Shko)= (k) Nidlwg —r). (39 Up=3ViriB 0

This corresponds more directly to a Markovian master equal/hereB= B, so we now have
tion, as we shall see. 1

It remains to briefly sketch the connection between these S=1+i(U;—B)— _Ui_ (42)
results and the discussion in Sec. | of records in the decoher- 2
ent histories approach. We imagine that the environment con
sists of a very large number of particles which scatter off the
system particles. Each scattering event consists of an incom- 1 1
ing environment particle with momentukg scattered into a At=i[U;—B,pr]+Up7U;— EU%pT— EpTuf.
final state of momentunk;, as outlined above. After the 42)
scattering event, which is essentially instantane@us the
time scale of system dynamjcsve may imagine that the \we now trace Eq(42) over the environment to obtain the
scattered particle propagates freely and may be measured @hster equation for the system density operatorAs is
any time in the future. Therefore, the records in the decohefgsya| in this sort of model, we assume that the environment
ent histories approach consist of projections at the end of thig 5o |arge that its state is essentially unaffected by the inter-
histories onto the momenta of all the scattered environmeriction with the system. Since the total density operator starts
particles, from which the number densitidg of the system gyt in the factored stat¢d4), this then means that, to a good

nserting this in Eq(35), we obtain

der

dt

at a series of times may be retrodicted. approximation, p; persists in the approximately factored
form p® p¢, and we may insert this in the right-hand side of
lIl. DERIVATION OF THE MASTER EQUATION Eq. (42) [26]. We thus obtain the preliminary form for the

Following the method first used by Joos and Z&h], we master equation

may derive the master equation for the reduced density op-
eratorp of the system by considering the scattering of the
environment off the system, to second order in interactions.

dp

qr At=ilTre(Uspe) = Tre(Bpy), p]

We assume that the system and environment are initally un- 1 1
correlated, so the total density operator is +Tre UyprU;— EuipT— EpTui . (43
PT=Po®pPs- (34)

We now work out these terms in more detail. We first

We also assume that each scattering event takes place orfgnsider the simple but useful slow motion approximation, in

time scale which is extremely short compared to the timeVhich we ignore the time dependenceNyf(t). This implies
scale of system dynamics. This means that in an interval dhat

time At which is long for the environment but short for the 1
system, we may write U;~— v > w(KN, 2 beqfk 2m8(wq— wq1) -
K q

pr(t+At)=Sp(t)S (35 (44)
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The important terms for decoherence are the final three terms
on the right-hand side of E¢44). When traced, these give

1., 1 2
Trel UgprU — §U1PT_ EPTUl

1 1 1
V2 % C(k,k')( NirpNik= 5 NNy p = EPNka')

(49)

where

c(k.k')=4u(k)v(k') 2 8(wg wq-1) Hwg — wg )
qq

X(bibg—kb} g k) (46)

1. 1 2
Trel UgprUi— §U1PT_ EPTU1

At T 1 t 1 T
:W; c(k)| NkpNg— 5 NgNip— 5 pNgNi
(52)

where we have used the fact tmi=N_k. The remaining
two terms in Eq(43) clearly just modify the unitary dynam-
ics of the system. First we have

1
Tre(Uspe) = 2 vONK (bgbg-i0e2

X 5(wq—wq_k). (53)

Clearly from the tern(bgbq,k)g this expression will be zero
unlessk=0, and therefore it is proportional td, the total

We will take the environment to be a thermal state, which isparticle number operatofalthough the overall coefficient

diagonal in the momentum states. It follows that

(bibg—kbl By k)% Bq.qr—kr gt k-

(47

This impliesk=—k’, and also that the two delta-functions
are the same in Eq46). We then interpret the square of the

delta-function in the usual way

At
[5(wq_wq—k)]2: 6(0) 5(wq_wq—k): Eé(a’q_wq—k)-
(48)

We now have
c(k,k")=4 c(k —t 49
( ’ ) k,—k’ ( )277' ( )

where
2
c(k)= P02 owg— wq-1(bgbq-bg-bae

2
= 1PP2 8(wg=wq-0{bgbe

X ((b{_bg-i)et1). (50)

will need to be regularizedThis therefore contributes a term

to the master equation of the forpiN,p]. We assume that
there is a fixed number of system particles so it is reasonable
to take this term to be zero.

The other remaining term in Eq43) involves the time
ordering terms irJ, and is a bit more complicated to evalu-
ate. Fortunately, the detailed form of this expression is not
needed here, and it can in fact be easily shown that this term
has the form

Tre(Bpg) = At (kNN (54)

for some coefficient(k) which we will not need. Inserting
all these results in Eq43), the factors ofAt all drop out,
and we obtain, in the Schdinger picture,

dp

dt

+; c(k)(NkpNI

Ho—; d(K)N.N{ ,p

. (55

11
— 5 NkNkp = 5 pNiN

As desired, this is the Lindblad form with the Lindblad op-
erators given by
L,=cY2A(k)N,. (56)

We have therefore produced a derivation of the master

The terms involving environment averages have the usuaquation for a scattering environment which shows very

thermal form(for a bosonic environment

(blbg)e= (51)

eﬂ(wq_l"') -1

where f=1/kT with T temperature angk is the chemical
potential.

clearly the connection between the preferred bakesgonal-
ization in the Lindblad operatorsand the information stor-
age about the system, as indicated by the simple scattering
calculation, Eq(33).

It is interesting to note that the decoherence effect is sec-
ond order in interactions, but we were able to anticipate it
from the simple first order calculation, E(B3). The reason
for this is the relationship Eq40), which shows that the

The form of Eq.(49) means that the important terms in important part of the second order terms is the square of the

the master equation are of the Lindblad form:

first order terms, and this is a consequence of unitarity.
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IV. COMPARISON WITH PREVIOUS WORKS 1
F(r)

’ 2
It is useful to check that the master equation we have quanq(anrl)j d2dQ’|f(q.k)|

derived reproduces known results when we restrict to the .
one-particle sector for the system. We will compare the re- X (1—€'@=h-n), (67)
sults of this to the derivation of Gallis and Flemifg7]
(which is essentially the same as Joos and ZEH, and
Diosi [16]).

In the one-particle sector we may work with a density
matrix p(k,k’)=(k|p|k’), or equivalentlyp(x,y) in the po-
sition representation. We use the relations

" 2m)°m

This in fact agrees with Gallis and Fleming if we identify
g/m as theirv(q), the speed of the incoming particles, and
(1/27%)g?ng(ng+1) as the density of particles with speed
g. In the one particle sector there is therefore agreement with
earlier work. (At least up to an overall numerical factor

[Ng.all=al 57) which we could not rectify. However, we have also spotted
4Tk Tk—q some small and probably insignificant numerical errors in
N o 58 Ref.[17]).
[Ng,a]=—~ak+q- (58) Mention should also be made of the master equations de-

rived by Unruh and Zurek, which used a field as an environ-
ment for a particld27], and Anastopoulos and Zoupgas],
which used a photon field and as an environment for a spinor

These relations imply that

Ngp(k.K)N_g=p(k=0,k'=0) (59 field. Also of relevance is the general account of the deriva-
o , tion of master equations given by Ons{@9]. These works
N_qNgo(k,k")=p(k,k’) 60 are rather different to the present paper.
p(K,KIN_gNg=p(k,k"). (61)

V. BEYOND THE SLOW MOTION APPROXIMATION

In the position representation, this means o _
The derivation above assumed, in essence, that the system

Np(X,Y)N_ =€k N p(x y). (62  dynamics are infinitely slow. Not surprisingly, the resulting
master equation does not involve dissipation, since, in the
The master equation for the one-particle density operatoRPProximation used, the system is essentially at rest for the

p(x,y) is then time scale of a single scattering event. It is analogous to the

master equation of quantum Brownian motion with the Lind-
ap(x,y) _ blad operatoiL proportional tox, Eq. (16). To get a more
o —i(X|[[Ho.plly)—F(x—y)p(x,y)  (63) realistic equation with dissipation, we therefore need to go

beyond the slow motion approximation.

where Because the local number density is a locally conserved
quantity, it obeys a continuity equation of the form

1 3~A3 2
Foey= o | dadkiv0 g+ 1) 800, e kP, .
— g ) (1—e V), (64)

wherePy is the local momentum density

Note that the term involving the coefficied{k) in Eq. (55)
drops out becaus[eNkNl ,2]=0 in the one-particle sector.

To compare this with the Gallis-Fleming resiilt7], we P=2>
first introduce the quantity a

alagk- (69)

1k
a+ts

It is reasonable to expect that the master equation will in-
volve this operator when we go beyond the infinitely slow
limit. We now briefly repeat the derivation of the master
(which appears in the usual Born approximation to the firsequation, this time allowing a slow time dependence in
order scattering Then, lettingk— —k+q in Eq. (64), we  Ni(t).

m
f(k,k’)=%v(k—k’) (65)

get We have
F(r)=; d3qd3k|f(q,k)|2ng(N+ 1) 8 wq— wy) 1 t i(wg—wg_t
(2m)3m? q a, al Mk Wq~ Wk U=y ; v(k)% bibg_i | dtNg(t)e!(?a=ea-t,
X (1—el@=k-r). (66) (70
The delta-function implies thai?=k?, and we find that To take into account the time dependencéNpft), we write
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Ny (t) =Ny +tN+ - - - (72) Now for simplicity work in the high temperature limit, so

t
S . . e
where N, is given in terms of the momentum density, Eqg. <bq‘kbq <1 (79

(69). Inserting this in Eq(70), the factor oft may be rewrit- 54
ten in terms of a delta-function derivative, yielding

(blby)e~erPe o, (80)

1
_ t
Ui=y ; V(k)% Bgbg- kI Nkd(@q~ @1 It follows that

— NS (wg— 0 )+ 1. 72 J Jo k-
@ (0q~0q)F ] T2 kg (blpe=— A o blbge=— B (blpg)e
We now use this expression ftr; in the derivation of the (81)
master equation. So, for example, we get, in place of Eq.
(45), and we arrive at the very simple result
, At t b(k)= EAtc(k) (82)
Tre(Ulpe) =5 2 c(k)NiNyp 2 :

i It is not difficult to see that we then arrive at a master equa-
+— > b(k)(NkNl_ NENK)PﬂL e (73 ti(_)n W_hich is once again of the Lindblad form, but this time
Ve 'k with Lindblad operators of the form

wherec(k) is given by Eq.(50) and B

Lk=cl/2(k)<Nk—i§Nk)=cl/2(k)(Nk—§k~Pk> (83)
b(k)=|v(k)|?2, S(wq—wq—k) 8 (wg— ®q_

(k) =[v(k)| Eq: (0q™ @g-1) 9" (0~ wg-k) (up to terms of the order g82, which can be dropped in the
N t approximation we are usingThis is clearly closely analo-
X<bqbq>€(<bq7kbqfk>£+ D). (74) gous to the QBM result, Eq16). (A closely analogous for-

. . . i mula appears in Diosi's papgt6].)
This coefficient may in fact be shown to be simply related to

c(k). The delta-function derivative may be dealt with by

noting the formal relation VI. SUMMARY AND DISCUSSION

We have given a derivation of the master equation de-

S(x) 8" (X) = E i[&(x)]z. (75) scribing a many—body system interacting with a reasonably

2 ox general class of environments. The form of the master equa-

tion emphasizes the central role of the local number density,

Now note that which is the system variable measured most directly by the
environment in a scattering situation.

We did not in fact give a specific form for the interaction
between the system and environment since it was not neces-
sary to illustrate the general points we are making. Some
It follows that the delta-function derivatives may be ex- specific forms for this interaction are discussed elsewhere

1
wq—wq_k=%(2k-q—k2). (76)

pressed in terms of derivatives with respecytas [11,17.
The derivation reduces to familiar results of Gallis and
2’m 9 Fleming[17], Diosi[16], and Joos and ZeH.1], when we
5,(wq_wq7k):Fki&_qié(wq_wqfk)- (77)  restrict to the one-particle sector of the many-body field

theory. The many-body derivation confers some advantages
of the usual derivationsvhich consider scattering theory in
quantum mechanigsn that they avoid essentially classical
assumptions about fluxes of scattering particles. Our deriva-
tion also has the possibility of being extended to a low tem-
perature regiméand to Bose-Einstein condensation, for ex-
ample and to fermionic environments, although we do not
discuss this here.

Note addedAfter completion of this work we became
aware of two closely related work80,31 which also con-
sider decoherence by a scattering environment, similar to
where we will interpret the square of the delta-function as inJoos and Zeh, and to Gallis and Fleming. These works are
Eq. (48). different from ours in that they do not consider many body

Inserting these relations in E¢¢4) and integrating by parts
yields

1 2
b() =~ 5 [P0 (8w wq- 05

d
ina—q[<bgbq>g(<b£7kbq—k>s+ ] (79
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field theory, as we do. However, the authors of R81] also
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