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Static effective action for noncommutative QED at high temperature
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In this paper, we systematically study the effective action for non-commutative QED in the static limit at
high temperature. Whenup2!1, whereu represents the magnitude of the parameter for non-commutativity
andp denotes a typical external three-momentum, we show that this leads naturally to a derivative expansion
in this model. The study of the self-energy, in this limit, leads to nontrivialu dependent corrections to the
electric and magnetic masses, which exist only above a certain critical temperature. The three point and the
four point amplitudes are also studied as well as their relations to the Ward identities in this limit. We determine
the closed form expression for the current involving only the spatial components of the gauge field and present
the corresponding static effective action, which is gauge invariant.
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I. INTRODUCTION

Thermal field theories@1# are of interest for a variety o
reasons. As is well known by now, thermal amplitudes a
therefore, the effective actions have a non-analytic struc
@2#. Consequently, they are best studied in some limit. T
static limit, where the external energies are set equal to z
is one such limit and is of interest in the study of a plasma
very high temperatures because several physical quan
such as the screening and the magnetic masses are defin
this limit. It is also known that because of infrared dive
gences in a thermal field theory, one needs to perform
resummation to obtain meaningful gauge independent qu
tities at high temperature. While, in principle, the resumm
tion can involve general self-energy and vertex correcti
~as internal insertions!, the dominant contributions to th
screening and magnetic masses come from the static lim
these corrections~namely, the zero modes contribute th
most!. It is for these reasons that the study of the static lim
of the effective action at high temperature is quite use
The hard thermal loops and the static effective actions
conventional gauge theories have been well studied in
literature@3,4#.

In this paper, we intend to carry out a correspond
analysis for non-commutative QED. Non-commutative the
ries @5–13,15,16# are defined on a manifold where coord
nates do not commute; rather they satisfy

@xm,xn#5 iumn ~1!

whereumn is an anti-symmetric constant tensor. For unitar
to hold in these theories@17#, conventionally, one assume
that u0i50, namely, we will assume that only the spat
coordinates do not commute while the time coordinate co
mutes with space coordinates. Furthermore, we note tha
experimental bound on the magnitude of the paramete
non-commutativity leads to@18#

u5uu i j u<~10 TeV!22'10234 cm2. ~2!
0556-2821/2003/67~10!/105010~10!/$20.00 67 1050
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The parameter for non-commutativity is, therefore, expec
to be very small.

The non-commutativity of the coordinates leads to
modified product on such a manifold, the Gro¨enwald-Moyal
star product: namely,

f ~x!!g~x!5e~ i /2!umn]m
(h)]n

(j)
f ~x1h!g~x1j!uh5j50 .

~3!

As a consequence of the nontrivial nature of the star prod
~namely, star products do not commute!, the Maxwell theory
acquires a non-Abelian structure, namely, the action for
Maxwell action on a non-commutative manifold takes t
form

S5 E d4xS 2
1

4
Fmn!FmnD ~4!

where the field strength tensor has the form

Fmn5]mAn2]nAm2 ie@Am ,An#MB

5]mAn2]nAm2 ie~Am!An2An!Am!. ~5!

The action~4! is invariant under a gauge transformation

Am→U!Am!U212
i

e
U!]mU21 ~6!

which is reminiscent of non-Abelian gauge transformatio
in conventional theories. The structure of the field stren
tensor in Eq.~5! also makes it clear that Maxwell’s theory o
a non-commutative manifold involves self-interactions. Co
sequently, since the action in Eq.~4! is an interacting theory,
we neglect the fermions, although we can add fermions i
natural manner. There is a second reason for neglecting
fermions. It is known that fermion loops lead only to plan
contributions which are the same as in conventional Q
and we are interested inu dependent corrections to variou
physical quantities.
©2003 The American Physical Society10-1
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The paper is organized as follows. In Sec. II, we descr
in detail the tensor structure for the self-energy in no
commutative QED at finite temperature. We also give
perturbative result for the self-energy in the static limit. Th
can be exactly evaluated in a closed form, as was obse
earlier @19#. Here, we clarify the reason for such a simpli
cation. We determine theu dependent screening and th
magnetic masses in this theory at the one loop level
show that these contributions are nontrivial only for tempe
tures above a certain temperature. In Sec. III, we study
leading terms in the three point and the four point amplitu
in some detail and show that their structure is consistent w
what we will expect from the Ward identities. In fact, th
three point function can be completely expressed in term
the static self-energy. This is a consequence of the fact
amplitudes with an odd number of temporal indices~such as
G000) vanish. On the other hand, not all nontrivial comp
nents of the four point function can be expressed in term
the lower order amplitudes, since, in this case,G0000 neither
vanishes nor is constrained by the Ward identity and, con
quently, needs to be evaluated independently. In Sec. IV,
solve the Ward identity and determine, in terms of the s
energy, a simple expression for the current which depend
the spatial components of the gauge field. In Sec. V,
present a closed form effective action for the static am
tudes, with spatial tensor structures, which is valid at h
temperatures in the regionup2!1. This gauge invariant ac
tion @see Eq.~72!# is expressed in terms of functions whic
may be related to open Wilson lines.

II. SELF-ENERGY FOR NON-COMMUTATIVE QED IN
THE STATIC LIMIT AT HIGH TEMPERATURE

In this section, we will discuss the tensor decomposit
of the self-energy in non-commutative QED at finite te
perature. Using this, we will evaluate the self-energy in
static limit at high temperature and study various masses
follow.

Let us begin by recalling that in a conventional theory,
zero temperature, there are two natural tensor structures,hmn

andpm, the external momentum, with which we can descr
the self-energy. In a non-commutative theory at finite te
perature, we have additional structures such asumn andum,
the velocity of the heat bath. To determine the most gene
second rank symmetric tensor constructed fr
hmn, pm, umn, andum, let us proceed as follows. First, w
note that there are seven distinct second rank symmetric
sor structures that we can form, name
hmn,umun,pmpn,p̃mp̃n,(pmun1pnum),(pmp̃n1pnp̃m), and
( p̃mun1 p̃num) where we have defined

p̃m5umnpn . ~7!

By definition, p̃m is transverse topm and, furthermore, it can
also be easily verified thatu• p̃50 sinceumn involves only
spatial indices. However, to leading order at high tempe
ture, the Ward identities require that the self-energy be tra
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verse to the external momentum. To obtain the most gen
second rank symmetric tensor that is also transverse, le
define

ĥmn5hmn2umun,

p̂m5pm2~u•p!um,

ūm5um2
~u•p!

p2
pm. ~8!

By construction, the variables with carets are orthogona
um ~the velocity is normalized to unity,u•u51) while ūm is
orthogonal topm. It is easy to see now that we can constru
four independent second rank symmetric tensors which
transverse so that the self-energy, for the photon, can be w
ten in the form

Pmn5A S ĥmn2
p̂mp̂n

p̂2 D 1B
p2

p̂2
ūmūn

1C
p̃mp̃n

p̃2
1D~ ūmp̃n1ūnp̃m!. ~9!

However, we note that the self-energy for the photon is e
under charge conjugation (u→2u) @20,21#, while the last
structure in Eq.~9! is odd. Therefore, we must haveD50
and to all orders, the self-energy can be parameterized a

Pmn5APmn1BQmn1CRmn, ~10!

where we have defined

Pmn5S ĥmn2
p̂mp̂n

p̂2 D , Qmn5
p2

p̂2
ūmūn, Rmn5

p̃mp̃n

p̃2
.

~11!

The tensors appearing in Eqs.~11! are easily seen to be pro
jection operators,

PmlPln5Pn
m , QmlQln5Qn

m , RmlRln5Rn
m . ~12!

However, they are not orthonormal. In fact, it is easy
check that

PmlQln505QmlRln , PmlRln5Rn
m . ~13!

This suggests that a better basis to work with is given
Pmn,Qmn,Rmn where

Pmn5Pmn2Rmn, ~14!

so that all the structures correspond to orthonormal pro
tion operators. In this basis, we can parameterize the lea
order self-energy at high temperature as

Pmn5PmnPT1QmnPL1RmnP̃T . ~15!

The meaning of the various projections is quite clear. Wh
Pmn,Qmn,Rmn are all orthogonal topm, it is easy to see from
0-2
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their definitions in Eqs.~11! and~14! thatPmn is, in addition,
orthogonal toum as well as top̃m. Similarly, Qmn is addi-
tionally transverse top̃m andRmn to um. Thus, additionally,
Pmn andRmn are transverse topi ~that is the reason for the
subscript ‘‘T’’ in their form factors! while Qmn is not ~which
is why the subscript on the form factor is ‘‘L’’!. Furthermore,
while Pmn and Rmn are both orthogonal topi , the first is
orthogonal to vectors in the non-commutative plane~if only
two coordinates do not commute! while the second is not
Finally, let us note that

Pmn1Qmn1Rmn5hmn2
pmpn

p2
. ~16!

With the parameterization of the self-energy in Eq.~15! in
terms of orthonormal projection operators, several thin
simplify. First, we note that we can determine the vario
form factors as

PL5
p2

p̂2
umunPmn, P̃T5

p̃mp̃n

p̃2
Pmn,

~D23!PT5hmnPmn2PL2P̃T . ~17!

Here,D represents the number of space-time dimensions
particular, we note that whenD53, we do not have any
information on the transverse form factor from these eq
tions, which has to be contrasted with the case in a conv
tional theory~for which the same happens ifD52). Adding
in the tree level two point function, we can write to all orde

Gmn5Pmn~p21PT!1Qmn~p21PL!

1Rmn~p21P̃T!1
pmpn

j
, ~18!

wherej represents the gauge fixing parameter in a covar
gauge. Since the projection operators are orthonormal,
inverse can be easily obtained, leading to the propagato

Dmn5Pmn

1

p21PT

1Qmn

1

p21PL

1Rmn

1

p21P̃T

1j
pmpn

p2
.

~19!

The poles in the propagator are distinct as a consequenc
our choice of orthonormal projection operators~had we used
a different basis, the poles would be mixed and would n
to be disentangled!. We see that there are three physical po
~in addition to the unphysical one coming from the gau
fixing!. The meaning of the three poles is easily understo
as follows. First, we can define the screening mass, as
conventional theory, as@our Minkowski metric has the sig
natures (1,2,2,2)]

mel
2 52PL~p050,p252p25mel

2 !. ~20!

The conventional magnetic mass can also be defined as
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mmag
2 52PT~p050,p252p25mmag

2 !. ~21!

However, there is now a new transverse pole at

m̃mag
2 52P̃T~p050,p252p25m̃mag

2 !. ~22!

This can be thought of as the screening length between m
netic fields in the non-commutative plane. This feature
new in non-commutative QED, since the non-commutat
parameter can define a preferred direction in space.

Let us now evaluate the self-energy, represented in Fig
in the static limit at high temperature. We note that the c
culation of the self-energy, in the static limit, was alrea
done in @19# and the result was surprisingly very simpl
Here, we would like to understand the reason for the s
plicity of this result and then calculate the physical masse
the theory. To begin with, let us tabulate a few integrals@22#
that will be useful in the evaluation of the self-energy:

E
0

`

dx
x

ex/T21
5

p2T2

6
,

E
0

`

dx
sinxy

ex/T21
5

pT

2 S cothpyT2
1

pyTD ,

E
0

`

dx
x cosxy

ex/T21
5

1

2y22
p2T2

2
cosech2pyT. ~23!

A direct application of the forward scattering amplitud
method@23,24# leads, in the hard thermal loop approxim
tion, to a self-energy of the form

Pmn~p!52
4e2

~2p!3 E d3k
nB~k!

k
~12 cosp̃•k!

3Fhmn2
pmkn1pnkm

p•k
1

p2kmkn

~p • k!2GU
k05k

, ~24!

where k5uku and nB represents the bosonic distributio
function. Let us recall that the hard thermal loop approxim
tion, in this theory, involves assuming

p!k;min S T,
1

p̃
D . ~25!

FIG. 1. One-loop diagrams which contribute to the photon s
energy in non-commutative QED. The wavy lines represent phot
and diagrams with ghost loops are understood to be included.
0-3
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Going to the rest frame of the heat bath and using Eq.~23!,
it now follows easily that

hmnPmn52
8e2

~2p!3 E d3k
nB~k!

k
~12 cosp̃•k!

52
16e2

~2p!2 E0

` dkk

ek/T21
S 12

sinku p̃u

ku p̃u
D

522e2T2F1

3
2

1

pu p̃uT
S cothpu p̃uT2

1

pu p̃uT
D G ,

~26!

where we have defined

u p̃u5uu i j pj u. ~27!

While the calculation of the trace of the self-energy from E

~24! is simple, in the static limit, the calculations ofPL ,P̃T
are not, and are manifestly non-local. However, with a lit
bit of algebra, which involves integration by parts of th
relation

pmkn1pnkm

p•k
2

p2kmkn

~p•k!2
5pl

]

]kl
S kmkn

p•k D , ~28!

it may be shown that Eq.~24! can be rewritten as

Pmn52
4e2

~2p!3 E d3k

k
~12 cosp̃•k!

3FhmnnB~k!1nB8 ~k!
p0kmkn

p•k

2@knB8 ~k!2nB~k!#
kmkn

k2

2nB~k!
hm0kn1hn0km

k GU
k05k

, ~29!

where a prime denotes differentiation with respect tok. It is
clear from Eq.~29! that the potentially non-local terms van
ish in the static limit whenp050. Thus, we see that th
self-energy is a local function in the static limit, with th
simple form ~obtained by using the symmetry of thek
integral!

Pstatic
mn 5

4e2

~2p!3 E d3k

k
~12 cosp̃•k!F2hmnnB~k!

1@knB8 ~k!2nB~k!#
kmkn

k2
1nB~k!

2hm0hn0

k GU
k05k

.

~30!
10501
.

There are several things to note from Eq.~30!. First, the
integrand, except for the trigonometric function~coming
from the vertices of the non-commutative theory!, is com-
pletely local and is independent of the external momentu
Since the trigonometric function does not involvek0

~namely,u0i50), it can be taken outside the Matsubara su
in the imaginary time formalism and it is clear that the resu
Eq. ~30!, can be obtained directly from the Matsubara sum
frequencies by setting the external momentum equal to z
~except in the trigonometric factor which is outside the su
and will give zero if the external momentum is naively set
zero!. In this case, the sum is very simple and can be don
a trivial manner. In this sense, this result can be underst
as the leading term in a derivative expansion. This is, in fa
supported by the structure of the theory. We know that a
plitudes become non-analytic in a thermal field theory. Ho
ever, once we are in the static limit, the amplitudes are a
lytic in pi ~in the absence of infrared problems! so that a
derivative expansion does make sense. We have shown
lier that although the amplitudes in a non-commutat
theory are also non-analytic, the non-analyticity is not a c
sequence of any new branch cut. Therefore, we expect
general analytic behavior of the conventional thermal fi
theories to hold in a non-commutative theory at fin
temperature. Furthermore, we note that because of
trigonometric function in Eq.~30!, in the infrared limit (1
2 cosp̃•k)→0 and, consequently, infrared divergence is n
a problem in such theories at finite temperature~namely, as
pi→0, the coupling vanishes in such theories!. Therefore, in
the static limit, we expect the amplitudes to be analytic inpi ,
leading to the fact that a derivative expansion can be car
out. This also explains the simplicity of the form for th
self-energy in the static limit; namely, if we set all the exte
nal momenta to zero in the denominator~namely, the leading
term in the derivative expansion!, then the integrand involves
only one angular integral coming from the trigonomet
function, which is easy to carry out. We also note from t
form of the amplitude in Eq.~30! thatP0i5P i050 from the
symmetry of the integrand. We will comment more on this
the next section.

The components of the self-energy, in the static limit, c
now be easily calculated. Without going into the details,
simply note that, in the rest frame of the heat bath, the co
ponents of the self-energy take the forms

Pstatic
00 52

2e2T2

3 F12
3

2 S cothpu p̃uT

pu p̃uT
2cosech2pu p̃uTD G ,

Pstatic
0i 50,

Pstatic
i j 52e2T2F cothpu p̃uT

pu p̃uT
1cosech2pu p̃uT

2
2

~pu p̃uT!2G p̃i p̃ j

p̃2
. ~31!
0-4
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FIG. 2. The electric and the magnetic masses in units of (p u T)21. The three solid lines are the plots of the parabola correspondin
the left hand side of Eqs.~34! for (e p u T2)52.5, 5.6 and 22.4. The corresponding right hand sides are plotted using dashed line
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Therefore, in this case, we have@see Eq.~17! in the rest
frame of the heat bath#

PL
static5Pstatic

00 52
2e2T2

3

3F12
3

2 S cothpu p̃uT

pu p̃uT
2cosech2pu p̃uTD G ,

P̃T
static5

p̃i p̃ j

p̃2
Pstatic

i j

52e2T2F cothpu p̃uT

pu p̃uT
1cosech2pu p̃uT

2
2

~pu p̃uT!2G ,

PT
static5hmnPstatic

mn 2PL
static2P̃T

static50. ~32!

This shows that the conventional magnetic mass,mmag de-
fined in Eq. ~21!, vanishes as in QED on a commutativ
manifold. In the static limit, therefore, the self-energy~15!
takes the form

Pstatic
mn 5umun PL

static1
p̃mp̃n

p̃2
P̃T

static. ~33!

On the other hand, we see that bothPL
static and P̃T

static have

nontrivial contributions depending onu ~throughp̃). This is
to be expected since the effect of non-commutativity can
classically thought of as being equivalent to a backgrou

electromagnetic field. We note, in particular, that sinceP̃T
static

is nontrivial, there is a possibility, in this theory, of having
nontrivial magnetic mass in the non-commutative pla
even though the conventional magnetic mass vanishes.
screening mass and the ‘‘new’’ magnetic mass can be de
mined from the equations@see Eqs.~20! and ~22!#

mel
2 52PL

static~p252mel
2 !,
10501
e
d

,
he
r-

m̃mag
2 52P̃T

static~p252m̃mag
2 !. ~34!

These simultaneous equations can be solved graphic
~see Fig. 2!. We choose a coordinate system in whichu12
52u215u represent the only non-vanishing components
u i j . Then, settingp350, we note that, in both the equation
the left and the right hand side give rise to parabolas near
origin and, consequently, unless the slopes have approp
values, there will be no intersection of the curves~and, there-
fore, no solution!. This leads to the fact that, for a nontrivia
screening mass to exist in this theory, we must have

T2.Tc
25

3A5

2peu
. ~35!

Similarly, for a nontrivial ‘‘new’’ magnetic mass to exist, w
must have

T2.Tc
25

3A10

2peu
. ~36!

This is very interesting in that such a mass develops o
above a critical temperature. Considering the smallnessu
@see Eq.~2!#, we recognize that these temperatures are v
high. Nonetheless, as a matter of principle, it is interesting
note that this behavior is quite similar to the propagation
waves in a waveguide or a plasma, which exists only ab
a critical cutoff frequency.

III. HIGHER POINT AMPLITUDES IN THE STATIC
LIMIT AT HIGH TEMPERATURE

In studying the higher point functions, in the static lim
at high temperature, we note that the complete symmetr
the amplitudes in the leading order approximation of the
rivative expansion, leads to the result that any amplitu
with an odd number of temporal indices vanishes. This
already evident in the results of the last section, nam
P0i50. Therefore, we can concentrate only on amplitud
with an even number of temporal indices. In the case of
three point amplitude, this implies that we must have

Gstatic
000 505Gstatic

0i j ~37!
0-5
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and the only nontrivial components of the three point am
tude can be identified withG00i ,G i jk . Explicit calculations
bear out this expectation.

From the discussion of the last section, we note that
leading contributions to any amplitude, in the static limit, c
be obtained from the lowest order terms in a derivative
pansion. Such a derivative expansion, as we have seen,
responds to setting the external momenta equal to zero
erywhere in the integrand except in the trigonomet
functions. We note that the terms in the integrand, other t
the trigonometric functions, have the general behavior t
in the hard thermal loop approximation, they are functions
zero degree in the external four-momenta. Therefore, in
static limit, these factors become independent of the spa
momenta giving rise to the appearance of the leading co
bution in a particular derivative expansion. The trigonom
ric functions, on the other hand, do not have this property
the trigonometric functions, however, we can neglect con
butions quadratic in the external momenta compared to te
linear in the external momenta. Thus, for example, in
three point amplitude diagram coming from three cubic v
tices@see Fig. 3~a!#, the trigonometric functions coming from
the vertices, can be simplified as

sinS p̃1•k

2
D sinS p̃2•~k2p3!

2
D sinS p̃3•k

2
D

' sinS p̃1•k

2
D sinS p̃2•k

2
D sinS p̃3•k

2
D . ~38!

Expanding the second trigonometric function on the l
hand side, it is easy to see that this corresponds to using
approximation that

up2!1, ~39!

wherep denotes the typical magnitude of the external m
mentum. Mathematically, such a derivative expansion wo
correspond to choosing

p!k, upT;O~1!, ~40!

which would automatically lead to Eq.~39!.

FIG. 3. Typical one-loop diagrams for the three point phot
amplitude in non-commutative QED.
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Since the trigonometric functions do not involve any d
pendence on the energy (u0i50), in the regime~39!, the
calculation of any higher point amplitude, in the static lim
simplifies enormously and can be carried out directly in
imaginary time formalism. Explicit calculations show tha
when all the graphs contributing to a given amplitude a
summed, the trigonometric functions in the integrand of
n-point amplitude correspond to a product ofn factors of
sin (p̃i•k/2) with i 51,2, . . . ,n. This is consistent with the
symmetry expected of the total amplitude, namely, since
only dependence on the external momenta is in the trigo
metric functions in the leading order, and since the amplitu
has to be symmetric under the exchange of external bos
lines, the trigonometric functions must reflect this also. Ho
ever, it is worth noting here that this is not expected to h
for individual graphs which is evident in the explicit calcu
lations.

The recipe for calculating any higher point amplitude
now clear. For then-point amplitude, for example, the inte
grand will involve n trigonometric factors which can b
taken outside the Matsubara sum, which has no depend
on the external momentum. Thus, for the three point am
tude, we obtain

Gmnl
static5 ie3T E d3k

~2p!3
sinS p̃1•k

2
D sinS p̃2•k

2
D sinS p̃3•k

2
D

3(
n

F 128kmknkl

@~2pnT!21k2#3

2S 32dmnkl

@~2pnT!21k2#2
1cyclicD G . ~41!

Although Eq. ~41! appears to involve three angles comin
from the trigonometric functions~in which case the integra
tion over spatial components would be nontrivial!, we can
use the identity

sinS p̃1•k

2
D sinS p̃2•k

2
D sinS p̃3•k

2
D

52
1

4
~sin p̃1•k1 sin p̃2•k1 sin p̃3•k!. ~42!

This is nice since each term involves only one angular in
gral which can be carried out using Eq.~23!. Then, Eq.~41!
becomes

Gmnl
static528ie3T E d3k

~2p!3
~sin p̃1•k1 sin p̃2•k1 sin p̃3•k!

3(
n

F 4kmknkl

@~2pnT!21k2#3

2S dmnkl

@~2pnT!21k2#2
1cyclicD G . ~43!
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FIG. 4. Typical one-loop dia-
grams for the four point photon
amplitude in non-commutative
QED.
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It is worth noting from this expression that when there is
odd number of temporal indices, the amplitude vanishes
cause of anti-symmetry in the Matsubara sum, which is c
sistent with the general structure of the static amplitudes
the leading order.

The actual evaluation of the thermal parts from the M
subara sums can be carried out using the following relatio

T (
n

1

~2pnT!21k2
5

nB~k!

k
1~T50 term!,

T (
n

1

~~2pnT!21k2!2
52

1

2k S nB~k!

k D 8

1~T50 term!,

T (
n

1

@~2pnT!21k2#3
5

1

4k F 1

2k S nB~k!

k D 8G8
1~T50 term!, ~44!

where the prime denotes a derivative with respect tok. Using
these as well as Eq.~23!, the integrals can be evaluated a
we find that the terms depending on Kronecker delta fu
tions cancel out in the final result after carrying out thed3k
integration. This may be seen by noticing that, whenmnl
are all spatial indices, we can write Eq.~43! in the form

G i j l
static522ie3T E d3k

~2p!3
~sin p̃1•k1 sin p̃2•k

1 sin p̃3•k!
]3

]ki]kj]kl
(

n
log @~2pnT!21k2#

522ie3Tp̃1,i p̃1,j p̃1,l E d3k

~2p!3
cosp̃1•k

3(
n

log @~2pnT!21k2#1two similar terms, ~45!

which shows that only terms involving triple products of t
same momentum are present in the final result forG i j l

static.
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n
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-
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-
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The nontrivial components of the three point amplitud
in the static limit, at leading order, then, take the forms

G00i
static~p1 ,p2 ,p3!5 ie@ p̃1, i P00

static~p1!1cyclic#,

G i jk
static~p1 ,p2 ,p3!5 ie@ p̃1, k P i j

static~p1!1cyclic#.
~46!

It now follows from Eq.~46! that

p3, iG00i
static~p1 ,p2 ,p3!

5 ie@p3• p̃1 P00
static~p1!1p3• p̃2 P00

static~p2!#

'22ie sinS p̃1•p2

2
D @P00

static~p1!2P00
static~p2!#,

p3,kG i jk
static~p1 ,p2 ,p3!

5 ie@p3• p̃1 P i j
static~p1!1p3• p̃2 P i j

static~p2!#

'22ie sinS p̃1•p2

2
D @P i j

static~p1!2P i j
static~p2!#,

~47!

where we have used the conservation of momentum in
intermediate steps as well as Eq.~39! to write

p̃1•p2'2 sinS p̃1•p2

2
D . ~48!

This shows that the three point functions indeed sati
simple Ward identities and that all the nontrivial compone
of the three point amplitude can, in fact, be determined fr
a knowledge of the self-energy.

The general procedure outlined above can be used
evaluate the four point amplitude~see Fig. 4! in the leading
order of the derivative expansion. In the static limit, th
amplitude has the form
0-7
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Gmnlr
static ~p1 ,p2 ,p3 ,p4!532e4 E d3k

~2p!3
sinS p̃1•k

2
D sinS p̃2•k

2
D sinS p̃3•k

2
D sinS p̃4•k

2
D 3T (

n
F 24kmknklkr

~~2pnT!21k2!4

1S 2
4dmnklkr

~~2pnT!21k2!3
1

dmndlr

~~2pnT!21k2!2
1permutationsD G . ~49!
io
ity

th
it

our
in-
ol-
on.

ay
ost
ra-
t

re,
this

ter-
ill
ba-
m-

the
de-
at
ed
r

our
l in
e.
ew

a
it

for
m-
een,
nly
or-
art

gh
ts of
atic
As in the case of the three point function, this express
simplifies, in practice, upon using the trigonometric ident

8 sinS p̃1•k

2
D sinS p̃2•k

2
D sinS p̃3•k

2
D sinS p̃4•k

2
D

5C~p1 ,k!1C~p2 ,k!1C~p3 ,k!1C~p4!

2C~p11p4 ,k!2C~p21p4 ,k!2C~p31p4 ,k!, ~50!

where we have defined

C~p,k!512 cosp̃•k. ~51!

For the spatial components, the integrand in Eq.~49! can be
written in a similar form as in Eq.~45!, so that no Kronecker
delta functions appear in the final result when thed3k inte-
gration is carried out. Then, using Eq.~50!, we obtain

G i jkl
static~p1 ,p2 ,p3 ,p4!

5e4@ f ~ p̃1! p̃1,i p̃1,j p̃1,kp̃1,l1 f ~ p̃2! p̃2,i p̃2,j p̃2,kp̃2,l1•••

2 f ~ p̃11 p̃4!~ p̃11 p̃4! i~ p̃11 p̃4! j~ p̃11 p̃4!k

3~ p̃11 p̃4! l2•••#, ~52!

where

f ~ p̃!5
P̃T

static~ p̃!

e2 p̃2
~53!

and P̃T
static is given in Eq.~32!. Using Eq.~46!, this can be

written in terms of the three point amplitudes as

G i jkl
static~p1 ,p2 ,p3 ,p4!

5 ie@ p̃1,lG i jk
static~p11p4 ,p2 ,p3!1 p̃2,lG i jk

static~p1 ,p2

1p4 ,p3!1 p̃3,lG i jk
static~p1 ,p2 ,p31p4!1•••# ~54!

where••• represents terms needed to Bose symmetrize
amplitude. It is easy to see that this form is consistent w
the static Ward identity

p4,lG i jkl
static~p1 ,p2 ,p3 ,p4!

5 ie@~ p̃1•p4!G i jk
static~p11p4 ,p2 ,p3!

1~ p̃2•p4!G i jk
static~p1 ,p21p4 ,p3!

1~ p̃3•p4!G i jk
static~p1 ,p2 ,p31p4!#. ~55!
10501
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It is clear from these discussions of the static three and f
point amplitudes that the components, where not all the
dices are temporal, satisfy simple Ward identities, which f
lows from invariance under a static gauge transformati
Such components can, therefore, be recursively related.@The
reason why such simple Ward identities hold in our case m
be understood by noting that the contributions of the gh
particles, to this order, cancel out in the Becchi-Rouet-Sto
Tyutin ~BRST! identities.# The component of the four poin
amplitude with all temporal indices,G0000

static, on the other
hand, is not constrained in the static limit and, therefo
cannot be related to lower order amplitudes. However,
component can be evaluated from Eq.~49! and it can be
seen, after some algebra, thatG0000

static does not vanish. As a
result, this can be taken as a new perturbative input in de
mining the complete static effective action. In fact, there w
be a new perturbative input at every even order in pertur
tion, whenever the component of the amplitude with all te
poral indices does not vanish.

IV. THE EFFECTIVE GENERATING FUNCTIONAL

The analysis of the previous section shows that all
nontrivial components of the three point function can be
termined from a knowledge of the self-energy. However,
the level of the four point function, we also saw that we ne
to determineG0000 independently since it is invariant unde
static gauge transformations. This component of the f
point amplitude, on the other hand, would be essentia
determining all the components of the five point amplitud
In fact, at every even order of the amplitudes, we expect n
independent structures that cannot be determined from
knowledge of the lower order amplitudes. Therefore,
would be impossible to obtain a closed form expression
the complete effective action from a knowledge of the a
plitudes to a given order. On the other hand, as we have s
the components of the amplitudes with spatial indices o
are related recursively, through Ward identities, to lower
der amplitudes. Therefore, we can try to determine that p
of the effective action which depends only onAi .

Let G@Ai # represent the part of the effective action at hi
temperature that depends only on the spatial componen
the gauge field. Then, invariance under an infinitesimal st
gauge transformation, leads to the Ward identity

dG@Ak#

dv~x!
5 E dy

dAi~y!

dv~x!

dG@Ak#

dAi~y!
5Di

dG@Ak#

dAi~x!
50, ~56!
0-8
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wherev(x) represents the infinitesimal gauge transformat
parameter depending only on the spatial coordinates. E
tion ~56! is simply a statement of the covariant conservat
of current. Furthermore, under the approximation that we
using @see Eq.~39!#, the covariant derivative, in the adjoin
representation, takes the form

Di5] i1e~] jAi !]̃ j . ~57!

With this, the current conservation, Eq.~56!, takes the form

] i

dG@Ak#

dAi
1e~] jAi !]̃ j

dG@Ak#

dAi
50

or ] i S dG@Ak#

dAi
1eAj ]̃ i

dG@Ak#

dAj
D50. ~58!

This determines that the quantity in the parentheses vani
up to a term that is transverse, namely,

~d i j 1eAj ]̃ i !
dG@Ak#

dAj
5Xi

T ~59!

such that

] iXi
T50. ~60!

By taking the functional derivative of Eq.~59! with respect
to Aj and setting all the fields to zero, it can be easily de
mined that, to lowest order

Xi
T(lowest)5P i j

staticAj . ~61!

It is clear thatXi
T will contain higher order terms in the field

as well. However, it can be seen by taking higher order fu
tional derivatives of Eq.~59! that the role of the higher orde
terms inXi

T is to Bose symmetrize the higher point amp
tude. Thus, keeping this Bose symmetrization in mind,
can neglect the contributions involving higher order terms
the fields inXi

T . In such a case, we can solve for the curre
from Eq. ~59! and obtain

dG@Ak#

dAi
5~d i j 1eAj ]̃ i !

21 Xj
T(lowest). ~62!

The quantity in the parentheses on the right hand side in
~62! is an operator and hence does not have a unique
right inverse. However, the one that is relevant, for the so
tion, is the right inverse which can be determined to be

~d i j 1eAj ]̃ i !
215d i j 2eAj ]̃ i1e2Ak]̃ iAj ]̃k

2e3Ak]̃ iAl ]̃kAj ]̃ l1•••. ~63!

Furthermore, we recognize from the definition of the cova
ant derivative~57! that

] j~d j i 1eAi ]̃ j !5Di ~64!

so that we can also write

~d i j 1eAj ]̃ i !
215D j

21] i . ~65!
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Using Eq.~65!, we can determine the current in Eq.~62! to
be

j i@Ak#5
dG@Ak#

dAi
5D j

21] iP jk
staticAk . ~66!

We note that this current manifestly satisfies covariant c
servation since the self-energy is transverse. Furtherm
this closed form expression for the current can be explic
checked to lead to the correct amplitudes, under Bose s
metrization.

The current is all we need for the generation of any a
plitude. However, it will also be nice to determine the sta
effective action in a closed form. That involves functiona
integrating the current which appears to be highly nontriv
Nevertheless, we can obtain the effective action as expla
in the next section.

V. DISCUSSION

Here we present a closed-form effective action for t
static amplitudes~with spatial tensor indices! valid in the
region @as in Eq.~39!#

upau!T, upau!uuu21/2, ~67!

wherea51,2, . . . runs over the external momenta. In th
region, we expect the internal momentumk to be of the order
given in Eq.~25!.

Let us first define

U~p,A!5 E d4x exp@2 ip•x1 iep̃•A~x!#. ~68!

This is a function of an auxiliary 4-momentump and a func-
tional of ~the spatial components of! A. We will identify p
with the linear combinations of external momenta, as in E
~52!. In the region~67!, the general gauge transformation~6!
may be approximated as

dAi~x!5$] i1 ie@ ]̃ jAi~x!#] j%v~x!. ~69!

U, defined in Eq.~68!, is invariant under Eq.~69!. To prove
this, we note that

d~ p̃•A!5$ p̃•]1e@ ]̃ j p̃•A~x!#] j%v~x!,

d$ exp@ iep̃•A~x!#%

5 i exp~ iep̃•A!$ p̃•]1e@ ]̃ j p̃•A~x!#] j%v~x!

5 i exp~ iep̃•A! p̃•]v2 ]̃ j@exp~ iep̃•A!] jv#,

~70!

where we have used]̃•]50. Substituting Eq.~70! into Eq.
~68! and integrating by parts~so that ]̃ j differentiates the
e2 ip•x) we obtain

dU5 i E d4xe2 ip•x exp~ iep̃•A!@ p̃•]v2 p̃•]v#50. ~71!
0-9
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Now we can construct the effective action in terms ofC:

G5
1

23~2p!8 E d4p f~ p̃!U~p,A!U~2p,A!

5
1

23~2p!8 E d4p f~ p̃!uU~p,A!u2, ~72!

wheref is defined by Eq.~53!.
That G in Eq. ~72! is the correct effective action follow

because it trivially agrees with Eqs.~31! and ~32! to order
e2, it is gauge invariant, and it gives the functional depe
dence on thep̃a (a51,2,3, . . . ,n for the n-point function!
typified by Eq.~52!. We have verified explicitly thatG gives
the 3- and 4-point functions correctly.

It is much more difficult to find an effective action, no
assuming both inequalities in Eq.~67!, but just

upau!T. ~73!

In this case we must use the exact gauge transformation~6!,
not just the approximate one in~69!. But we note thatU in
Eq. ~68! does have a generalization which is gauge invari
under the exact gauge transformation~6!. This generalization
is
-

a

an

gy

10501
-

t

W~p,A!5 E d4x exp~2 ip•x!

!P expF ie E
0

1

dj p̃•A~x1j p̃!G , ~74!

whereP denotes path ordering on the manifold characteriz
by the star product~3!. W(p,A) represents the Fourier trans
form of a gauge invariant open Wilson line, extending alo
a straight path fromx to x1 p̃ @13,14#. Note that, if Eq.~67!
is assumed,W reduces just toU.

However, the thermal effective action@when Eq.~67! is
not assumed# is not obtained just by replacingU by W in Eq.
~72!. The reason is that the internal photon momentumk is
expected to be of order 1/(uuuupau) and therefore@without
Eq. ~67!# we cannot make the hard thermal loop approxim
tion of neglectingupau compared touku. The amplitudes are
then much more complicated, and we cannot expect them
be expressible in terms of a single functionf as in Eq.~72!.
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