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The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant
g, known so far up to ordeg®. We compute here the last contribution which can be determined perturbatively,
g%In(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-
dimensional effective field theories. We also demonstrate that the inclusion of the new pertuyBla{tfs)
terms, once they are summed together with the so far unknown perturbative and nonpertgbagiras,
could potentially extend the applicability of the coupling constant series down to surprisingly low tempera-
tures.
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. INTRODUCTION inside the logarithm i®(g®In(1/g)) remains otherwise un-
determined. Therefore, our conclusions on this point remain
Because of asymptotic freedom, the properties of QCDon a conjectural level, but turn out to show nevertheless a
might be expected to be perturbatively computable in variousomewhat interesting pattern, which is why we would like to
“extreme” limits, such as high virtuality, high baryon den- include them in this presentation.
sity, or high temperature. We concentrate here on the last of Finally, it should be stressed that even if the perturbative
these circumstances, that is, temperatdr&sger than a few expansion as such were to remain numerically useless at re-
hundred MeV. alistic temperatures, these multiloop computations are still
The physics observable we consider is the pressure, avorthwhile: the infrared problems of finite temperature QCD
minus the free energy density, of the QCD plasma. Potentiatan be isolated to a three-dimensior@D) effective field
phenomenological applications include the expansion rate aheory[13] and studied nonperturbatively there with simple
the early Universe after it has settled into the standard modéhttice simulationg14]. However, to convert the results from
vacuum, as well as the properties of the apparently ideadD lattice regularization to 3D continuum regularization, and
hydrodynamic expansion observed in on-going heavy iorfrom the 3D continuum theory to the original four-
collision experiments, just shortly after impact. dimensional4D) physical theory, still necessitates a number
In these environments, it turns out that the naive expectasf perturbative “matching” computations. Both of these
tion concerning the validity of perturbation theory is too op-steps are very closely related to what we do here, although
timistic. Indeed, even assuming an arbitrarily weak couplingwe discuss explicitly only the latter one.
constantg, perturbation theory can only be worked out to a
finite order in it, before the serious infrared problems of fi-
nite temperature field theory deny further analytic progress Il. THE BASIC SETTING
[1,2]. For the pressure, the problem is met at the 4-loop

der, 5). X |
order, 0r0(g’) properties of QCD at a finite temperaturean be reduced to

This leads to the interesting situation that there is a defi b ¢ bativel bl hi i
nite limit to how far perturbation theory needs to be pushed® NUmber of perturbatively computable matching coetfi-

So far, there are known loop contributions at ordéxs? cients, as wel] as some'remaining contribution; from a series
[3], O(g®) [4], O(g*In(Lig)) [g] (g% [6] andO(gg(sf]Y]). of effective _fleld theorieq13]. Our presentation follqws
There is also an all-orders numerical result available for d'nostly that in[11], but there are a few significant differ-

theory with an asymptotically large number of fermion fla- €M¢ . o .
vors [32/3]. The purpyosg of theypregent paper is to collect to- The underlying theory is finite temperature QCD with the

anying pap@<0], allow-  9auge group SLMC),_anc_JINf flavors of massless quarks. Ir_l
ignegtheursreigltsdg?errrgivr\]/g a;(r:nc;rl?/ﬁcaﬁ/y gtr?edla’it] remaining dimensional regularization the bare Euclidean Lagrangian
perturbative contribution,O(gIn(L/g)), for the physical 'cads. before gauge fixing,
QCD.

It must be understood that even if computed up to such a gh

high order, the perturbative expansion could well converge SQCD=f de dx Locos (2.1
only very slowly, requiring perhaps something like> TeV, 0
to make any sense at 4lf,11,13. With one further coeffi-
cient available, we can to some extent now reinspect this
issue. To do so we actually also need to assume something
about the unknowr©(g®) term, since the numerical factor

We start by reviewing briefly how it is believed that the

1 _
EQCDZZFZVFTW"‘ by uD i, (2.2
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where B:Til, d:3_2€, /.L,V:O,...d, FZVIO"#A::}I Here kzl,...,d, Fk|:(i/gE)[Dk,D|], Dk:ak_ig_EAk,
—3,A%+gfaPADAL, D,=d,—igA,. A,=A.T y,, and we have used the shorthand notatip=AZT? A,
= Yur {Yu vs}=26,,, andy carries Dirac, color, and fla- = A3T2, whereT? are Hermitean generators of SN} nor-

vor indices. . __malized such that TFaTP= 52%/2. Note that the quartic cou-
Denoting the generators of the adjoint representation b¥)lings)\(l), 7\(52) are linearly independent only foi =4

_ _ifab 1 .
(F®)pe=—1f*"% we define the usual group theory factors: ™ t1q valation in Eq(2.8) contains five different matching

Jp——— _rraTal coefficients,pg,mz,g2, A A2, We are interested in the
Cadap=[FFlap, Croy=[TT;;, 23 expression fopocp(T) up to orderO(g®T#). They will then
b_ arb b_ aTb have to be determined to some sufficient depths, as we will
TAGP=TrFoRS, - Tedm=Tr T, 24 specify later on. Let uszhere notezthat the I((ala)lding ord((azr)mag—
i T4 n2T2 N2 g
da=8%3=N2-1, dp=6;=Trda/Cs. 2.5 Ttgffs arepe=T", Me— g% Ge~ 0T, A"~ 07T, Ae

Apart from the operators shown explicitly in E.10),

' N2 - there are of course also higher order onegin The lowest
oluark ﬂdaVSrS’ZCA_EC’_CF_(NC DIEN), Ta=Ne, Te - gycn operators have been classified[16]. Their general
=N¢/2, da= ’_\'C_l'_ F= NNy . L i structure is that one must add at least two powerB pbr

We use dimensional regularization .through_out this Papely a 1o the basic structures in E(R.10. Since higher order
The spatial part of each momentum integration measure 'gperators are generated through interactions with the scales
written as that have been integrated out2 7T, they must also contain

q e q an explicit factor of at leags?. For dimensional reasons, the

f_ f dp . e’ f d’p
o ) o2md © am) ) (2m)

(2.6) schematic structure is thus
where u= u(e?/47)Y2 and the expression in square brack-

ets has integer dimensionality. From now on we always as- . ) o
sume implicitly that the factop ~2¢ is attached to some rel- 10 estimate the largest possible contributions such operators

evant coupling constant, so that the ¢Bis dimensionless, could give, let us assume the most conservative possibility
while the dimensionalities Ogé,)\gl)')\l(;) and gf,,, to be thatthe only dynamical scale in the effective theory-igT.

ObviouslyT,=C, . For the standard normalization, wil

MZE

DD,

SLe~g? Le.
=9 a2 E

(2.11

introduced presently, are GeV. By dimensional analysis, we then obtain a contribution
The basic quantity of interest to us here is minus the free ) T T)2
. , Paco(T) , (gT) 3 7.3
energy density ocp(T), or the pressurpqocp(T), defined by —T - E~0 W(QT) ~g'T. (212
a
Poco( T)= lim Imj DA? Dy DZex[{ — ESQCD)’ Therefore, all higher dimensional operators can be omitted
v V a h from the action in Eq(2.10), if we are only interested in

(2.7 computingpocp(T) up to orderO(g°T?).

) ) The theory in Eq.(2.10 contains still two dynamical
whereV denotes thel-dimensional volume. Boundary con- gcalesgT,g?T. All the effects of the “color-electric” scale,
ditions over the compact time-like direction are periodic forgT' can be accounted for by integrating @y [13]. Specifi-
bosons and anti-periodic for fermions. Moreover, we assumey|ly,

Poco(T) renormalized such that it vanishesTat 0. To sim-

plify the notation, we do not show the infinite volume limit T

explicitly in the following. V2
At high temperatures and a small coupling, there are para-

metrically three different mass scales in the problem,

~27T,gT,g%T [13]. All the effects of the hard mass scale

~27T can be accounted for by a method called dimensional

Inj DA DAG exp(— Sg)=pw(T)

T
+ vlnf DA exp(—Sw),

reduction[13,15. Specifically, (2.13
T = f d Ly, (2.14
PacalT)=pe(T)+ yIn | DATDAText(~S0), (28 S :
1 2
»CMZ ETr Fk|+ ey (213
Se= f d% Lg, (2.9
where Fy=(i/gu)[Dk.Di], Dx=dk—iguAx, and Ay

=AJT.

The relation in Eq.(2.13 contains two matching coeffi-
i 2221 (2) 4 cients,py ,gf,,, which again have to be determined to suffi-
TAEA(TrAD A TrAgt ... . (210 cient depths. At leading ordepy~meT, g5,~g2. In addi-

Le= TTr P2+ Tr [Dy AgJ2+ mETr A
E- 5 Tk r[Dy.,Aol“+mETr A
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tion, there are also higher order operators in €415. The T 6 1
. . .. . pG( ) 3 gM M
lowest ones can be obtained by imagining again that we — =dACA—4 ag|l —+8In—|+ Bg+0(e) |,
apply at least two covariant derivatives to H@.15), to- T = (4m) € 2my
gether with at least one factgré brought in by the interac- (3.1

tions with the massive modes. This leads to an operator
where mMECAng. Now, because of the super-
renormalizability ofZy, , the coefficientzg can be computed
5£M~g’éD"_|33'£M. (2.16  In 4-loop perturbation theory, even if the constant pagt
mg cannot[29].

Of course, if we just carry out the 4-loop computation in
strict dimensional regularization, then the result vanishes, be-
cause there are no perturbative mass scales in the problem.
Fhis means that ultraviolet and infrared divergen@sone-
ously) cancel against each other. Therefore, we have to be
more careful in order to determines.

The only dynamical scale in the effective theory being
~g°T, dimensional analysis indicates that we then obtain
contribution of the order

SPoco(T) ,(g°T)? To regulate the infrared divergences we introduce by hand
— 7 ~OLw~OE 3 (0°T)°~0°T°. (217 4 mass scalanZ, into the gauge fieldand ghost propaga-
E tors. This computation is described in detai[®]. Individual

diagrams contain then higher order poles, like?1/as well
Therefore, higher dimensional operators can again be omits a polynomial of degree up to nine in the gauge parameter
ted, if we are only interested in the ordé€¥(g®T#) for & However, terms of both of these types cancel in the final
Paco(T).- result, which serves as a nice check of the procedure.
After the two reduction steps, there still remains a contri- As a result, we obtain
bution from the scalg?T:

Pa(T) 2 9u (1 b
- ) e TACAL, | %o Z+8In2_me +Bc(§)+0(e) |,
TE—Inf DAexp(—Sy), 2.1
Pa(T) v keXp(— Su) (2.1 (3.2
where “~" is used to denote that only the coefficients

with Sy in Egs. (2.14), (2.15. Since Ly only has one pa-

rameter, and it is dimensionful, the contribution is of themulnplylng L/e is physically meaningful, as it contains the

desired gauge independent ultraviolet divergence, defined in

form Eq. (3.1). The value of the coefficient, obtained by extensive
use of techniques of symbolic computatidéimplemented
pa(T)~Tay. 2.19  [17]in FOrRM[18)), is [9]
43 157 ’
The coefficient of this contribution is, however, non- @6=95 " g1aa™ ~ 0-195715. (3.3

perturbative[ 1,2].

In the following sections, we proceed in the opposite di—On =

. . . the contrary, the constant paBi(¢) depends on the
rection with regard to the presentation above, from the “bot- . .
tom” scale gz.? producing po(T), through the “middle” gauge parametef, because the introduction cmhé breaks

scalegT, producingpy(T), back to the “top” scale 2T, gauge invariance, and has nothing to do wathin Eqg. (3.1).

producingpg(T). We collect on the way all contributions up
to orderg®T? to obtainpe(T) = Pe(T) + p(T) + Pe(T). IV. CONTRIBUTIONS FROM THE SCALE gT

We next proceed to include the contribution from the
scalegT, contained inpy(T), as defined by Eq2.13. By
construction, Eq(2.13 assumes that all the infrared diver-

The contribution topgcp(T) from the scalep~g?T is  gences of the expression on the left-hand side are contained
obtained by using the theorg,, in Eq. (2.19 in order to  in pg(T), defined in Eq(2.18), and determined in Eq3.1).
computepg(T), as defined by Eq2.18. As is well known  Therefore, if we compute the functional integral
[1,2], the computation involves infrared divergent integrals,(T/V)In[fDA? DA exp(—Sz)] using strict dimensional
starting at the 4-loop level. This is a reflection of the fact thatregularization(i.e., without introducing by hand any mass
Ly defines a confining field theory. Therefopyy(T) cannot  mg for the gauge fieldd;), wherebypg(T) vanishes due to
be evaluated in perturbation theory. the cancellation between infrared and ultraviolet divergences

What can be evaluated, however, is the logarithmic ultramentioned above, we are guaranteed to obtain just the infra-
violet divergence contained ipg(T). For dimensional rea- red insensitive matching coefficiepy,(T). This is exactly
sons, the nonperturbative answer would have to be of théhe computation we need, and carry ouf10,19. It may be
form mentioned that we have checked explicitly the infrared in-

lll. CONTRIBUTIONS FROM THE SCALE g°T
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sensitivity of the result, by giving an equal mass to bAth
and A; in the 4-loop expression for the functional integral,
and then subtracting the graphs responsiblepf(iT), with

the same infrared regularization. This result is also indepen-

dent of the gauge parameter.
Keeping terms up to orde?(g®T*), the full outcome for

pm(T) is

pm(T) 1 a1
TM725_(47T) dAmE § +O(€)
1 n
+(4w)2dACAgEmE{ Ze 7 In2mE+(9(e)
1 24
+mdACAgEmE
89 1 ) 11I 240
X —ﬂ—gw +€n + (6)
SIS 1+8In£ +Bu+O(e)
(4m)* A“AGE @m| 2me M €
+Ld (dpy+2)APm2 1 +0O(€)
(4m)? Alla EWE T3

1 2d,—1 1
oLl e xg)mg[—z +(’)(e)} (4.1)
C
where[10]
43 491 ’
~(0.555017. 4.2

W3 6144"

The finite constanB,, can be expressed in terms of a num-

PHYSICAL REVIEW D 67, 105008 (2003

4
agi+ g gt O(€)]+ (497)2[0‘53+ O(e)]

|

p2ope(T)=T*

6

S Bt O(&)]+0(g®)

’ (4m)*

(5.9

2_T2< 0 agqt apse+ O(€%)]

me=
4
MT)Z[QE6+EE25+O(52)]+O(96)>a (5.2
4
9%21—(924' (47T)2[C“E7+,3|536+ 0(62)]"‘0(96)),
(5.3
B=T o’ +0(e)]+0(g® 4
NE (477)2[,3E4 (e)]+0(g°) |, (5.9
(2):T 9_4 +0 +0O(g°
Ag (47T)2[BE5 (e)]+0(9) |, (5.9

whereg? is the renormalized coupling. We have named ex-
plicitly (ag,Bg) the coefficients needed up to ord8¢g®).
The actual values for those needed at orédg®Iin(1/g)],
denoted byag, are given in Appendix A. The additional
coefficients needed at the full ordé}g®) are denoted by
Be: some of these are also knowfor Bg,4,BEs, €.0., see
[21]). The rest of the terms contribute only beyo@ig®).

The expression fopg(T) is simply the functional integral

ber of finite coefficients related to 4-loop vacuum scalar in-in Eq. (2.7), calculated to the 4-loop level in the modified

tegrals[10], but we do not need it here.

In addition topy(T), we also need to specify the effec-
tive parametelgf,I appearing inly,, to complete contribu-
tions from the scalgT. It is of the form

o=9d 1+ O(ge/me)], (4.3

where the next-to-leading order correction is knoyaee,
e.g.,[20]), but not needed here.

V. CONTRIBUTIONS FROM THE SCALE 2 =T

The contributions from the scaler” are contained in the

minimal subtraction MS) scheme, but without any resum-
mations. The only physical scale entering is thusT2 The
calculation has so far been carried out only to three loops
[6,11] so thatBg; is not known. Even when performed with
the fully renormalized theory, the results in general contain
uncancelled ¥ poles, as explicitly seen in the 3-loop ex-
pression in Eq(A3) for agz. These only cancel when a
physical fully resummed quantity is evaluated, i.e., in the
SUM Pocp=Pe+Pw+ Pe. Similarly, m2,gZ A& can be ob-
tained, for instance, from suitable 2-, 3-, and 4-point func-
tions, respectively.

VI. THE COMPLETE RESULT

expressions for the parameters of the previous effective theo- Combining now the results of Secs. lll, IV, V and expand-

ries, as well as ipg(T). We write these as

ing in g, we arrive at

105008-4
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Paco(T) — Pe(T)+pw(T)+pa(T)

T4M—26_ T4M—25

3=

)

0 g° da 232 g d.C 1 | w 1
et leed i | S| | 00 e g+ § g e

+ 9° deat? Lo c2( 205 ™ o) 9° L Aot 2) Byt 2OA~
(4)2 AQE4| 5E6~ “Al 5p T e T g ! (4m)? Bei~ z0aaeq (da+2)Beq N, Bes
L _
—daCp Z(a’E6+ apsert 3apsaprt Beot apaBes) T (et @paer) EHnZgTaé’f
; 1 K 1 K ,
+daCh| But Bst am -|—8|H—1/2 +ag +8|”—29 10 +0(g")+0O(e). (6.1
gy

Utilizing the expressions in Appendix A, the terms up towhereag, is in EqQ. (A4), agg is in EQ. (AB), ag; is in Eq.
order O(g®) reproduce the known result [i7]. (A7), ay is in Eq. (4.2, and ag is in Eq. (3.3. Note that

For the contribution at orde(g*), the 1k divergence in  there are logarithms of two types, with different non-analytic
ags [cf. Eq. (A3)] and the 1¢ divergence frompy(T), dependences on group theory factors inside them. Equation
shown explicitly in Eq(6.1), cancel. This must happen since (6.3) is our main result.

Poco(T) is a physical quantity. The assomat,e& also can- Following[7,11], let us finally inserN.=3, and give also
cel, but a physical effect [me/(27T)]~In(ga?) remains the numerical values for the various coeff|C|ents for an arbi-
[5]. trary N;. We obtain

For the contribution at orde®(g®), a number of un-
known coefficients remaitthe B¢'s, Bu . Bg), but a similar

6
cancellation is guaranteed to take place. In addition, the re- Poco(T) = 2 “S(“) (6.4)
sult must be scale independent to the order it has been com- Qcp =0 ’
puted. The first point can be achieved By, (the otherB¢'s
are finite, so that it has to have the structure
where
1 3 1
Bei=daCalaget aE4aE7)E_dACA(aM“‘aG);"‘ﬁEe, 1
(6.2 po=1+ 32N (6.5

where Bgg does not contain any d/poles. The latter point
can be achieved by adding and subtractingul(2#T)]'s, p,=0, (6.6)

such that; gets effectively replaced by+2T in the loga-
rithms visible in the O(g®) term in Eq. (6.1). The

In[ /(27 T)]'s left over, together with those coming from the _ 15 14 EN 6.7
Be's, serve to cancel the effects from the 2-loop running of 27 4 12°1) '
g?(w) and 1-loop running ofj*(w) in the lower order con-
tributions, without introducing large logarithms. oo
This general information is enough to fix the contributions —30 14 =N 6.9
of order O(g°In(1/g)) to pocp(T). Indeed, after inserting Ps= 6 ) '
Eq. (6.2 and reorganizing the logarithms appearing in the
BE's as mentioned, there remains a logarithmic 4-loop term,
p,=237.2+ 15.96N;— 0.4150N?
Poco(T) 6 daCa 12
ey = {(aget apqaer)In(gags) 135 1 1 )
T4,LL 2 $Fin(L) (4 )4 2 1+ 6Nf |n 1+ 6Nf
—8Ci[ auIn(gagy) +2agn(gCRA) 1}, 165 5 V(1 20 | 6
6.3 =g | 1 g 1 g ing ©9
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pend sensitively, even qualitatively, on this uncomputed

1/2]
ps=| 1+ %Nf [—799.1— 21.96\lf—1.926\|$ term. One choice will be seen to agree with 4D lattice data
down to abouflf/Ays~2...3. Since, however, dimensional
495 1 2 ; reduction, that is, an effective description of QCD via the
+ - 1+ ENf> ( 1- ﬁNf Inm , (6.10  theory in EQ.(2.10, is known to break down at about this

point, and we have only kept a finite number of terms in the

expansion following from Eq(2.10, this cannot really be
pez[_659_2_ 65.89\lf—7.653\1$+—1485 1+ }Nf) considered a prediction, even if the eventual computation of
2 6 the O(g®) term gave just the appropriate value. It is just an

1— 2Nl 214 2 lidity of our results to a domain of different approximations
33 ) "2t " 6 :
™ ™ should be possible.
— — A standard procedure in the discussion of perturbative re-
o . .
—475.6In—+ qa(Nf)an% + Qb(Nf)In% sults would be to take the expansion in E84) and to study
whether its scale dependence is reduced when further orders
+qu(Ny) (6.11) of perturbation theory are included. As is well known since
ot [6], this fails for the pressure, unle3s>Ays. Related to

where q,(N¢), qu(N¢), q«N;) are agindependent polyno- this, the numerical convergence of the perturbative expan-
mials in N;. Two of them,q4(Ny), g,(N¢), can already be sion is known to be quite poor for any fixed scale choice, at
written down because they just cancel thedependence !I‘?:St for temperatur:es below the (;:-Igctroweak ﬁmm’lr?-

L = 2,7A. e new term we have computed does not change this gen-
arising from the terms of ordeisy(), as(w): eral pattern. But the culprit is known: it igy(T) + pg(T)

5 2 2 emerging from the 3D sector of the theory, where the expan-
+1—2Nf>(1 3 Nf> , (6.12  sion parameter is onlygZ/(7mg)~g/m. In contrast, for
pe(T) as well as for, say, jet physics, the expansion param-
eter isa/7r, and there are good reasons to expect numerical
6.13 convergence to be much better.

' For these reasons, we will only discuss the sensitivity of
the result on the so far unknow®(g®) coefficient, as well as
the slow convergence of the 3D sector, in the following. For
simplicity, we only consider the ca$¢.=3, N;=0 here.

As in [14], the actual form we choose for plotting con-

This section is devoted to a numerical discussion of théains pu(T)+pg(T) [Egs. (4.D)+(3.1)] in an “un-
result. Since theé)(g®In(1/g)) term cannot be given an un- expanded” form, that is, withmg, g2 inserted from Egs.
ambiguous numerical meaning until ti¥g®) term is speci- (5.2, (5.3), and gf,l from Eq. (4.3). This means that we are
fied, we have to present the result for various choices of theffectively summing up higher orders: th@(g®) term is
latter. In the relevant range Gf/ Ays the outcome will de-  really O(g?+g*)®? while the®(g®In(1/g)) term contains a

observation that a smooth transition from the domain of va-
» Nf)}

1815
Qo Ng)=— T 1

Ou(N¢)=2932.9+ 42.83N;— 16.48N?+0.276 N3 .

The third onegy(N;), remains, however, unknown.

VII. THE NUMERICAL CONVERGENCE

1.5 T

RS

P/Pgy
&
~
Y
Y

o, --- un/g)+1.5)|1
sl S == gn(1/g+1.0)| ]
Lo N °(In(1/g)+0.5)] |
/i -==- (n(1/g)+0.0)

[ ¢ (In(1/g) -0.5)|
[ = o 5 4 lattice b

n(1/g)+0.7)| -
= = » 4d lattice b I

1 10 100 1000 1 10 100 1000

T/Ag T/Ag

} }
e S R I W UL

FIG. 1. Left: perturbative results at various ordétise precise meanings thereof are explained in Sed, ¥fitluding O(g®) for an
optimal constant, normalized to the non-interacting Stefan-Boltzmann pajueRight: the dependence of t#(g®) result on thenot yet
computed constant, which contains both perturbative and nonperturbative contributions. The 4D lattice results d4&2from
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resummed coefficient, being then effectively)((g? 0.8 vy
+9*)3In(1/g)). We proceed in this way because then a com- - g 1
parison with numerical determinatiorj44] of the slowly I - ¢ e
convergent parpy(T) + pe(T) is more straightforward, and 0.6 | _.._ g o 7
also because the resummations carried out reducg ttie- o b |— ¢ n(1/2)+0.7) //’ 1
pendence of the outcome. However, we have checked that ;" i el 1
the practical conclusions remain the same even if we plot S:D 041 L 7
directly the expression in Eq&6.4)—(6.11) (but with a larger g L //’ i
scale dependenge N L 1
To be specific, the genuin®(g®In(1/g) +g®) contribu- © g2l DR L -]
tion, which collects the effects from all the terms involving [ _’?,f.’_’- -------- =
the Be’s, Bu» B, am, andag in Eq. (6.1), is now written |20 e S
in the form (specific for N.=3, N;=0, where mE/gé _ ]

~1/g), -0. il ll | 2. | 3. | 4. e 5. L1 6
10 10 100 100 100 100 10

T/Az
S5 pQCD(T) _ 8dA03 gg FIG. 2. The absolute values of the various terms of the slowly
TM*ZE $Sin(1/g) A(47,-)4 convergent expansion fgny(T) +pe(T), normalized byng.

Mg
(ay+ 205(3,)|n—2 +6
E

X

that a logarithmic term coming from the scaler®, ~
7. — 0% ay+ ag)IN[w/(27T)], was missed. With the scale

choice;E,uEz gé within results obtained witlfg, this con-

- - 6 - - 6
verted to a missingO(g°In(1/g)) contribution g°(2«
yvh|le the remaining?(g®) terms of Eq.((i.l) are contained 1 2a0)In(llg). With the same scale choice the
in the resummed lower order contributions. The results are . .
N . nonperturbative part, on the other hand, contributed
shown in Fig. 1 for various values af. The power ofg

_ g i}
labelling the curves indicates the leading magnitude of the g°awin(1/g) and led to the wrong curvature of the pres

highest order resummed contribution appearing. The scale RT€ Seen at small/Ays. Adding the missing part, which
— . now has been computed, leads to a total gff(ay,
chosen asu~6.7T, as suggested by the next-to-leading or- . o .
. 2 . +2ag)In(1/g), with the opposite sign and the corrdce.,
der expression fogg [12]. We observe that for a specific : i I
. the one seen in 4D lattice measuremgntgvature in Fig. 1
value of §, the curve extrapolates well to 4D lattice data.

While Fig. 1 looks tempting, the question still remains (for small values ofs). Therefore theO(g’In(1/g)) terms

whether the good match to 4D lattice data with a specificare indeed physically very relevant.

value of the constant is simply a coincidence. This issue can

be fully settled only once the constant is actually computed.

However, we can already inspect how the slowly convergent VIIl. CONCLUSIONS
part of the pressureyy + pg, really behaves.

The different finite terms in gy, + pG)/(TgE) are plotted
in Fig. 2. Then{) contributions are negligible. The results
depend then essentially only omZ/gg, which for N,
=3, N;=0 ismZ/gg~0.32log(T/Ays) + 0.29. We observe
that the leading 1-loop terr®(g®) is dominant forT/Ays
=10, the 3-loop tern®(g®) is rather big, bigger in absolute
value than the 2-loop terr®(g*) within the T-range of the

figure, while the 4-loop term is always very small. Therefore, .; t of th ; ted 19 d qi in Ea(3.3
while it is quite possible that there is again a big “odd” Co . Of tese is computed (8], and given in Eq(3.3)

. 6 ._
O(g") contribution, it is perhaps not completely outrageous _. (2) Logarithms of the typg In[(2#T)/(gT)]. The coefli

; cient of these is computed [10], and given in Eq(4.2).
either to hope that the convergence could also already bé (3) Logarithms related to the running of the coupling con-

reasonable, once the fuld(g®) contribution is included. If . . 2
this were the case, then all higher order contributions wouldtant in the 3-loop expression of ordB(g”In[(27T)/(gT)D.

have to sum up to a small number. Their MS coefficient can be seen in the first term in Eq.
Finally, it is perhaps interesting to remark that at the time(6.3), but it depends on the scheme, and can in principle even

of the numerical lattice Monte Carlo study in REf4], noth- ~ be chosen to vanish.

ing was known about the coefficieg;, which was there- Logarithms of the first and second types can be written in

fore set to zerdcf. Eq. (4) in [14]], while the partpy(T) many ways: it may be more intuitive, for instance, to reor-

+pg(T) was determined nonperturbatively. But this meansganize them as

We have addressed in this paper the 4-loop logarithmic
contributions to the pressure of hot QCD. Physicabular-
ization independeptogarithms can only arise from a ratio of
two scales. Since there are three parametrically different
scales in the system,72T,gT, g°T, there are then various
types of perturbatively computable logarithms in the 4-loop
expression for the pressure:

(1) Logarithms of the type®In[(2#T)/(g°T)]. The coeffi-
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expressions can be extracted frotd,15,28:

60 | 27T Pl 27T
agin| —— ayln| —
g ag 2T g ay 9T ,
a
5 ayy+ )| k| + gPargln| 2L 1= 1gg(4dat 7dr), AD
= o o n| ——— acin| —— 1.
g(antag 9T 9 ag 2T
(8.1 aer=— 55| Cat ETF>’ (A2)
The existence of three kinds of logarithms is somewhat spe-
cific to non-Abelian gauge theory. In QED, in patrticular,
none of the logarithms appear. This is due to the fact that the da| ,(12 194 w116 220¢'(—1)
effective theories we have used for their computation, Eqsa53=174 A ?Jr Tlner ?+47+ 3 ﬁ

(2.10, (2.19, are non-interactinfapart from a terrﬂvAa1 in
Eq.(2.10, which does not lead to logarithmd herefore we 38 g/(_3))

have nothing to add to the know®(g®) QED result ob- 3 (=3
tained in[23]. In the ¢* scalar theory, on the other hand,

there is a logarithm of the second type, and also one some- 12 169 ; 1121 157
what analogous to the third type. Their coefficients were al- +CATg| —+ = In-—=+————In2+8y
ready computed ifi24]. e 3 4T 60 5

There are interesting checks that can be made on the vari- 146¢'(-1) 1 '(-3)
ous logarithms mentioned, using methods completely differ- — — )
ent from those employed here. For instance, logarithms of 3 4=1) 3 43
;che_flrst and second types could in principle be_ seen with 3D 20 1 88 16 /(= 1)
attice Monte Carlo method£5,26, as well as with stochas- FT St = — —In2+4y+ = — =
tic perturbation theon[27]. A very interesting analytical Fl3 47T 3 5 3 ¢(-1)
check would be to compute the 4-loop free energy directly in ,
4D in strict dimensional regularization, but without any re- _ § ¢ (_3)) 4 <1—05—24In2) (A3)
summation. By definition, this computation produces the co- 3 (-3 PR a '

efficient Bg, in Eq. (5.1) [11], and one check is that the result
must contain the ¥ divergences shown in Eg@6.2). 1
To complete the free energy from the current level, - (Cc,+Tp), (A4)
0O(g®In(1/g)) to the full level O(g®) would require signifi- 3
cantly more work than the computation presented here. More

specifically, there are contributions from all the scales in the (1

problem, ranging from 2T (the coefficientg8g,, . . . ,Bes), ags== | Cal In K g ))

through gT (the coefficient By), down to the non- 3 AnT  {(—1)

perturbative scalg?®T (the coefficientBg). This then re- — ,

quires carrying out 4-loop finite temperature sum-integrals, T, |nL+ E —In2+ ¢ (_1)” (A5)
4-loop vacuum integrals id=3—2¢, 4-loop vacuum inte- 4nT 2 (=1

grals in 3D lattice regularization, and lattice simulations of
the pure 3D gauge theory in E€R.15. Nevertheless, given

the potentially important combined effect of all these contri- ~ _ 2(2_2| ne’ 4 E T (EI ne’ _ 1_| 211
butions, as indicated by Fig. 1, such computations would"E® CalgNazr tg | TCaTe| glng s~ gn
clearly be well motivated. _
,[ 8 ume’ 16
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APPENDIX: MATCHING COEFFICIENTS 4 — _

(o)
g il (ag)
(4m)°  uo

— — 2
In Egs.(5.1)—(5.5) we have defined a number of matching 92%(u)=9%(umo) — 3 (11CA—4T§)
coefficients, theag's and B¢’s. For the ag’s, the following
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