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Unconstrained SU„2… Yang-Mills theory with a topological term
in the long-wavelength approximation
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The Hamiltonian reduction ofSU(2) Yang-Mills theory for an arbitraryu angle to an unconstrained non-
local theory of a self-interacting positive definite symmetric 333 matrix fieldS(x) is performed. It is shown
that, after exact projection to a reduced phase space, the density of the Pontryagin index remains a pure
divergence, proving theu independence of the unconstrained theory obtained. An expansion of the nonlocal
kinetic part of the Hamiltonian in powers of the inverse coupling constant and truncation to lowest order,
however, lead to violation of theu independence of the theory. In order to maintain this property on the level
of the local approximate theory, a modified expansion in the inverse coupling constant is suggested, which for
a vanishingu angle coincides with the original expansion. The corresponding approximate Lagrangian up to
second order in derivatives is obtained, and the explicit form of the unconstrained analogue of the Chern-
Simons current linear in derivatives is given. Finally, for the case of degenerate field configurationsS(x) with
rankiSi51, a nonlinears-type model is obtained, with the Pontryagin topological term reducing to the Hopf
invariant of the mapping from the three-sphereS3 to the unit two-sphereS2 in the Whitehead form.
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I. INTRODUCTION

For a complete understanding of the low-energy quan
phenomena of Yang-Mills theory, it is necessary to hav
nonperturbative, gauge invariant description of the unde
ing classical theory including theu-dependent Pontryagin
term @1–4#. Several representations of Yang-Mills theory
terms of local gauge invariant fields have been propo
@5–24# in recent decades, implementing the Gauss law a
generator of small gauge transformations. However, in d
ing with such local gauge invariant fields special consid
ation is needed when the topological term is included, si
it is the four-divergence of a current changing under la
gauge transformations. In particular, the consistency of c
strained and unconstrained formulations of gauge theo
with topological term requires us to verify that, after proje
tion to the reduced phase space, the classical equation
motion for the unconstrained variables remainu
independent.1 Furthermore, the question of which trace t
large gauge transformation with a nontrivial Pontryagin
pological index leaves on the local gauge invariant fields
to be addressed.

Having this in mind, in the present paper we extend o
approach@22,27,28# to constructing the unconstrained for
of SU(2) Yang-Mills theory to the case when the topologic
term is included in the classical action. We generalize
Hamiltonian reduction of classicalSU(2) Yang-Mills field

1The question of consistency of the elimination of redundant v
ables in theories containing both constraints and pure divergen
the so-called ‘‘divergence problem,’’ was analyzed for the first ti
in the context of the canonical reduction of general relativity
Dirac @25# and by Arnowitt, Deser, and Misner@26#.
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theory to arbitraryu angle by reformulating the original de
generate Yang-Mills theory as a nonlocal theory of a se
interacting positive definite symmetric 333 matrix field.
The consistency of the Hamiltonian reduction in the prese
of the Pontryagin term is demonstrated by constructing
canonical transformation, well defined on the reduced ph
space, that eliminates theu dependence of the classical equ
tions of motion for the unconstrained variables.

With the aim of obtaining a practical form of the nonloc
unconstrained Hamiltonian, we perform an expansion
powers of the inverse coupling constant, equivalent to
expansion in the number of spatial derivatives. We find tha
straightforward application of the derivative expansion v
lates the principle ofu independence of the classical obser
ables. To cure this problem, we propose to exploit the pr
erty of chromoelectromagnetic duality of pure Yang-Mil
theory, symmetry under the exchange of the chromoelec
and -magnetic fields. The electric and magnetic fields
subject to dual constraints, the Gauss law and Bianchi id
tity, and only when both are satisfied are the classical eq
tions of motionu independent. Thus any approximation
resolving the Gauss law constraints should be consistent
the Bianchi identity. We show how to use the Bianchi ide
tity to rearrange the derivative expansion in such a way t
the u independence is restored to all orders on the class
level.

In order to have a representation of the gauge invar
degrees of freedom suitable for a study of the low-ene
phase of Yang-Mills theory, we perform a principal-ax
transformation of the symmetric tensor field and obtain
unconstrained Hamiltonian in terms of the principal-ax
variables in the lowest order in 1/g. Carrying out an inverse
Legendre transformation to the corresponding unconstra

i-
s,
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Lagrangian, we find the explicit form of the unconstrain
analogue of the Chern-Simons current, linear in the der
tives.

Finally, we consider the case of degenerate symme
field configurationsSwith rankiS(x)i51. We find a nonlin-
ear classical theory of a three-dimensional unit-vectorn field
interacting with a scalar field. Using typical boundary con
tions for the unit-vector field at spatial infinity, the Pontry
gin topological charge density reduces to the Abelian Che
Simons invariant density@4#. We discuss its relation to th
Hopf number of the mapping from the three-sphereS3 to the
unit two-sphereS2 in the Whitehead representation@29#. The
Abelian Chern-Simons invariant is known from different a
eas in physics, in fluid mechanics as ‘‘fluid helicity,’’ i
plasma physics and magnetohydrodynamics as ‘‘magn
helicity’’ @30–33#. In the context of four-dimensional Yang
Mills theory a connection between non-Abelian vacuum c
figurations and certain Abelian fields with nonvanishing h
licity established already in@34,35#.

The paper is organized as follows. In Sec. II theu inde-
pendence of classical Yang-Mills theory in the framework
the constrained Hamiltonian formulation is revised. Sect
III is devoted to the derivation of unconstrainedSU(2)
Yang-Mills theory for arbitraryu angle. The consistency o
our reduction procedure is demonstrated by explicitly qu
ing the canonical transformation, which removes theu de-
pendence from the unconstrained classical theory. In Sec
the unconstrained Hamiltonian up to ordero(1/g) is ob-
tained. Section V presents the long-wavelength class
Hamiltonian in terms of principal-axes variables. The cor
sponding Lagrangian up to second order in derivatives,
the unconstrained analogue of the Chern-Simons current
ear in the derivatives, are obtained. In Sec. VI the unc
strained action for degenerate field configurations is con
ered. Section VII finally gives our conclusions. Several m
technical details are presented in the Appendixes A, B,
and D. Appendix A summarizes our notation and definitio
Appendix B is devoted to the question of the existence of
‘‘symmetric gauge,’’ in Appendix C the proof of theu de-
pendence of the ‘‘naive’’ 1/g approximation is given, and
Appendix D contains some technical details for the repres
tation of the unconstrained theory in terms of principal-ax
variables.

II. CONSTRAINED HAMILTONIAN FORMULATION

Yang-Mills gauge fields are classified topologically by t
value of the Pontryagin index2

p152
1

8p2E tr F`F. ~1!

Its density, the so-called topological charge densityQ5

2The necessary notation and definitions forSU(2) Yang-Mills
theory used in the text have been collected in Appendix A.
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2(1/8p2)tr F`F, being locally exactQ5dC, can be added
to the conventional Yang-Mills Lagrangian with arbitrary p
rameteru:

L52
1

g2
tr F`* F2

u

8p2g2
tr F`F, ~2!

without changing the classical equations of motion. In t
Hamiltonian formulation, this shifts the canonical momen
conjugated to the field variablesAai ,

Pai5
]L

]Ȧai

5Ȧai2„Di~A!…acAc01
u

8p2
Bai , ~3!

by the magnetic field (u/8p2)Bai . As a result, the total
Hamiltonian@36,37# of Yang-Mills theory with theu angle,
as a functional of canonical variables (Aa0 ,Pa) and
(Aai ,Pai) obeying the Poisson bracket relations

$Aai~ t,xW !,Pb j~ t,yW !%5dabd i j d
(3)~xW2yW !, ~4!

$Aa0~ t,xW !,Pb~ t,yW !%5dabd
(3)~xW2yW ! ~5!

takes the form

HT5E d3xF1

2 S Pai2
u

8p2
BaiD 2

1
1

2
Bai

2

2Aa0„Di~A!…acPci1laPaG . ~6!

Here, the linear combination of three primary constraints

Pa~x!50 ~7!

with arbitrary functionsla(x) and the secondary constraint
the non-Abelian Gauss law

„Di~A!…acPci50, ~8!

reflect the gauge invariance of the theory.
Based on the representation~6! for the total Hamiltonian,

one can immediately verify that classical theories with d
ferent value of theu angle are equivalent. Performing th
canonical transformation

Aai~x!°Aai~x!,

Pb j~x!°Eb jªPb j~x!2
u

8p2
Bb j~x! ~9!

to the new variablesAai and Eb j , and using the Bianch
identity

„Di~A!…abBbi~A!50, ~10!
3-2
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one can then see that theu dependence completely disa
pears from the Hamiltonian~6!. Note that the canonica
transformation~9! can be represented in the form

Eai5Pai2u
d

dAai
W@A#, ~11!

whereW@A# denotes the winding number functional

W@A#5E d3xK0@A# ~12!

constructed from the zero component of the Chern-Sim
current

Km@A#52
1

16p2
«mabg trS FabAg2

2

3
AaAbAgD . ~13!

The question now arises whether, after reduction of Ya
Mills theory including the topological term to the unco
strained system, a transformation analogous to Eq.~9! can be
found that correspondingly eliminates anyu dependence on
the reduced level, proving the consistency of the Ham
tonian reduction.

III. UNCONSTRAINED HAMILTONIAN FORMULATION

A. Hamiltonian reduction for arbitrary u angle

In order to derive the unconstrained form ofSU(2) Yang
Mills theory with theu angle we follow the method deve
oped in@22#. We perform the point transformation

Aai~q,S!5Oak~q!Ski1
1

2g
«abc„] iO~q!OT~q!…bc ~14!

from the gauge fieldsAai(x) to the new set of three field
qj (x), j 51,2,3, parametrizing an orthogonal 333 matrix
O(q) and the six fieldsSik(x)5Ski(x),i ,k51,2,3, collected
in the positive definite symmetric 333 matrix S(x).3 Equa-
tion ~14! can be seen as a gauge transformation to the
field configuration S(x) which satisfies the ‘‘symmetric
gauge’’ condition

xa~S!ª«abcSbc50. ~15!

The complete analysis of the existence and uniquenes
this gauge, i.e., whether any gauge potentialAai can be made
symmetric by a unique gauge transformation, is a comp
mathematical problem. Here we shall consider the trans
mation ~14! in a region where the uniqueness and regula
of the change of coordinates can be guaranteed. In Appe
B, we prove the existence and uniqueness of the symm
gauge for the case of a nondegenerate matrixA using the
inverse coupling constant expansion. Furthermore, as a
lustration of the obstruction of the uniqueness of the sy

3It is necessary to note that a decomposition similar to Eq.~14!
was used in@11# as a generalization of the well-known polar d
composition valid for arbitrary quadratic matrices.
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metric gauge fixing~the appearance of Gribov copies! for
degenerate matricesA, the Wu-Yang monopole configuratio
is considered. Although it is antisymmetric in space a
color indices, it can be brought into the symmetric form, b
there exist two gauge transformations by which this can
achieved. The case of a degenerate matrix fieldS, detiSi
50, will be discussed for the special situation rankiSi51 in
Sec. VI.

The transformation~14! induces a point canonical trans
formation linear in the new momentaPik(x) andpi(x), con-
jugated withSik(x) and qi(x), respectively. Their expres
sions in terms of the old variables„Aai(x),Pai(x)… can be
obtained from the requirement of the canonical invariance
the symplectic one-form

(
i ,a51

3

PaiȦaidt5 (
i , j 51

3

Pi j Ṡi j dt1(
i 51

3

pi q̇idt ~16!

with the fundamental brackets

$Si j ~ t,xW !,Pkl~ t,yW !%5
1

2
~d ikd j l 1d i l d jk!d (3)~xW2yW !,

~17!

$qi~ t,xW !,pj~ t,yW !%5d i j d
(3)~xW2yW ! ~18!

for the new canonical pairs „Si j (x),Pi j (x)… and
„qi(x),pi(x)…. The brackets~17! account for the second
class symmetry constraintsSi j 5Sji and Pi j 5Pji and there-
fore are Dirac brackets. As a result, we obtain the expres

Pai5Oak~q!@Pki1g«kin * Dnm
21~S!~Sm2V jm

21pj !#
~19!

for the old momentaPai in terms of the new canonical vari
ables ~for a detailed derivation see@22#!. Here * Dmn

21(S)
denotes the inverse of the differential matrix operator4

* Dmn~S!5«n jc„D j~S!…mc , ~20!

the vectorS is defined as

Sm5
1

g
„D j~S!…mnPn j , ~21!

and the matrixV21 is the inverse of

Vni~q!:5 2
1

2
«nbcS OT~q!

]O~q!

]qi
D

bc

. ~22!

Here we would like to comment on the geometrical mea
ing of the above expressions. The vectorS coincides up to
divergence with the spin density part of the Noetherian

4Note that the operator* Dmn(S) corresponds in the conventiona
gauge-fixing method to the so-called Faddeev-Popov~FP! operator,
the matrix of Poisson brackets between the Gauss law constrain~8!
and the symmetric gauge~15!, $„Di(S)…mcPci(x),xn(y)%
5 * Dmn(S)d3(x2y).
3-3
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gular momentum after projection to the surface given by
Gauss law constraints. Furthermore, the matrixV21 defines
the main geometrical structures on theSO(3,R) group mani-
fold, namely, the three left-invariant Killing vector field
haªV ja

21]/]qj obeying the so(3) algebra @ha ,hb#
5eabchc , and the invariant metricgª2tr(OTdOOTdO)
5(1/2)(VTV) i j dqidqj as the standard metric onS3. Since
detV is proportional to the Haar measure o
SO(3,R)Adetigi5udetiV(q)iu, and it is expected to vanis
at certain coordinate singularities~see also, e.g., discussio
in Chap. 8 of@38#!. In deriving the expression~19! we shall
here limit ourselves to the region where the matrixV is
invertible.

The main advantage of introducing the variablesSi j and
qi is that they Abelianize the non-Abelian Gauss law co
straints ~8!. In terms of the new variables the Gauss la
constraints

gOas~q!V is
21~q!pi50 ~23!

depend only on (qi ,pi), showing that the variables (Si j ,Pi j )
are gauge-invariant, physical fields. Hence, assum
detV(q)5” 0 in Eqs.~19! and~23!, the reduced Hamiltonian
defined as the projection of the total Hamiltonian onto
constraint shell, can be obtained from Eq.~6! by imposing
the equivalent set of Abelian constraints

pi50. ~24!

Due to gauge invariance, the reduced Hamiltonian is in
pendent of the coordinatesqi canonically conjugated topi
and is hence a function of the unconstrained gauge-invar
variablesSi j andPi j only

H5E d3xF1

2 S Pai2
u

8p2
Bai

(1)~S!D 2

1S Pa2
u

8p2
Ba

(2)~S!D 2

1
1

2
V~S!G . ~25!

Here thePa denotes the nonlocal functional, according
Eq. ~19! defined as the solution of the system of different
equations

* Dks~S!Ps5„D j~S!…knPn j . ~26!

The nonlocal second term in the Hamiltonian~25! therefore
stems from the antisymmetric part of thePai , which re-
mains after implementing Gauss’s lawpa50, in terms of the
physicalPai . Hence this term containsFP22 @see Eq.~26!#,
and is the analogue of the well-known nonlocal part of
Hamiltonian in the Coulomb gauge~see, e.g.,@9#!.

Furthermore,

Bai
(1)~S!ª

1

2
@Bai~S!1Bia~S!#, Ba

(2)~S!ª
1

2
«abcBbc~S!

~27!

denote the symmetric and antisymmetric parts of the redu
chromomagnetic field
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Bai~S!5« i jk S ] jSak1
g

2
«abcSb jSckD . ~28!

It is the same functional of the symmetric fieldS as the
original Bai(A), since the chromomagnetic field transform
homogeneously under the change of coordinates~14!. Fi-
nally, the potentialV(S) is the square of the reduced ma
netic field ~28!,

V~S!d3x5Bai
2 ~S!d3x5

1

2
tr * F (3)`F (3), ~29!

with the curvature two-form in three-dimensional Euclide
space

F (3)5dS1S`S, ~30!

in terms of the symmetric one-form

S5gtkSkldxl , k,l 51,2,3, ~31!

whose six components depend on the time variable as
external parameter. The reduced chromomagnetic field~28!
is given in terms of the dual field strength* F (3) asBai(S)
5 1

2 « i jkFa jk
(3) .

B. Canonical equivalence of unconstrained theories with
different u angles

For the original degenerate action in terms of theAm
fields the equivalence of classical theories with arbitrary v
ues of u angle has been reviewed in Sec. II. Let us no
examine the same problem for the unconstrained theory
rived considering the analogue of the canonical transform
tion ~9! after projection onto the constraint surface,

Sai~x!°Sai~x!,

Pb j~x!°Eb j~x!ªPb j~x!2
u

8p2
Bb j

(1)~x!. ~32!

One can easily check that this transformation to new v
ablesSai andEb j is canonical with respect to the Dirac brac
ets~17!. In terms of the new variablesSai andEb j the Hamil-
tonian ~25! can be written as

H5E d3xF1

2
E ai

2 1E a
21

1

2
V~S!G , ~33!

with Ea defined as

EaªPa2
u

8p2
Ba

(2) . ~34!

Now, if Pa is a solution of Eq.~26!, thenEa is a solution of
the same equation

* Dks~S!Es5„D j~S!…knEn j ~35!
3-4



sy

a
ti
th
n
ca

k
um
he
im
in

n

ne
on
il-

th
n
m
th
fo

/
n

.

-

de-

r-

ob-

s a

,
r-
nd-

t-

an
ian
wn
ed
rd

o-
we

o-
n-

f

ry
th

ne-
e-
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with the replacementPai°Eai , since the reduced fieldBai
satisfies the Bianchi identity

„Di~S!…abBbi~S!50. ~36!

Hence we arrive at the same unconstrained Hamiltonian
tem ~33! and~35! with vanishingu angle. Note that after the
elimination of the three unphysical fieldsqj (x) the projected
canonical transformation~32! that removes theu dependence
from the Hamiltonian can be written as

Eb j~x!5Pb j~x!2u
d

dSb j
W@S#, ~37!

which is of the same form as Eq.~11! with the nine gauge
fieldsAik(x) replaced by the six unconstrained fieldsSik(x).

In summary, the exact projection to a reduced phase sp
leads to an unconstrained system whose equations of mo
are consistent with the original degenerate theory in
sense that they areu independent. Thus if our consideratio
is restricted only to the classical level of the exact nonlo
unconstrained theory, the generalization to arbitraryu angle
can be avoided.5 However, in order to work with such a
complicated nonlocal Hamiltonian it is necessary to ma
approximations, such as, for example, expansion in the n
ber of spatial derivatives, which we shall carry out in t
next section. For these one has to check that this approx
tion is free of the ‘‘divergence problem,’’ that is, all terms
the corresponding truncated action containing theu angle
can be collected into a four-divergence and all depende
on u disappears from the classical equations of motion.

IV. EXPANSION OF THE UNCONSTRAINED
HAMILTONIAN IN 1 Õg

Let us now consider the regime when the unconstrai
fields are slowly varying in space-time and expand the n
local part of the kinetic term in the unconstrained Ham
tonian~25! as a series of terms with increasing powers of
inverse coupling constant 1/g, equivalent to an expansion i
the number of spatial derivatives of field and momentu
Our expansion is purely formal and we shall not study
question of its convergence in this work. We shall see that
nonvanishingu angle a straightforward expansion in 1g
leads to the above mentioned ‘‘divergence problem,’’ a
suggest an improved form of the expansion in 1/g of the
unconstrained Hamiltonian exploiting the Bianchi identity

A. Divergence problem in lowest-order approximation

According to@22#, the nonlocal funtionalPa in the uncon-
strained Hamiltonian~33!, defined as a solution of the sys
tem of linear differential equations~26!, can formally be ex-
panded in powers of 1/g. The vectorPa is then given as a

5The extension of the proof ofu independence to quantum theo
requires showing the unitarity of the operator corresponding to
transformation~32!.
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sum of terms containing an increasing number of spatial
rivatives of field and momentum:

Ps~S,P!5 (
n50

`

~1/g!nas
(n)~S,P!. ~38!

The zeroth-order term is

as
(0)5gsk

21«klm~PS! lm , ~39!

with g ikªSik2d ik tr S, and the first-order term is dete
mined as

as
(1)52gsl

21@~rotaW (0)! l1]kPkl# ~40!

from the zeroth-order term. The higher terms are then
tained by the simple recurrence relations

as
(n11)52gsl

21~rotaW (n)! l . ~41!

Inserting these expressions into Eq.~25! we obtain the cor-
responding expansion of the unconstrained Hamiltonian a
series in higher and higher numbers of derivatives.

Let us check whether the truncation of the expansion~38!
to lowest order is consistent withu independence, that is
whether allu-dependent terms can be collected into fou
divergence after Legendre transformation to the correspo
ing Lagrangian. Ino(1/g) approximation~39!, the Hamil-
tonian reads6

H (2)5E d3xF1

2
trS P2

u

8p2
B(1)D 2

1S as
(0)~S,P!2

u

8p2
Bs

(2)D 2

1
1

2
V~S!G , ~42!

whereB(1) andB(2) denote the symmetric and antisymme
ric parts of the chromomagnetic field, defined in Eq.~27!.

After inverse Legendre transformation of the Hamiltoni
~42!, theu-dependent terms in the corresponding Lagrang
cannot be collected into a total four-divergence, as is sho
in Appendix C, and therefore contribute to the unconstrain
equations of motion. Hence, on applying a straightforwa
derivative expansion to the Yang-Mills theory with a top
logical term after projection to a reduced phase space,
face the ‘‘divergence problem’’ discussed above.

B. Improved 1Õg expansion using the Bianchi identity

In order to avoid the ‘‘divergence problem’’ one can pr
ceed as follows. Let us consider additionally to the differe
tial equation~26!, which determines the nonlocal termPa ,
the Bianchi identity~36! as an equation for determination o
the antisymmetric partBs

(2) of the chromomagnetic field

e

6When all spatial derivatives of the fields and momenta are
glected, Yang-Mills theory reduces to the so-called Yang-Mills m
chanics and itsu independence has been shown in@27#.
3-5
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* Dks~S!Bs
(2)5„Di~S!…klBli

(1) ~43!

in terms of its symmetric partBbc
(1) . The complete analogy

of this equation with Eq.~26! expresses the duality of th
chromoelectric and chromagnetic fields on the unconstra
level. Hence one can write

* Dks~S!F Ps2
u

8p2
Bs

(2)G5„Di~S!…klF Pli 2
u

8p2
Bli

(1)G .

~44!

Using the same type of spatial derivative expansion as be
in Eqs.~39!–~41!, we obtain

Ps2
u

8p2
Bs

(2)5 (
n50

`

~1/g!nas
(n)S S,P2

u

8p2
B(1)D .

~45!

In this way we achieve a form of the derivative expans
such that the unconstrained Hamiltonian is a functional
the field combinationPai2(u/8p2)Bai

(1) ,

H5E d3xH 1

2 S Pai2
u

8p2
Bai

(1)D 2

1F (
n50

`

~1/g!nai
(n)S S,P2

u

8p2
B(1)D G 2

1
1

2
V~S!J ,

~46!

explicitly showing the chromoelectromagnetic duality on t
reduced level and hence free of the ‘‘divergence problem
To obtain the unconstrained Hamiltonian up to leading or
o(1/g), only the lowest termas

(0)@S,P2(u/8p2)B(1)# in the
sum in Eq.~46! has to be taken into account, so that

H (2)5
1

2E d3xH trS P2
u

8p2
B(1)D 2

2
1

det2g

3trS gFS,P2
u

8p2
B(1)Gg D 2

1V~S!J . ~47!

The advantage of this Hamiltonian compared with Eq.~42!,
derived before, is that the classical equations of motion
lowing from Eq.~47! areu independent. In order to obtain
transparent form of the corresponding surface term in
unconstrained action, it is useful to perform a principal-ax
transformation of the symmetric matrix fieldS(x).

V. LONG-WAVELENGTH APPROXIMATION TO REDUCED
THEORY

In this section we shall first rewrite the unconstrain
Hamiltonian~47! in terms of principal-axes variables of th
symmetric tensor fieldSi j . The corresponding second-ord
LagrangianL (2) is then obtained via Legendre transform
tion and the form of the corresponding unconstrained to
divergence derived in an explicit way.
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A. Hamiltonian in terms of principal-axes variables

In @22# it was shown that the fieldSi j (x) transforms as a
second-rank tensor under spatial rotations. This can be u
to explicitly separate the rotational degrees of freedom fr
the scalars in the Hamiltonian~47!. Following @22#, we in-
troduce the principal-axes representation of the symme
333 matrix fieldS(x),

S~x!5RT@x~x!#S f1~x! 0 0

0 f2~x! 0

0 0 f3~x!
D R@x~x!#.

~48!

The Jacobian of this transformation is

JS Si j @f,x#

fk ,x l
D})

i 5” j
uf i~x!2f j~x!u, ~49!

and thus Eq.~48! can be used as a definition of the ne
configuration variables, the three diagonal fieldsf1 ,f2 ,f3
and the three angular fieldsx1 ,x2 ,x3, only if all eigenvalues
of the matrixS are different. To have uniqueness of the i
verse transformation we assume here that

0,f1~x!,f2~x!,f3~x!. ~50!

The variablesf i in the principal-axes transformation~48!
parametrize the orbits of the action of a group elemeng
PSO(3,R) on symmetric matricesS→S85gSg21. The
configuration~50! belongs to the so-called principal orb
class, whereas all orbits with coinciding eigenvalues of
matrix S are singular orbits@39#. In order to parametrize
configurations belonging to a singular stratum one should
principle use a decomposition of theS field different from
the above principal-axes transformation~48!. Alternatively,
one can consider the singular orbits as the boundary of
principal-orbit-type stratum and study the corresponding
namics using a certain limiting procedure.7 In this section we
shall limit ourselves to the consideration of the dynamics
the principal orbits and leave the important case of the s
gular orbits expected to contain interesting physics for fut
studies.

The momentap i and px i
, canonically conjugate to the

diagonal elementsf i andx i , can be found using the cond
tion of the canonical invariance of the symplectic one-for

(
i , j 51

3

Pi j Ṡi j dt5(
i 51

3

p iḟ idt1(
i 51

3

px i
ẋ idt. ~51!

The original physical momentaPik , expressed in terms o
the new canonical variables, read

7The relation between an explicit parametrization of the singu
strata and their description as a certain limit of the principal or
stratum has been studied recently in@40# investigating the geodesic
motion on theGL(n,R) group manifold.
3-6
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P~x!5RT~x!(
s51

3 S ps~x!ās1
1

2
Ps~x!asDR~x!. ~52!

Here ā i and a i denote the diagonal and off-diagonal ba
elements for symmetric matrices with the orthogonality re
tions tr(ā i ā j )5d i j , tr(a ia j )52d i j , tr(ā ia j )50, and

Pi~x!52
j i~x!

f j~x!2fk~x!
~cyclic permutationsiÞ j Þk!.

~53!

The j i are the threeSO(3,R) right-invariant Killing vector
fields, satisfying locally the ‘‘intrinsic frame’’ angular mo
mentum brackets$j i(x),j j (y)%52e i jkjk(x)d(x2y), and
are given in terms of the anglesx i and their conjugated mo
mentapx i

via8

j i5(
j 51

3

M ji
21px j

, ~54!

where the matrixM is

M jiª2
1

2 (
a,b51

3

« jabS ]R

]x i
RTD

ab

. ~55!

In terms of the principal-axes variables~48!, the o(1/g)
Hamiltonian ~47! can be written in the form~for technical
details see Appendix D!

H (2)5
1

2E d3xF(
i 51

3 S p i2
u

8p2
b i D 2

1 (
cyclic

i , j ,k

kiS j i1
u

8p2
~f j2fk!bi D 2

1V~f,x!G ,

~56!

with the diagonal componentsb i and the off-diagonal com
ponentsbi of the the symmetric part of the chromomagne
field ~see Appendix D!

b i5gf jfk2~f i2f j !G ik j1~f i2fk!G i jk

~cyclic permutationsiÞ j Þk!, ~57!

bi5Xi~f j2fk!2~f i2f j !G i j j 1~f i2fk!G ikk ,

~cyclic permutationsiÞ j Þk!, ~58!

the abbreviations

kiª
f j

21fk
2

~f j
22fk

2!2
~cyclic permutationsiÞ j Þk!, ~59!

8In terms of the Euler anglesx i5(a,b,g) the three right-
invariant Killing vector fieldsj i readj15singpa1(cosg/sina)pb

1cosg cotapg , j25cosgpa2(sing/sina)pb2sing cotapg , and
j35pg .
10501
-

and the potentialV, defined in Eq.~29! and rewritten in the
principal-axes variables as~see@22# and the errata@23#!

V~f,x!5(
i 5” j

3

@~f i2f j !G i i j 2Xjf i #
21 (

cyclic

i , j ,k

@~f i2fk!G i jk

2~f i2fk!G ik j2gf jfk#
2. ~60!

The dependence on the angular variablesx i in Eqs. ~57!,
~58!, and~60! has been collected into the vector fields

Xiª(
j 51

3

Ri j ] j , ~61!

and the components of the connection one-formG

Gaibª~XiRRT!ab . ~62!

We see that through the principal-axes transformation of
symmetric tensor fieldS, the highest orderg2 terms in the
Hamiltonian~56!, which are proportional to the spatially ho
mogeneous partVhom of the potential~60!,

Vhom5g2~f1
2f2

21f2
2f3

21f3
2f1

2!, ~63!

depend only on the diagonal fieldsf i , while the rotational
degrees of freedomx i and their canonically conjugate mo
mentapx i

appear in the unconstrained Hamiltonian~56! only

via the Killing vector fieldsj i , the connectionG, and the
vectorsXi .

The transformation~32!, rewritten in terms of angular and
scalar variables,

p i°p i1
u

8p2
b i , f i°f i ,

j i°j i2
u

8p2
~f j2fk!bi , ~64!

excludes theu dependence from the Hamiltonian~56!, re-
ducing it to the zerou angle expression@22#

H (2)5
1

2E d3xF(
i 51

3

p i
21 (

cyclic

i , j ,k

j i
2

f j
21fk

2

~f j
22fk

2!2
1V~f,x!G .

~65!

B. Second-order unconstrained Lagrangian

We are now ready to derive the Lagrangian up to sec
order in derivatives corresponding to the Hamiltonian~56!.
Carrying out the inverse Legendre transformation,

ḟ i5p i2
u

8p2
b i , ~66!

ẋ i5(
j 51

3

Gi j S px j
2

u

8p2 (
cyclic

a,b,c

M ja
T ~fb2fc!baD ,

~67!
3-7
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with the matrixM given in Eq.~55! and the 333 matrix G,

G5M 21kM21T, ~68!

similar to the diagonal matrixk5diagik1 ,k2 ,k3i with en-
trieski of Eq. ~59!, we arrive at the second-order Lagrangi

L (2)~f,x!5
1

2E d3xF(
i 51

3

ḟ i
21 (

i , j 51

3

ẋ iGi j
21ẋ j2V~f,x!G

2uE d3xQ(2)~f,x!, ~69!

with all u dependence gathered in the reduced topolog
charge density

Q(2)5
1

8p2 (
i 51

3 S ḟ ib i1 (
cyclic

a,b,c

ẋ iM ia
T ~fb2fc!baD .

~70!

TheQ(2) in the effective Lagrangian~69! can be represente
as the divergence

Q(2)5]mKm
(2) ~71!

of the four-vectorKm
(2)5(K0

(2) ,Ki
(2)), with the components

K0
(2)5

1

16p2 (
cyclic

a,b,c F ~fa2fb!2Gacb2
2

3
gfafbfcG ,

~72!

Ki
(2)5

1

16p2 (
cyclic

a,b,c

Ria
T ~fb2fc!

2Gb0c , ~73!

with the space components ofG given in Eq.~62!, and the
time components correspondingly defined as

Ga0b5~ṘRT!ab . ~74!

This completes our construction of the second-order
grangian with allu contributions gathered in a total differen
tial ~70! ~see also Appendix D!. We have found the uncon
strained analogue of the Chern-Simons currentKm

(2) , linear
in the derivatives. Under the assumption that the vector
Ki

(2) vanishes at spatial infinity, the unconstrained form
the Pontryagin indexp1 can be represented as the differen
of the two surface integrals

W65E d3xK0
(2)~ t→6`,xW !, ~75!

which are the winding number functional~12! for the physi-
cal field S in terms of principal-axes variables~48! at t→
6`, respectively, sinceK0

(2)(f,x) of Eq. ~72! coincides
with the full K0†S@f,x#‡ of Eq. ~13!. In the next section we
shall show how for certain field configurations it reduces
the Hopf number of the mapping from the three-sphereS3 to
the unit two-sphereS2.
10501
al

-
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VI. UNCONSTRAINED THEORY FOR DEGENERATE
CONFIGURATIONS

The previous study was restricted to consideration of
domain of configuration space with detiSi5” 0, where the
change of variables~14! is well defined. In this section we
would like to discuss the dynamics on the special degene
stratum~DS! with rankiSi51, corresponding to the case o
two eigenvalues of the matrixSvanishing. To investigate the
dynamics on degenerate orbits it is in principle necessar
use a decomposition of the gauge potential different from
representation ~14! and the corresponding subseque
principal-axes transformation~48!. Instead of this, we shal
use here the fact that the degenerate orbits can be regard
the boundary of the nondegenerate ones and find the co
sponding dynamics by taking the corresponding limit fro
the nondegenerate orbits. Assuming the validity of such
approach we shall analyze the limit when two eigenvalues
the symmetric matrixS tend to zero.9 Due to the cyclic sym-
metry under permutation of the diagonal fields it is enough
choose one singular configuration

f1~x!5f2~x!50 and f3~x! arbitrary. ~76!

Note that for the configuration~76! the spatially homoge-
neous part~63! of the square of the magnetic field vanish
and the potential term in the Lagrangian~69! reduces to the
expression

V5f3
2@~G213!

21~G223!
21~G233!

21~G311!
21~G321!

2

1~G331!
21~G3[12]!

2#1@~X1f3!21~X2f3!2#

12f3@G331X1f31G332X2f3#, ~77!

which can be rewritten as@22,23#

V5~¹f3!21f3
2@~] in!21~n•rotn!2#2~n•“f3!2

1~@n3rotn#•“f3
2!, ~78!

introducing the unit vector

ni~x!ªR3i@x~x!#. ~79!

Hence the unconstrained second-order Lagrangian co
sponding to the degenerate stratum with rankiS(x)i51
takes the form of the nonlinears-model type Lagrangian

9It can easily be checked that the degenerate stratum
rankiSi51 is dynamically invariant. Furthermore, it is obviou
from the representation~65! of the unconstrained Hamiltonian tha
it is necessary to havejk→0 for some fixedk, in order to obtain a
finite contribution of the kinetic term to the Hamiltonian in the lim
f i ,f j→0 for (i , j 5” k).
3-8
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LDS5
1

2E d3x@~]mf3!21f3
2~]mn!22f3

2~n•rotn!2

1~n•“f3!22~@n3rotn#•“f3
2!#2uE d3xQDS

~80!

for the unit-vectorn(x) field coupled to the fieldf3(x). The
density of the topological termQDS in the Lagrangian~80!
can be represented as the divergence

QDS5]mKDS
m ~81!

of the four-vector

KDS
m 5

1

16p2
f3

2
„@n~x!•rotn~x!#,@n~x!3ṅ~x!#…. ~82!

If we impose the usual boundary condition that the fieldn
becomes time independent at spatial infinity, the contribut
from the vector partKDS

i vanishes and the unconstraine
form of the Pontryagin topological indexp1 for the degen-
erate stratum with rankiSi51 can be represented as the d
ference

p15n12n2 ~83!

of the surface integrals

n65
1

16p2E d3x@V6~xW !•rotV6~xW !# ~84!

of the fields

V6~xW !ª lim
t→6`

f3~x!n. ~85!

We shall show now that the surface integrals~84! are Hopf
invariants in the representation of Whitehead@29#.

Under the Hopf mapping of a three-sphere to a tw
sphere having unit radius,N:S3→S2, the preimage of a poin
on S2 is a closed loop. The numberQH of times the loops
corresponding to two distinct points onS2 are linked to each
other is the so-called Hopf invariant. According to Whit
head @29#, this linking number can be represented by t
integral

QH5
1

32p2ES3
w1`w2, ~86!

with the so-called Hopf two-form curvaturew25Hi j dxi

`dxj given in terms of the mapN as

Hi j 5«abcNa~] iNb!~] jNc!, ~87!

and the one-formw1 related to it viaw25dw1. Since the
curvatureHi j is divergence-free,

« i jk] iH jk50, ~88!
10501
n
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it can be represented as the rotation

Hi j 5] iAj2] jAi ~89!

in terms of some vector fieldAi( i 51,2,3) defined over the
whole of S3. Thus the Hopf invariant takes the form

QH5
1

16p2E d3x~A•rotA!. ~90!

Therefore, the surface integrals~84! are just Hopf invari-
ants in the Whitehead representation~90! and the uncon-
strained form of the topological termQ(2) is a three-
dimensional Abelian Chern-Simons term@4# with
‘‘potential’’ Vi and the corresponding ‘‘magnetic field’’ rotV.
The topological term in the originalSU(2) Yang-Mills
theory reduces for rank-1 degenerate orbits not to a wind
number, but to the linking numberQH of the field lines.

We would like to end this section with two importan
open questions to be posed for future investigations. Firs
would be very interesting to work out whether the classi
unconstrained theory obtained for degenerate field confi
rations can be used to obtain some effective quantum m
relevant to the low energy region of Yang-Mills theory, su
as those proposed and discussed recently in@41–44#. Sec-
ond, due to the noncovariance of the symmetric gauge
posed, the Lorentz transformation properties of the fieldsf3
andn are nonstandard~see, e.g., similar discussions for th
case of the Coulomb gauge in electrodynamics@48–50#!. A
careful investigation is necessary, taking into account surf
contributions to the unconstrained form of the generators
the Poincare´ group.

VII. CONCLUSIONS AND REMARKS

We have generalized the Hamiltonian reduction ofSU(2)
Yang-Mills gauge theory to the case of nonvanishingu angle
and shown that there is agreement between the reduced
original constrained equations of motions. We have e
ployed an improved derivative expansion of the nonlocal
netic term in the unconstrained Hamiltonian obtained a
investigated it in the long-wavelength approximation. T
corresponding second-order Lagrangian has been
structed, with all u dependence gathered in the fou
divergence of a current, linear in the derivatives, which is
unconstrained analogue of the original Chern-Simons c
rent.

For the degenerate gauge field configurationsS with
rankiSi51, we have argued that the long-wavelength L
grangian obtained reduces to a classical theory with an A
lian Chern-Simons term originating from the Pontryagin
pological functional. Therefore the topological characteris
of the degenerate configuration is given not by a wind
number, but by the linking number of the field lines.

Finally, let us comment on the Poincare´ covariance of our
unconstrained version of Yang-Mills theory. It is well know
that the Hamiltonian formulation of degenerate theories
duced with the help of noncovariant gauges destroy
manifest Poincare´ invariance. Our ‘‘symmetric’’ gauge con
3-9
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dition ~15! is not covariant under standard Lorentz transf
mations. This, however, does not necessarily violate
Poincare´ invariance of our reduced theory. Such a situat
can be found in classical electrodynamics. After impos
the Coulomb gauge condition the vector potential cease
be an ordinary Lorentz vector and transforms nonhomo
neously under Lorentz transformations. The standard Lore
boosts are compensated by some additional gauge-type t
formation depending on the boost parameters and the g
potential itself ~see, e.g.,@48–50#!. As for the case of the
Coulomb gauge in electrodynamics, a thorough analysis
the Poincare´ group representation for our reduced theory o
tained by imposing the symmetric gauge condition is
quired. This problem is technically highly difficult and de
mands special consideration that is beyond the scope o
present article.
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APPENDIX A: CONVENTIONS AND NOTATION

In this appendix, we collect the notation and definitio
for SU(2) Yang-Mills theory used in the text following@4#.

The classical Yang-Mills action of thesu(2)-valued con-
nection one-formA in four-dimensional Minkowski space
time with a metrich5diagi1,21,21,21i reads

I 52
1

g2E tr F` * F2
u

8p2g2E tr F`F, ~A1!

with the curvature two-form

F5dA1A`A ~A2!

and its Hodge dual* F. The trace in Eq.~A1! is calculated in
the anti-Hermitiansu(2) algebra basista5sa/2i with Pauli
matrices sa,a51,2,3, satisfying @ta ,tb#5«abctc and
tr(tatb)52 1

2 dab .
In the coordinate basis the components of the connec

one-formA are

A5gtaAm
a dxm, ~A3!

and the components of the curvature 2-formF are

F5
1

2
gtaFmn

a dxm`dxn, ~A4!

Fmn
a 5]mAn

a2]nAm
a 1g«abcAm

b An
c . ~A5!
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Its duals * F are given as

* F5
1

2
gta * Fmn

a dxm`dxn, ~A6!

* Fmn
a 5

1

2
«mnrsFars, ~A7!

with a totally antisymmetric Levi-Civita` pseudotensor
«mnrs , using the convention

«012352«012351. ~A8!

The u angle enters the classical action as the coefficien
front of the Pontryagin index density

Q52
1

8p2
tr F`F. ~A9!

The Pontryagin index density is a closed formdQ50 and
thus locally exact

Q5dC, ~A10!

with the Chern three-form

C52
1

8p2
trS A`dA1

2

3
A`A`AD . ~A11!

The corresponding Chern-Simons currentKm is a dual of the
three-formC,

Km5~1/3!!«mnrsCnrs

52
1

16p2
«mabg trS FabAg2

2

3
AaAbAgD , ~A12!

with the notationsAmªgtaAm
a and FmnªgtaFmn

a . The
chromomagnetic field is given by

Bi
a5

1

2
« i jkF jk

a 5« i jk S ] jAak1
g

2
«abcAb jAckD , ~A13!

and the covariant derivative in the adjoint representation

„Di~A!…ac5dac] i1g«abcAbi . ~A14!

Finally, we frequently use the matrix notation

AaiªAi
a , BaiªBi

a . ~A15!

APPENDIX B: ON THE EXISTENCE OF THE
‘‘SYMMETRIC GAUGE’’

In this appendix we discuss the condition under which
symmetric gauge

xa~A!5«abiAbi~x!50 ~B1!

exists.
3-10
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According to the conventional gauge-fixing method~see,
e.g., @45#!, a gaugexa(A)50 exists if the corresponding
equation

xa~Av!50 ~B2!

in terms of the gauge transformed potential

Aai
v ta5U1~v!S Aaita1

1

g

]

]xi
DU~v! ~B3!

has a unique solution for the unknown functionv(x).10

Hence the symmetric gauge~B1! exists if any gauge po
tential A can be made symmetric by a unique tim
independent gauge transformation. The equation that d
mines the gauge transformationv(x) which converts an
arbitrary gauge potentialA(x) into its symmetric counterpar
can be written as a matrix equation

OT~v!A2ATO~v!5
1

g
@S~v!2ST~v!#, ~B4!

with the orthogonal 333 matrix related to theSU(2) group
element

Oab~v!522 tr@U1~v!taU~v!tb# ~B5!

and the 333 matrix S

Sai~v!ª2
1

4i
«amnS OT~v!

]O~v!

]xi
D

mn

. ~B6!

We shall now prove the following theorem.
Theorem. For any nondegenerate matrixA Eq. ~B4! ad-

mits a unique solution in the form of a 1/g expansion

O~v!5O(0)F11 (
n51

` S 1

gD n

X(n)G . ~B7!

Proof. In order to prove the statement, we first note th
equating coefficients of equal powers in 1/g in the orthogo-
nality conditionOTO5OOT5I of the matrixO imposes the
condition of orthogonality ofO(0),

O(0)TO(0)5O(0)O(0)T5I , ~B8!

as well as the conditions

X(1)1X(1)T50,

X(2)1X(2)T1X(1)X(1)T50,

••• •••,

10Here we assume that the second gauge conditionAa050 is sat-
isfied and the functionv(x) therefore depends only on the spa
coordinates.
10501
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X(n)1X(n)T1 (
i 1 j 5n

X( i )X( j )T50,

••• ••• ~B9!

for the unknown functionsX(n). Furthermore, plugging ex
pansion~B7! into Eq.~B4! and combining the terms of equa
powers of 1/g, we find that the orthogonal matrixO(0)

should satisfy Eq.~B4! to leading order in 1/g,

O(0)TA2ATO(0)50, ~B10!

and theX(n) should satisfy the infinite set of equations

X(1)TO(0)TA2ATO(0)X(1)5S (0)2S (0),

••• •••,

X(n)TO(0)TA2ATO(0)TX(n)5S (n21)2S (n21)T,

••• •••, ~B11!

where the corresponding 1/g expansion for the matrixS(v)

S~v!5 (
n50

` S 1

gD n

S (n) ~B12!

has been used. Note that in the expansion~B12! thenth order
term S (n) is given in terms ofO(0) and X(a) with a
51, . . . ,n21.

From the structure of Eqs.~B8!–~B11! one can see tha
the solution to Eq.~B4! reduces to an algebraic problem
Indeed, the solution to the first, homogeneous equation~B10!
is given by the polar decomposition for the arbitrary mat
A,

O(0)5AS(0)21, S(0)5AAAT. ~B13!

This solution is unique only if detiAi5” 0. It follows from
the well-known property that the polar decomposition
valid for an arbitrary matrixA, but the orthogonal matrix
O(0) is unique only for nondegenerate matrices@47#.

To proceed further we use this solution and Eqs.~B9! for
unknownX to rewrite the remaining equations~B11! as

X(1)S(0)1S(0)X(1)5C(0),

••• •••,

X(n)S(0)1S(0)X(n)5C(n21),

••• •••, ~B14!

where thenth order coefficientC(n) is given in terms ofO(0)

andX(1),X(2), . . . ,X(n21).
Thus, starting from the zeroth-order term, the higher-or

termsX(n) are given recursively as solutions of matrix equ
tions of the typeXS(0)1S(0)X5C with a known symmetric
positive definite matrixS(0)5AAAT and matrixC, expressed
in terms of the precedingX(a), a51, . . . ,n21. The theory
3-11
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of such algebraic equations is well elaborated~see, e.g.,
@46,47#!. In particular, Theorem 8.5.1 in@46# states that for
matrix equations for unknown matrixX of the type XA
1BX5C, there is a unique solution if and only if the ma
tricesA and2B have no common eigenvalues. Based on t
theorem one can conclude that the unique solution to E
~B8!–~B11! and hence to our original problem~B4! exists
always for any nondegenerate matrixA.

It is necessary to emphasize that in order to prove
existence and uniqueness of the representation~14! it should
be shown additionally to the above Theorem that the co
sponding symmetric matrix fieldS,

S~x!5 (
n50

` S 1

gD n

S(n)~x!, ~B15!

is sign definite. Above, the positive definiteness has b
shown only for the zeroth-order termS(0)5AAAT. The
study of this problem, as well as an analogous investiga
for the degenerate field configurationsA with detiAi50, are
beyond the scope of this appendix and will be discusse
detail elsewhere. Here we limit ourselves to the consid
ation of a specific example, elucidating the generic pictu

In the case that the matrixA is degenerate, we encount
the problem of Gribov’s copies. As an illustration of th
nonuniqueness of the gauge transformation that turns a g
field configurationA into the corresponding symmetric form
we consider the ‘‘degenerate’’ field

Aa050, Aai52
1

gr
«aicr̂ c , ~B16!

known as the non-Abelian Wu-Yang monopole field, with t
unit vector r̂ a5xa /r and r 5Ax1

21x2
21x3

2.
Performing the gauge transformation

Saita5U1~v!S Aaita1
1

g

]

]xi
DU~v!, ~B17!

with U(v)5evata parametrized by one time-independe
spherical symmetric function

va5 f ~r ! r̂ a , ~B18!

the Wu-Yang monopole configuration~B16!, antisymmetric
in space and color indices, can be brought into the ‘‘symm
ric form’’

Sai
656

A3

gr
~dai2 r̂ ar̂ i !, ~B19!

if the function f (r ) is constant and takes four values:

f ~r !5H p/3, 7p/3 for ~1 !,

5p/3, 11p/3 for ~2 !.
~B20!

HereS1 can be obtained from the Wu-Yang monopole co
figuration~B16! by applying two different gauge transforma
tions with f (r )5p/3,7p/3,
10501
s
s.

e

-

n

n

in
r-
.

en

t

t-

-

U1,256SA3

2
2 r̂ •t D , ~B21!

while the S2 configuration can be reached usingf (r )
55p/3,11p/3,

U3,457SA3

2
1 r̂ •t D . ~B22!

Here it is in order to make the following comments.
For the above gauge transformations we have limr→`U

Þ6I . Thus they are neither small gauge transformations
large gauge transformations belonging to any inte
n-homotopy class@4#.

The symmetric configurations~B19! corresponding to the
Wu-Yang monopole lie on the stratum of degenerate sy
metric matrices with one eigenvalue vanishing and two
genvalues equal to each other.

The symmetric configurationsS1 and S2 in Eq. ~B19!
with twofold Gribov degeneracy are related to each other
parity conjugation.

APPENDIX C: PROOF OF u DEPENDENCE OF THE
NAIVE 1 Õg APPROXIMATION

In this appendix it is shown that straightforward applic
tion of expansion of the nonlocal partPa of the kinetic term
in the unconstrained Hamiltonian to zeroth order discus
in Sec. IV A leads to the appearance ofu dependence of the
reduced system on the classical level. Expressing the Ha
tonian ~42!, in terms of the principal-axes variables, defin
in Sec. V, and performing an inverse Legendre transform
tion, one obtains the Lagrangian density

L (2)~f,x!5
1

2 S (
i 51

3

ḟ i
21 (

i , j 51

3

ẋ iGi j
21ẋ j2V~f,x!D

2
1

2 S u

8p2D 2

(
cyclic

i , j ,k
D i

2

f j
21fk

2
2

u

8p2 (
a51

3 F ḟaba

1 (
cyclic

i , j ,k

ẋaMai
T ~f j2fk!S bi1

~f j2fk!

f j
21fk

2
D i D G ,

~C1!

denoting the difference

D i5
1

2
~f j2fk!bi2~f j1fk!(

s51

3

RisBs
(2)

~cyclic permutationsiÞ j Þk!, ~C2!

with bi of Eq. ~58! andBi
(2) of Eq. ~D7!, or, explicitly,
3-12
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D i52@Xi~f jfk!1~G i j j 1G ikk!f jfk2f i~f jG ikk

1fkG i j j !# ~cyclic permutationsi 5” j 5” k!.

~C3!

It easy to convince ourselves that the term proportional tou2

is not a surface term. Indeed, considering for simplicity co
figurations of spatially constant angular variablesx i andf1
5f25f35:f, it reduces to

2S u

8p2D 2

(
i 51

3

] if] if, ~C4!

which is not a four-divergence. ForD i50 the Lagrangian
density~C1! reduces to Eq.~69!, obtained from the improved
Hamiltonian~47!, free of the divergence problem.

APPENDIX D: REPRESENTATION OF THE
UNCONSTRAINED FIELDS IN THE BASIS

OF PRINCIPAL-AXES VARIABLES

Starting from the coordinate basis expression ofS in Eq.
~31!, we observe that the principal-axes transformation~48!
corresponds to the representation

S5 (
a51

3

eafava , ~D1!

with the one-forms

v iª(
j 51

3

Ri j @x~x!#dxj , i 51,2,3, ~D2!

and thesu(2) Lie algebra basis

eaª(
b51

3

Rab@x~x!#tb , a51,2,3. ~D3!

1. Unconstrained magnetic field

The physical chromomagnetic fieldsBai(S), given in Eq.
~28!, can be regarded as the components of the dual* F (3)

Bai~S!5
1

2 (
i , j 51

3

« i jkFa jk
(3)

of the curvature two-formF (3), defined in terms of the sym
metric one-formS in Eq. ~30! as

F (3)5dS1S`S.

In the principal-axes basis the components of the n
Abelian field strengthF (3) read
10501
-

-

Fai j
(3)5da jXif j2daiXjf i1f iGa ji2f jGai j1Ga[ i j ]fa

1g«ai jf if j ~no summation!, ~D4!

with the components of the connection one-formG defined
as

Gaibª~XiRRT!ab ,

and the vector fields

Xiª(
j 51

3

Ri j ] j

dual to the one-formsv j ,v i(Xj )5d i j , and acting on the
basis elementsea as

Xiea52 (
b51

3

Gbiaeb . ~D5!

The explicit expressions for the diagonal componentsb i and
the off-diagonal componentsbi of the symmetric part of the
chromomagnetic field

B(1)5RT~x!(
i 51

3 S b i ā i1
1

2
bia i DR~x! ~D6!

are given in terms of the diagonal fieldsf i and the angular
fields x i in cyclic form

b i5gf jfk2~f i2f j !G ik j1~f i2fk!G i jk

~cyclic permutationsiÞ j Þk!,

bi5Xi~f j2fk!2~f i2f j !G i j j 1~f i2fk!G ikk

~cyclic permutationsiÞ j Þk!,

and the antisymmetric partBi
(2) of the unconstrained mag

netic field is

Bi
(2)5

1

2 (
cyclic

a,b,c

Ria
T @Xa~fb1fc!1~fb2fa!Gabb

1~fc2fa!Gacc#. ~D7!

2. Unconstrained Chern-Simons three-form

Using the Maurer-Cartan structure equations for the o
forms v i

dva5 (
c51

3

Ga0cdt`vc1 (
b,c51

3

Gabcvb`vc , ~D8!

with the space components ofG given in Eq.~62!, and the
time components correspondingly defined as
3-13
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Ga0b5~ṘRT!ab ,

Eq. ~70! can be written as

Q(2)5dC(2) ~D9!

with the three-form
ii,

-

hy

a

k i

10501
C(2)5
1

8p2 (
a,b

3

~fa2fb!2Ga0bdt`va`vb

2
3

8p2 (
cyclic

a,b,c F ~fa2fb!2Gacb2
2

3
«abcf1f2f3G

3va`vb`vc . ~D10!
.
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