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The Hamiltonian reduction o8U(2) Yang-Mills theory for an arbitrary angle to an unconstrained non-
local theory of a self-interacting positive definite symmetric 3 matrix field S(x) is performed. It is shown
that, after exact projection to a reduced phase space, the density of the Pontryagin index remains a pure
divergence, proving th@ independence of the unconstrained theory obtained. An expansion of the nonlocal
kinetic part of the Hamiltonian in powers of the inverse coupling constant and truncation to lowest order,
however, lead to violation of th@ independence of the theory. In order to maintain this property on the level
of the local approximate theory, a modified expansion in the inverse coupling constant is suggested, which for
a vanishingé angle coincides with the original expansion. The corresponding approximate Lagrangian up to
second order in derivatives is obtained, and the explicit form of the unconstrained analogue of the Chern-
Simons current linear in derivatives is given. Finally, for the case of degenerate field configug§tpngith
rank|S| =1, a nonlineawr-type model is obtained, with the Pontryagin topological term reducing to the Hopf
invariant of the mapping from the three-sphépeto the unit two-spheré? in the Whitehead form.
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[. INTRODUCTION theory to arbitraryd angle by reformulating the original de-
generate Yang-Mills theory as a nonlocal theory of a self-
For a complete understanding of the low-energy quantuninteracting positive definite symmetric>33 matrix field.

phenomena of Yang-Mills theory, it is necessary to have arhe consistency of the Hamiltonian reduction in the presence
nonperturbative, gauge invariant description of the underlyof the Pontryagin term is demonstrated by constructing the
ing classical theory including thé-dependent Pontryagin canonical transformation, well defined on the reduced phase
term[1-4]. Several representations of Yang-Mills theory in space, that eliminates tiedependence of the classical equa-
terms of local gauge invariant fields have been proposeglons of motion for the unconstrained variables.
[5—24 in recent decades, implementing the Gauss law as & jth the aim of obtaining a practical form of the nonlocal

generator of small gauge tr_ansfqrmat]ons. HOW‘?Ve“ n _dealtlnconstrained Hamiltonian, we perform an expansion in
ing with such local gauge invariant fields special consider-

tion i ded when the topoloaical © i< included. si (gowers of the inverse coupling constant, equivalent to an
ation 1S needed when the topological term IS included, sinc xpansion in the number of spatial derivatives. We find that a
it is the four-divergence of a current changing under large

> ) . straightforward application of the derivative expansion vio-
gauge transformations. In particular, the consistency of con- o : :
strained and unconstrained formulations of gauge theorie|§ltes the prmmplg ob independence of the cIassmgI observ-
with topological term requires us to verify that, after projec- ables. To cure this problem, We propose to exploit the prop-
tion to the reduced phase space, the classical equations Bfty ©f chromoelectromagnetic duality of pure Yang-Mills
motion for the unconstrained variables remain  (he€ory, symmetry under the exchange of the chromoelectric
independent. Furthermore, the question of which trace the@nd -magnetic fields. The electric and magnetic fields are
large gauge transformation with a nontrivial Pontryagin to-subject to dual constraints, the Gauss law and Bianchi iden-
pological index leaves on the local gauge invariant fields ha§ty, and only when both are satisfied are the classical equa-
to be addressed. tions of motion# independent. Thus any approximation in
Having this in mind, in the present paper we extend ouresolving the Gauss law constraints should be consistent with
approach22,27,28 to constructing the unconstrained form the Bianchi identity. We show how to use the Bianchi iden-
of SU(2) Yang-Mills theory to the case when the topologicaltity to rearrange the derivative expansion in such a way that
term is included in the classical action. We generalize théhe ¢ independence is restored to all orders on the classical
Hamiltonian reduction of classic@U(2) Yang-Mills field  level.
In order to have a representation of the gauge invariant
degrees of freedom suitable for a study of the low-energy
The question of consistency of the elimination of redundant vari-Phase of Yang-Mills theory, we perform a principal-axes
ables in theories containing both constraints and pure divergencietiansformation of the symmetric tensor field and obtain the
the so-called “divergence problem,” was analyzed for the first timeunconstrained Hamiltonian in terms of the principal-axes
in the context of the canonical reduction of general relativity byvariables in the lowest order ind./ Carrying out an inverse
Dirac [25] and by Arnowitt, Deser, and Misn¢26)]. Legendre transformation to the corresponding unconstrained

0556-2821/2003/61.0)/10501314)/$20.00 67 105013-1 ©2003 The American Physical Society



KHVEDELIDZE et al. PHYSICAL REVIEW D 67, 105013 (2003

Lagrangian, we find the explicit form of the unconstrained—(1/8#2)tr F/\F, being locally exacQ=dC, can be added
analogue of the Chern-Simons current, linear in the derivato the conventional Yang-Mills Lagrangian with arbitrary pa-

tives. rametero:
Finally, we consider the case of degenerate symmetric

field configurationsS with rank|S(x)||=1. We find a nonlin- 1
ear classical theory of a three-dimensional unit-ventéeld L=——tr FA*F— >
interacting with a scalar field. Using typical boundary condi- g 87y
tions for the unit-vector field at spatial infinity, the Pontrya-
gin topological charge density reduces to the Abelian Chernwithout changing the classical equations of motion. In the
Simons invariant densitj4]. We discuss its relation to the Hamiltonian formulation, this shifts the canonical momenta,
Hopf number of the mapping from the three-sph#teo the ~ conjugated to the field variables,; ,
unit two-spheres? in the Whitehead representatif29]. The
Abelian Chern-Simons invariant is known from different ar- .
eas in physics, in fluid mechanics as “fluid helicity,” in ai=—=—=Asi— (Di(A))acAcot = Bai, 3
. . « . (QAai 8w
plasma physics and magnetohydrodynamics as “magnetic

helicity” [30—33. In the context of four-dimensional Yang- by the magnetic field @/872)B,;. As a result, the total
al - ’

Mills theory a connection between non-Abelian vacuum con- S . .
figurations and certain Abelian fields with nonvanishing he_Hamlltonlan[36,3ﬂ of Yang-Mills theory with thed angle,

licity established already if34,35. as a functional of canonical variablesA,IT,) and

The paper is organized as follows. In Sec. Il thénde- (Aai,I15;) obeying the Poisson bracket relations
pendence of classical Yang-Mills theory in the framework of

tr F/\F, )

the constrained Hamiltonian formulation is revised. Section {ALi(t,X), Ip;(t,y)} = 858 6 (x—y), (4)
Il is devoted to the derivation of unconstrain&ilJ(2)
Yang-Mills theory for arbitraryd angle. The consistency of {AL0(t,X), I (t,y)} = 8,5 (X—Y) (5)

our reduction procedure is demonstrated by explicitly quot-

ing the canonical transformation, which removes thde-  takes the form
pendence from the unconstrained classical theory. In Sec. IV

the unconstrained Hamiltonian up to orde¢l/g) is ob- 1
tained. Section V presents the long-wavelength classical HT=f d3x| =
Hamiltonian in terms of principal-axes variables. The corre- 2
sponding Lagrangian up to second order in derivatives, and
the unconstrained analogue of the Chern-Simons current, lin- — Auo(Di (AT i+ N LTI
ear in the derivatives, are obtained. In Sec. VI the uncon- a0tF T Jactiel T fata
strained action for degenerate field configurations is consid-

ered. Section VIl finally gives our conclusions. Several moreHere, the linear combination of three primary constraints
technical details are presented in the Appendixes A, B, C,

and D. Appendix A summarizes our notation and definitions, II,(x)=0 (7)
Appendix B is devoted to the question of the existence of the

“symmetric gauge,” in Appendix C the proof of thé de-  with arbitrary functions\ ,(x) and the secondary constraints,
pendence of the “naive” Iy approximation is given, and the non-Abelian Gauss law

Appendix D contains some technical details for the represen-

tation of the unconstrained theory in terms of principal-axes (Di(A)),J1,=0, (8
variables.

6\ 1,
Hai_ﬁBai +5Bai

. (6)

reflect the gauge invariance of the theory.
Based on the representatit) for the total Hamiltonian,
one can immediately verify that classical theories with dif-

Yang-Mills gauge fields are classified topologically by the ferent value of theg angle are equivalent. Performing the

II. CONSTRAINED HAMILTONIAN FORMULATION

value of the Pontryagin indéx canonical transformation
1 Aai(x)ﬁAai(X)y
plz——zf tr F/\F. (1)
8 0
[pj(x) = Epj=Ipj(x) — pBbj(X) 9
m

Its density, the so-called topological charge density
to the new variables\,; and Ey,j, and using the Bianchi
identity
°The necessary notation and definitions ®tJ(2) Yang-Mills
theory used in the text have been collected in Appendix A. (Di(A))apBpi(A)=0, (10
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one can then see that tiedependence completely disap- metric gauge fixing(the appearance of Gribov copjefor
pears from the Hamiltoniari6). Note that the canonical degenerate matrices the Wu-Yang monopole configuration
transformation(9) can be represented in the form is considered. Although it is antisymmetric in space and
color indices, it can be brought into the symmetric form, but
there exist two gauge transformations by which this can be
achieved. The case of a degenerate matrix figlddef|S|
=0, will be discussed for the special situation rfg8k=1 in
whereW[ A] denotes the winding number functional Sec. VI.
The transformatior{14) induces a point canonical trans-
MA]ZJ d3xKO[A] (12)  formation linear in the new momeng,(x) andp;(x), con-
jugated with S; (x) and q;(x), respectively. Their expres-
sions in terms of the old variablg®\,;(x),I1,;(x)) can be
obtained from the requirement of the canonical invariance of

1)
Eai:Hai_GWaiW[A]r (11

constructed from the zero component of the Chern-Simon

current )
the symplectic one-form
KA A] ! raBY tr| F A 2A AZA (13 > > >
=_ e WA~ A, ) . . :
1671-2 BNy 3 BNy '32]_ HaiAaidt:_zl P'lslldt+21 p|q|dt (16)
i,a= i,j= i=

The question now arises Whether,_ after reduction of Yang\'/vith the fundamental brackets
Mills theory including the topological term to the uncon-

strained system, a transformation analogous to(®can be _ . 1 R
found that correspondingly eliminates afydependence on {Sij(t,x),Pi(t,y)}= 5 (didji+ i 8ik) 8 (x—y),

the reduced level, proving the consistency of the Hamil- (17)
tonian reduction.

{ai(t,%),p;(t,y)} = 8; 8D (x—y) (18)

for the new canonical pairs (§;(x),P;(x)) and
(9i(x),pi(x)). The brackets(17) account for the second-

In order to derive the unconstrained fOfm%U(Z) Yang class Symmetry Constrainsj =Sji and PIJ = P]I and there-
Mills theory with the 6 angle we follow the method devel- fore are Dirac brackets. As a result, we obtain the expression
oped in[22]. We perform the point transformation

4= Oa( D[ Pxi+ & kin * D () (Sm—Qj py)]

_ 1 T (19
Aai(qas)_oak(Q)Ski+zgsabc(aio(q)o (@)pe (14
for the old momentdl; in terms of the new canonical vari-

from the gauge field#\,;(x) to the new set of three fields ables(for a detailed derivation sef22]). Here *D,1(S)
d;(x),j=1,2,3, parametrizing an orthogonalx3 matrix  denotes the inverse of the differential matrix operator
0O(q) and the six fieldss; (x) = Sy;(x),i,k=1,2,3, collected
in the positive definite symmetric>33 matrix S(x).3 Equa- *Dinn(S) =£njc(Dj(S)me: (20
tion (14) can be seen as a gauge transformation to the new . ]
field configuration S(x) which satisfies the “symmetric the vectorSis defined as
gauge” condition

IIl. UNCONSTRAINED HAMILTONIAN FORMULATION

A. Hamiltonian reduction for arbitrary @ angle

1
Xa(S) =€ apSpe=0. (15) Sm=§(D i((S)mnPhnj (21)

The complete analysis of the existence and uniqueness aid the matrix) ! is the inverse of
this gauge, i.e., whether any gauge poteriglcan be made
symmetric by a unique gauge transformation, is a complex
mathematical problem. Here we shall consider the transfor-
mation (14) in a region where the uniqueness and regularity
of the change of coordinates can be guaranteed. In Appendix Here we would like to comment on the geometrical mean-
B, we prove the existence and uniqueness of the symmetrieig of the above expressions. The vectroincides up to
gauge for the case of a nondegenerate malrinsing the  divergence with the spin density part of the Noetherian an-
inverse coupling constant expansion. Furthermore, as an il-
lustration of the obstruction of the uniqueness of the sym=—""—
“Note that the operatctD,,,(S) corresponds in the conventional
gauge-fixing method to the so-called Faddeev-Pdp® operator,
3It is necessary to note that a decomposition similar to (Ed) the matrix of Poisson brackets between the Gauss law consBaint
was used iM11] as a generalization of the well-known polar de- and the symmetric gauge(15), {(D;i(S))mdlci(X),xn(Y)}
composition valid for arbitrary quadratic matrices. =*D (S 83(x—y).

(22)

1 d0
Qpi(q):= _Esnb(:(OT(Q) (q)) .
bc

aq;
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gular momentum after projection to the surface given by the g

Gauss law constraints. Furthermore, the matix* defines Bai(S)=&ijk| 9Sakt 5 €abcShjSek| - (28
the main geometrical structures on t8€(3,R) group mani-

fold, namely, the three left-invariant Killing vector fields |; js the same functional of the symmetric fie@las the
7ai=Qj,'9/0q; obeying the so(3) algebra [7,,7,]  original B,(A), since the chromomagnetic field transforms
=e€anc7c,_and the invariant metrig:=—tr(0'dO0'dO)  homogeneously under the change of coordindfes. Fi-
=(1/2)(27Q);;dgidg; as the standard metric &. Since nally, the potentiaV(S) is the square of the reduced mag-
det() is proportional to the Haar measure 0N petic field(28),

SQO(3,R) Vdet|g||=|det 2(q)||, and it is expected to vanish

at certain coordinate singularitiésee also, e.g., discussion 3 ’ . 1 3) A £(3)

in Chap. 8 of{38]). In deriving the expressiofl9) we shall V(S)d°x=B5(S)d*x=5tr*F AE®S), (29
here limit ourselves to the region where the matflxis

invertible. with the curvature two-form in three-dimensional Euclidean

The main advantage of introducing the variabBsand  gpace
g; is that they Abelianize the non-Abelian Gauss law con-
straints (8). In terms of the new variables the Gauss law F®=dS+SAS, (30)
constraints

g :aS(q)‘(2’|S (q)pl O (23)

depend only ond; ,p;), showing that the variables ,P;;)

are gauge-invariant, physical fields. Hence, assumingase six components depend on the time variable as an
det(2(q) #0 in Egs.(19) and(23), the reduced Hamiltonian, - gyternal parameter. The reduced chromomagnetic 28
defined as the projection of the total Hamiltonian onto the;q given in terms of the dual field strengtF®) asB,(S)

al

S:ngSk|dX| ’ k,|:1,2,3, (31)

constraint shell, can be obtained from Ef) by imposing _ 1 (3)
. . . =3 Si'kF ik
the equivalent set of Abelian constraints Ik al
p;=0. (29 B. Canonical equivalence of unconstrained theories with

different @ angles
Due to gauge invariance, the reduced Hamiltonian is inde-
pendent of the coordinateg canonically conjugated tp;
and is hence a function of the unconstrained gauge-invaria
variablesS;; andP;; only

1
Hzf d3x

For the original degenerate action in terms of thg

rﬁelds the equivalence of classical theories with arbitrary val-

ues of @ angle has been reviewed in Sec. Il. Let us now

examine the same problem for the unconstrained theory de-

2 rived considering the analogue of the canonical transforma-
tion (9) after projection onto the constraint surface,

0
5( Pai—QBg)(S)

- S0 Si(X),

+ . (25

0
Pa— —B{(S)
g’ b a0
ij(X)'—>5bj(X)=:ij(X)—FBbj (X). (32
Here theP, denotes the nonlocal functional, according to &
Eq. (19 defined as the solution of the system of differential

: One can easily check that this transformation to new vari-
equations

ablesS,; and&,; is canonical with respect to the Dirac brack-
*Dye( S)Ps= (D{(S))nP; (26) ets'(17). In terms of th'e new variables,; and&y,; the Hamil-
tonian(25) can be written as
The nonlocal second term in the Hamiltonigib) therefore
stems from the antisymmetric part of thé,;, which re- B 3
mains after implementing Gauss’s lagay= 0, in terms of the H_f d*x
physicalP,;. Hence this term contairsP 2 [see Eq(26)],
and is the analogue of the well-known nonlocal part of thewith &, defined as
Hamiltonian in the Coulomb gaugsee, e.g.[9]).
Furthermore,

1 9 2 1
SELHEH V(). (33

0 (=)
ga::Pa_ﬁBa . (34)

1 - 1
BSY(S):=5[Bai(S) +Bia(S)], BE(S):=5 eandBoc(S)
27) Now, if P, is a solution of Eq(26), then&, is a solution of
the same equation

denote the symmetric and antisymmetric parts of the reduced
chromomagnetic field *Dis(S)E= (Dj(S))knénj (35
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with the replacemenP;—&,;, since the reduced fielB,; sum of terms containing an increasing number of spatial de-

satisfies the Bianchi identity rivatives of field and momentum:
(DI(S))abBbI(S):O (36) Ps(sap)znzo (1/g)na(sn)(S,P) (38)

Hence we arrive at the same unconstrained Hamiltonian sys-

tem (33) and(35) with vanishingéd angle. Note that after the The zeroth-order term is

elimination of the three unphysical fields(x) the projected

canonical transformatiof82) that removes thé dependence a§0)= Vs_kls Kkm(PS)im (39

from the Hamiltonian can be written as
with v, :=S— ik trS, and the first-order term is deter-
P mined as
Ebj(X)=ij(X)—05—Sb_W[S]. (37) )
: alt=— yg [ (rota®), + 3Py (40
which is of the same form as E(L]) with the nine gauge from the zeroth-order term. The higher terms are then ob-

fields A (x) replaced by the _six l_mconstrained fielg(x). tained by the simple recurrence relations
In summary, the exact projection to a reduced phase space

leads to an unconstrained system whose equations of motion
are consistent with the original degenerate theory in the

sense 'Fhat they ar@independ_ent. Thus if our consideration Inserting these expressions into EAS) we obtain the cor-
is restricted only to the classical level of the exact nonlocalesponding expansion of the unconstrained Hamiltonian as a
unconstrained theory, the generalization to arbitr@ngle  garies in higher and higher numbers of derivatives.

can be avoided.However, in order to work with such a Let us check whether the truncation of the expan$gs)
complicated nonlocal Hamiltonian it is necessary to mak&q |owest order is consistent with independence, that is,
approximations, such as, for example, expansion in the NUnzhether all g-dependent terms can be collected into four-

ber of spatial derivatives, which we shall carry out in the giyergence after Legendre transformation to the correspond-
next section. For these one has to check that this approxiMasg | agrangian. Ino(1/g) approximation(39), the Hamil-
tion is free of the “divergence problem,” that is, all terms in (,nian readd ’

the corresponding truncated action containing thangle
can be collected into a four-divergence and all dependence
on @ disappears from the classical equations of motion. H(Z):J d3x

al"Y=— 5 Yrota™),. (42)

2
1 0
Z _ _ R
2tr(P 87728 )

IV. EXPANSION OF THE UNCONSTRAINED p 2
HAMILTONIAN IN 1 /g +| a9(s,P)- FB({) +5V(S)
T

Let us now consider the regime when the unconstrained

fields are slowly varying in space-time and expand the nonwhereB(*) andB(~) denote the symmetric and antisymmet-
local part of the kinetic term in the unconstrained Hamil-ric parts of the chromomagnetic field, defined in E2j).
tonian(25) as a series of terms with increasing powers of the  After inverse Legendre transformation of the Hamiltonian
inverse coupling constantd,/ equivalent to an expansion in (42), the #-dependent terms in the corresponding Lagrangian
the number of spatial derivatives of field and momentum.cannot be collected into a total four-divergence, as is shown
Our expansion is purely formal and we shall not study thein Appendix C, and therefore contribute to the unconstrained
question of its convergence in this work. We shall see that foequations of motion. Hence, on applying a straightforward
nonvanishingé angle a straightforward expansion ingl/ derivative expansion to the Yang-Mills theory with a topo-
leads to the above mentioned “divergence problem,” andogical term after projection to a reduced phase space, we

suggest an improved form of the expansion ig bf the  face the “divergence problem” discussed above.
unconstrained Hamiltonian exploiting the Bianchi identity.

. (42

B. Improved 1/g expansion using the Bianchi identity

A. Divergence problem in lowest-order approximation In order to avoid the “divergence problem” one can pro-

According to[22], the nonlocal funtionalP, in the uncon-  ceed as follows. Let us consider additionally to the differen-
strained Hamiltoniar(33), defined as a solution of the sys- tial equation(26), which determines the nonlocal terfy,,
tem of linear differential equation®6), can formally be ex- the Bianchi identity(36) as an equation for determination of
panded in powers of @&/ The vectorP, is then given as a the antisymmetric parB(s‘) of the chromomagnetic field

5The extension of the proof af independence to quantum theory  ®When all spatial derivatives of the fields and momenta are ne-
requires showing the unitarity of the operator corresponding to thelected, Yang-Mills theory reduces to the so-called Yang-Mills me-
transformation(32). chanics and it® independence has been shown 2.
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* Dks(S)Bg_): (Di(S))kIBI(i+) (43 A. Hamiltonian in terms of principal-axes variables

. . ) () In [22] it was shown that the fiel&;(x) transforms as a

in terms of |t§ symmetrlc paBy.’. The Complete.analogy second-rank tensor under spatial rotations. This can be used
of this equation with Eq(26) expresses the duality of the (g explicitly separate the rotational degrees of freedom from
chromoelectric and chromagnetic fields on the unconstraineghe scalars in the Hamiltonia@7). Following [22], we in-
level. Hence one can write troduce the principal-axes representation of the symmetric
3X 3 matrix field S(x),

“Dye(S)| Pee ——BL) =(Di(S)w| P ~ g
ks(S)| Ps g20s | = i(S)k| Pii g zoh | bi(x) O 0
(44) SX)=RTx(x)]| 0  ¢2(x) 0 [Rx(x].
Using the same type of spatial derivative expansion as before 0 0 ¢3(x)
in Egs.(39—(41), we obtain (48)
0 * 6 The Jacobian of this transformation is
Pe— —B{)=> (1ig)"al"| s,p— — B |
gm® © 170 87’ Si[x]
(45 J('—’ <[ 10— ()], (49
00 (IS

In this way we achieve a form of the derivative expansion
such that the unconstrained Hamiltonian is a functional ofand thus Eq.(48) can be used as a definition of the new

the field combinatiorP,;— (6/87%)B.;”, configuration variables, the three diagonal fieltls, ¢,, &3
5 and the three angular fielgds , x», x3, only if all eigenvalues
B s |1 0 (+) of the matrixS are different. To have uniqueness of the in-
H‘f d*x 2 Pai— ﬁBai verse transformation we assume here that

2

- 0<¢1(X) < pa(X) < p3(X). (50)
+| > (1g)"al™ S,P—iB(+) +1V(S) ' ’ ’
n=0 8772 2

The variablese; in the principal-axes transformatiof8)
(46) parametrize the orbits of the action of a group elemgnt
eSO(3,R) on symmetric matricesS—S'=gSg®. The
explicitly showing the chromoelectromagnetic duality on theconfiguration (50) belongs to the so-called principal orbit
reduced level and hence free of the “divergence problem.’c|ass, whereas all orbits with coinciding eigenvalues of the
To obtain the unconstrained Hamiltonian up to leading ordematrix S are singular orbit§39]. In order to parametrize
o(1/g), only the lowest terna{”)[S,P—(6/8x%)B(")] inthe  configurations belonging to a singular stratum one should in

sum in Eq.(46) has to be taken into account, so that principle use a decomposition of tigfield different from
) the above principal-axes transformatio4B). Alternatively,

H(z):}f 43! ol p— iB(H 1 one can consider the singular orbits as the boundary of the

2 872 defy principal-orbit-type stratum and study the corresponding dy-

namics using a certain limiting procedurén this section we

shall limit ourselves to the consideration of the dynamics on
. (47)  the principal orbits and leave the important case of the sin-

gular orbits expected to contain interesting physics for future

The advantage of this Hamiltonian compared with Et9), studies. . .
derived before, is that the classical equations of motion fol- The momentam; and Px;» canonically conjugate to the
lowing from Eq.(47) are 6 independent. In order to obtain a diagonal elementg; andx; , can be found using the condi-
transparent form of the corresponding surface term in théion of the canonical invariance of the symplectic one-form
unconstrained action, it is useful to perform a principal-axes 5
transformation of the symmetric matrix fiefs(x). E

2

xtr| y y| +V(S)

S,P— iB(+)
872

3 3
i< PIjSijdt:; 7T|¢|dt+|21 pX|X|dt (51)
V. LONG-WAVELENGTH APPROXIMATION TO REDUCED '

THEORY The original physical momentR;,, expressed in terms of

. _ _ _ ~ the new canonical variables, read
In this section we shall first rewrite the unconstrained

Hamiltonian(47) in terms of principal-axes variables of the

Symmetr_lc terzlsqr field; . Th_e Corrgspondlng second-order 7The relation between an explicit parametrization of the singular
L_agranglanL( ) is then obtained via Legendre transforma- strata and their description as a certain limit of the principal orbit
tion and the form of the corresponding unconstrained totastratum has been studied recentlyf 4] investigating the geodesic
divergence derived in an explicit way. motion on theGL(n,R) group manifold.
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g(X) as+ lPS(X)aS R(x).

E

P(x)=RT(x (52

Here a; «; and a; denote the diagonal and off-diagonal basis V(¢,x)= 2 [(¢i—P)Tii; — X i 1%+
elements for symmetric matrices with the orthogonality rela-

tions tr(a aJ) Gij, t(aja;) =24 tr(alaj)—o, and

G0
60— d(x) Y

ijo

Pi(x)=— clic permutations # j # k).

(53

The &; are the three&sQ(3,R) right-invariant Killing vector
fields, satisfying locally the “intrinsic frame” angular mo-
mentum brackets &;(x),&j(y)} = — € éw(X) 8(x—y), and
are given in terms of the anglgs and their conjugated mo-
mentap, via®

-1
= Mjl le' (54)
where the matriXV is
3
1 JR
[ ) _ RT
M“ 2 a,bz=l 8Jab<‘9 i )ab. (55)

In terms of the principal-axes variabl€48), the o(1/g)
Hamiltonian (47) can be written in the fornfor technical
details see Appendix D

1 3 2
H® == fda E (Wi_S;:_ZBi)

i1
ijk 0
+C%C ki( &+ @(d’j_d’k)bi

2
V(. x) |,

(56)

with the diagonal componeng’; and the off-diagonal com-
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and the potentiaV/, defined in Eq(29) and rewritten in the
principal-axes variables dsee[22] and the errat§23])

3 ijk

; [(#i— Tk
—(Pi— i — 99 #il%.

The dependence on the angular variabiesn Egs. (57),
(58), and(60) has been collected into the vector fields

(60)

3
Xii= 2>, R4 (62)
i=1
and the components of the connection one-férm
[ aipi=(X{RR")4p. (62)

We see that through the principal-axes transformation of the

symmetric tensor fields, the highest ordeg? terms in the
Hamiltonian(56), which are proportional to the spatially ho-
mogeneous pai,,, of the potential(60),

Viom=0%( i3+ d5d5+ d347),

depend only on the diagonal fields, while the rotational
degrees of freedony; and their canonically conjugate mo-
mentap)(i appear in the unconstrained Hamiltoni&@e) only
via the Killing vector fields¢;, the connectiorl’, and the
vectorsX; .

The transformatiori32), rewritten in terms of angular and
scalar variables,

(63

0
mi>ait —— B, ¢ i,
a

0
§i'*§i_ﬁ(¢j_¢k)bia (64)

ponentsb; of the the symmetric part of the chromomagnetic excludes they dependence from the HamiltonidB6), re-

field (see Appendix D

Bi=9¢j b= (i — D)k + (di— P Tijk
(cyclic permutationsi # j #k), (57
bi=Xi(j— dw) — (i — dTijj + (i~ i) Tikk
(cyclic permutationsi # j # k), (58
the abbreviations
o+ _ S
k;:= (d)—z)z (cyclic permutationsi # j #k), (59)
i

8In terms of the Euler angles;=(a,B,7) the three right-
invariant Killing vector fields¢; read ¢, = sin yp,+(cosy/sina)pg
+cosycotap,, &,=cosyp,—(siny/sina)pz—sinycotap,, and
§3: py .

ducing it to the zerd@ angle expressiof22]
3
H@=Z f [2

B. Second-order unconstrained Lagrangian

i
bi)?

o bt

+V(,x)|.
(¢, b, x

(65

cycllc

We are now ready to derive the Lagrangian up to second
order in derivatives corresponding to the Hamilton{&).
Carrying out the inverse Legendre transformation,

(66)

a,b,c

0
P25 3 m

872 cyc

Ja( b= d’c) ba )
(67)
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with the matrixM given in Eqg.(55) and the 3x 3 matrix G, VI. UNCONSTRAINED THEORY FOR DEGENERATE
CONFIGURATIONS
G=M kM1, (68) , . : .
The previous study was restricted to consideration of the
similar to the diagonal matrik=diag|k; K, ks with en- ~domain of configuration space with §&f+0, where the

triesk; of Eq. (59), we arrive at the second-order Lagrangianchange of variable§14) is well defined. In this section we
would like to discuss the dynamics on the special degenerate

stratum(DS) with rank|S|=1, corresponding to the case of
two eigenvalues of the matri8vanishing. To investigate the
dynamics on degenerate orbits it is in principle necessary to
use a decomposition of the gauge potential different from our
- 9f d*xQ@( ¢, x), (69  representation(14) and the corresponding subsequent
principal-axes transformatio@8). Instead of this, we shall

with all & dependence gathered in the reduced topologicatse here the fact that the degenerate orbits can be regarded as

3

3
2, ¢+ 2 XiGi X~ V()

J=1

1
L= d*x

charge density the boundary of the nondegenerate ones and find the corre-
sponding dynamics by taking the corresponding limit from
1 _ abe the nondegenerate orbits. Assuming the validity of such an
Q¥=—" > ( HiBi+ > xiME(dp— d;c)ba) . approach we shall analyze the limit when two eigenvalues of
87 i=1 cyclic the symmetric matriStend to zerd. Due to the cyclic sym-

(70 metry under permutation of the diagonal fields it is enough to

. . . choose one singular configuration
The Q@ in the effective Lagrangiaf69) can be represented ngu guratl

as the divergence

P1(X)=h»(x)=0 and ¢p5(x) arbitrary. (76)
Q@ =K (72

of the four-vectork @= (K2 ,K(®)), with the components ~ Note that for the configuratiofi76) the spatially homoge-
" neous part{63) of the square of the magnetic field vanishes

ab.c 2 and the potential term in the Lagrangiésb) reduces to the
(2)— — )2 —— expression
Ke?=r— ; (¢a— do) Tacs— 39badndbcl. p
(72) 2 2 2 2 2 2
V=3[ (I'213) "+ (I'229) “+ (F'233) "+ (I'310) “+ ('321)
a,b,c
2 2 2 2
Ki(2)216772 C%ic RL(dp— be)Thoc. (73 (P33 "+ (Fapa2) T+ [(X1p3) "+ (Xap3)"]
+2¢3[T'331X1 3+ '332X2603], "
with the space components bf given in Eq.(62), and the
time components correspondingly defined as which can be rewritten 22,23

_(ppT

F'a0=(RRT) 5. (74 V=(V $)2+ $ZL(3,0)7+(n-10tn)2] = (n- V )
This completes our construction of the second-order La-
grangian with allg contributions gathered in a total differen-
tial (70) (see also Appendix D We have found the uncon-
strained analogue of the Chern-Simons curr}éﬁt), linear  introducing the unit vector
in the derivatives. Under the assumption that the vector part
K{? vanishes at spatial infinity, the unconstrained form of
the Pontryagin indey; can be represented as the difference Ni(X) =Railx(X)]. (79)
of the two surface integrals

+([nXxrotn]-V¢3), (78)

Hence the unconstrained second-order Lagrangian corre-
Wi:J' d3K@(t— +,%), (75) sponding to the degenerate stratum with ﬂéﬁk)”_:l
takes the form of the nonlinear-model type Lagrangian

which are the winding number functiondl2) for the physi-
cal field S in terms (.)f prlrgg)lpal-axes variablegs) att— 9t can easily be checked that the degenerate stratum with
+, respectively, since&Ky”(¢,x) of Eq. (72) coincides  (anKg|=1 is dynamically invariant. Furthermore, it is obvious

with the full Ko[S[ ¢, x]] of Eq. (13). In the next section we  from the representatiof65) of the unconstrained Hamiltonian that
shall show how for certain field configurations it reduces toit is necessary to havé—0 for some fixedk, in order to obtain a

the Hopf number of the mapping from the three-spt&reo finite contribution of the kinetic term to the Hamiltonian in the limit
the unit two-spheré?. ¢i,$;j—0 for (i,j #K).
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1( s . 5 it can be represented as the rotation
Los=§J d°X[(d,,¢3)°+ ¢3(3,,n)"— P3(n-rotn)

HijzﬂiAj—ﬂj.Ai (89)
+(n~V¢3)2—([n><rotn]~V¢>§)]— 0f d®xQps in terms of some vector field|;(i=1,2,3) defined over the
whole of S°. Thus the Hopf invariant takes the form
(80)
for the unit-vectom(x) field coupled to the fieldb5(x). The Qu= ! f d®x(A-rot.A). (90)
density of the topological ter@ps in the Lagrangian(80) 1672
can be represented as the divergence
Therefore, the surface integrd84) are just Hopf invari-
Qps=7,Kps (81 ants in the Whitehead representati@0) and the uncon-
strained form of the topological tern@® is a three-
of the four-vector dimensional Abelian Chern-Simons ternf4] with

L “potential” V; and the corresponding “magnetic field” rat
_ 2 - The topological term in the originaBU(2) Yang-Mills
K‘D‘S—@%([n(xyrotn(x)],[n(x)xn(x)]). (82 theory reduces for rank-1 degenerate orbits not to a winding
number, but to the linking numbé&),, of the field lines.
If we impose the usual boundary condition that the field We would like to end this section with two important
becomes time independent at spatial infinity, the contributiorPpen guestions to be posed for future investigations. First, it
from the vector partkl,g vanishes and the unconstrained Would be very interesting to work out whether the classical

form of the Pontryagin topological index; for the degen- unconstrained theory obtained for degenerate field configu-
erate stratum with rar§| =1 can be represented as the dif- fations can be used to obtain some effective quantum model

ference relevant to the low energy region of Yang-Mills theory, such
as those proposed and discussed recently4in-44. Sec-
p1=n,—n_ (83 ond, due to the noncovariance of the symmetric gauge im-
posed, the Lorentz transformation properties of the fielgls
of the surface integrals andn are nonstandar(see, e.g., similar discussions for the

case of the Coulomb gauge in electrodynanii¢8—50). A

1 3 - - careful investigation is necessary, taking into account surface
”t_l&_rz d°X[V . (X)-rotV . (x)] (84 contributions to the unconstrained form of the generators of
the Poincaregroup.
of the fields
. VIl. CONCLUSIONS AND REMARKS
Vi(X):= lim x)n. 85 . I .
+(%) Hix(ﬁ?’( ) @9 We have generalized the Hamiltonian reductiorsaf(2)

Yang-Mills gauge theory to the case of nonvanishihangle

We shall show now that the surface integré8d) are Hopf and shown that there is agreement between the reduced and
invariants in the representation of Whitehd29)]. original constrained equations of motions. We have em-

Under the Hopf mapping of a three-sphere to a two-ployed an improved derivative expansion of the nonlocal ki-
sphere having unit radiudl:S*—S?, the preimage of a point netic term in the unconstrained Hamiltonian obtained and
on $? is a closed loop. The numb&,, of times the loops investigated it in the long-wavelength approximation. The
corresponding to two distinct points &4 are linked to each  corresponding second-order Lagrangian has been con-
other is the so-called Hopf invariant. According to White- structed, with all & dependence gathered in the four-
head[29], this linking number can be represented by thedivergence of a current, linear in the derivatives, which is the

integral unconstrained analogue of the original Chern-Simons cur-
rent.
1 s For the degenerate gauge field configuratid®swith
QH=32W2J§W Aw?, (86)  rank|S|=1, we have argued that the long-wavelength La-

grangian obtained reduces to a classical theory with an Abe-
lian Chern-Simons term originating from the Pontryagin to-
pological functional. Therefore the topological characteristic
of the degenerate configuration is given not by a winding
Hij = eabNa( 3iNp) (;N,), (87) num.ber, but by the linking number qf Ehe fielc_i lines.
Finally, let us comment on the Poincazevariance of our
and the one-formwv?! related to it viaw?=dw!. Since the unconstrained version of Yang-Mills theory. It is well known

with the so-called Hopf two-form curvature?=H;;dx
Adx given in terms of the mapl as

curvatureH;; is divergence-free, that the Hamiltonian formulation of degenerate theories re-
duced with the help of noncovariant gauges destroy the
&ijkdiHj=0, (88)  manifest Poincarénvariance. Our “symmetric” gauge con-
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dition (15) is not covariant under standard Lorentz transfor-Its duals* F are given as
mations. This, however, does not necessarily violate the
Poincareinvariance of our reduced theory. Such a situation
can be found in classical electrodynamics. After imposing
the Coulomb gauge condition the vector potential ceases to
be an ordinary Lorentz vector and transforms nonhomoge- a o
neously under Lorentz transformations. The standard Lorentz Fuv= 5 €umpaF "7, (A7)
boosts are compensated by some additional gauge-type trans-

formation depending on the boost parameters and the gauggith a totally antisymmetric Levi-Civita pseudotensor
potential itself(see, e.g.[48-5(). As for the case of the € uupo» USING the convention

Coulomb gauge in electrodynamics, a thorough analysis of
the Poincargroup representation for our reduced theory ob-
tained by imposing the symmetric gauge condition is re- ) ] o )
quired. This problem is technically highly difficult and de- The ¢ angle enters t.he'classmal action as the coefficient in
mands special consideration that is beyond the scope of tHEont of the Pontryagin index density

present article.

1
*F=5gr*Fj,dx“Adx, (A6)

e”%%= — o= 1. (A8)

1
Q=—- ——trFAF. (A9)
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1 2
C=-— —Ztr( A/\dA+§A/\A/\A). (A11)

8

The corresponding Chern-Simons curritis a dual of the
APPENDIX A: CONVENTIONS AND NOTATION three-formC,

In this appendix, we collect the notation and definitions K#=(1/31)e#P7C
for SU(2) Yang-Mills theory used in the text followingt]. e

The classical Yang-Mills action of theu(2)-valued con- 1
nection one-formA in four-dimensional Minkowski space- == 28’”’“”( FapAy— §AaAﬁAy)1 (A12)
time with a metricy=diad/1,—1,—1,— 1| reads 16m

with the notationsA,:=g7°A% and F,,:=g7°F%,. The
f tr F/AF, (A1) chromomagnetic field is given by

1
|=——f trFA*F—
92 877'292

g
with the curvature two-form B?=§siijf‘k=sijk djAakt EsabcAbjAck), (A13)

=dA+ AN : o . .
F=dATANA (A2) and the covariant derivative in the adjoint representation as

(Di(A))ac= Sacdi + 9€anAbi - (A14)

Finally, we frequently use the matrix notation

and its Hodge duaf F. The trace in Eq(Al) is calculated in
the anti-Hermitiarsu(2) algebra basis?= ¢?/2i with Pauli
matrices ¢%,a=1,2,3, satisfying [7,,7,]=¢€apc7c and
tr(TaTb):_%ga.b. . .

In the coordinate basis the components of the connection A=A,  B,=B2. (A15)
one-formA are

A=g7'aAde“, (A3) APPENDIX B: ON THE EXISTENCE OF THE
“SYMMETRIC GAUGE”

and the components of the curvature 2-fdfnare . . . . .
P In this appendix we discuss the condition under which the

1 symmetric gauge
F= EgTaFZVdX“/\de, (A4)
Xa(A) = eapifpi(X)=0 (BY)

Fo,=0,A5—d,A%+ gsabCAZAi. (A5)  exists.
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According to the conventional gauge-fixing methcee, (1) 1 ()T iy ()T
e.g., [45]), a gaugey.(A)=0 exists if the corresponding X +X +i+,2n XWXWT=0,
equation i=
Xa(A”)=0 (B2) (B9)
for the unknown functionX(™. Furthermore, plugging ex-
pansion(B7) into Eq.(B4) and combining the terms of equal
powers of 1¢, we find that the orthogonal matri©(®

AgiTat l ai) U(w) (B3) should satisfy Eq(B4) to leading order in 4,
g JX;

in terms of the gauge transformed potential

AZiTa=U" ()

o0OTA-ATOO =0, (B10)
has a unique solution for the unknown functiefix).°
Hence the symmetric gaugB1) exists if any gauge po- and theX™ should satisfy the infinite set of equations
tential A can be made symmetric by a unique time-
independent gauge transforXr/nation. Theyequatior? that deter- XHTOOTA—ATOOXM =3 -3 ©),
mines the gauge transformatian(x) which converts an
arbitrary gauge potentidi(x) into its symmetric counterpart T

can be written as a matrix equation XMTOOTA— ATQOTX( =3 (-1) 3 (-1)T
1
O(w)A—ATO(w)= a[E(w)—ET(w)], (B4) e e (B11)

, , where the correspondingdlexpansion for the matri¥ ()
with the orthogonal X 3 matrix related to th&U(2) group

element i n
S(w)= 2, (— 5 (m (B12)
Oap(@)= =2tV (0) 72U () 7] (B5) n=0 14
. has been used. Note that in the expan$i®i?) thenth order
h A . .
and the 3¢3 matrix 2 term (™ is given in terms ofO® and X® with a
=1,...n—1.
1 J0(w)
Sai(w):=— 27 Samn 0'(w) . (B6) From the structure of EqgB8)—(B11) one can see that
! IXi | n the solution to Eq.B4) reduces to an algebraic problem.

Indeed, the solution to the first, homogeneous equaBdi0)

We shall now prove the following theorem. is given by the polar decomposition for the arbitrary matrix
Theorem For any nondegenerate matixEq. (B4) ad- o

mits a unique solution in the form of aglexpansion

. 00=A89"1 0= AAT. (B13)
O(w)=0 1+n§1 - X(“’} (B7)  This solution is unique only if dg&|#0. It follows from

the well-known property that the polar decomposition is
Proof. In order to prove the statement, we first note thatValid for an arbitrary matrixA, but the orthogonal matrix

0 . . .
equating coefficients of equal powers imgdih the orthogo- O is unique only for nondegenerate matri¢dg].
nality conditionOTO=00T=1 of the matrixO imposes the To proceed further we use this solution and Eg) for
condition of orthogonality oD(© unknownX to rewrite the remaining equatiotiB11) as

1 0 0 1) 0
0OTOO = 0T | (B8) X0+ XM=,

as well as the conditions o

X(M0) 4 SO (M — cn-1).
XD 4 xWT=q,
- (B14)
X2 4 X@T 4 x(Wx(WT=q,
where thenth order coefficien€™ is given in terms oD(©
andX® x@ - x(0~1),
Thus, starting from the zeroth-order term, the higher-order
termsX(™ are given recursively as solutions of matrix equa-
1%ere we assume that the second gauge condiigr=0 is sat-  tons of the typex S+ 59X =C with a known symmetric
isfied and the functions(x) therefore depends only on the space positive definite matrix8{®)= \JAAT and matrixC, expressed
coordinates. in terms of the preceding®, a=1,... n—1. The theory
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of such algebraic equations is well elaboratsge, e.g., V3 .
[46,47). In particular, Theorem 8.5.1 iM6] states that for U=+ r-a-),
matrix equations for unknown matriX of the type XA
+BX=C, there is a unique solution if and only if the ma-
tricesA and — B have no common eigenvalues. Based on thisvhile the S~ configuration can be reached usirdgr)
theorem one can conclude that the unique solution to Eqs=5#/3,1117/3,
(B8)—(B11) and hence to our original probleB4) exists
always for any nondegenerate mathx

It is necessary to emphasize that in order to prove the
existence and uniqueness of the representafidhit should
be shown additionally to the above Theorem that the corre-
sponding symmetric matrix fiel§,

5 (B21)

™| %

Ugs=T +r-7|. (B22)

Here it is in order to make the following comments.
1\n For the above gauge transformations we have _lipU

S(x)= >, (-) SM(x), (B15)  # *I. Thus they are neither small gauge transformations nor

n=019 large gauge transformations belonging to any integer
. . . . n-homotopy clas$4].
is sign definite. Above, the positive definiteness has been The symmetric configuration®19) corresponding to the
shown only for the zeroth-order ter8»=AAT. The  \wy-yang monopole lie on the stratum of degenerate sym-
study of this problem, as well as an analogous investigatiomnetric matrices with one eigenvalue vanishing and two ei-
for the degenerate field Configurati()hSNith deﬂA” =0, are genva|ues equa| to each other.
beyond the scope of this appendix and will be discussed in The Symmetric Configurations+ and S in Eq (Blg)

detail elsewhere. Here we limit ourselves to the consideryith twofold Gribov degeneracy are related to each other by
ation of a specific example, elucidating the generic picture. parity conjugation.

In the case that the matriX is degenerate, we encounter
the problem of Gribov's copies. As an illustration of the
nonuniqueness of the gauge transformation that turns a given APPENDIX C: PROOF OF # DEPENDENCE OF THE
field configuratiorA into the corresponding symmetric form, NAIVE 1/g APPROXIMATION
we consider the “degenerate” field

o

In this appendix it is shown that straightforward applica-
1 . tion of expansion of the nonlocal pa®t, of the kinetic term

Aa0=0, Asi=— eaiclc, (B16) in the unconstrained Hamiltonian to zeroth order discussed
9 in Sec. IV A leads to the appearance@tiependence of the

known as the non-Abelian Wu-Yang monopole field, with thereduced system on the classical level. Expressing the Hamil-

it vectort e — 5 5 onfn ), n s of e principal e aratles, defned
Performing the gauge transformation - P 9 9

tion, one obtains the Lagrangian density
19

g axi)U(w), (B17)

SiiTa=U +(w)(Aai7'a+

1S ., S
LO(p,x)= 5( 2, ¢+ 2 XGi V()

with U(w)=e®a"a parametrized by one time-independent

spherical symmetric function 1/ e 20,k A2 g 3
PP 3l 5 2——22 baBa
wa—f(r)ra, (518) 8T cyclic ¢j +¢k 87 a=1
the Wu-Yang monopole configuratidiB16), antisymmetric Like . (6~ i)
in space and color indices, can be brought into the “symmet- + 2 XaMai(@j— P | bi+——5Ai | |,
ric form” eyelie bj+ di
C1
G o (CY
Sgi:i_r(gai_rari)a (Blg)
9 denoting the difference
if the functionf(r) is constant and takes four values:
3
1
w3, Twl3 for (+), =" (h — (b - B(M)
f(r)= (BZO) A| 2(¢J d)k)bl (¢]+¢k)521 RISBS
573, 11w/3 for (—).
N ) (cyclic permutationsi # j # k), (C2
HereS™ can be obtained from the Wu-Yang monopole con-
figuration(B16) by applying two different gauge transforma-
tions with f(r) = =/3,77/3, with b; of Eq. (58) andB{™) of Eq. (D7), or, explicitly,
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Ai=—=[Xi(pjdi) + (I'ij; + i) @ b~ hi( Tk FG)= 8aiXibj— 8aiX i+ il aji— bl aij+ Tagij ba
+ ¢ ;)] (cyclic permutationsi # j # k). +0ea4ijbi¢; (nosummation, (D4)
(C3

with the components of the connection one-fofhdefined

It easy to convince ourselves that the term proportionafto as

is not a surface term. Indeed, considering for simplicity con-
figurations of spatially constant angular variabjgsand ¢,
= ¢,= P3=":¢, it reduces to

Laip=(X;RR")ap,

and the vector fields

g |23
_(ﬁ) _ lai¢3i¢>- (C4

3
Xi ::jgj_ R” (7]

which is not a four-divergence. Fax;=0 the Lagrangian dqual to the one-formsw; ,;(X;)=4&;, and acting on the
density(C1) reduces to Eq69), obtained from the improved pasis elements, as

Hamiltonian(47), free of the divergence problem.

3
APPENDIX D: REPRESENTATION OF THE Xi€a= _b§=:1 Ipia€h- (D5)
UNCONSTRAINED FIELDS IN THE BASIS

OF PRINCIPAL-AXES VARIABLES The explicit expressions for the diagonal componghtand

Starting from the coordinate basis expressiorafi Eq.  the off-diagonal components of the symmetric part of the
(31), we observe that the principal-axes transformatié®  chromomagnetic field
corresponds to the representation

3
B“):RT()()_Zl (IBi;i—i-%biai R(x) (D6)

3
S= gl Cahara, (D1)
are given in terms of the diagonal fielgs and the angular

with the one-forms fields y; in cyclic form

Bi=9djdr—(di— dj) i+ (di— b iji

3

“’i’zzl Rij[x(x)]dx, =123, (D2) (cyclic permutationsi # j # k),

and thesu(2) Lie algebra basis bi=Xi(¢; = 1)~ (di= & Tijj + (i~ di) ik

(cyclic permutationsi # j # k),

3
ea’=b§=:l Ralx(X)]7,, a=1,23. (D3)  and the antisymmetric paB{~) of the unconstrained mag-
netic field is
1. Unconstrained magnetic field - 1 ab,c
-__ T .
The physical chromomagnetic fiel,(S), given in Eq. Bl =3 C%ic Ria[ Xa( b+ ¢c) + (b= ba)apb

(28), can be regarded as the components of the d&4F
+(¢c_ ¢a)racc]- (D7)

3

1
Ba(S)=5 X eiFil

= 2. Unconstrained Chern-Simons three-form

_ _ Using the Maurer-Cartan structure equations for the one-
of the curvature two-forn(*), defined in terms of the sym-  forms o,

metric one-formSin Eqg. (30) as . .

FG=dsS+S/S. dwazczl I‘aOCdt/\wc"_bCE:l Iapewp/Nwe, (D)

In the principal-axes basis the components of the nonwith the space components bf given in Eq.(62), and the
Abelian field strengttF(®) read time components correspondingly defined as
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[a0p= (RRT)aba
Eq. (70) can be written as
Q®@=dc@ (D9)

with the three-form

PHYSICAL REVIEW D 67, 105013(2003

3

@_ 1t ,
¢ :Q a<b (Ppa— dp) T aopdtN\waNwy
a,b,c )
" e (= bb)°Tach— F8anc126s

X wNopN\og. (D10

[1] R. Jackiw and C. Rebbi, Phys. Rev. L%, 172(1976.

[2] C. G. Callan, R. F. Dashen, and D. J. Gross, Phys. 68,
334 (1976.

[3] S. Deser, R. Jackiw, and S. Templeton, Ann. PIiMsY.) 140,
372(1982.

[4] R. Jackiw, inCurrent Algebra and Anomalie@Norld Scien-
tific, Singapore, 1986

[5] J. Goldstone and R. Jackiw, Phys. LétB, 81 (1978.

[6] A. G. Izergin, V. F. Korepin, M. E. Semenov-Tyan-Shanskii,
and L. D. Faddeev, Teor. Mat. Fi28, 3 (1979 [Theor. Math.
Phys.38, 1 (1979].

[7] A. Das, M. Kaku, and P. K. Townsend, Nucl. Ph{d.49, 109
(1979.

[8] M. Creutz, I. J. Muzinich, and T. N. Tudron, Phys. RevlB
531 (1979.

[9] N. H. Christ and T. D. Lee, Phys. Rev. 22, 939(1980.

[10] Yu. Simonov, Yad. Fiz41, 1311(1985 [Sov. J. Nucl. Phys.
41, 835(1985].

[11] Yu. Simonov, Yad. Fiz41, 1601(1985 [Sov. J. Nucl. Phys.
41, 1014(1985]

[12] V. V. Vlasov, V. A. Matveev, A. N. Tavkhelidze, S. Yu. Khle-
bnikov, and M. E. Shaposhnikov, Sov. J. Part. Nuts, 1
(1987.

[13] K. Haller, Phys. Rev. 86, 1839(1987.

[14] R. Anishetty, Phys. Rev. @4, 1895(1991).

[15] E. T. Newman and C. Rovelli, Phys. Rev. Le@9, 1300
(1992.

[16] F. A. Lunev, Mod. Phys. Lett. B, 2281(1994).

[25] P. A. M. Dirac, Proc. R. Soc. Londoh246, 333(1958; Phys.
Rev. 114, 924 (1959; Phys. Rev. Lett2, 368 (1959.

[26] R. Arnowitt, S. Deser, and C. W. Misner, J. Math. Phy;s434
(1960.

[27] A. Khvedelidze, H.-P. Pavel, and G."Bke, Phys. Rev. b1,
025017(2000.

[28] A. M. Khvedelidze, D. M. Mladenov, H.-P. Pavel, and G.
Ropke, Eur. Phys. J. @4, 137 (2002.

[29] J. H. C. Whitehead, Proc. Natl. Acad. Sci. U.S.33, 117
(1947.

[30] L. Woltier, Proc. Natl. Acad. Sci. U.S.A4, 489(1958.

[31] H. Moffat, J. Fluid Mech.35, 117 (1969.

[32] E. A. Kuznetsov and A. V. Mikhailov, Phys. Let7A, 37
(1980.

[33] P. G. Saffman)ortex Dynamicg§Cambridge University Press,
Cambridge, England, 1992

[34] R. Jackiw and S. Y. Pi, Phys. Rev. @1, 105015(2000.

[35] R. Jackiw, V. P. Nair, and S. Y. Pi, Phys. Rev.@2, 085018
(2000.

[36] P. A. M. Dirac, Lectures on Quantum Mechanid8elfer
Graduate School of Science, Yeshiva University Press, New
York, 1964).

[37] M. Henneaux and C. TeitelboinQuantization of Gauge Sys-
tems(Princeton University Press, Princeton, NJ, 1992

[38] M. Creutz,Quarks, Gluons and LatticesCambridge Univer-
sity Press, Cambridge, England, 1983

[39] L. O’Raifeartaigh,Group Structure of Gauge Theorié€am-
bridge University Press, Cambridge, England, 1986

[17] M. Bauer, D. Z. Freedman, and P. E. Haagensen, Nucl. Phyg40] A. M. Khvedelidze and D. M. Mladenov, Phys. Lett. 299,

B428 147 (1994; P. E. Haagensen and K. Johnsabid.
B439, 597 (1995; R. Schiappaibid. B517, 462 (1998.
[18] H. Nachbagauer, Phys. Rev. %2, 3672(1995.

522(2002.
[41] L. Faddeev and A. J. Niemi, Phys. Rev. Lé&®?, 1624(1999.
[42] E. Langmann and A. J. Niemi, Phys. Lett.483 252(1999.

[19] G. Chechelashvili, G. Jorjadze, and N. Kiknadze, Teor. Mat.[43] P. van Baal and A. Wipf, Phys. Lett. B15 181 (2002J.

Fiz. 109 90 (1996 [Theor. Math. Phys109, 1316(1997].

[20] M. Lavelle and D. McMullan, Phys. Re279, 1 (1997.

[21] R. Horan, M. Lavelle, and D. McMullan, Pramaid, 317
(1998.

[22] A. M. Khvedelidze and H.-P. Pavel, Phys. Rev5B, 105017
(1999.

[23] Erratum to[22]: The last line of Eq(3.42 should be replaced
by (I3a¢ha+ T gphot g b1~ 9bachs)®. Correspondingly, in
formulas(4.6) the term (f12]¢3)2 should be added. Finally, in
formulas(4.8), (4.10, and(4.11) the term @-rotn)? should be

included. The correct formulas are given in the present work in

Egs.(60), (77), and(78), respectively.
[24] P. Majumdar and H. S. Sharatchandra, Nucl. PhygPBc.
Suppl) 94, 715 (2002.

[44] R. A. Battye and P. Sutcliffe, Proc. R. Soc. Londd#55, 4305
(1999.

[45] L. D. Faddeev and A. A. SlavnoGauge Fields: Introduction
to Quantum TheoryBenjamin-Cummings, New York, 1984

[46] P. LancasterTheory of MatricegfAcademic Press, New York,
1969.

[47] F. R. GantmacheiMatrix Theory(Chelsea, New York, 1959

[48] J. D. Bjorken and S. D. DrellRelativistic Quantum Fields
(McGraw-Hill, New York, 1965.

[49] A. J. Hanson, T. Regge, and C. Teitelboir@pnstrained
Hamiltonian System@ccademia Nazionale dei Lincei, Rome,
1976.

[50] H.-P. Pavel and V. N. Pervushin, Int. J. Mod. Physl4\ 2285
(1999.

105013-14



