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From N=1 to N=2 supersymmetries in 21 dimensions
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Starting fromN=1 scalar and vector supermultiplets ir-2 dimensions, we construct superfields which
constitute Lagrangians invariant unddr=2 supersymmetries. We first recover tNe=2 supersymmetric
Abelian-Higgs model and then thé=2 pure super Yang-Mills model. The conditions for this elevation are
consistent with previous results found by other authors.
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N=2 supersymmetry in 21 dimensions had been stud-  We first consider the purg(1) case and then add matter
ied [1] in order to investigate the supersymmetrization of theSO as to construct the Abelian Higgs model, using a Fayet-
instantons effects which lead to a linear CO”finem@jt ”iOpOUlOS term. We f|na”y make a Superfield construction
Since then, systematic studies Nf=2 supersymmetry in for the N=2 pure Yang-Mills Lagrangian. As will be seen,
2+1 dimensions have been done[B] where exact results the pr_esent contruction exh|b|ts_ naturally the conditions
were obtained, such as superpotentials and topologies épund in[5] and[6] for the elevation of eN=1 to aN=2
moduli spaces in various cases. supersymmetry. _ s 11 o

These exact results can be derived siNce2 supersym- __Tge gammalm%trlcses are given W:U.’y Sloy
metry in 2+1 dimensions can be obtained by dimensional_, " ’d.WheriU;‘T 7 Sreﬂthey Iiaflé_mﬂavtpnces, Suﬁh that
reduction of N=1 supersymmetry in 81 dimensiong4] 9 7 lag(1~1,-1) and[y*,y"]==2ie""y,. We have

T . .. the following usual properties, valid for any 2-component
and thus has similar properties, such as non—renormahzatlo(pomplex spinorsy, ¢:
theorems. These theorems are not presenfNferl super- 7
symmetry in 2-1 dimensions and it is thus interesting to ni=71%C,=C(n and pyr{=—C{yR. 1)
study its elevation tt\= 2. In this context, it was shown that
the presence of topologically conserved currents leads to @ihe 2-component real spin@; Grassmann coordinate in the
centrally extendedN=2 supersymmetry, the central charge superspace, satisfies the properties
of the superalebra being the topological chafgg In [6],
the N=1 supersymmetric Abelian-Higgs model was consid-
ered and it was shown that the on-shell Lagrangian can be
extended to th&N=2 Abelian-Higgs model if a relation is

1
(0m)(00)=—5 0%(7{)

imposed between the gauge coupling and the Higgs self- 0y*6=0

coupling. Such a condition is in general expected ilNa

=2 invariant theory built out oN=1 Lagrangian$7]. An- Oy*y' 6= — 6°gH”

other example of extension was given [i8] where N=1 2
supersymmetries of composite operators was elevated to a Oy y"yP 0= —i6?er"P

N=2 Abelian model, up to irrelevant operators. In this work,

the coupling of matter to the gauge field was obtained with Oy*y yPyT 6= — 6%(gH7gP7 + ghPgrT — ghog’r),
higher order composites, simulating the dynamical genera-

tion of the N=2 supersymmetry that would occur after an o o

appropriate functional integration of a gauge field coupled to f dg 6°=1.

the originalN=1 supermultiplets.

We propose here another illustration of the supersymme- In 2+1 dimensions, theN=1 scalar superfield and the
try extension, with the superfield construction dbf=2  N=1 vector superfield in the Wess-Zumino gauge are re-
Lagrangians in terms dfl=1 scalar and vector superfields. spectively given by
The N=1 superspace in21 dimensions contains only one
real twq—compongnt Grassmann coordinatand thg invgri- d=p+(08)+ EGZD
ant actions are integrals over superspace which involve 2
[ d?6. The Lagrangians are constructed out of superfields 3
which mix the originalN=1 superfields in such a way that a V. —i(AB) + }02
N=1 supersymmetric transformation on the original super- @ a7 Xa
fields leaves th&l=2 Lagrangians invariant.

where all the fields are real. To form &h=2 supermultiplet,
we define the complex gaugino=¢+iy. The two fermi-
*Email address: jean.alexandre@kcl.ac.uk onic degrees of freedom then balance the two bosonic ones,
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sinceA, has one degree of freeddi®]. The (compley sca-  superfields[3], but we do not consider this problem here.
lar superfieldG containing these degrees of freedom is The interested reader can find a review of supersymmetric
. Chern-Simons theories [10]. We remind that &= 1 scalar
G=d+iD*V, superfield in 2-1 dimensions cannot be chiral: sindeis
real, the chirality conditiorD*Q=0 would constraint the
space-time dependence of the component fiéids, F [11].

The derivatives of t_he fields are obtained with the highest
component oD“QD,Q which reads

1
=p+(ON)+ 502D2+i0#Ay(0y“7V0), (4)

where the superderivative B,=d,+i(46), [11]. We will
see that the elevation of the supersymmetry is possible under _ _ _

a gauge condition which affects the superfi@dand the  D“QD.Q|z=6%(d,$d*p+iyby+FF +surface ter,
relevant fundamental superfield is, actually, €)

DFG=—N =D ~id,A,(y'y"0) +i(bp)” where the surface term i&M(Za"“w). The coupling to the
+i(0(9#)\)(yu0)ﬁ_ (5) gauge mu_ltiplet is o_btained with the highest components of
the following superfields:
With the propertieg2), it is easy to see that

— 1 — —
— 1 — DYQV,Q|p2=— = #? — A " p+iyYA
f d*9DPGDRG =~ SF*'F,, +INON+3,p"p+D? QVaQlr= =3 (O = SA I TUAY)

+(d"A,,)*+ surface term, (6) — 1., — - — —

QPQ| 2= 50 (@D — pyE— PyYt+poF

where the surface term ig,(Ay*\) and F,,=d,A, o o

—-d,A, . If the gauge conditiorv“A,=0 is imposed, we +pdF—piih) (10

find then theN=2 Abelian gauge kinetic term. This gauge

condition was found irf5] where the authors explain that o) Bl 2 T Am

they need to choose a gauge in which the vector superfield QVUVQlpe=— 0°pdA*A,,

satisfiedD“V,= 0 so as to construct a superfield containing a

topological current and two supercurrents which are at theuch that the matter Lagrangian is

origin of theN=2 structure. This condition implies then for

the gauge field component thétA , =0, whereA , is given 1 _

the role of the topologically conserved current. It is then ﬁmaner=§J d?¢{(D*—igV*)Q(D,+igV,)Q

natural that we find here the same condition, which should be

independent of the dynamics. Indeed, it was explicitly shown +2g bea}

for the CP! model in[5] and will be found again for the

non-Abelian dynamics in the present article. Note here that,

with the conditionD“V_,=0, the superfields reduces tab,

showing that the fundamental superfield is actu@§G,

which is not affected by this gauge condition, as can be seen

with Eq. (5). _9 s Lgap+ rEs L0
Disregarding the surface term, the expectée2 La- 2 2 2 2

grangian is then expressed in terms of the origiNat 1

superfields as follows: + gPEF, (12)

i— 1 - g —
=5¥Dy+ 5D, D b= S (Pdh+ dyN)

1 _
i 29pB
Lgauge 2] d*9DTGD,G where g is a dimensionfull gauge coupling ard,=d,

+igA, . The Lagrangiar(11) was found in[4] as a conse-
guence of the dimensional reduction ofNs=1 theory in
3+1 dimensions. It was also derived jii2] where theN
=2 Lagrangian is expressed with=1 superfields. In both
Matter is included with a compled=1 scalar superfield these works, the authors start frdws=2, and do not elevate
Q: an initial N=1 Lagrangian tdN=2; hence they do not find
any constraint. The reader can find i8] a discussion of the
1 relation betweemN=1, N=2 andN=4 supersymmetries in
Q=¢+(0y)+ EHZF' ®) 1+1, 2+1 and 3+1 dimensions. Persy
We can recover the scalar interactions if we write the
So as to avoid the generation of parity violating terms in theLagrangiang7) and(11) on-shell. We write for this the equa-
guantum corrections, we can introduce an even number dfons of motion of the auxiliary field® andF:

— emE St Sapapr t02 (7
=12 //-V+§)\ )\+§F7#p(9 p+§ . (7
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E+gp$=0 a_ _a a 1 2Ha
PA=p2+ (0 + - 6D
(12 piF (089 + 5
g 18
D+§¢¢:O' a_:/ pa 1 2. a
Ve=i(A 0)a+§0 Xa

such that the terms depending on the auxiliary fields lead to 5 ) o _
the following potential: wherea=1, ... N“—1 is the gauge indice. We then intro-

duce the complex superfields

1 — 1 _— g — _
(cgauge+ﬁmatter)pot:§D2+gd’d’D'l' SFF+ gpd": Ge=d2+iDVE, (19
g — and, as in the Abelian case, the derivatiies of the component
+t5poF fields are obtained with the terB?G3D ;G?, provided that
the gauge conditioﬁ“Ajj=0 holds, which shows again that
2 2 the fundamental superfield is actualfG? and notG?. To

=— g_p2¢$_ g_(¢$)2_ (13)  9enerate the interactions of the superpartners, we will add to

2 8 DAG? linear combinations of the following two superfields

The Abelian Higgs model is obtained by adding a Fayet- GPVeA, DB(Vbavz), (20)
lliopoulos term which in the present context is
and the remaining terms for the covariant derivatives are

g — obtained with the products
£F.|.=—§¢Sf d20(G+G):—g¢§f d?d

- 9 d)ZD (14) fabCDﬁaaGbV%bz: 92fabc _bea)(c
= — E D,

1
_ - , + 5 (INPAN2+c.c) — 2pPd#p?A,
where ¢y is a real parameter. The addition of this term to the 2
Lagrangian leads to the following equation of motion for the

auxiliary field D: fabCfadeGch,BEdV%| 52
g — g , — fabCfadeQZPbpdA;Aeﬂ_ (21)
D+ 5 dd— 5 d5=0, (15
The term(21) also generates the Yukawa interactions since

such that we obtain the expected gauge-symmetry breaking

potential 2p°E)°=pP(IN3\°+c.c). (22

g2 _ ¢ The non-Abelian gauge kinetic term is obtained with the
(‘Cgauge"' Lmnattert £F.I.)pot: - 7/32(!’4’_ E(d’(ﬁ_ ¢(2))2 products

16 —
( ) .I:abcDﬁGaDﬁ(Vba\/(;)|62
Note that the Higgs self-coupling @/8, what was found in =2fabe(y Ai)AbAg(g.},MyV,yP),Ug)
[6] as a consistency condition for the elevation of Me 1 . ?
on-shell Lagrangian tdl=2. The result{16) shows that the abcgaden B\ /bay /C ben /¢
moduli space contains a Higgs branch only, where the D AVIVID (V)
vacuum expectation values of the scalar fields satisfy = fabCfadeAZA‘;AgAs_(gyﬂyvyp.)/rg), (23
P)= and =0. 1 since we have, using the properties an + =0,
¢¢ (ﬁé p h h (@ dfabc facb 0

The extension to a non-Abelian gauge group necessitates fach’ d2e aypbpc VPO
. ; ! ’ . A AYAA (OyHy vy 7O
the introduction of quadratic superfields to generate the in- (AR OY Y Y Y76)
teractions. We will conside8 U(N) dynamics, with structure _cabc, upay abpCy 1 £abCAD AC/ sppar_ avpau
constant$2°¢ and coupling constamg A non-Abelian super- = PPHFADAATHTEALA(GIAT = 97AT),
multiplet contains gauginos and scalars in the adjoint repre- (24
sentation, so that the starting point is the set of scalar and

vectorN=1 superfields and
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where F2 =4 A%—9 A2+gfa°APAC and D ,(---)?
fabcfade f d?0ASASATAL (9 y" ¥y 6) —a(- .)é‘ L gfé‘bcAz(, , _’)‘c_ g a
abcradenb Adu AC per To conclude, let us stress the central point of these results.

= 2fTEALATEAAT (25 Whereas the elevation of =1 to aN=2 supersymmetry

was shown explicitely for th€ P* model in[5] and for the

With the gauge conditiom”AfL:O, the first term in the Abelian Hi . :
! ) ; ggs model inf6], we do not start here with any
right-hand side of Eq(24) vanishes and only the expected specific dynamics but instead build direct=2 off-shell

term remains. Gathering these results, we find t.hat.the.eXterI]_'agrangians witiN=1 superfields. This allows us to gener-
sion to anN=2 pure super-Yang-Mills Lagrangian is given

ate different dynamics and we generalize the elevation to a

by N=2 non-Abelian theory. Clearly, one could consider with
the same method othé&=2 dynamics.
1 i 2 Finally, this work might be used in the context of effective
Lym.= Ej 29|DPG2+ gfabc( GPVeh+ EDB(VD“Vz)) models for high-temperatur@lana) superconductivity14],
where the initiaIN=1 supermultiplets are built out of com-

posites of spinons and holons in the spin-charge separation

=— E,:a;w,:a + i_fam)\ajL ED" ap 53 framework.
- A 2 prup
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