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Gluino condensate and long-range fields
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We argue that in the pureN51 super Yang-Mills theory gauge symmetry is spontaneously broken to the
maximal Abelian subgroup. In particular, the colored gluino condensate is nonzero. It invalidates, in a subtle
way, the so-called strong-coupling instanton calculation of the~normal! gluino condensate and resolves the
long-standing paradox of why its value does not agree with that obtained by other methods.
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I. INTRODUCTION

PureN51 super Yang-Mills~SYM! theory is known to
possess a nonzero gluino condensate^ll& whose phase dis
tinguishes between one of the discrete vacua of the the
@1#. The exact value of̂ll& has been found by several in
dependent methods of controllable deformation to weak c
pling. One method@2,3# uses matter supermultiplets who
nonzero Higgs condensate breaks explicitly the gauge gr
and gives mass to certain fields. One is then able to com
^ll& from a single instanton, with extra fermion zero mod
contracted via mass terms. The other method@4# compacti-
fies the Euclidean spaceR4→R33S1, so that Bogomol’nyi-
Prasad-Sommerfield~BPS! dyons arise as classical sadd
points. Again, the gaugeSU(N) group is broken, this time
spontaneously, by the nonzero expectation value of the Ya
Mills potentialA4 in the compact direction. Dyons have ze
fermionic modes saturatinĝll&; it turns out to be indepen
dent of the circumferencel of the compact dimension. It is
then argued that the power of holomorphy allows one
assert the same value in the decompactified limitl→`. We
briefly review these methods below. The results of the t
seemingly different methods of gettinĝll& coincide, in-
cluding the numerical coefficient@4#. The same result which
is apparently exact@5#, follows independently from a defor
mation of theN52 theory—see Ref.@6# for a recent discus-
sion.

In all those approaches, the gauge symmetry is broken
the deformation. Although in all cases the symmet
breaking parameter tends to zero as one approaches
strong coupling limit, one can ask if the spontaneous bre
ing of gauge symmetry~i.e., a dynamical Higgs effect! is not
a property of the pure SYM theory itself. We present arg
ments that it is indeed the case. Matter mutliplets wh
break color explicitly or compactification which breaks
spontaneously, serve as a ‘‘seed’’ to disclose the true na
of the SYM theory in the strong-coupling limit.

Historically, the first calculation of the gluino condensa
@7# was directly in the strong-coupling limit of the pure SYM
theory. However, a seemingly ‘‘clean’’ calculation of^ll&N

in the pureSU(N) SYM theory by saturating it by instanto
zero modes yields a value different from the exact res
0556-2821/2003/67~10!/105007~9!/$20.00 67 1050
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This paradox attracted much attention over the years. Th
have been several attempts in the past to explain the pu
It has been suggested@8# that instantons average over theZN

vacua, or over an additional vacuum with zero gluino co
densate@9#. However, Ref.@6# doubts the validity of those
arguments.

In this paper, we suggest an alternative strong-coup
calculation of the gluino condensate^ll&N. On the one hand
it yields the correct result. On the other hand it is very clo
to the old instanton calculation, and it becomes possible
pinpoint what exactly is wrong there. Namely, the new c
culation reduces to the old strong-coupling instanton cal
lation provided one neglects long-ranged fieldsvanishing as
1/l where l is the size of the system. Normally, such fiel
have no effect on the local properties of the theory, but no
this case: a small perturbation has a dramatic effect bec
the system is unstable with respect to spontaneous c
symmetry breaking.

II. SPONTANEOUS COLOR SYMMETRY BREAKING
IN THE COMPACTIFIED SYM THEORY

In this section we briefly review one of the ways to obta
the correct value of the gluino condensate@4#.

Let us consider theSU(2) SYM theory compactified to
R33S1 with the ‘‘time’’ dimension x4 being of circumfer-
encel. It should be stressed that it isnot an introduction of
the physical temperatureT51/l as fermions satisfy periodic
conditions in thex4 direction. Therefore, the usual perturb
tive periodic potential inA4 does not emerge as in the tem
perature case: owing to supersymmetry it is zero to all ord
of the perturbation theory. We remind the reader that
perturbative potential V(A4) is zero at AA4

aA4
a

50,2p/ l ,4p/ l , . . . at which points the Polyakov line~the
holonomy! is trivial. If the holonomy is nontrivial~more pre-
cisely, if its spatial average is nontrivial! thenV(A4).0 and
the corresponding gauge configuration has an unaccep
volume-divergent positive energy. This is the usual argum
against configurations with nontrivial average holonomy
the pure gauge theory@10#. However, in the compact SYM
theory the perturbative potential is identically zero for a
©2003 The American Physical Society07-1
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A4 and one is free to consider configurations with any h
lonomy at spatial infinity.

Choosing the gauge where at spatial infinityA4→vt3/2
one finds that there are two self-dual (L,M ) and two anti-
self-dual (L̄,M̄ ) dyon solutions of the YM equations, wit
the same asymptotic value ofA4

35v at spatial infinity@11,4#.
These solutions have all four possible signs of the elec
and magnetic charges. The corresponding fields are g
explicitly in the Appendix.

The nonperturbative dyon-induced superpotential fou
in Ref. @4# shows that the minimum~zero! energy is achieved
when the weights of theL andM dyons become equal, whic
happens at

AA4
aA4

a5v5
p

l
. ~1!

We notice that this value corresponds to the maximum of
would-be perturbative potential but it is absent. The syst
settles at the minimum~1! of the nonperturbative potential. I
clearly demonstrates that in compactified SYM theory co
is spontaneously broken by the Higgs mechanism, withA4

a

playing the role of the Higgs field in the adjoint represen
tion. The symmetry breaking pattern isSU(2)→U(1). For
higher SU(N) gauge groups the minimum~zero! energy is
achieved at@4#

A45diagS N21

N
,
N23

N
, . . . ,2

N21

N D p

l
. ~2!

It means that theSU(N) gauge group is spontaneously br
ken down to the maximal Abelian subgroupU(1)N21, at
least at small compactification circumferencel !L21 where
L is the SYM scale parameter.

Equation~2! is not gauge invariant. To put it in a gaug
invariant form one can consider the Polyakov line~the ho-
lonomy! along the compactified dimension; its eigenvalu
are gauge invariant:

P5P expS i E
0

l

dx4 A4D
5diagFexpS ip

N21

N D ,

expS ip
N23

N D •••expS 2 ip
N21

N D G , ~3!

Tr P50. ~4!

For SU(2) the Polyakov line’s eigenvalues are

P5diag~ i ,2 i !, Tr P50. ~5!

One dyon can be considered in whatever gauge. Howe
if we wish to consider the vacuum filled by dyons, we ha
to take more than one dyon. Two and more dyons can be
together only in the singular ‘‘stringy’’ gauge~see Appendix!
where all of them have the same orientation in color spa
This orientation is preserved throughout theR3 volume. The
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mere notion of the ensemble of dyons~or monopoles! im-
plies that color symmetry is broken. Of course, once colo
aligned, one can always randomize the color orientation
an arbitrary point-dependent gauge transformation, jus
the direction of the Higgs field can be randomized but t
does not undermine the essence of the Higgs effect. In
case, the eigenvalues of the holonomy@Eqs. ~3!,~5!# and
Tr P50 are gauge-invariant signatures of the Higgs effec

Equations~4!,~5! do not mean that TrP is zero identi-
cally: it experiences point-to-point fluctuations, of cours
For example, if TrP is measured near the dyon center it w
be anything but zero. The statement is that TrP→0 far away
from dyon centers. A simple calculation shows that a
^Tr P&50 for a Coulomb gas of dyons. As a matter of fa
this is the usual confinement requirement.

Although A45p/ l→0 in the strong-coupling decompac
tified limit l→`, taken naively, the holonomy~3! remains
nontrivial. Unfortunately, it is not a holomorphic quantity s
that one cannot prove it rigorously. Nevertheless, we s
argue in the next section that the holonomy does rem
nontrivial and that color symmetry remains broken in t
decompactified limit. To that end we would need to consid
the gluino condensate which is a holomorphic quantity.

Both L and M dyons have two gluino zero modes bein
the Grassmann partners of the four translational zero mo
and thus being related to the dyon field strength:

lzero mode
aa 5~sm

1!ḃ
a
~sn

2!g
ḃjgFmn

a 5~s i !g
ajgEi

a , ~6!

where Ei
a5Bi

a is the electric field strength of a dyon, se
Eqs.~A10!,~A13!. As shown in Ref.@4# the dyon zero modes
saturate the gluino condensate

^ll&5^eablaa~x!lab~x!&

52
L3

4pvE d3z Ei
a~x2z!Ei

a~x2z!

5
L3

v E
0

`

dr r 2@2F1
2~r !1F2

2~r !#

5L3

[
16p2 MPV

3

g2~MPV!
expF2

4p2

g2~MPV!
G , ~7!

whereL is the renormalization-invariant combination of th
Pauli-Villars regularization mass and the bare gau
coupling.1 The coefficient ‘‘2’’ comes from summing up th
~equal! contributions ofL andM dyons. The radial functions
F1,2(r ) are the profile functions of the dyon, see Eq
~A4!,~A5!. We remark that it is actually theanti-self-dual
L̄,M̄ dyons that lead to thêll& condensate~self-dualL,M
dyons lead tô l̄l̄&) but we shall not stress this distinction

1L3 used here is six times bigger than that used in the Q
convention.
7-2
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Although technically obtained in the smalll limit the result
~7! coincides with the exact one in the decompactifi
strong-coupling limit.

III. INSTANTONS VS DYONS

Let us now recall the strong-coupling instanton calcu
tion of the gluino condensate@7#. Contrary to the dyon, the
instanton has four gluino modes for theSU(2) group. There-
fore, a single gluino condensate cannot be saturated b
instanton. Instead, one considers a two-point correla
function

C~x2y!5^eablaalab~x!egdlcglcd~y!& ~8!

which can be saturated by a single instanton. This correla
function does not actually depend onx2y owing to super-
symmetry. Therefore, one can evaluate the correlato
ux2yu→0 using small-size instantons. Since the correlato
ux2yu independent, the same value holds atux2yu→`
where it can be factorized into the product of two glui
condensateŝ ll&. This procedure known as ‘‘strong
coupling instantons’’ gives a famous discrepancy factor o4

5

as compared to the exact result. We shall show that
evaluation ofC(x2y) from an instanton is incorrect both fo
vanishing and for largeux2yu: the seemingly clean calcula
tion has a loophole because of the spontaneous breakin
the gauge group.

We start with a simple algebraic argument showing t
instantons do not handle color in a way compatible w
supersymmetry. Let us consider the correlation function
two gauge-invariant gluino bilinears like in Eq.~8! but which
are not contracted in spinor indices. Since fermion opera
anticommute we find that the correlation function must
antisymmetric inside the two pairs of spin indices:

^laalab~x!lcglcd~y!&5
1

4
eabegdC~x2y!,

C5const. ~9!

This correlator is actuallyux2yu independent since its con
traction with eabegd is. Therefore one can putx5y in Eq.
~9! so that it becomes a one-point average. We next cons
a one-point average of gluino fields which are contracted
spin but not in color indices:

Tab,cd5^eablaalbb~x!egdlcgldd~x!&. ~10!

Under gauge transformations this tensor is gauge-rot
with respect to all indices. After averaging over gauge ro
tions only invariant tensors can result. Fermion statistics
quires thatTab,cd is symmetric in (ab) and in (cd). In the
SU(2) gauge theory there are only two possible invari
structures made of Kronecker deltas, consistent with sym
try:

Tab,cd5Adabdcd1B~dacdbd1daddbc!. ~11!

In higher groups more structures are possible but we do
consider them here. Contracting Eq.~10! once withdabdcd
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and the other time withdacdbd we reduce it to Eq.~9! con-
tracted in the first case witheabegd and in the second cas
with 2eagebd ~the minus sign arises from adjusting the o
der of fermion operators!. It gives a system of linear equa
tions on the coefficientsA,B:

9A16B5C,

3A112B52
1

2
C ~12!

with a unique solution

A5
C

6
, B52

C

12
. ~13!

Thus, the color structure of the one-point average~10! is
unambiguously determined by supersymmetry:

^eablaalbb~x!egdlcgldd~x!&

5
C

6 Fdabdcd2
1

2
~dacdbd1daddbc!G . ~14!

The next observation is that the instanton contribution
the left-hand side~LHS! of Eq. ~14! fails to reproduce its
color structure. There are four gluino zero modes in the
stanton background: two are supertranslational and two
superdilatational~or superconformal! @7#. One has to insert
those zero modes into Eq.~14!, in all possible combinations
A simple exercise in algebra demonstrates that only
color-singlet structuredabdcd arises, with the coefficientB
being identically zero. This is true not only for exactly coi
ciding pointsx5y but also forx5” y. It is true identically,
even before one integrates over instanton center and s
We have also checked that it does not depend on the gau
which the instanton field is considered.

To gain further insight, let us introduce a traceless co
gluino bilinear operator:

Lab5eabS laalbb2
dab

N221
lealebD , Laa50. ~15!

In the case of theSU(2) groupLab belongs to the irreduc-
ible dimension-5 ‘‘isospin’’-2 representation. For higherN
the symmetric rank-2 traceless representation is reduc
for example inSU(3) it is a mixture of8d ~adjoint! and27
representations.

A direct consequence of Eq.~14! is that the one-point
average of gluinos in the traceless dimension-5 represe
tion of SU(2) is

^Lab~x!Lab~y!& ux2yu→0→2
5

6
^ll&2. ~16!

In the SU(N) case2 5
6 is replaced by the general2(N2

11)/(N221)/2; thenegative sign is related to thatLab is a
fermion operator. Meanwhile, the strong-coupling instan
calculation of this quantity~implying B50) yields identical
zero. Instantons are ‘‘color-blind’’ and average out any ‘‘co
7-3
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ored’’ operator. Were color symmetry preserved in the p
SYM theory strong-coupling instantons would be all righ
This is the first indication that the instantons’ failure is r
lated to the actual color symmetry breaking in the theory,
there will be more.2

We next consider the correlation function~8! at large
separations betweenx and y. This correlation function has
chirality two, meaning that only gauge configurations w
unity topological charge can contribute. Instanton is an
vious candidate. From the instanton viewpoint, the correla
is saturated by instantons of sizer;ux2yu @7# but the result
turns out to be4

5 of the exact one. So far all calculation
yielding the correct value were made for a single gluino c
densate, whereas the suspicious strong-coupling insta
calculation was for the two-point correlator. Therefore, to p
down the mistake one should perform in parallel a corr
calculation but for the two-point correlator of gluino conde
sates.

There is an alternative strong-coupling calculation
^ll(x)ll(y)& stemming from the compactified version
the SYM theory. The unity topological charge can be o
tained from any two dyonsLL,MM ,LM . In the compacti-
fied R33S1 space there are exact classical solutions of
three types. The full eight-parameter static double-monop
MM solution has been known for a while@13#. The LL
double-monopole solution can be obtained from theMM one
by a gauge transformation. The time-dependent eig
parameterLM solution has been recently constructed exp
itly and named ‘‘the caloron with non-trivial holonomy
@14,15#. The first two objects have double electric and ma
netic charges so that both their electric and magnetic fie
decay as 1/r 2 at large distances. The third object has ze
charges so that it is similar to the instanton.

To compute the correlator̂ll(x)ll(y)& one needs to
take one of the three (LL,MM ,LM ) exact solutions, find
their four adjoint fermion zero modes, substitute them in
the correlator in question in all possible combinations, a
integrate over the solutions’ moduli space; then finally s
up the contributions of all three exact solutions.

In practice, the calculation of the correlator depends
the relation betweenux2yu and the compactification circum
ferencel. Let us first discuss the ‘‘weak-coupling’’ case o
l !ux2yu. In this case, only part of the moduli space of t
exact solutions contribute, corresponding to widely separa
‘‘constituent’’ L,M dyons. Since the field of constituents d
creases rapidly beyond their size; l , the leading contribu-
tion comes from one of the dyons staying at the distance; l
from point x and the other being at the distance; l from
point y. Their interference can be neglected. Therefore,l
!ux2yu the calculation of the correlator just copies~twice!
the calculation of the gluino condensate from a single dy

2It was noticed earlier@12# that multi-instantons do not suppo
the cluster decomposition of gluino correlators. Since Eq.~16! is
very general@it can be derived directly from first rearranging glu
nos into color-singlet operators and then applying Eq.~9!#, instan-
tons’ failure to reproduce the equation is another but simpler m
festation of the nonclusterization.
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@4# ~recall Sec. II! with an evident result: the correlator i
independent ofux2yu and coincides with the square of th
~correct! gluino condensate. Notice that all four possib
combinationsLL,MM ,LM ,ML contribute exactly1

4 ^ll&2

apiece.
We next turn to the opposite case,l @ux2yu@1/L, appro-

priate to the decompactified strong-coupling limit. O
should keep in mind that compactification does not sp
supersymmetry. Owing to supersymmetry^ll(x)ll(y)& is
independent ofux2yu for any givenl. Thus, the correlator
must be precisely the same as in the previous case and e
to the square of the gluino condensate. The correct result
be foreseen without calculations.3

When l→` while ux2yu is kept fixed, the exact
LL(MM ) and LM solutions look very different. TheLM
solution ~the caloron! at l→` and fixed sizer becomes the
instanton@14,15#. Its action density is well localized both in
x4 and space. In the leading order in 1/l the solution is the
usual instanton. The difference with the instanton shows
only in the subleading 1/l terms. As to theLL andMM exact
solutions, they can be made static by an appropriate ga
choice. At l→` their field is weak everywhere: it is of th
order of 1/l inside the region of space; l and falls as 1/r
outside that region. The action gets its unity value owing
the integration of a weak field over a large volume.

Naively, one would argue that fields of the order of 1l
→0 are irrelevant for the calculation of the gluino conde
sate which is a local quantity, and hence one would~i! ne-
glect altogether theLL and MM contributions, and~ii ! re-
place the exactLM field by the instanton. Following this
argument, one would conclude that the two-dyon and
instanton calculations are equivalent in the strong-coup
limit. However, we shall see in a moment that this is inco
rect.

TheLL,LM ,MM solutions represent sectors with defini
~electric, magnetic! charges (22,22), ~0,0!, and ~2,2!, re-
spectively. These sectors do not mix up under supersymm
ric transformations: it is only their moduli spaces that tran
form ~separately! under supersymmetry. It means that t
independence of the correlator^ll(x)ll(y)& of ux2yu is
satisfied separately for the three sectors. Atl !ux2yu we
know thatLL andMM sectors contribute apiece exactly1

4 of
the gluino condensate squared, whereas theLM sector con-
tributes exactly the other half. Because of supersymmetry
l @ux2yu those configurations contribute precisely the sa
fractions, despite that theLL,MM fields tend to zero. At the
same time the exactLM configuration~i.e., the caloron with
nontrivial holonomy! contributes precisely12 of the gluino
condensate squared, whereas the instanton~to which it is
reduced if one neglects 1/l corrections! is known to contrib-

i-

3Out of curiosity, we have computed the one-point average~10!
assuming a sum ansatz of dyons at all separations. Surprising
works quite well: the color structure~13! following from supersym-
metry is reproduced and the absolute value of the gluino conden
turns out to be only 4% bigger than the exact one. It would
illuminating to computê ll(x)ll(y)& exactly from theLL(MM )
andLM solutions.
7-4
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ute 4
5 . Rather unusual, a vanishing fieldA4;1/l is necessary

to maintain the correct result for the local gluin
condensate.4

The difference between strong-coupling instanton a
multidyon calculations becomes even greater for hig
SU(N) groups. At largeN, the instanton gives only a
O(1/N) fraction of the true gluino condensate~see below!;
where does the rest come from?

In the compactifiedSU(N) gauge theory, there areN
21 ‘‘static’’ dyons M1 , . . . ,MN21 having unit ~electric,
magnetic! charges with respect to theN21 Abelian sub-
groups, and one ‘‘time-dependent’’L dyon @11,4#. When one
computes the single gluino condensate in compactified sp
each of theN configurations contributes equally 1/N^ll&
@4#. Adding up the contributions ofM1 ,M2 , . . . ,MN21 and
L dyons one gets the correct gluino condensate.

To compare it with the strong-coupling instanton calcu
tion, one considers aN-point correlator

^ll~x1!ll~x2!•••ll~xN!&→^ll&N, ~17!

with x1•••xN taken far apart. This correlator can be satura
by one instanton but also, in the compactified space, by e
N-dyon solutions. Again, we start with the casel !uxmnu
where the exact multidyon solutions reduce to widely se
rated constituents. Each of theN dyon species stay at th
distance; l from the pointsx1•••xN , with all possibleNN

permutations. Therefore, the LHS of Eq.~17! is

S 1

N
^ll& D N

NN5^ll&N ~18!

as it should be. By supersymmetry, the LHS of Eq.~17! does
not depend on the relation between the compactification
cumferencel and the separationsxmn . Therefore, the same
result holds atl @uxmnu, i.e., in the strong-coupling limit.
Meanwhile, only one particular configuration, name
M1M2 , . . . ,MN21L, has zero~electric, magnetic! charges
with respect to allU(1) subgroups. It is the ‘‘caloron with
non-trivial holonomy’’ of Refs.@11,14#. At l→` it becomes
the usual instanton of theSU(N) gauge group,plus 1/l cor-
rections. The instanton contribution to the LHS of Eq.~17! is
@5,7,8,17#

~^ll& inst!
N5

2N

~N21!~3N21!
^ll&N

→
N→`S 2e

N
^ll& D N

. ~19!

Meanwhile, the true caloron contribution to Eq.~17! is

4Experts in the Schwinger model may find the present situa
familiar: the chiral condensate in the 2d QED is induced by fields
that are of the order of 1/l wherel is the size of the world@16#.
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~^ll&calor!
N5S 1

N
^ll& D N

N!

→
N→`S 1

e
^ll& D N

~20!

where the factorN! comes from the permutations o
M1 ,M2 , . . . ,L. Again, we see that a vanishing distinctio
between the instanton and the caloron with nontrivial h
lonomy makes a big difference. Also, contributions from
the rest of multidyon solutions whose field atl→` is O(1/l )
~or less! everywhere, are needed to maintain the correct
sult for the gluino condensate in the strong-coupling limit

We see, thus, that the nontrivial holonomy is important
determining the gluino condensate in the strong-coupling
gime. This is not very usual. The holonomy is a global qua
tity; the difference between trivial and nontrivial holonom
is the difference betweenA450 andA45p/ l→0. The fact
that this tiny difference plays a crucial role in determinin
such a local quantity aŝll& means that the system is un
stable with respect to infinitesimal perturbation breaki
color symmetry. In other words, the gauge group is spon
neously broken.

IV. COLOR GLUINO CONDENSATE FROM A
DEFORMATION OF NÄ2 THEORY

In this section we compute directly the value of the colo
breaking gluino condensateLab, see Eq.~15!. To that end,
we consider the compactified version of theN52 theory. As
compared to the pure SYM theory, it has an additional ch
multiplet (Caa,Fa) in the adjoint representation.

The classical potentialg2 Tr@F̄F#2 has a flat zero-energy
valley which we shall choose in the form

Fa5S 0

0

V
D ~21!

whereV is an arbitrary complex number. It breaks the co
group SU(2)→U(1) even without compactification. How
ever, we shall add the mass term for the chiral supermul
let,

m~eabCaaCab1FaFa!. ~22!

In the decompactified case the mass term drivesV→0 at
large m @18,19#. At large m the matter supermultiplet de
couples and one is left with the pure SYM theory with
seemingly restored fullSU(2) gauge group. Such a conclu
sion is, however, too hasty. Compactification of the sof
broken~by the mass term! N52 theory is a way to make a
gradual transition to the SYM theory, ultimately in the stro
coupling regime. We shall see that theSU(2) group is not
restored in that limit but remains broken toU(1) by the
colored gluino condensate.

n
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Compactifying thex4 coordinate one finds classical sol
tions beingL,M dyons modified by the presence of the sc
lar field Fa. Assuming the fields are ‘‘time’’-independen
andFa is parallel toA4

a , the modifiedM dyon in the regular
‘‘hedgehog’’ gauge is given by@cf. Eqs.~A1!,~A2!#

Fa52naVF~Av21V2r !, F~z!5cothz2
1

z
, ~23!

A4
a52navF~Av21V2r !

→
z→`

2naS v2
v

Av21V2

1

r D , ~24!

Ai
a5eai jnj

12R~Av21V2r !

r
, R~z!5

z

sinhz
. ~25!

Its action is 4p l /g2Av21V2. The S2 gauge transformation
~A7! puts theFa,A4

a fields along the third color axis, with
the asymptotics

Fa.da3S V2
V

Av21V2

1

r D , ~26!

A4
a.da3S v2

v

Av21V2

1

r D . ~27!

The L dyon is obtained by replacingv→2p/ l 2v andV
→2V in Eqs.~23!–~25!. It is then transformed to the string
gauge byS1 @Eq. ~A6!# and subsequently gauge-transform
by the time-dependent matrixU(x4) @Eq. ~A11!#. The fields’
asymptotics become

Fa.da3S V2
V

AS 2p

l
2v D 2

1V2

1

r D , ~28!

A4
a.da3S v1

2p

l
2v

AS 2p

l
2v D 2

1V2

1

r D .

~29!

The action of the modified L dyon is
4p l /g2A(2p/ l 2v)21V2.

Both L andM dyons have twol and twoC zero modes.
The mass term forC allows one to contract theC zero
modes of a dyon. TheL,M -induced superpotential is a sligh
modification of that found in Ref.@4# in the pure SYM case
10500
- Wdyon5~MPV
N52!2mFexpS 2

4p l

g2
Av21V2D

1expS 2
4p l

g2
AS 2p

l
2v D 2

1V2D G . ~30!

Here the Pauli-Villars mass of the fullN52 theory appears
in the second power since there are four boson and
fermion zero modes. The factorm arises from the contraction
of C zero modes via the mass term. Apparently, the m
mum ~zero! energy is achieved, as before, atv5p/ l , inde-
pendently of the vacuum expectation value~VEV! of the
matter fieldFa. From now on, we shall use this value o
^A4&.

It is straightforward to calculate the gluino condensate
this setting, basically repeating the steps leading to Eq.~7!.
The only ~technical! difference is that the dyon weight i
now proportional to (MPV

N52)2m. This quantity is, however,
equal to (MPV

N51)3 at largem ~see, e.g.,@6#!. Therefore, we
get the same result as before:

^ll&5^l1l1&1^l2l2&1^l3l3&5L3. ~31!

The N52 extension allows us to compute another ho
morphic quantity

x5K LabFaFb

FcFc L ~32!

whereLab is the traceless gluino bilinear in the dimension
representation, see Eq.~15!. This operator is chiral and trans
forms under supersymmetry through the parametere only
~not ē). It gets a contribution from one dyon but cann
acquire corrections either from perturbation theory or fro
additional dyon pairs. Therefore, we can find the above
erage at smalll and claim that it remains unaltered in th
decompactified limit, just as the normal gluino condens
~31! does.

SaturatingLab by the two gluino modes of a dyon w
obtain @cf. Eq. ~7!#:

Lab→Ei
aEi

b2
dab

3
Ei

eEi
e5„F2

2~r !2F1
2~r !…

3S da3db32
1

3
dabD . ~33!

Equation ~33! is written for M dyons; in the case of the
time-dependentL dyons Eq.~33! should be gauge rotated b
a time-dependent matrix~A11!. It is easy to check, however
that this gauge transformation commutes with the co
structure in Eq.~33!, i.e., leaves it unchanged. Therefore, E
~33! is correct both forL andM dyons.

The scalar fieldFa is directed along the third color axis
according to Eqs.~26!,~28!. The concrete profile of theFa

solution cancels out in the ratio~32!. For the same reason th
VEV of the F field is irrelevant also, although it goes to ze
at largem ~necessary to pass from theN52 to the pure SYM
7-6
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theory!. It is only the color direction ofFa that matters in
Eq. ~32!, but it is fixed by the dyon solution. Consequent
the average~32! is

x5^L33&5
2

3
^l3l3&2

1

3
^l1l1&2

1

3
^l2l2&

5
2

3

L3

4pvE d3z@F2
2~r !2F1

2~r !#5
2

3
L3S 22

p2

6 D . ~34!

Combining it with Eq.~31! we find

^l1l1&5^l2l2&

5L3E dr r 2F1
2~r !

5L3
p226

18
.0.214978L3, ~35!

^l3l3&5L3E drr 2F2
2~r !

5L3
152p2

9

.0.570044L3. ~36!

We see that one of the color directions is preferred. In t
case it is the 33 direction as we have alignedA4 at spatial
infinity along the third axis. Contrary tôA4

3& which vanishes
in the decompactified limit as 1/l the difference in the color
components of the gluino condensate remains finite~and
computable! in the strong-coupling limit.

Equations~35!,~36! demonstrate the dynamical Higgs e
fect ~as there are no elementary Higgs fields in the pure S
theory!. In this case, the colored gluino condensate^Lab&
~the composite Higgs field! belonging to the dimension-5
traceless symmetric tensor representation has a nonzero
~34! that breaksSU(2) down to theU(1) subgroup in the
same sense as the VEV of an elementary Higgs field do

V. DISCUSSION

The appearance of a nonzero color gluino condensat
in a sense, trivial. In partially compactifiedR33S1 SYM
theory the gauge group is apparently spontaneously bro
to the maximal Abelian subgroup by dyons, at least when
compact dimension is much less than theL scale of the
theory. The minimum of the superpotential induced by dyo
corresponds to a nonzeroA4 @4# which has to lie in some
direction in color space thus breaking the color group. The
fore, in the compactified pure SYM theory a Higgs effe
takes place, withA4 playing the role of the Higgs field in the
adjoint representation. Unpleasantly,A4 is not Lorentz-
invariant, but the effect is there. The nonzero value of
colored gluino condensatêLab& is a Lorentz-invariant
manifestation of the same symmetry breaking.

Interestingly, the value of the color gluino condensate
have found does not depend on the compactification circ
10500
is

EV
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ferencel—just as the ‘‘normal’’ gluino condensate is inde
pendent ofl; they are holomorphic quantities. Therefore, o
can claim that color symmetry remains broken in the deco
pactified strong-coupling limit. An indirect evidence fo
color symmetry breaking follows from the fact that the co
rect value of the color-singlet gluino condensate is obtain
from field configurations with a nontrivial holonomy. Strong
coupling instantons have a trivial holonomy, and they p
duce only a color-singlet condensate—in contradiction w
Eq. ~16! following merely from supersymmetry. But even th
color-singlet condensate gets a wrong value from instanto
We have shown in Sec. III that to get the correct value it
insufficient to add other field configurations on top of t
instanton: one has to replace the instanton by the calo
with nontrivial holonomy in the first place. A nontrivial ho
lonomy means that there is a privileged direction in co
space, which is equivalent to color symmetry breaking.

An additional although so far indirect demonstration
the importance of dyons at strong coupling has come v
recently from another end. Using wrappedD5 branes@20# or
warped deformed conifold@21# the authors obtained the co
rect all-loopb function of N51 SYM theory from corre-
sponding supergravity solutions. In addition, both referen
find the same nonanalytic corrections to theb function,
which are naturally associated with the pairs of dyons,
instantons.

Dyons have long-range Coulomb interactions which
Debye-screened in the plasma. It results in magnetic pho
getting a mass and in confinementà la Polyakov@22#. Polya-
kov’s scenario of confinement in 3d is essentiallyAbelian. It
implies that the gauge group is spontaneously broken to
maximal Abelian subgroup, that the ‘‘charged’’ gluons g
masses via the Higgs mechanism but are confined, and
the Abelian magnetic ‘‘photons’’ get mass from Deby
screening. Qualitatively, the same Abelian scenario has b
discussed for the 4d pure gauge theory by ’t Hooft@23#. It
can be made quantitative in the weak-coupling regime of
4d N52 theory softly broken toN51 @18,24#. The spon-
taneous breaking of the gauge group to the maximal Abe
subgroup is a welcome feature: the Abelian confinemen
well understood, at least on the philosophical level, and ha
chance to be ultimately put into a quantitative form follow
ing the lines of the references cited above.

The Abelian scenario has clear signatures in the we
coupling regime but they become not so clear in the stro
coupling limit, especially if the theory confines color an
only gauge-invariant correlators are the observables. Stri
speaking, there is no gauge-invariant local order param
which would distinguish between Abelian confinement an
‘‘true’’ non-Abelian case. To find out uniequivocal obser
able signatures of the color-broken scenario and to ch
whether the pure~not supersymmetric! YM theory has the
same features is an intriguing task which we postpone for
future.
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APPENDIX: L ,M MONOPOLES

We give here explicit expressions for the fields of the fo
dyons in the compactifiedR33S1 space, with all four pos-
sible signs of the electric and magnetic charges. The
usual Bogomol’nyi-Prasad-Sommerfield~BPS! dyons in the
regular~‘‘hedgehog’’! gauge have the form:

A4
a57navF~vr !,

~A1!

F~z!5cothz2
1

z
→

z→`

12
1

z
1O~e2z!,

Ai
a5eai jnj

12R~vr !

r
,

~A2!

R~z!5
z

sinhz
→

z→`

O~ze2z!.

Herer 5Ax1
21x2

21x3
2, na5xa /r . The upper sign inA4 cor-

responds to the self-dual (Ei
a5Fi4

a 5Bi
a5 1

2 e i jkF jk
a ) and the

lower sign to the anti-self-dual (Ei
a52Bi

a) solution. We

shall call themM andM̄ monopoles, respectively.
The magnetic field strength in the hedgehog gauge

given by two structures:

Bi
a5~dai2nani !F1~r !1naniF2~r !, where ~A3!

F1~r !5
1

r

d

dr
R~vr !

52v
R~vr !F~vr !

r

5
v2

sinh~vr ! S 1

vr
2coth~vr ! D

5v2O~e2vr !, ~A4!

F2~r !52
d

dr
vF~vr !

5
R2~vr !21

r 2

5
v2

sinh2~vr !
2

1

r 2

52
1

r 2
1v2O~e22vr !. ~A5!
10500
e
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If there is more than one monopole in the vacuum it
impossible to add them up in the hedgehog gauge: one ha
‘‘gauge-comb’’ them to a gauge whereA4

a has the same
asymptotic value at spatial infinity for all monopoles i
volved, say, along the third color axis. It is achieved with t
help of two unitary matrices dependent on the spher
anglesu,f:

S1~u,f!5e2 i (f/2)t3
ei (u/2)t2

ei (f/2)t3
, S1~n•t!S1

† 5t3,

~A6!

S2~u,f!5ei (f/2)t3
ei [(p2u)/2]t2

ei (f/2)t3
,

S252 i t2S1 , S2~n•t!S2
† 52t3. ~A7!

We shall gauge-transform theM-monopole field withS2

and theM̄ -monopole field withS1 . As the result theirA4
components become equal:

A4
M ,M̄5vF~vr !

t3

2
5Fv2

1

r
1O~e2vr !G t3

2
. ~A8!

On the contrary, the spatial components differ in sign. W
write them in spherical components:

6Ai
M ,M̄55

Ar50,

Au5
R~vr !

2r
~t1 sinf1t2 cosf!,

Af5
R~vr !

2r
~t1 cosf2t2 sinf!

1
1

2r
tan

u

2
t3.

~A9!

The azimuthal component of the gauge field has a sin
larity along the negativez axis, therefore we shall call it the
stringy gauge. The field strength, however, has no singul
ties. The electric field both ofM and M̄ monopoles in the
stringy gauge is

Ei
M ,M̄5

¦

Er52
F2~r !

2
t3 →

r→` 1

r 2

t3

2
,

Eu5
F1~r !

2
~2t1 cosf1t2 sinf!

5v2O~e2vr !,

Ef5
F1~r !

2
~t1 sinf1t2 cosf!

5v2O~e2vr !,

~A10!

while the magnetic field isBi56Ei . Therefore, theM
monopole has~electric, magnetic! charges (11) whereas
the M̄ one has (12).

There is a second pair of dyons@11#: a self-dual one with
the charges (22) which we shall nameL monopole, and an
anti-self-dual one with charges (21) which we shall name
7-8
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L̄ monopole. They are obtained from Eqs.~A1!–~A5! by
replacingv→(2p/ l )2v. One first transforms them from th
hedgehog to the stringy gauge with the help of the unit
matricesS1 andS2 , respectively. As the result, they get th
same asymptoticsA4(`)5@2(2p/ l )1v1(1/r )#t3/2. To
put the asymptotics in the same form as forM ,M̄ monopoles
@see Eq.~A8!# one makes an additional gauge transformat
with the help of the time-dependent matrix

U5expS 2 i
p

l
x4t3D . ~A11!

This gives the following fields ofL,L̄ monopoles in the
stringy gauge:

TABLE I. Four dyons ofSU(2).

M M̄ L L̄

electric charge 1 1 2 2

magnetic charge 1 2 2 1

action,
4p l

g2

v v 2p

l
2v

2p

l
2v

top. charge 1
1
2 2

1
2 1

1
2 2

1
2

s,

-

l.

10500
y

n

A4
L,L̄5F S 2p

l
2v DFS U2p

l
2vUr D2

2p

l Gt3

2
→

r→`

5S v1
1

r D t3

2
, ~A12!

Ei
L,L̄5

¦

Er5
F2~r !

2
t3 →

r→`

2
1

r 2

t3

2
,

Eu52
F1~r !

2
U~x4!

3~2t1 cosf1t2 sinf!U†~x4!,

Ef52
F1~r !

2
U~x4!

3~t1 sinf1t2 cosf!U†~x4!,

Bi
L,L̄56Ei

L,L̄ . ~A13!

The ‘‘profile’’ functions F1,2 are given by Eqs.~A4!,~A5!,
with the replacementv→(2p/ l )2v. We notice that ‘‘the
interior’’ of the L,L̄ dyons, represented by theu,f field
components are time dependent. This is why in the trued
case these objects do not exist.

The properties of the four dyons are summarized in Ta
I.
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