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Decoherence and records for the case of a scattering environment

P. J. Dodd and J. J. Halliwell
Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 20 January 2003; published 23 May 2003!

Using nonrelativistic many body quantum field theory, a master equation is derived for the reduced density
matrix of a dilute gas of massive particles undergoing scattering interactions with an environment of light
particles. The dynamical variable that naturally decoheres~the pointer basis! is essentially the local number
density of the dilute gas. Earlier master equations for this sort of system~such as that derived by Joos and Zeh!
are recovered on restricting to the one-particle sector for the distinguished system. The derivation shows
explicitly that the scattering environment stores information about the system by ‘‘measuring’’ the number
density. This therefore provides an important example of the general connection between decoherence and
records indicated by the decoherent histories approach to quantum theory. It also brings the master equation for
this system into a form emphasizing the role of local densities, which is relevant to current work in deriving
hydrodynamic equations from quantum theory.
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I. INTRODUCTION

The notion of decoherence plays a central role in stud
of emergent classicality and the foundations of quant
theory generally@1#. While it is usually regarded as signify
ing the loss of quantum coherence for a system of interes
may also usefully be regarded as an indication of the deg
to which information about the system is stored somewh
in the system or in its immediate environment@2,3#. It is in
this way that decoherence is related to ‘‘generalized m
surements.’’ An important application of these ideas is
quantum cosmology@4#. In applying quantum theory to th
very early universe, there are no actual measuring device
measure what was happening. The process of decoher
however, guarantees that measurements we make in
present are correlated with alternatives in the past.

These ideas are perhaps most transparent when fo
lated in terms of the decoherent histories approach to qu
tum theory@2,4–8#. Other approaches to decoherence, s
as Zurek’s ‘‘einselection’’ approach@1,9,10#, related density
matrix approaches@11# or quantum state diffusion@12,13#,
may be equally useful for analyzing these issues, but will
be explored here. It is the aim of this paper, continuing in
spirit of Ref. @3#, to investigate the connection between d
coherence and information storage. To fix ideas, we bri
review the decoherent histories approach~although the gen-
eral results of this paper are by no means specific to
approach!.

In the decoherent histories approach@2,4–8#, probabilities
are assigned to histories via the formula

p~a1 ,a2 , . . . !5Tr~CarCa
† ! ~1!

whereCa denotes a time-ordered string of projectors at tim
t1 , . . . ,tn ,

Ca5Pan
e2( i /\)H(tn2tn21)Pan21

•••e2( i /\)H(t22t1)Pa1

~2!
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anda denotes the stringa1 ,a2 , . . . ,an . We are interested
in sets of histories which satisfy the condition of decoh
ence, which is that the decoherence functional

D~a,a8!5Tr~CarCa8
†

! ~3!

is zero whenaÞa8. Decoherence implies the weaker co
dition that ReD(a,a8)50 for aÞa8, and this is equivalent
to the requirement that the above probabilities satisfy
probability sum rules.

The stronger condition of decoherence is the more in
esting one since it is related to the existence of record
information storage about the histories somewhere in
system. More precisely, if the initial state is pure, decoh
ence means that there exist a set of alternatives at the
time tn which are perfectly correlated with the alternativ
a1 , . . . ,an at timest1 , . . . ,tn @5,14#. This follows because
with a pure initial stateuC&, the decoherence condition im
plies that the statesCauC& are an orthogonal set. It is there
fore possible to introduce a projection operatorRb ~which is
generally not unique! such that

RbCauC&5dabCauC&. ~4!

It follows that the extended histories characterized by
chainRbCauC& are decoherent, and one can assign a pr
ability to the historiesa and the recordsb, given by

p~a1 ,a2 , . . . ,an ;b1 ,b2 , . . . ,bn!

5Tr~Rb1b2 , . . . ,bn
CarCa

† !. ~5!

This probability is then zero unlessak5bk for all k, in
which case it is equal to the original probabilit
p(a1 , . . . ,an). Hence, either thea ’s or theb ’s can be com-
pletely summed out of Eq.~5! without changing the prob-
ability, so the probability for the histories can be entire
replaced by the probability for the records at a fixed mom
of time at the end of the history:

p~a!5Tr@Rar~ tn!#5Tr~CarCa
† !. ~6!
©2003 The American Physical Society18-1
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Conversely, the existence of recordsb1 , . . . ,bn at some fi-
nal time perfectly correlated with earlier alternativ
a1 , . . . ,an at t1 , . . . ,tn implies decoherence of the histo
ries.

These issues are most usefully investigated in the con
of particular models, and it then becomes possible to
some more precise questions: Which dynamical variable
the environment store the information about the decohe
histories? Or what is essentially the same thing, how are
‘‘pointer basis’’ variables stored in the environment? How
the amount of decoherence related to the amount of infor
tion stored?

Reference@3# investigated these questions in the cont
of the quantum Brownian model~QBM!, which consists of a
particle of large massM moving in a potentialV(x) and
linearly coupled to a bath of harmonic oscillators. The to
system is therefore described by the action

ST@x~ t !,qn~ t !#5E dtF1

2
Mẋ22V~x!G1(

n
E dtF1

2
mnq̇n

2

2
1

2
mnvn

2qn
22cnqnxG . ~7!

In the traditional discussion of decoherence in this mode
is shown that for a continuum of oscillators in a therm
state, the influence functional or density matrix become
proximately diagonalized in position. This may be seen,
example, through the master equation for the reduced den
matrix r(x,y) of the distinguished system@15#, which in the
high temperature limit is

]r

]t
5

i\

2m S ]2r

]x22
]2r

]y2D2
i

\
@V~x!2V~y!#r2g~x2y!

3S ]r

]x
2

]r

]yD2
2mgkT

\2 ~x2y!2r. ~8!

In Ref. @3#, the issue of how the information about position
stored in the environment was addressed. The system is
ear in the oscillators, so the classical and quantum dynam
coincide for the environment. Classically, the equations
motion of the environment of oscillators are

mnq̈n1mnvn
2qn52cnx~ t !. ~9!

The solution to this equation, with fixedpn(0), qn(0) is

qn~t!5qn~0!cosvnt1
pn~0!

mnvn
sinvnt

2
cn

mnvn
E

0

t

dt x~ t ! sinvn~t2t ! ~10!

pn~t!5pn~0!cosvnt2mnvnqn~0!sinvnt

2cnE
0

t

dt x~ t ! cosvn~t2t ! ~11!
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wherepn5mq̇n . From this solution, one can see that at t
final time t, the positions and momenta of the environme
of oscillators depend on the particle’s trajectoryx(t) via the
temporally nonlocal quantities

Xn
s5E

0

t

dt x~ t ! sinvn~t2t ! ~12!

Xn
c5E

0

t

dt x~ t ! cosvn~t2t !. ~13!

These are essentially the Fourier modes of the particle’s
jectory x(t). Hence, each oscillator stores a single Four
mode of the trajectory, and therefore by using a large num
of oscillators, information about many Fourier modes
stored from which the approximate trajectory may be rec
ered. Furthermore, since it is the Fourier modes that are n
rally registered in the environment, rather than positions
each moment of time, decoherence is in fact most clea
seen in terms of the variables~12!, ~13!, rather than position,
as shown in Ref.@3#. The variables are nonlocal in time so
can only be seen at the level of an influence functional
pressed in path integral language, rather than a master e
tion. Hence, in this model, it was possible to see exactly h
the environment stored the information about the syste
trajectory in configuration space. Furthermore, a deta
quantitative estimate of the information content was also c
ried out in Ref.@3#.

Although a very illustrative model, the quantum Brow
ian motion model is not the most relevant model for dec
herence in physically interesting situations. Far more phy
cally significant is the case in which the environment is a
of light particles which interact with the distinguished pa
ticle by a scattering process. The resulting master equa
first derived by Joos and Zeh, is very similar in form to t
QBM case, Eq.~8! @11,16,17#. But the dynamics of the en
vironment, and therefore the means of information stora
are rather different.

The aim of this paper is to investigate the connect
between decoherence and records in the case of decohe
by a scattering environment. In some ways it is simpl
since, in the usual assumption of widely separated ti
scales for system and environment dynamics, each envi
mental particle scatters briefly off the distinguished particl
and moves freely thereafter, carrying some information ab
the distinguished particles. This process can therefore be
scribed by a Markovian master equation, and the proces
information storage and decoherence may be described
moment by moment manner~unlike the quantum Brownian
motion case, where the environment oscillators store in
mation about the entire history!. This means in fact that we
do not need to make use of the full machinery of the de
herence functional—it is sufficient in fact to look at the ev
lution of the reduced density operator.

In the quantum Brownian motion model case, the syst
variables that the environment measures were actually id
tified quite simply, from the classical equations of motion.
the scattering case, the system variables measured mo
8-2
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rectly by the environment are also determined quite ea
by examining simple scattering processes. In particular, s
pose we consider the scattering of some light particles o
dilute gas of a set of more massive particles with coordina
qj . Then, it follows quite straightforwardly from simpl
scattering theory~and we will in fact demonstrate this! that
the scattering amplitude is proportional to the Fourier tra
form of the number density of the massive particles,

Nk5(
j

eik•qj . ~14!

This means that, loosely speaking, for a known interact
potential, measurements of the initial and final momenta
the scattering environment determine the number densit
the distinguished system.

Of course, the number density is closely related to po
tion, which is normally held to be the preferred basis in the
calculations. But, following the lead of the oscillator mod
we expect decoherence to look simplest in terms of the
namical variables which are most simply and directly sto
in the environment. Our aim is therefore to give a derivat
of the master equation which emphasizes the central
played by the number density. We have found that the d
vation is in fact most transparent in terms of nonrelativis
many body quantum field theory, where the number den
appears very naturally. We will give an alternative and m
general derivation of the master equation, using many b
theory, which brings out the role of local number dens
more clearly, hence showing the connection with records

It is pertinent at this stage to mention the Lindblad fo
of the master equation@18#, which is the most general pos
sible form a master equation can take under the assump
that the evolution is Markovian~a condition well satisfied in
a wide variety of interesting models!. The Lindblad master
equation is

dr

dt
52 i @H,r#2

1

2 (
j 51

n

~$L j
†L j ,r%22L jrL j

†!. ~15!

Here, H is the Hamiltonian of the distinguished subsyste
~sometimes modified by terms depending on theL j ) and the
n operatorsL j model the effects of the environment. Th
master equation of quantum Brownian motion, for examp
is of this form with

L5S 4mgkT

\2 D 1/2

x1 i S g

2mkTD
1/2

p ~16!

as described in Refs.@19,13#. @Actually, the master equation
~8! is not strictly of the Lindblad form, and as a consequen
can suffer from a violation of positivity@20#. However, the
difference between Eq.~8! and the Lindblad form withL
given by Eq. ~16! is of the order of 1/T which does not
matter for high temperatures.#

The Lindblad operatorsL j determine the basis in whic
the density operator tends to become approximately dia
nal, or what is essentially the same, the sets of varia
describing an approximately decoherent set of histories. T
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may be seen from the formal solution to the Lindblad eq
tion @21#. Consider the case of a single Lindblad operatoL
5LR1 iL I , whereLR , LI are Hermitian. Divide the finite
time interval@0,t# into K subintervals, so thatt5Kdt, and
let dt→0, K→`, holding t constant. Then, the formal solu
tion to the Lindblad equation is obtained by taking the lim
dt→0, K→` ~with t fixed! of the expression

r~ t !5S dt

p D KE d2l 1•••d2l K )
m51

K

expS dt

2
~,m* L2,mL†! D

3expS 2
dt

2
uL2,mu2DexpS 2

i

\
H8dt D r~0!

3 )
m51

K

expS i

\
H8dt DexpS 2

dt

2
uL2,mu2D

3expS 2
dt

2
~,m* L2,mL†! D . ~17!

Here,H85H1( i\/4)@L,L†# and the,m are complex num-
bers at the discrete moments of time labeled bym. We use
the notation

uL2,mu2[~LR2Re,m!21~LI2Im ,m!2 . ~18!

The ordering of the operators at each moment of time
irrelevant in the limitdt→0 ~although the operators at dif
ferent times are time ordered, according to increasingm).
That this is the solution is readily verified by explicit com
putation. The solution has the form of a ‘‘measurement p
cess’’ of theL ’s, continuous in time, with ‘‘feedback’’ via the
terms (,m* L2,mL†) @22#. That is, one can see that the effe
of the environment is to produce a tendency towards dia
nality in L.

We shall show that a many-body theory derivation of t
master equation in the case of a scattering environment le
to a master equation of the Lindblad form~under the as-
sumption that the environment dynamics are much fa
than the system dynamics!, and that the Lindblad operator
are essentially the local number density. The previous fo
of the master equation are recovered in the one-particle
tor for the system of massive particles.

This work grew out of a more ambitious program, in th
context of the decoherent histories approach to quan
theory, which aims to give a very general account of em
gent classicality. In particular, it is asserted that at su
ciently coarse-grained scales, the local densities~number,
momentum, energy! define a set of habitually decoherin
variables, even in the absence of an environment@2,23#. This
is because they are locally conserved, and therefore slo
varying when coarse grained over sufficiently large volum
and thus are expected to be approximately decoherent~be-
cause exactly conserved quantities are exactly decohere
the histories approach!. This is therefore a different mecha
nism for decoherence than the usual mechanism of deco
ence through an environment. Hence, in order to close
gap between the familiar system-environment models
the less familiar hydrodynamic models without an obvio
8-3
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environment, it is useful to rewrite the system-environm
models in terms of local densities as we do here.

In Sec. II, we briefly review many body field theory, an
carry out the simple scattering calculation leading to the
sult that the scattering particles effectively measure the lo
number density, Eq.~14!.

In Sec. III, we use many body field theory to derive t
master equation for the system, using a slow motion limit
the gas of massive particles. As anticipated it has the Li
blad form with the Lindblad operators proportional to t
Fourier-transformed number densityNk .

In Sec. IV, we show that our master equation reduces
an earlier result of Gallis and Fleming@17# in the one-
particle sector for the gas of massive particles.~This is es-
sentially the same as the master equation of Joos and
@11# but the comparison with Gallis and Fleming is mo
direct.!

The master equation of Secs. III and IV does not have
dissipation and is analogous to the Lindblad equation
quantum Brownian motion withL proportional tox. In Sec.
V, we go beyond the slow-motion limit to derive a mast
equation with dissipative terms.

We summarize and conclude in Sec. VI.

II. MANY BODY FIELD THEORY

The dynamics of a many body system is very con
niently handled using many body quantum field theory.
now set up the formalism of many body field theory@24,25#
which we will use to derive the master equation. We consi
a set of nonrelativistic system particles described by a fi
c(x) interacting through a potentialf(x) with an environ-
ment described by a fieldx(x). The total system is describe
by the Hamiltonian

H5E d3xS 1

2M
“c†~x!•“c~x!1

1

2m
“x†~x!•“x~x! D

1 E d3xd3x8c†~x!c~x8!f~x2x8!x†~x8!x~x! ~19!

~for simplicity, we set\51 hereafter!. In this language, the
number densitiesN(x) andn(x) of the system and environ
ment fields are

N~x!5c†~x!c~x! ~20!

n~x!5x†~x!x~x!. ~21!

@This is the field-theoretic version of Eq.~14!.#
The above relations are also more conveniently written

terms ofak andbk , the annihilation operators for the syste
and environment, respectively, and the Hamiltonian then

H5(
q

~Eqaq
†aq1vqbq

†bq!1
1

V (
k181k285k11k2

3n~k282k2!ak1

† bk2

† ak
18
bk

28
~22!
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whereEq5q2/2M , vq5q2/2m, V is the spatial volume of
the system~which we assume is in a box! and

n~k!5E d3xe2 ik•xf~x!. ~23!

The Fourier transformed number densities are

Nk5(
q

aq
†aq1k ~24!

nk5(
q

bq
†bq1k ~25!

and one may see that the Hamiltonian has the more con
form

H5(
q

~Eqaq
†aq1vqbq

†bq!1
1

V (
k

n~k!Nkn2k ~26!

5H01Hint . ~27!

From these relations we see that the environment couple
the number density of the system. It is this feature of ma
body field theory that makes it the appropriate medium
the derivation of the master equation emphasizing the rol
number density.

The S matrix is

S5T expS 2 i E
2`

`

dt Hint~ t ! D ~28!

where

Hint~ t !5
1

V (
k

n~k!Nk~ t !n2k~ t ! ~29!

and here

Nk~ t !5(
q

aq
†aq1k ei (Eq2Eq1k)t ~30!

nk~ t !5(
q

bq
†bq1k ei (vq2vq1k)t. ~31!

We may now use this formalism to look at a simple sc
tering situation to determine how the environment stores
formation about the system. In the quantum Brownian m
tion case, the nature of information storage was determi
in essence by solving the classical equations of motion
similar strategy works here too. Let us suppose that the
tinguished system is classical, and consider what happ
when the environment scatters off it. Suppose the envir
ment starts in an initial momentum stateuk0& and scatters
into a final stateuk f&. The scattering amplitude for this pro
cess, to first order, is
8-4
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^k f uSuk0&5
i

VE2`

`

dt(
k

n~k!Nk~ t !^k f un2k~ t !uk0&

5
i

V
n~k!E dtNk~ t !ei (vk f

2vk0
)t ~32!

where k5k f2k0. This simple result shows that a sing
scattering event by the environment stores information ab
the Fourier transform~in space and time! of the number den-
sity. It is in this sense that the number density has a prefe
status—this is the variable that is measured most directly
the environment and is the exact analogy of the relati
Eqs.~12!, ~13! in the quantum Brownian case.

The measured variables above are, of course, nonloc
time, involving a temporal Fourier transform of the numb
density, so they cannot, in fact, be compatible with a M
kovian master equation. Under a reasonable slow motion
sumption, the system time scale is much slower than
environment time scale, and we may ignore the time dep
dence inNk(t), yielding

^k f uSuk0&5
i

V
n~k! Nkd~vk f

2vk0
!. ~33!

This corresponds more directly to a Markovian master eq
tion, as we shall see.

It remains to briefly sketch the connection between th
results and the discussion in Sec. I of records in the deco
ent histories approach. We imagine that the environment c
sists of a very large number of particles which scatter off
system particles. Each scattering event consists of an inc
ing environment particle with momentumk0 scattered into a
final state of momentumk f , as outlined above. After the
scattering event, which is essentially instantaneous~on the
time scale of system dynamics!, we may imagine that the
scattered particle propagates freely and may be measur
any time in the future. Therefore, the records in the decoh
ent histories approach consist of projections at the end of
histories onto the momenta of all the scattered environm
particles, from which the number densitiesNk of the system
at a series of times may be retrodicted.

III. DERIVATION OF THE MASTER EQUATION

Following the method first used by Joos and Zeh@11#, we
may derive the master equation for the reduced density
eratorr of the system by considering the scattering of t
environment off the system, to second order in interactio
We assume that the system and environment are initally
correlated, so the total density operator is

rT5r0^ rE . ~34!

We also assume that each scattering event takes place
time scale which is extremely short compared to the ti
scale of system dynamics. This means that in an interva
time Dt which is long for the environment but short for th
system, we may write

rT~ t1Dt !5SrT~ t !S† ~35!
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~where we are using the interaction picture!. Expanding Eq.
~35! to second order, theS-matrix may be written as

S511 iU 12U2 ~36!

where

U152E
2`

`

dt Hint~ t ! ~37!

and

U25
1

2E dt1E dt2 T„Hint~ t1!Hint~ t2!…. ~38!

The requirement of unitarity,S215S†, implies that U1

5U1
† and

U21U2
†5U1

2 . ~39!

We will therefore write

U25
1

2
U1

21 iB ~40!

whereB5B†, so we now have

S511 i ~U12B!2
1

2
U1

2 . ~41!

Inserting this in Eq.~35!, we obtain

drT

dt
Dt5 i @U12B,rT#1U1rTU12

1

2
U1

2rT2
1

2
rTU1

2 .

~42!

We now trace Eq.~42! over the environment to obtain th
master equation for the system density operatorr. As is
usual in this sort of model, we assume that the environm
is so large that its state is essentially unaffected by the in
action with the system. Since the total density operator st
out in the factored state~34!, this then means that, to a goo
approximation,rT persists in the approximately factore
form r ^ rE , and we may insert this in the right-hand side
Eq. ~42! @26#. We thus obtain the preliminary form for th
master equation

dr

dt
Dt5 i @TrE~U1rE!2TrE~BrE!,r#

1TrES U1rTU12
1

2
U1

2rT2
1

2
rTU1

2D . ~43!

We now work out these terms in more detail. We fir
consider the simple but useful slow motion approximation
which we ignore the time dependence ofNk(t). This implies
that

U1'2
1

V (
k

n~k!Nk (
q

bq
†bq2k 2pd~vq2vq2k! .

~44!
8-5
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The important terms for decoherence are the final three te
on the right-hand side of Eq.~44!. When traced, these give

TrES U1rTU12
1

2
U1

2rT2
1

2
rTU1

2D
5

1

V2 (
kk8

c~k,k8!S Nk8rNk2
1

2
NkNk8r2

1

2
rNkNk8D

~45!

where

c~k,k8!54n~k!n~k8!(
qq8

d~vq2vq2k!d~vq82vq82k8!

3^bq
†bq2kbq8

† bq82k8&E . ~46!

We will take the environment to be a thermal state, which
diagonal in the momentum states. It follows that

^bq
†bq2kbq8

† bq82k8&E}dq,q82k8dq8,q2k . ~47!

This impliesk52k8, and also that the two delta-function
are the same in Eq.~46!. We then interpret the square of th
delta-function in the usual way

@d~vq2vq2k!#25d~0!d~vq2vq2k!5
Dt

2p
d~vq2vq2k!.

~48!

We now have

c~k,k8!5dk,2k8c~k!
Dt

2p
~49!

where

c~k!5
2

p
un~k!u2(

q
d~vq2vq2k!^bq

†bq2kbq2k
† bq&E

5
2

p
un~k!u2(

q
d~vq2vq2k!^bq

†bq&E

3~^bq2k
† bq2k&E11!. ~50!

The terms involving environment averages have the us
thermal form~for a bosonic environment!

^bq
†bq&E5

1

eb(vq2m)21
~51!

where b51/kT with T temperature andm is the chemical
potential.

The form of Eq.~49! means that the important terms
the master equation are of the Lindblad form:
10501
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TrES U1rTU12
1

2
U1

2rT2
1

2
rTU1

2D
5

Dt

V2 (
k

c~k!S NkrNk
†2

1

2
Nk

†Nkr2
1

2
rNk

†NkD
~52!

where we have used the fact thatNk
†5N2k . The remaining

two terms in Eq.~43! clearly just modify the unitary dynam
ics of the system. First we have

TrE~U1rE!5
1

V (
k

n~k!Nk(
q

^bq
†bq2k&E2p

3d~vq2vq2k!. ~53!

Clearly from the term̂bq
†bq2k&E this expression will be zero

unlessk50, and therefore it is proportional toN, the total
particle number operator~although the overall coefficien
will need to be regularized!. This therefore contributes a term
to the master equation of the form@N,r#. We assume tha
there is a fixed number of system particles so it is reason
to take this term to be zero.

The other remaining term in Eq.~43! involves the time
ordering terms inU2 and is a bit more complicated to evalu
ate. Fortunately, the detailed form of this expression is
needed here, and it can in fact be easily shown that this t
has the form

TrE~BrE!5Dt(
k

d~k!NkNk
† ~54!

for some coefficientd(k) which we will not need. Inserting
all these results in Eq.~43!, the factors ofDt all drop out,
and we obtain, in the Schro¨dinger picture,

dr

dt
52 i FH02(

k
d~k!NkNk

† ,rG1(
k

c~k!S NkrNk
†

2
1

2
Nk

†Nkr2
1

2
rNk

†NkD . ~55!

As desired, this is the Lindblad form with the Lindblad o
erators given by

Lk5c1/2~k!Nk . ~56!

We have therefore produced a derivation of the mas
equation for a scattering environment which shows v
clearly the connection between the preferred basis~diagonal-
ization in the Lindblad operators! and the information stor-
age about the system, as indicated by the simple scatte
calculation, Eq.~33!.

It is interesting to note that the decoherence effect is s
ond order in interactions, but we were able to anticipate
from the simple first order calculation, Eq.~33!. The reason
for this is the relationship Eq.~40!, which shows that the
important part of the second order terms is the square of
first order terms, and this is a consequence of unitarity.
8-6
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IV. COMPARISON WITH PREVIOUS WORKS

It is useful to check that the master equation we ha
derived reproduces known results when we restrict to
one-particle sector for the system. We will compare the
sults of this to the derivation of Gallis and Fleming@17#
~which is essentially the same as Joos and Zeh@11#, and
Diosi @16#!.

In the one-particle sector we may work with a dens
matrix r(k,k8)5^kuruk8&, or equivalentlyr(x,y) in the po-
sition representation. We use the relations

@Nq ,ak
†#5ak2q

† ~57!

@Nq ,ak#52ak1q . ~58!

These relations imply that

Nqr~k,k8!N2q5r~k2q,k8Àq! ~59!

N2qNqr~k,k8!5r~k,k8! ~60!

r~k,k8!N2qNq5r~k,k8!. ~61!

In the position representation, this means

Nkr~x,y!N2k5eik•(x2y)r~x,y!. ~62!

The master equation for the one-particle density oper
r(x,y) is then

]r~x,y!

]t
52 i ^xu@H0 ,r#uy&2F~x2y!r~x,y! ~63!

where

F~x2y!5
1

~2p!5 E d3qd3kun~k!u2nq~nq2k11!d~vq

2vq2k!~12eik•(x2y)!. ~64!

Note that the term involving the coefficientd(k) in Eq. ~55!
drops out because@NkNk

† ,r#50 in the one-particle sector.
To compare this with the Gallis-Fleming result@17#, we

first introduce the quantity

f ~k,k8!5
m

2p
n~k2k8! ~65!

~which appears in the usual Born approximation to the fi
order scattering!. Then, lettingk→2k1q in Eq. ~64!, we
get

F~r !5
1

~2p!3m2E d3qd3ku f ~q,k!u2nq~nk11!d~vq2vk!

3~12ei (q2k)•r !. ~66!

The delta-function implies thatq25k2, and we find that
10501
e
e
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F~r !5
1

~2p!3m
E dqq3nq~nq11!E dVdV8u f ~q,k!u2

3~12ei (q2k)•r !. ~67!

This in fact agrees with Gallis and Fleming if we identi
q/m as theirv(q), the speed of the incoming particles, an
(1/2p2)q2nq(nq11) as the density of particles with spee
q. In the one particle sector there is therefore agreement w
earlier work. ~At least up to an overall numerical facto
which we could not rectify. However, we have also spott
some small and probably insignificant numerical errors
Ref. @17#!.

Mention should also be made of the master equations
rived by Unruh and Zurek, which used a field as an enviro
ment for a particle@27#, and Anastopoulos and Zoupas@28#,
which used a photon field and as an environment for a sp
field. Also of relevance is the general account of the deri
tion of master equations given by Omne`s @29#. These works
are rather different to the present paper.

V. BEYOND THE SLOW MOTION APPROXIMATION

The derivation above assumed, in essence, that the sy
dynamics are infinitely slow. Not surprisingly, the resultin
master equation does not involve dissipation, since, in
approximation used, the system is essentially at rest for
time scale of a single scattering event. It is analogous to
master equation of quantum Brownian motion with the Lin
blad operatorL proportional tox, Eq. ~16!. To get a more
realistic equation with dissipation, we therefore need to
beyond the slow motion approximation.

Because the local number density is a locally conser
quantity, it obeys a continuity equation of the form

Ṅk52 ik•Pk ~68!

wherePk is the local momentum density

Pk5(
q

S q1
1

2
kDaq

†aq1k . ~69!

It is reasonable to expect that the master equation will
volve this operator when we go beyond the infinitely slo
limit. We now briefly repeat the derivation of the mast
equation, this time allowing a slow time dependence
Nk(t).

We have

U15
1

V (
k

n~k!(
q

bq
†bq2kE dtNk~ t !ei (vq2vq2k)t.

~70!

To take into account the time dependence ofNk(t), we write
8-7
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Nk~ t !5Nk1tṄk1••• ~71!

where Ṅk is given in terms of the momentum density, E
~69!. Inserting this in Eq.~70!, the factor oft may be rewrit-
ten in terms of a delta-function derivative, yielding

U15
1

V (
k

n~k!(
q

bq
†bq2k@Nkd~vq2vq2k!

2 iṄkd8~vq2vq2k!1•••#. ~72!

We now use this expression forU1 in the derivation of the
master equation. So, for example, we get, in place of
~45!,

TrE~U1
2rE!5

Dt

V2 (
k

c~k!Nk
†Nkr

1
i

V2 (
k

b~k!~NkṄk
†2Nk

†Ṅk!r1••• ~73!

wherec(k) is given by Eq.~50! and

b~k!5un~k!u2(
q

d~vq2vq2k!d8~vq2vq2k!

3^bq
†bq&E~^bq2k

† bq2k&E11!. ~74!

This coefficient may in fact be shown to be simply related
c(k). The delta-function derivative may be dealt with b
noting the formal relation

d~x!d8~x!5
1

2

]

]x
@d~x!#2 . ~75!

Now note that

vq2vq2k5
1

2m
~2k•q2k2!. ~76!

It follows that the delta-function derivatives may be e
pressed in terms of derivatives with respect toqi as

d8~vq2vq2k!5
2m

k2
ki

]

]qi
d~vq2vq2k!. ~77!

Inserting these relations in Eq.~74! and integrating by parts
yields

b~k!52
1

2
un~k!u2(

q
@d~vq2vq2k!#2

2m

k2

3ki

]

]qi
@^bq

†bq&E~^bq2k
† bq2k&E11!# ~78!

where we will interpret the square of the delta-function as
Eq. ~48!.
10501
q.

n

Now for simplicity work in the high temperature limit, s

^bq2k
† bq2k&E!1 ~79!

and

^bq
†bq&E'embe2bvq. ~80!

It follows that

ki

]

]qi
^bq

†bq&E52bki

]vq

]qi
^bq

†bq&E52b
k•q

m
^bq

†bq&E

~81!

and we arrive at the very simple result

b~k!5
b

2
Dtc~k!. ~82!

It is not difficult to see that we then arrive at a master eq
tion which is once again of the Lindblad form, but this tim
with Lindblad operators of the form

Lk5c1/2~k!S Nk2 i
b

2
ṄkD5c1/2~k!S Nk2

b

2
k•PkD ~83!

~up to terms of the order ofb2, which can be dropped in the
approximation we are using!. This is clearly closely analo-
gous to the QBM result, Eq.~16!. ~A closely analogous for-
mula appears in Diosi’s paper@16#.!

VI. SUMMARY AND DISCUSSION

We have given a derivation of the master equation
scribing a many-body system interacting with a reasona
general class of environments. The form of the master eq
tion emphasizes the central role of the local number dens
which is the system variable measured most directly by
environment in a scattering situation.

We did not in fact give a specific form for the interactio
between the system and environment since it was not ne
sary to illustrate the general points we are making. So
specific forms for this interaction are discussed elsewh
@11,17#.

The derivation reduces to familiar results of Gallis a
Fleming @17#, Diosi @16#, and Joos and Zeh@11#, when we
restrict to the one-particle sector of the many-body fie
theory. The many-body derivation confers some advanta
of the usual derivations~which consider scattering theory i
quantum mechanics! in that they avoid essentially classic
assumptions about fluxes of scattering particles. Our der
tion also has the possibility of being extended to a low te
perature regime~and to Bose-Einstein condensation, for e
ample! and to fermionic environments, although we do n
discuss this here.

Note added.After completion of this work we becam
aware of two closely related works@30,31# which also con-
sider decoherence by a scattering environment, simila
Joos and Zeh, and to Gallis and Fleming. These works
different from ours in that they do not consider many bo
8-8
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field theory, as we do. However, the authors of Ref.@31# also
found a small discrepancy over a numerical factor in
results of Gallis and Fleming~see the discussion at the end
Sec. IV above!. We agree with Ref.@31#.
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