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Static effective action for noncommutative QED at high temperature
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In this paper, we systematically study the effective action for non-commutative QED in the static limit at
high temperature. Whefip?><1, whered represents the magnitude of the parameter for non-commutativity
andp denotes a typical external three-momentum, we show that this leads naturally to a derivative expansion
in this model. The study of the self-energy, in this limit, leads to nontridialependent corrections to the
electric and magnetic masses, which exist only above a certain critical temperature. The three point and the
four point amplitudes are also studied as well as their relations to the Ward identities in this limit. We determine
the closed form expression for the current involving only the spatial components of the gauge field and present
the corresponding static effective action, which is gauge invariant.
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[. INTRODUCTION The parameter for non-commutativity is, therefore, expected
to be very small.

Thermal field theorie$l] are of interest for a variety of The non-commutativity of the coordinates leads to a
reasons. As is well known by now, thermal amplitudes andmodified product on such a manifold, the ®mwvald-Moyal
therefore, the effective actions have a non-analytic structurstar product: namely,

[2]. Consequently, they are best studied in some limit. The

static limit, where the external energies are set equal to zero, f(x)*g(x) =e<i/2>0””z9§])¢9(f) f(x+ 7)g(x+ &) p—E=0-

is one such limit and is of interest in the study of a plasma at

very high temperatures because several physical quantities

such as the screening and the magnetic masses are definedAisia consequence of the nontrivial nature of the star product
this limit. It is also known that because of infrared diver- (namely, star products do not commytthe Maxwell theory
gences in a thermal field theory, one needs to perform acquires a non-Abelian structure, namely, the action for the
resummation to obtain meaningful gauge independent quamMaxwell action on a non-commutative manifold takes the
tities at high temperature. While, in principle, the resumma-form

tion can involve general self-energy and vertex corrections

(as internal insertions the dominant contributions to the 4
screening and magnetic masses come from the static limit of S= j d X(
these correctiongnamely, the zero modes contribute the

mosy. It is for these reasons that the study of the static limityyhere the field strength tensor has the form
of the effective action at high temperature is quite useful.

1
-2 FW*FW) @

The ha(d thermal loops and the static effective aptio_ns in F=d,A,—d,A,—ie[A,,Alus
conventional gauge theories have been well studied in the _
literature[3,4]. =d,A,— A, —ie(AxA,—AXA,). (5)

In this paper, we intend to carry out a corresponding _ o _ _
analysis for non-commutative QED. Non-commutative theo-The action(4) is invariant under a gauge transformation
ries [5—-13,15,16 are defined on a manifold where coordi- .
nates do not commute; rather they satis g ! _

y satisly A, —UxA U= = Ung Ut ©)
[x*x"]=io"" () o - : .
which is reminiscent of non-Abelian gauge transformations
o ) i ... in conventional theories. The structure of the field strength
Wheree_ is an anti-symmetric constant tensor. For unitarity ;o oy in Eq(5) also makes it clear that Maxwell's theory on
to hold in these theoriefl7], conventionally, one assumes , \on_commutative manifold involves self-interactions. Con-

O- _ . .
that 9™=0, namely, we will assume that only the spatial seqyently, since the action in E@) is an interacting theory,

coordinates do not commute while the time coordinate coMg o neglect the fermions, although we can add fermions in a

mutes with space coordinates. Furthermore, we note that t&,,ra| manner. There is a second reason for neglecting the
experimental bound on the magnitude of the parameter dfgrmions, It is known that fermion loops lead only to planar
non-commutativity leads tp18] contributions which are the same as in conventional QED
and we are interested it dependent corrections to various
6=|6"|<(10 TeV) ?~10 34 cn?. (2)  physical quantities.
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The paper is organized as follows. In Sec. Il, we describeserse to the external momentum. To obtain the most general
in detail the tensor structure for the self-energy in non-second rank symmetric tensor that is also transverse, let us
commutative QED at finite temperature. We also give thedefine
perturbative result for the self-energy in the static limit. This

can be exactly evaluated in a closed form, as was observed nt’=pt’—utu’,
earlier[19]. Here, we clarify the reason for such a simplifi- .
cation. We determine th& dependent screening and the p“=p*—(u-p)u*,

magnetic masses in this theory at the one loop level and
show that these contributions are nontrivial only for tempera- (u-p)

tures above a certain temperature. In Sec. lll, we study the > P ®
leading terms in the three point and the four point amplitudes P

in some detail and show that their structure is consistent witBy construction, the variables with carets are orthogonal to
what we will expect from the Ward identities. In fact, the . (the velocity is normalized to unity- u=1) while u* is
three pc_;int function can be _completely expressed in terms o rthogonal top*. It is easy to see now that we can construct
the static self-energy. This is a consequence of the fact th%ur independent second rank symmetric tensors which are

amplitude_s with an odd number of temporal ind.ioﬁ.esch a5 transverse so that the self-energy, for the photon, can be writ-
I'po9 vanish. On the other hand, not all nontrivial compo- n in the form

nents of the four point function can be expressed in terms o

Ut =yt—

the lower order amplitudes, since, in this caBgyoo neither . PP P2

vanishes nor is constrained by the Ward identity and, conse- m*"=A | p*"— = ) +B = uku”

guently, needs to be evaluated independently. In Sec. IV, we p p

solve the Ward identity and determine, in terms of the self- =~

energy, a simple expression for the current which depends on +Cci 4 D(UMTOVJFUVBM). )
the spatial components of the gauge field. In Sec. V, we p?

present a closed form effective action for the static ampli-

tudes, with spatial tensor structures, which is valid at highHowever, we note that the self-energy for the photon is even
temperatures in the regiofp?><1. This gauge invariant ac- under charge conjugationd{~ — ¢) [20,21], while the last
tion [see Eq(72)] is expressed in terms of functions which structure in Eq(9) is odd. Therefore, we must hai=0

may be related to open Wilson lines. and to all orders, the self-energy can be parameterized as
[M*"=AP*”+BQ*"+ CR*?, (10
ll. SELF-ENERGY FOR NON-COMMUTATIVE QED IN ]
THE STATIC LIMIT AT HIGH TEMPERATURE where we have defined
In this section, we will discuss the tensor decomposition . prp” p°— P“p”
. . . . mY — y7a% mv — My v mv _—

of the self-energy in non-commutative QED at finite tem- P*"= -5, Q¥=ufut, RET=——.
perature. Using this, we will evaluate the self-energy in the P P P (11)

static limit at high temperature and study various masses that

follow. The tensors appearing in Eq41) are easily seen to be pro-
Let us begin by recalling that in a conventional theory, atjection operators,

zero temperature, there are two natural tensor structytés,

andp*, the external momentum, with which we can describe PP, =P* Q"Q,,=Q*, R*R,,=R*. (12

the self-energy. In a non-commutative theory at finite tem- o

perature, we have additional structures such¥’&sandu*, However, they are not orthonormal. In fact, it is easy to

the velocity of the heat bath. To determine the most generagheck that

second rank symmetric tensor constructed from

7", p*, 6**, andu*, let us proceed as follows. First, we P*Qu,=0=Q"Ry,, P"Ry,=R}. (13

note that there are seven distinct second rank symmetric teR,;q suggests that a better basis to work with is given by
sor  structures that we can form, namely, pur Q“?, R where

7MY, uku”, prp” pEp”, (pHut+ prur), (pHp +p*p*),  and _
(p*u”+p’u”) where we have defined PHY=Pr— R, (14)

_ so that all the structures correspond to orthonormal projec-
p*=6*"p,. (7)  tion operators. In this basis, we can parameterize the leading
order self-energy at high temperature as

. e ~/.L . ILL . - —~
By def|n|t|on_,p |s_t_ransversE- t@ a_md, furthermore, it can 147 = AT+ Q“VIT, + RATl . (15)
also be easily verified that- p=0 since *” involves only
spatial indices. However, to leading order at high temperalhe meaning of the various projections is quite clear. While
ture, the Ward identities require that the self-energy be transP#*,Q**,R** are all orthogonal t@*, it is easy to see from
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their definitions in Eqs(11) and(14) thatP~” is, in addition, k k
orthogonal tou” as well as top”. Similarly, Q“” is addi- pu pv
tionally transverse tp* and R#” to u. Thus, additionally,
P~#” and R*" are transverse tp' (that is the reason for the pu pPv
subscript “T” in their form factorg while Q*” is not (which k+p
is why the subscript on the form factor is )" Furthermore,
while P#* and R*¥ are both orthogonal t@', the first is (a) (b)
orthogonal to vectors in the non-commutative pléifienly ) . )
Finally, let us note that energy in non-commutative QED. The wavy lines represent photons
’ and diagrams with ghost loops are understood to be included.
Puv wv MV — UV p/"p’/ 2 _ — 2__ 2_ 2
PAY+ QMY+ RM = gtV — pz : (16) mmag__HT(pO_oap =—p _mmag)' (21

] o ) ) However, there is now a new transverse pole at
With the parameterization of the self-energy in Ef5) in

terms of orthonormal projection operators, several things Fﬂﬁmf—ﬁT(po=0,p2=—p2:r~nfnag)- (22)
simplify. First, we note that we can determine the various
form factors as This can be thought of as the screening length between mag-
s netic fields in the non-commutative plane. This feature is
p2 L, o= PuPy new in non-commutative QED, since the non-commutative
HLZFUMUVHM : HT:‘b_zn'u , parameter can define a preferred direction in space.

Let us now evaluate the self-energy, represented in Fig. 1,

~ in the static limit at high temperature. We note that the cal-
(D=3)Ily= 7, [1*" =1 —Ilt. (17 culation of the self-energy, in the static limit, was already

, ) ) done in[19] and the result was surprisingly very simple.
Here, D represents the number of space-time dimensions. Ifyere we would like to understand the reason for the sim-
particular, we note that wheB=3, we do not have any sty of this result and then calculate the physical masses in

information on the transverse form factor from these equag,q theory. To begin with, let us tabulate a few integfa®
tions, which has to be contrasted with the case in a convenpat will be useful in the ,evaluation of the self-energy:

tional theory(for which the same happensDf=2). Adding

in the tree level two point function, we can write to all orders o X 22
_ f dXT = 6 '
[#=PrY(p?+Tlp) + Q*(p?+11,) o el
+RHY(p2+TTp) + PPy (18) fw d sinxy _ T havT L
¢ o Vo1 2 | NIy

whereé represents the gauge fixing parameter in a covariant

gauge. Since the projection operators are orthonormal, the » _xcosxy 1 7°T?
: ; : : =—— cosecRmyT. (23
inverse can be easily obtained, leading to the propagator 0 eXT_1 2y 2
_ 1 PP, A direct application of the forward scattering amplitude
D.=Pu 11 +Qu, T + Wﬁﬁf >+ method[23,24 leads, in the hard thermal loop approxima-
P T P L pe+ 1Ly p(lg) tion, to a self-energy of the form
The poles in th t distinct f 4e® na(k) ~
e poles in the propagator are distinct as a consequence of pyur( ) — — j d3k (1— cosp-k)
our choice of orthonormal projection operatéhsd we used (2m)3 K

a different basis, the poles would be mixed and would need
to be disentangledWe see that there are three physical poles
(in addition to the unphysical one coming from the gauge
fixing). The meaning of the three poles is easily understood
as follows. First, we can define the screening mass, as in Rhere k
conventional theory, agur Minkowski metric has the sig-

pHk”+p k*  p?kHKY
p-k (p-k)?

X | gt

. (24
KO=k

=|k| and ng represents the bosonic distribution
function. Let us recall that the hard thermal loop approxima-

natures ¢, —,—,-)] tion, in this theory, involves assuming

m«29|: —1II(po=0,p?= —p2=m§|). (20) 1

. ) ] p<k~min (T,: (25
The conventional magnetic mass can also be defined as p
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Going to the rest frame of the heat bath and using(2§),
it now follows easily that

8e? ng(k) -
JIHY = — f d3k 1— cosp-k
Ny (2m)° T p-k)
16e? (= dkk sink|p|
- j AL
(2m)2Jo e¥T—1 K|pl
1 1 - 1
=—2e°T? 3R cothz|p|T——= ,
7|p|T 7|p|T
(26)
where we have defined
[pl=16"pyl. (27)

PHYSICAL REVIEW D 67, 105010(2003

There are several things to note from E0). First, the
integrand, except for the trigonometric functidnoming
from the vertices of the non-commutative thelpris com-
pletely local and is independent of the external momentum.
Since the trigonometric function does not involue
(namely,#° =0), it can be taken outside the Matsubara sum
in the imaginary time formalism and it is clear that the result,
Eq. (30), can be obtained directly from the Matsubara sum of
frequencies by setting the external momentum equal to zero
(except in the trigonometric factor which is outside the sum
and will give zero if the external momentum is naively set to
zero. In this case, the sum is very simple and can be done in
a trivial manner. In this sense, this result can be understood
as the leading term in a derivative expansion. This is, in fact,
supported by the structure of the theory. We know that am-
plitudes become non-analytic in a thermal field theory. How-
ever, once we are in the static limit, the amplitudes are ana-
lytic in p' (in the absence of infrared problemso that a
derivative expansion does make sense. We have shown ear-

While the calculation of the trace of the Self'energy from Eq“er that a|th0ugh the amp“tudes in a non-commutative

(24) is simple, in the static limit, the calculations Bif, ,ﬁT

theory are also non-analytic, the non-analyticity is not a con-

are not, and are manifestly non-local. However, with a littlesequence of any new branch cut. Therefore, we expect the
bit of algebra, which involves integration by parts of the general analytic behavior of the conventional thermal field

relation
PHKY+prk*  pPkHkY d [ krk”
Kk - 2 :p)\T _k ) (28)
p- (p-k) K\ p-
it may be shown that Eq24) can be rewritten as
- 4e? [ d%k (L =10
Y=— —— (1— cosp-
@m?) K P
, , pOk,u,kV
X | n*"ng(k) + ng(k) ok
RV
~[kng(k) = (k)] =
7]’U'O|(V+ nvok,u
—ng(K)——— —— , (29
KO=k

where a prime denotes differentiation with respeck.tdt is
clear from Eq.(29) that the potentially non-local terms van-
ish in the static limit whenp®=0. Thus, we see that the
self-energy is a local function in the static limit, with the
simple form (obtained by using the symmetry of the
integra)

L 4e? [ d% -
Hg’tatic:(szf T (1= cosp-k)| — 7*"ng(k)
, k“k" 277#0771)0
+[kng(k) =ng(k) === +ng(k) — —
k
kO=k
(30)

theories to hold in a non-commutative theory at finite
temperature. Furthermore, we note that because of the
trigonometric function in Eq(30), in the infrared limit (1

— cosp-k)—0 and, consequently, infrared divergence is not
a problem in such theories at finite temperat(ramely, as
p'—0, the coupling vanishes in such theoyiegherefore, in
the static limit, we expect the amplitudes to be analytip'in
leading to the fact that a derivative expansion can be carried
out. This also explains the simplicity of the form for the
self-energy in the static limit; namely, if we set all the exter-
nal momenta to zero in the denominatoamely, the leading
term in the derivative expansigrthen the integrand involves
only one angular integral coming from the trigonometric
function, which is easy to carry out. We also note from the
form of the amplitude in Eq(30) thatII1® =11'"°=0 from the
symmetry of the integrand. We will comment more on this in
the next section.

The components of the self-energy, in the static limit, can
now be easily calculated. Without going into the details, we
simply note that, in the rest frame of the heat bath, the com-
ponents of the self-energy take the forms

2e?T?| 3| cothn|p|T -~
T gaic= — 3 1—5(W—cosecﬁw|p|T ,
Hgtiaticzoa
. coth#|p|T -
I i= — €717 —f'pl +cosechn|p|T
7|p|T
2 "
(m[pIT)?] p?
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FIG. 2. The electric and the magnetic masses in unitso®(T) ~. The three solid lines are the plots of the parabola corresponding to
the left hand side of Eqg34) for (e = 6§ T?)=2.5, 5.6 and 22.4. The corresponding right hand sides are plotted using dashed lines.

Therefore, in this case, we haysee Eq.(17) in the rest Fnﬁ]ag:_ﬁitanc(pzz_rnrznag)_ (34)

frame of the heat bath . _ .
These simultaneous equations can be solved graphically

. 2e?T? (see Fig. 2 We choose a coordinate system in whiéh
Hstatlc:HOO o o = L.
L static 3 = — 0,,= 0 represent the only non-vanishing components of
6;; . Then, settingp®=0, we note that, in both the equations,

3 cothw[p|T _ the left and the right hand side give rise to parabolas near the
1- > —————cosechx|p|T| |, origin and, consequently, unless the slopes have appropriate
@|p|T values, there will be no intersection of the curyasd, there-
—— fore, no solution This leads to the fact that, for a nontrivial
fj static_ PiP; i screening mass to exist in this theory, we must have
T ~9 static
3V5
~ T2>T2= V5 . (35)
»—p| COth7[p|T ~ 2meld
=— ————— +cosech#|p|T
[p|T Similarly, for a nontrivial “new” magnetic mass to exist, we
must have
2
(mlp|T)?) ., 3410
>Ti= .
‘ o =T 2mefd (36)
I _sl_tatlc: 7, VH gt;tic_ Hﬁtaﬂc— H_srtatlc: 0. (32

This is very interesting in that such a mass develops only
This shows that the conventional magnetic masg,q de- ~ above a critical temperature. Considering the smallness of
fined in Eq.(21), vanishes as in QED on a commutative [See Eq.(2)], we recognize that these temperatures are very
manifold. In the static limit, therefore, the self-enerdyb) high. Nonetheless, as a matter of principle, it is interesting to
takes the form note that this behavior is quite similar to the propagation of
waves in a waveguide or a plasma, which exists only above
a critical cutoff frequency.

mwv v TyStatic p“p” 17 static
1_[static_u u 1_[L + 52 1_[T . (33)

Ill. HIGHER POINT AMPLITUDES IN THE STATIC

On the other hand, we see that bdfi®™ and 132 have LIMIT AT HIGH TEMPERATURE

nontrivial contributions depending w](throughf)). This is

to be expected since the effect of non-commutativity can by pign temperature, we note that the complete symmetry of
classically thought of as being equivalent to a backgroungne ampiitudes in the leading order approximation of the de-
electromagnetic field. We note, in particular, that silG¥"  rivative expansion, leads to the result that any amplitude
is nontrivial, there is a possibility, in this theory, of having a with an odd number of temporal indices vanishes. This is
nontrivial magnetic mass in the non-commutative planealready evident in the results of the last section, namely,
even though the conventional magnetic mass vanishes. TH&% =0. Therefore, we can concentrate only on amplitudes
screening mass and the “new” magnetic mass can be detewith an even number of temporal indices. In the case of the

In studying the higher point functions, in the static limit,

mined from the equationsee Eqs(20) and(22)] three point amplitude, this implies that we must have
mZ= — 17 {p’= —md), I 3= 0=T ki (37)
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129} Since the trigonometric functions do not involve any de-
B pendence on the energy¥=0), in the regime(39), the
calculation of any higher point amplitude, in the static limit,
simplifies enormously and can be carried out directly in the
imaginary time formalism. Explicit calculations show that,
when all the graphs contributing to a given amplitude are
summed, the trigonometric functions in the integrand of the
n-point amplitude correspond to a product wffactors of
sin (p-k/2) with i=1,2,...n. This is consistent with the
(73} Pyv AT %Y symmetry expected of the total amplitude, namely, since the
only dependence on the external momenta is in the trigono-
metric functions in the leading order, and since the amplitude
() ®) has to be symmetric under the exchange of external bosonic
lines, the trigonometric functions must reflect this also. How-
FIG. 3. Typical one-loop diagrams for the three point photoneyer, it is worth noting here that this is not expected to hold
amplitude in non-commutative QED. for individual graphs which is evident in the explicit calcu-
. . _lations.
and the only nontrivial components of the three point ampli- - The recipe for calculating any higher point amplitude is
tude can be identified witd®®,I''/*. Explicit calculations  ow clear. For thew-point amplitude, for example, the inte-
bear out this expectation. _ grand will involve n trigonometric factors which can be
From the discussion of the last section, we note that the;xen outside the Matsubara sum, which has no dependence

leading contributions to any amplitude, in the static limit, cangp, the external momentum. Thus, for the three point ampli-
be obtained from the lowest order terms in a derivative Xy de. we obtain

pansion. Such a derivative expansion, as we have seen, cor-
responds to setting the external momenta equal to zero ev- a3k By -k B,k Ba-k
erywhere in the integrand except in the trigonometric FStaﬂczie3TJ’ sin( ! ) sin( 2 ) sin( 8 )
functions. We note that the terms in the integrand, other than *” (2m)3 2 2 2

the trigonometric functions, have the general behavior that,

k+p,

in the hard thermal loop approximation, they are functions of K 128,k ky

zero degree in the external four-momenta. Therefore, in the v | [(27nT)2+k2)3

static limit, these factors become independent of the spatial

momenta giving rise to the appearance of the leading contri- 325,k .

bution in a particular derivative expansion. The trigonomet- - m+cy0“0 . (41)

ric functions, on the other hand, do not have this property. In
the trigonometric functions, however, we can neglect contri-
butions quadratic in the external momenta compared to ter
linear in the external momenta. Thus, for example, in th
three point amplitude diagram coming from three cubic ver
tices[see Fig. )], the trigonometric functions coming from
the vertices, can be simplified as

lthough Eg.(41) appears to involve three angles coming
rom the trigonometric functionén which case the integra-
tion over spatial components would be nontriyjiake can
use the identity

P I 5 sin(Bl‘k) sin(Bz'k) sin(ﬁs'k>
sin p1~k) sin P2 (k= ps) sin(pg'k 2 2 2
2 2 2
D 7 - =——(sinp;-k+ sinp,-k+ sinps-k). (42
prk) . (park) . (psk 7 (sinNpy-K+ sinpy-k+ sinps-k) (42)
~sin| ——|sin| =~ sin| =—|. (39

This is nice since each term involves only one angular inte-
Expanding the second trigonometric function on the leftgral which can be carried out using E@3). Then, Eq.(41)
hand side, it is easy to see that this corresponds to using tHEcomes
approximation that

. d3k ~ ~ ~
op3<1, (39 roo’=—8ie’T f 2 )B(Sinpl-k+ sinp,-k+ sinpz-k)
o

wherep denotes the typical magnitude of the external mo-
mentum. Mathematically, such a derivative expansion would 4k, k, Ky
correspond to choosing v | [(27nT)2+ k)3

p<k, 6pT~O(1), (40) 5. K

. _ —| ——E——+cyclic] |. (43

which would automatically lead to E39). [(27nT)%+k?)?
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P B
/] 3 np by 2P P
k _p4
FIG. 4. Typical one-loop dia-
k+ P, k+P+p k k+Db+p -
k thth k e rra grams for the four point photon
amplitude in non-commutative
ED.
ken k+p, Q
I Py pp Py P b2y
(@ ®) ©

It is worth noting from this expression that when there is an The nontrivial components of the three point amplitude,
odd number of temporal indices, the amplitude vanishes ban the static limit, at leading order, then, take the forms
cause of anti-symmetry in the Matsubara sum, which is con-
sistent with the general structure of the static amplitudes in . ~ .
the leading order. Lo (p1.p2.p3)=ie[py,; 155" (py) +cyclic],

The actual evaluation of the thermal parts from the Mat-

subara sums can be carried out using the following relations: <tati

Fisjtl?tic(pbpz,ps):ie[BL k I (py) +cyclic].

) 40
T K +(T=0 term),
n o (2mnT)*+k It now follows from Eq.(46) that
[ S (nB(k)) Ps, i85 1P1.P2.P3)
" ((27TnT)2+k2)2 2k k H = stati i stati
=ie[ps-p1 1155 1P1)+Ps- P2 55 1p2)]
+(T=0 term,
_s ! ;Hns(k)) } ~—ziesin( pl’pz)[naz,a“%po—nsga“%pzn,
n [(2mnT)2+Kk%]® 4k|2k| Kk
#(T=0 term, 4D a1, p2.pa)
where the prime denotes a dgrivative with respeét tdsing = ie[ps'EJl Hisjta“f( py)+ pa'Bz Hisjtaﬁc( P2)]
these as well as E@23), the integrals can be evaluated and
we find that the terms depending on Kronecker delta func- ~
tions cancel out in the final result after carrying out th .. [ P1P2 . :
integration. This may be seen by noticing that, whem\ ~—2|esm< 2 [T py) — I p2)1,
are all spatial indices, we can write E@.3) in the form 47
static - d3k o~ o~ where we have used the conservation of momentum in the
L= —2ie’T 2m)? (sinpy-k+ sinp,-k intermediate steps as well as E§9) to write
& >
+ sinps-k)=————— >, log[(27nT)2+k? - Dy
Pa- k) kcak, & 09l T) 24k = oy Sin( plzpz)_ .

d3k

:_2ie3T51,i51,j51,l f Wcosﬁl'k This shows that the three point functions indeed satisfy

simple Ward identities and that all the nontrivial components
of the three point amplitude can, in fact, be determined from
a knowledge of the self-energy.

The general procedure outlined above can be used to
evaluate the four point amplitudsee Fig. 4 in the leading
which shows that only terms involving triple products of the order of the derivative expansion. In the static limit, this
same momentum are present in the final resultifgf". amplitude has the form

X >, log[(27nT)2+ k2] +two similar terms, (45)
n
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- d _(Puk|  [Bok| _ (Bok| _ [Bak
tat _ 4 . . . .

24Kk K kK,
((27nT)?+k?)4

n

( - 48, kK, 8,v0np . 9

(2mnT)?+k?3  ((27nT)?+k?)?

+ permutation;

As in the case of the three point function, this expressiont is clear from these discussions of the static three and four
simplifies, in practice, upon using the trigonometric identity point amplitudes that the components, where not all the in-
_ - - _ dices are temporal, satisfy simple Ward identities, which fol-
pl'k) . (Pz'k) . (p3~k) . (p4-k) lows from invariance under a static gauge transformation.
2 2 ! 2 2 Such components can, therefore, be recursively relfida
reason why such simple Ward identities hold in our case may
=C(p1,k) +C(p2,k) +C(p3,k)+C(ps) be understood by noting that the contributions of the ghost
—C(p1+Pa.K)—C(pa+pa.k)—C(ps+ps.k), (50) particles, to this order, cancel out in the Becchi-Rouet-Stora-
Tyutin (BRST) identities] The component of the four point

85in(

where we have defined amplitude with all temporal indices S on the other
~ hand, is not constrained in the static limit and, therefore,
C(p,k)=1- cosp-k. (51)  cannot be related to lower order amplitudes. However, this

component can be evaluated from HE49) and it can be
seen, after some algebra, tHajZs does not vanish. As a
result, this can be taken as a new perturbative input in deter-
mining the complete static effective action. In fact, there will
be a new perturbative input at every even order in perturba-
FSta”C(pl,pz,pg.pz;) tion, whenever the component of the amplitude with all tem-

ijkl . .
. poral indices does not vanish.

For the spatial components, the integrand in @§) can be
written in a similar form as in Eq45), so that no Kronecker
delta functions appear in the final result when ti& inte-
gration is carried out. Then, using E@O0), we obtain

= e4[f(51)51,i51,j51,k51,l + f(Bz)ﬁz,iBz,sz,kﬁzJ LR
—f(P1+Pa) (P1+Pa)i(P1+Pa);(P1+ Pa)k IV. THE EFFECTIVE GENERATING FUNCTIONAL

X (p1+pa)i—---1, (52 The analysis of the previous section shows that all the

nontrivial components of the three point function can be de-

where termined from a knowledge of the self-energy. However, at
~ ciatio~ the level qf the fou_r point function, we a_IsQ saw that we need

£(p)= 7*p) (59) to d_etermmel“oooo mdependently since it is invariant under

e? 52 static gauge transformations. This component of the four

point amplitude, on the other hand, would be essential in

and ﬁﬁ_tatic is given in Eq.(32). Using Eq.(46), this can be determining all the components of the_ five point amplitude.
written in terms of the three point amplitudes as !n fact, at every even order of the amplitudes, we expect new
independent structures that cannot be determined from a

F?jtffic(pl,pz,ps,m) knowledge of the lower order amplitudes. Therefore, it
~ _ ~ . would be impossible to obtain a closed form expression for
=ie[py " (P1+Pa.P2.P3) + P2, TFE (1. P2 the complete effective action from a knowledge of the am-

_ _ plitudes to a given order. On the other hand, as we have seen,
+P4.P3) + P35 (P1,P2.Ps+Pa)+- -1 (54  the components of the amplitudes with spatial indices only
) are related recursively, through Ward identities, to lower or-
where - - - represents terms needed to Bose symmetrize thger amplitudes. Therefore, we can try to determine that part
amplitude. It is easy to see that this form is consistent withyf the effective action which depends only An.
the static Ward identity LetI'[A] represent the part of the effective action at high
rstatiq ) temperature that depends only on the spatial components of
Paitijii {P1.P2,P3. P4 the gauge field. Then, invariance under an infinitesimal static

stati gauge transformation, leads to the Ward identity

=ie[(p;- PoT 5 (P1+ P4, P2, P3)

+(52'p4)risjtl?tic(plvp2+ P4,P3)
ol'[A] oAi(Y) SI'[AJ SU[AJ

+(Ps PSPy, Py, P3+ Pa) . (59 Bw(x) =f Y e oAGy) D GAX) O (56
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wherew(x) represents the infinitesimal gauge transformationUsing Eq.(65), we can determine the current in E§2) to
parameter depending only on the spatial coordinates. Equée

tion (56) is simply a statement of the covariant conservation

of current. Furthermore, under the approximation that we are i[A]= ST [A]
using[see Eq.(39)], the covariant derivative, in the adjoint oA,
representation, takes the form

=D, g A, . (66)

_ We note that this current manifestly satisfies covariant con-
Di=d;+e(d;A)d;. (57) servation since the self-energy is transverse. Furthermore,
this closed form expression for the current can be explicitly

With this, the current conservation, E6), takes the form  cpecked to lead to the correct amplitudes, under Bose sym-

metrization.
a, %Jre(ajm)héj %— The current is all we need for the generation of any am-
[ i plitude. However, it will also be nice to determine the static
effective action in a closed form. That involves functionally
or o ST TA = ST [A] =0. (58) integrating the current which appears to be highly nontrivial.
A ' OA Nevertheless, we can obtain the effective action as explained

. . o _in the next section.
This determines that the quantity in the parentheses vanishes

up to a term that is transverse, namely,
SI'[Ad

V. DISCUSSION

(5i-+eAj;§i)——X-T (59 Here we present a closed-form effective action for the
] SA. i . . . . S s

] static amplitudegwith spatial tensor indicesvalid in the
such that region[as in Eq.(39)]

IXI=0. (60) Pal<T,  Ipal<|6]™*2 (67)
By taking the functional derivative of E459) with respect wherea=1,2, ... runs over the external momenta. In this
to A; and setting all the fields to zero, it can be easily deterregion, we expect the internal momentiarto be of the order
mined that, to lowest order given in Eq.(25).
T(lowest)_ 1ystatic Let us first define

_ 4 ; o7
Itis clear thatX; will contain higher order terms in the fields U(p,A)= f d*xexp[ —ip-x+iep-A(x)]. (68

as well. However, it can be seen by taking higher order func-

tional derivatives of Eq(59) that the role of the higher order This is a function of an auxiliary 4-momentupnand a func-
terms inX/ is to Bose symmetrize the higher point ampli- tional of (the spatial components JoA. We will identify p
tude. Thus, keeping this Bose symmetrization in mind, wewith the linear combinations of external momenta, as in Eq.
can neglect the contributions involving higher order terms in(52). In the region(67), the general gauge transformatic)

the fields inX!. In such a case, we can solve for the currentmay be approximated as

from Eq. (59) and obtain L~
. i A(X)={; +ie[F,AI(x)]0} o (x). (69)
k ~.
oA, = (& +eA)~ X]loresy, 62y, defined in Eq(68), is invariant under Eq69). To prove
this, we note that
The quantity in the parentheses on the right hand side in Eq.

(62) is an operator and hence does not have a unique left- o(p-A)={p-d+eld;p-A(X)]d;}o(x),
right inverse. However, the one that is relevant, for the solu- _
tion, is the right inverse which can be determined to be S expliep-A(X)]}
(5” + EAjb‘i)ilz 5” - eAﬁi + eZAk’(;'iAj’ék =i eXp(ie’b' A){NFS J+ 8[515 A(X)]aj}w(x)
_eaAkhéiA|ht§kAj§| R RKICICIN (63) =i eXp(IeBA)E) (Qw_’:?][exp(le’bA)é’]w]a

Furthermore, we recognize from the definition of the covari- (70)

ant derivative(57) that where we have used- 9=0. Substituting Eq(70) into Eq.

d,(5;+eAd;)=D; (64)  (68) and integrating by part§so thatd; differentiates the

_ e 'PX) we obtain
so that we can also write

(8j+eAd) 1=D; 3. (65) 5U=iJd“xe*ip*expaeb-A)[aaw—B-aw]=o. (72)

105010-9



BRANDT et al. PHYSICAL REVIEW D 67, 105010(2003

Now we can construct the effective action in termsCof
W(p,A)= J d*x exp(—ip-x)

1 ~
F:mf d*pf(p)U(p,A)U(—p,A) *P exp

. 1 ~ ~
e fo dsp-A<x+§p>}, (74

:—SJ d*pf(p)|U(p.A)I%, (72 _ _ _
2X(2m) whereP denotes path ordering on the manifold characterized
by the star produdt3). W(p,A) represents the Fourier trans-

form of a gauge invariant open Wilson line, extending along

a straight path fronx to x+p [13,14). Note that, if Eq.(67)
is assumed\yV reduces just tdJ.

However, the thermal effective actigwhen Eq.(67) is
not assumelis not obtained just by replacirld by Win Eq.
(72). The reason is that the internal photon momentua
expected to be of order 1/||p,]) and therefordwithout
Eqg. (67)] we cannot make the hard thermal loop approxima-
tion of neglecting|p,| compared tdk|. The amplitudes are
Ipal<T. 73) then much more complicated, and we cannot expect them to

be expressible in terms of a single functibas in Eq.(72).

wheref is defined by Eq(53).

ThatI" in Eq. (72) is the correct effective action follows
because it trivially agrees with Eqé31) and (32) to order
e?, it is gauge invariant, and it gives the functional depen-
dence on thef)a (a=1,2,3...,v for the v-point function
typified by Eq.(52). We have verified explicitly thalf' gives
the 3- and 4-point functions correctly.

It is much more difficult to find an effective action, not
assuming both inequalities in E@7), but just

In this case we must use the exact gauge transformédion

not just the approximate one {69). But we note thatJ in ACKNOWLEDGMENTS
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