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Gluino condensate and long-range fields
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We argue that in the pur&d/=1 super Yang-Mills theory gauge symmetry is spontaneously broken to the
maximal Abelian subgroup. In particular, the colored gluino condensate is nonzero. It invalidates, in a subtle
way, the so-called strong-coupling instanton calculation of(til@ma) gluino condensate and resolves the
long-standing paradox of why its value does not agree with that obtained by other methods.
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I. INTRODUCTION This paradox attracted much attention over the years. There
have been several attempts in the past to explain the puzzle.
Pure V=1 super Yang-Mills(SYM) theory is known to It has been suggestéd] that instantons average over thg

possess a nonzero gluino condengate) whose phase dis- vacua, or over an additional vacuum with zero gluino con-
tinguishes between one of the discrete vacua of the theoryensatg9]. However, Ref[6] doubts the validity of those
[1]. The exact value ofA\) has been found by several in- arguments.
dependent methods of controllable deformation to weak cou- In this paper, we suggest an alternative strong-coupling
pling. One method2,3] uses matter supermultiplets whose calculation of the gluino condensatex)N. On the one hand
nonzero Higgs condensate breaks explicitly the gauge grouip yields the correct result. On the other hand it is very close
and gives mass to certain fields. One is then able to computg the old instanton calculation, and it becomes possible to
(AX\) from a single instanton, with extra fermion zero modespinpoint what exactly is wrong there. Namely, the new cal-
contracted via mass terms. The other metpbdcompacti-  culation reduces to the old strong-coupling instanton calcu-
fies the Euclidean spad®*—R3*x S!, so that Bogomol'nyi-  lation provided one neglects long-ranged fieldmishing as
Prasad-SommerfieldPS dyons arise as classical saddle 11 wherel is the size of the system. Normally, such fields
points. Again, the gaug€U(N) group is broken, this time have no effect on the local properties of the theory, but not in
spontaneously, by the nonzero expectation value of the Yanghis case: a small perturbation has a dramatic effect because
Mills potential A, in the compact direction. Dyons have zero the system is unstable with respect to spontaneous color
fermionic modes saturating\\); it turns out to be indepen- symmetry breaking.
dent of the circumferenckeof the compact dimension. It is
then argued that the power of holomorphy allows one to

assert the same value in the decompactified llmito. We Il. SPONTANEOUS COLOR SYMMETRY BREAKING

briefly review these methods below. The results of the two IN THE COMPACTIFIED SYM THEORY

seemingly different methods of getting.\) coincide, in- .
cluding the numerical coefficieitt]. The same result which ~ In this section we briefly review one of the ways to obtain
is apparently exadi5], follows independently from a defor- the correct value of the gluino condenspté

mation of the\'=2 theory—see Ref6] for a recent discus- Let us consider th&U(2) SYM theory compactified to
sion. R3x St with the “time” dimension x, being of circumfer-

In all those approaches, the gauge symmetry is broken b§ncel. It should be stressed that it mot an introduction of
the deformation. Although in all cases the symmetry-the physical temperature=1/ as fermions satisfy periodic
breaking parameter tends to zero as one approaches tgenditions in thex, direction. Therefore, the usual perturba-
strong coupling limit, one can ask if the spontaneous breaktive periodic potential irA, does not emerge as in the tem-
ing of gauge symmetr{i.e., a dynamical Higgs effects not ~ perature case: owing to supersymmetry it is zero to all orders
a property of the pure SYM theory itself. We present argu-0f the perturbation theory. We remind the reader that the
ments that it is indeed the case. Matter mutliplets whichperturbative potential V(A;) is zero at AJAZ
break color explicitly or compactification which breaks it =0,2#/1,4x/1, ... at which points the Polyakov linghe
spontaneously, serve as a “seed” to disclose the true naturgolonomy is trivial. If the holonomy is nontrivialmore pre-
of the SYM theory in the strong-coupling limit. cisely, if its spatial average is nontrivighenV(A,)>0 and

Historically, the first calculation of the gluino condensatethe corresponding gauge configuration has an unacceptable
[7] was directly in the strong-coupling limit of the pure SYM volume-divergent positive energy. This is the usual argument
theory. However, a seemingly “clean” calculation @f\)N against configurations with nontrivial average holonomy in
in the pureSU(N) SYM theory by saturating it by instanton the pure gauge theofyl0]. However, in the compact SYM
zero modes yields a value different from the exact resulttheory the perturbative potential is identically zero for any
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A, and one is free to consider configurations with any ho-mere notion of the ensemble of dyofm monopoles im-
lonomy at spatial infinity. plies that color symmetry is broken. Of course, once color is
Choosing the gauge where at spatial infilty—v 73/2  aligned, one can always randomize the color orientation by
one finds that there are two self-duadl,1) and two anti- an arbitrary point-dependent gauge transformation, just as
self-dual ,M) dyon solutions of the YM equations, with the direction of the Higgs field can be randomized but that
the same asymptotic value Aﬁ=v at spatial infinity[11,4]. does not un_dermlne the essence of the Higgs effect. In our
These solutions have all four possible signs of the electri€@Se: the eigenvalues of the holonoifigs. (3),(5] and
and magnetic charges. The corresponding fields are givelf P=0 are gauge-invariant signatures of the Higgs effect.
explicitly in the Appendix. quat|ons(4),(5) do n_ot mean that TP is zero identi-
The nonperturbative dyon-induced superpotential found@lly: it experiences point-to-point fluctuations, of course.
in Ref.[4] shows that the minimurfzerg energy is achieved For example, if TP is measured near the dyon center it will

when the weights of the andM dyons become equal, which P anything but zero. The statement is thaP¥+0 far away
happens at from dyon centers. A simple calculation shows that also

(TrP)=0 for a Coulomb gas of dyons. As a matter of fact,
— this is the usual confinement requirement.
A=V = T 1) Although A,= 7/1—0 in the strong-coupling decompac-

tified limit | — o, taken naively, the holonom¢3) remains
We notice that this value corresponds to the maximum of theontrivial. Unfortunately, it is not a holomorphic quantity so
would-be perturbative potential but it is absent. The systenthat one cannot prove it rigorously. Nevertheless, we shall
settles at the minimur(il) of the nonperturbative potential. It argue in the next section that the holonomy does remain
clearly demonstrates that in compactified SYM theory colomontrivial and that color symmetry remains broken in the
is spontaneously broken by the Higgs mechanism, wih decompactified limit. To that end we would need to consider
playing the role of the Higgs field in the adjoint representa-the gluino condensate which is a holomorphic quantity.

tion. The symmetry breaking pattern $J(2)—U(1). For Both L andM dyons have two gluino zero modes being
higher SU(N) gauge groups the minimurtzerg energy is the Grassmann partners of the four translational zero modes
achieved af4] and thus being related to the dyon field strength:
N-1 N-3 N—1 a a, -\ "
A4:d|a4 N ,T, ey T lz (2) x?ero mode: (0;)’3(01) )ggyFiV:(Ui)yg‘yEiav (6)

where E?=B is the electric field strength of a dyon, see
Egs.(A10),(A13). As shown in Ref[4] the dyon zero modes
saturate the gluino condensate

It means that th&& U(N) gauge group is spontaneously bro-
ken down to the maximal Abelian subgrolgp(1)N~?1, at
least at small compactification circumfererieeA ~* where

A is the SYM scale parameter.

Equation(2) is not gauge invariant. To put it in a gauge- <)‘)‘>:<6aﬁ)‘aa(x)7\aﬁ(x)>
invariant form one can consider the Polyakov liftee ho- A3
lonomy) along the compactified dimension; its eigenvalues :2—j d3z EA(x—2)E¥(x—2)
are gauge invariant: 4mv
A3 (=
3 %.'4 =—fduﬁ%%mw%m
P=Pex |fodx Ay v Jo 1 2
daqonin
lag expl im—g—| 1672 M2, F{ 42
=——exg ————|, )
. N-3 . N-1 9% (Mpy) 9% (Mpy)
ex ”TT co-ex —IWT , 3
whereA is the renormalization-invariant combination of the
TrP=0. (4) Pauli-Villars regularization mass and the bare gauge
coupling! The coefficient “2” comes from summing up the
For SU(2) the Polyakov line’s eigenvalues are (equa) contributions ofL andM dyons. The radial functions

FiJ(r) are the profile functions of the dyon, see Egs.
(A4),(A5). We remark that it is actually thanti-self-dual

One dyon can be considered in whatever gauge. Howevek,M dyons that lead to the\\) condensateself-duall,M
if we wish to consider the vacuum filled by dyons, we havedyons lead tgA\)) but we shall not stress this distinction.
to take more than one dyon. Two and more dyons can be put
together only in the singular “stringy” gaugeee Appendix
where all of them have the same orientation in color space.!A® used here is six times bigger than that used in the QCD
This orientation is preserved throughout RR&volume. The  convention.

P=diagi,—i), TrP=0. (5)
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Although technically obtained in the smallimit the result  and the other time witt$?°5°% we reduce it to Eq(9) con-
(7) coincides with the exact one in the decompactifiedtracted in the first case witk,ze,; and in the second case

strong-coupling limit. with — €, €55 (the minus sign arises from adjusting the or-
der of fermion operatojs It gives a system of linear equa-
[1. INSTANTONS VS DYONS tions on the coefficients,B:
Let us now recall the strong-coupling instanton calcula- 9A+6B=C,

tion of the gluino condensatg’]. Contrary to the dyon, the

instanton has four gluino modes for tB&J(2) group. There- 1
fore, a single gluino condensate cannot be saturated by an 3A+128=— §C (12)
instanton. Instead, one considers a two-point correlation
function with a unique solution
C(x—Y)=(€,5N2N3B(X) €, s\ YN0 8 C C
(=) =(eaph* NP0, ANVY))  (8) aC b 13

which can be saturated by a single instanton. This correlation

function does not actually depend @r-y owing to super-  Thys, the color structure of the one-point averd@®) is

symmetry. Therefore, one can evaluate the correlator ginampiguously determined by supersymmetry:
|x—y|— 0 using small-size instantons. Since the correlator is

|x—y| independent, the same value holds |aty|—® (€apN 2 NPP(X) €, A YNI9(X))

where it can be factorized into the product of two gluino

condgnsa_ttes()x)\). Th_is procedure I_<nown as “strong- =E 5ab5cd_£(5a05bd+ 5295 (. (14)
coupling instantons” gives a famous discrepancy facto of 6 2

as compared to the exact result. We shall show that the o ] o
evaluation ofC(x—y) from an instanton is incorrect both for The next observation is that the instanton contribution to

vanishing and for largéx—y|: the seemingly clean calcula- the left-hand sidgLHS) of Eq. (14) fails to reproduce its

tion has a loophole because of the spontaneous breaking gplor structure. There are four gluino zero _modes in the in-
the gauge group. stanton background: two are supertranslational and two are

We start with a simple algebraic argument showing thafUPerdilatationalor superconformal[7]. One has to insert
instantons do not handle color in a way compatible withthoSe zero modes into E(L4), in all possible combinations.
supersymmetry. Let us consider the correlation function of® Simple exercise in algebra demonstrates that only the
two gauge-invariant gluino bilinears like in E@) but which  color-singlet structure>®>5°¢ arises, with the coefficien
are not contracted in spinor indices. Since fermion operator8€ing identically zero. This is true not only for exactly coin-

anticommute we find that the correlation function must beciding pointsx=y but also forx#y. It is true identically,
antisymmetric inside the two pairs of spin indices: even before one integrates over instanton center and sizes.

We have also checked that it does not depend on the gauge in
1 which the instanton field is considered.
(NNPEOONN(y)) = Zfaﬁfyﬁc(X_Y)v To gain further insight, let us introduce a traceless color
gluino bilinear operator:

C=const. 9 b

AP= ¢, 4| NANPA— NENGF | AB2=0. (15

This correlator is actuallyx—y| independent since its con-

traction with €,,4€,5 is. Therefore one can put=y in Eq.

(9) so that it becomes a one-point average. We next considgp the case of th&U(2) groupA2° belongs to the irreduc-

a one-point average of gluino fields which are contracted inpje dimension-5 “isospin®-2 representation. For highr

spin but not in color indices: the symmetric rank-2 traceless represdentation is reducible;
Tabvc"z<eaﬂ)\a“)\bﬁ(x)ey(;)\”)\d‘s(x)). (10) l;gzz)fgsimnfa{(taicnlgiuw) it is a mixture of8" (adjoiny and 27

Under gauge transformations this tensor is gauge-rotated A direct consequence of Eq14) is that the one-point

with respect to all indices. After averaging over gauge rota@verage of glgmos in the traceless dimension-5 representa-

tions only invariant tensors can result. Fermion statistics retion of SU(2) is

quires thatT2?¢? js symmetric in @b) and in (cd). In the 5

SU(2) gauge theory there are only two possible invariant <Aab(X)Aab(y)>‘x_ylﬂoﬁ__<)\)\>2_ (16)

structures made of Kronecker deltas, consistent with symme- 6

try:

In the SU(N) case—2 is replaced by the generat (N?
Tabed— A 5abscdy B( sacsbdy sadsbey (12) +1)/(N?—1)/2; thenegative sign is related to thAf® is a

fermion operator. Meanwhile, the strong-coupling instanton
In higher groups more structures are possible but we do natalculation of this quantityimplying B=0) yields identical
consider them here. Contracting E40) once with 62°6°®  zero. Instantons are “color-blind” and average out any “col-
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ored” operator. Were color symmetry preserved in the purd4] (recall Sec. I} with an evident result: the correlator is
SYM theory strong-coupling instantons would be all right. independent ofx—y| and coincides with the square of the
This is the first indication that the instantons’ failure is re- (correc} gluino condensate. Notice that all four possible
lated to the actual color symmetry breaking in the theory, butombinationsLL,MM,LM,ML contribute exactly;(\\)?
there will be moré. apiece.

We next consider the correlation functidB) at large We next turn to the opposite case;|x—y|> 1/A, appro-
separations betweex andy. This correlation function has priate to the decompactified strong-coupling limit. One
chirality two, meaning that only gauge configurations withshould keep in mind that compactification does not spoil
unity topological charge can contribute. Instanton is an obsupersymmetry. Owing to supersymmetiy\ (x)A\(Y)) is
vious candidate. From the instanton viewpoint, the correlatomdependent ofx—y| for any givenl. Thus, the correlator
is saturated by instantons of sige-|x—y| [7] but the result must be precisely the same as in the previous case and equal
turns out to bez of the exact one. So far all calculations to the square of the gluino condensate. The correct result can
yielding the correct value were made for a single gluino conbe foreseen without calculatiofs.
densate, whereas the suspicious strong-coupling instanton When |— while |x—y| is kept fixed, the exact
calculation was for the two-point correlator. Therefore, to pinLL(MM) and LM solutions look very different. Th&M
down the mistake one should perform in parallel a correcsolution (the calorom at|—oo and fixed sizep becomes the
calculation but for the two-point correlator of gluino conden-instanton[14,15. Its action density is well localized both in
sates. X4 and space. In the leading order il ifie solution is the

There is an alternative strong-coupling calculation ofusual instanton. The difference with the instanton shows up
(MNN(X)AN(Y)) stemming from the compactified version of only in the subleading ILterms. As to thé.L andMM exact
the SYM theory. The unity topological charge can be ob-solutions, they can be made static by an appropriate gauge
tained from any two dyonkL,MM,LM. In the compacti- choice. Atl— their field is weak everywhere: it is of the
fied R®x S space there are exact classical solutions of albrder of 1/ inside the region of space| and falls as ¥/
three types. The full eight-parameter static double-monopoleutside that region. The action gets its unity value owing to
MM solution has been known for a whild3]. The LL the integration of a weak field over a large volume.
double-monopole solution can be obtained fromhigl one Naively, one would argue that fields of the order of 1/
by a gauge transformation. The time-dependent eight-—0 are irrelevant for the calculation of the gluino conden-
parametet. M solution has been recently constructed explic-sate which is a local quantity, and hence one wdillche-
ity and named *“the caloron with non-trivial holonomy” glect altogether théeL and MM contributions, andii) re-
[14,15. The first two objects have double electric and mag-place the exactM field by the instanton. Following this
netic charges so that both their electric and magnetic fieldargument, one would conclude that the two-dyon and the
decay as 17 at large distances. The third object has zeroinstanton calculations are equivalent in the strong-coupling

charges so that it is similar to the instanton. limit. However, we shall see in a moment that this is incor-
To compute the correlataf\ X\ (x)AA(y)) one needs to rect.
take one of the threeLL,MM,LM) exact solutions, find ThelLL,LM,MM solutions represent sectors with definite

their four adjoint fermion zero modes, substitute them into(electric, magneticcharges ¢2,—2), (0,0, and(2,2), re-
the correlator in question in all possible combinations, andspectively. These sectors do not mix up under supersymmet-
integrate over the solutions’ moduli space; then finally sunvic transformations: it is only their moduli spaces that trans-
up the contributions of all three exact solutions. form (separately under supersymmetry. It means that the
In practice, the calculation of the correlator depends orindependence of the correlatOk\(x)AX(y)) of |[x—y] is
the relation betweefx—y| and the compactification circum- satisfied separately for the three sectors.|&tlx—y| we
ferencel. Let us first discuss the “weak-coupling” case of know thatLL andM M sectors contribute apiece exaciof
|<|x—yl|. In this case, only part of the moduli space of thethe gluino condensate squared, whereaslthie sector con-
exact solutions contribute, corresponding to widely separatettibutes exactly the other half. Because of supersymmetry, at
“constituent” L,M dyons. Since the field of constituents de- |>|x—y| those configurations contribute precisely the same
creases rapidly beyond their sizel, the leading contribu- fractions, despite that thel,M M fields tend to zero. At the
tion comes from one of the dyons staying at the distante same time the exattM configuration(i.e., the caloron with
from point x and the other being at the distaned from  nontrivial holonomy contributes precisely of the gluino
pointy. Their interference can be neglected. Thereford, at condensate squared, whereas the instaftorwhich it is
<|x—y| the calculation of the correlator just copi@wice)  reduced if one neglectsli¢orrection is known to contrib-
the calculation of the gluino condensate from a single dyon

30ut of curiosity, we have computed the one-point averédg®
2t was noticed earlief12] that multi-instantons do not support assuming a sum ansatz of dyons at all separations. Surprisingly, it
the cluster decomposition of gluino correlators. Since @) is works quite well: the color structur@3) following from supersym-
very generalit can be derived directly from first rearranging glui- metry is reproduced and the absolute value of the gluino condensate
nos into color-singlet operators and then applying &g, instan-  turns out to be only 4% bigger than the exact one. It would be
tons’ failure to reproduce the equation is another but simpler mani#lluminating to computé A\ (X)A\(y)) exactly from theLL(M M)
festation of the nonclusterization. andLM solutions.
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ute 2. Rather unusual, a vanishing fiedd~ 1/ is necessary 1 N
to maintain the correct result for the local gluino (<)\)\>calor)N:<N<)\)\>) N!
condensaté.
The difference between strong-coupling instanton and
multidyon calculations becomes even greater for higher N—so0 N
SU(N) groups. At largeN, the instanton gives only a — (E<M>) (20

O(1/N) fraction of the true gluino condensafsee below,
where does the rest come from? )

In the compactifiedSU(N) gauge theory, there ari where the factorN! comes from the permutations of
—1 “static” dyons My, ...,My_, having unit (electric, M1,M,, ... L. Again, we see that a vanishing distinction
magneti¢ charges with respect to thd—1 Abelian sub- between the instanton and the caloron with nontrivial ho-
groups, and one “time-dependerit’dyon[11,4. When one lonomy makes a big difference. Also, contributions from all
computes the single gluino condensate in compactified spadB€ rest of multidyon solutions whose fieldlat « is O(11)

each of theN configurations contributes equallyN{A\ ) or lesg everywhere, are needed to maintain the correct re-
[4]. Adding up the contributions df1,,M,, ... ,My_, and sult for the gluino condensate in the strong-coupling limit.
L dyons one gets the correct gluino condensate. We see, thus, that the nontrivial holonomy is important in

To compare it with the strong-coupling instanton calcula-d€t€rmining the gluino condensate in the strong-coupling re-
tion, one considers Bl-point correlator gime. This is not very usual. The holonomy is a global quan-

tity; the difference between trivial and nontrivial holonomy
is the difference betweeA,=0 andA,= =/l —0. The fact

that this tiny difference plays a crucial role in determining
_ ) such a local quantity a&\\) means that the system is un-
with x, - - - Xy taken far apart. This correlator can be saturatedsiaple with respect to infinitesimal perturbation breaking

by one instanton but also, in the compactified space, by exaghjor symmetry. In other words, the gauge group is sponta-
N-dyon solutions. Again, we start with the cab&|Xuq)  neously broken.

where the exact multidyon solutions reduce to widely sepa-

rated constituents. Each of thé dyon species stay at the

distance~| from the pointsx;- - - Xy, with all possibleNN IV. COLOR GLUINOG CONDENSATE FROM A
permutations. Therefore, the LHS of E3.7) is DEFORMATION OF N/=2 THEORY

In this section we compute directly the value of the color-

N N N breaking gluino condensate®®, see Eq.(15). To that end,

N<M> NT=(\) (18 e consider the compactified version of the=2 theory. As
compared to the pure SYM theory, it has an additional chiral

as it should be. By supersymmetry, the LHS of ELy) does multiplet (\Pa_a’q)a) in the adjoint representation.

not depend on the relation between the compactification cir- 1 he classical potentia)® Tr[q?q’]z has a flat zero-energy
cumference and the separations,,,. Therefore, the same Valley which we shall choose in the form

result holds atl>|x.,/, i.e., in the strong-coupling limit.
Meanwhile, only one particular configuration, namely
M;M,, ... My_1L, has zero(electric, magneticcharges
with respect to allU(1) subgroups. It is the “caloron with
non-trivial holonomy” of Refs[11,14. At | - it becomes
the usual instanton of thBU(N) gauge groupplus 1/ cor-

rections. The instanton contribution to the LHS of ELy) is whereV is an arbitrary complex number. It breaks the color
[5,7,8,17 group SU(2)—U(1) even without compactification. How-

ever, we shall add the mass term for the chiral supermultip-
let
N 1

2
(<7\>\>inst)N=m<M>N

(MXD)AN(X) - - - AN (X)) — (AN, (17)

(21)

o

Q

Il
< O o

M( €,V WP+ D2D2), (22)

N-=[ 9 N In the decompactified case the mass term drivesO at
_ (—(M)) _ (19 large m [18,19. At large m the matter supermultiplet de-
N couples and one is left with the pure SYM theory with a
seemingly restored fulbU(2) gauge group. Such a conclu-
Meanwhile, the true caloron contribution to E4.7) is sion is, however, too hasty. Compactification of the softly
broken(by the mass terjn\'=2 theory is a way to make a
gradual transition to the SYM theory, ultimately in the strong
“4Experts in the Schwinger model may find the present situatiorcoupling regime. We shall see that tB&J(2) group is not
familiar: the chiral condensate in thel 2QED is induced by fields restored in that limit but remains broken td(1) by the
that are of the order of Livherel is the size of the world16]. colored gluino condensate.
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Compactifying thex, coordinate one finds classical solu-
tions beingL,M dyons modified by the presence of the sca-
lar field ®2. Assuming the fields are “time”-independent
and®? is parallel toA7, the modifiedM dyon in the regular
“hedgehog” gauge is given bicf. Egs.(Al1),(A2)]

a_ _

1
O nVO (Vu?+Var), ®(z)=cothz——, (23

Ai=—np®(Vu?+V?r)

Z— > v 1
— —n?lv— ———|, (24
Jul+V2r
. 1-R(Vv?+V?r) z
Ai = €aijnj , R(Z): - . (25)
r sinhz

Its action is 47l/g?\v?+VZ. TheS_ gauge transformation
(A7) puts thed®? A7 fields along the third color axis, with
the asymptotics

Vv 1
Pa=58| Vo — — |, (26)
Jo2+ver
Al= 523 v ! 2
o o \/vz+VZF . @0

The L dyon is obtained by replacing— 27/l —v andV
— —Vin Egs.(23)—(25). It is then transformed to the stringy
gauge byS, [Eqg.(A6)] and subsequently gauge-transformed
by the time-dependent matrbt(x*) [Eq. (A11)]. The fields’
asymptotics become

\Y
=53 V- , (29
27 2
I——U + V2
2
)
I 1
Aq=5%| v+ —
27 2 r
(l——v +V2
(29)
The action of the modified L dyon s

axllg?J(2mll —v)Z+ V2.

Both L andM dyons have two. and twoWV zero modes.
The mass term folV allows one to contract th& zero
modes of a dyon. The,M-induced superpotential is a slight
modification of that found in Ref4] in the pure SYM case:
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o

47l

g2

47l

—— V2
g

Wdyon: ( Mjlg</=2)2m
2

SN

Here the Pauli-Villars mass of the fuN'=2 theory appears
in the second power since there are four boson and four
fermion zero modes. The factorarises from the contraction
of ¥ zero modes via the mass term. Apparently, the mini-
mum (zerg energy is achieved, as before,wat #/1, inde-
pendently of the vacuum expectation val(MEV) of the
matter field®?. From now on, we shall use this value of
(Ag)-

It is straightforward to calculate the gluino condensate in
this setting, basically repeating the steps leading to(Eq.
The only (technical difference is that the dyon weight is
now proportional to Mé(,zz)zm. This quantity is, however,
equal to Mé(,zl)3 at largem (see, e.g.[6]). Therefore, we
get the same result as before:

+V? (30

N =N+ (N2NZ) + (N3 = A3, (31

The N'=2 extension allows us to compute another holo-
morphic quantity

whereA 2" is the traceless gluino bilinear in the dimension-5
representation, see E(.5). This operator is chiral and trans-
forms under supersymmetry through the parametemly

(not €). It gets a contribution from one dyon but cannot
acquire corrections either from perturbation theory or from
additional dyon pairs. Therefore, we can find the above av-
erage at small and claim that it remains unaltered in the
decompactified limit, just as the normal gluino condensate
(31) does.

SaturatingA2° by the two gluino modes of a dyon we
obtain[cf. Eq. (7)]:

Aabq)aq)b

P (32

52b
AP EPED - —

3 EE = (F3(n—Fi(r)

X (33

53503 = sab
3

Equation (33) is written for M dyons; in the case of the
time-dependenit dyons Eq.(33) should be gauge rotated by
a time-dependent matrid11). It is easy to check, however,
that this gauge transformation commutes with the color
structure in Eq(33), i.e., leaves it unchanged. Therefore, Eq.
(33) is correct both fol. andM dyons.

The scalar fieldb? is directed along the third color axis,
according to Eqs(26),(28). The concrete profile of thé?
solution cancels out in the rat{@2). For the same reason the
VEV of the @ field is irrelevant also, although it goes to zero
at largem (necessary to pass from thé=2 to the pure SYM
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theory). It is only the color direction ofb? that matters in  ferencel—just as the “normal” gluino condensate is inde-
Eq. (32), but it is fixed by the dyon solution. Consequently, pendent of; they are holomorphic quantities. Therefore, one
the averagé3?2) is can claim that color symmetry remains broken in the decom-
pactified strong-coupling limit. An indirect evidence for
color symmetry breaking follows from the fact that the cor-
rect value of the color-singlet gluino condensate is obtained
3 ) from field configurations with a nontrivial holonomy. Strong-
_ EA_J' A3 F2(r)— F2(r)]= EAg o T (34) coupling instantons have a trivial holonomy, and they pro-
- 347y [Fa( inl= 3 6 duce only a color-singlet condensate—in contradiction with
Eq. (16) following merely from supersymmetry. But even the

2 1 1
X=(AF)= ()= 3 (M= 3 (A%

Combining it with Eq.(31) we find color-singlet condensate gets a wrong value from instantons.
We have shown in Sec. Ill that to get the correct value it is
(MDY =(A"\%) insufficient to add other field configurations on top of the
instanton: one has to replace the instanton by the caloron
:A3J dr r2F§(r) with nontrivial holonomy in the first place. A nontrivial ho-
lonomy means that there is a privileged direction in color
-6 space, which is equivalent to color symmetry breaking.
=A% 8 =0.214978\3, (35 An additional although so far indirect demonstration of

the importance of dyons at strong coupling has come very
recently from another end. Using wrappe8 braneg20] or

<)\3)\3>:A3J drr2Fa(r) warped deformed cc_mifolﬂZl] the authors obtained the cor-
rect all-loop 8 function of N=1 SYM theory from corre-
15— 72 sponding supergravity solutions. In addition, both references
=A3 find the same nonanalytic corrections to tBefunction,

9 which are naturally associated with the pairs of dyons, not

~0.570044\ 3, (36) instantons. _ _ -
Dyons have long-range Coulomb interactions which are

We see that one of the color directions is preferred. In thidebye-screened in the plasma. It results in magnetic photons
case it is the 33 direction as we have aligredat spatial ~ getting a mass and in confinemenia Polyakov[22]. Polya-
infinity along the third axis. Contrary tA2) which vanishes ~kov's scenario of confinement ind3s essentiallyAbelian It
in the decompactified limit as [1the difference in the color implies that the gauge group is spontaneously broken to the
components of the gluino condensate remains fiied =~ Maximal Abelian subgroup, that the “charged” gluons get
computablg in the strong-coupling limit. masses via the Higgs mechanism but are confined, and that
Equations(35),(36) demonstrate the dynamical Higgs ef- the Abelian magnetic “photons” get mass from Debye
fect(as there are no elementary Higgs fields in the pure SYMCreening. Qualitatively, the same Abelian scenario has been
theory. In this case, the colored gluino condensate??y ~ discussed for the di pure gauge theory by 't Hoof23]. It
(the composite Higgs fieldbelonging to the dimension-5 C€an be made quantitative in the weak-coupling regime of the
traceless symmetric tensor representation has a nonzero VEA#l V=2 theory softly broken toV=1 [18,24. The spon-
(34) that breaksSU(2) down to theU(1) subgroup in the taneous breaking of the gauge group to the maximal Abelian

same sense as the VEV of an elementary Higgs field doesSubgroup is a welcome feature: the Abelian confinement is
well understood, at least on the philosophical level, and has a

chance to be ultimately put into a quantitative form follow-
ing the lines of the references cited above.

The appearance of a nonzero color gluino condensate is, The Abelian scenario has clear signatures in the weak-
in a sense, trivial. In partially compactifiegd®x St SYM  coupling regime but they become not so clear in the strong-
theory the gauge group is apparently spontaneously brokegpupling limit, especially if the theory confines color and
to the maximal Abelian subgroup by dyons, at least when th@nly gauge-invariant correlators are the observables. Strictly
compact dimension is much less than thescale of the speaking, there is no gauge-invariant local order parameter
theory. The minimum of the superpotential induced by dyongvhich would distinguish between Abelian confinement and a
corresponds to a nonzewy, [4] which has to lie in some “true” non-Abelian case. To find out uniequivocal observ-
direction in color space thus breaking the color group. Thereable signatures of the color-broken scenario and to check
fore, in the compactified pure SYM theory a Higgs effectwhether the purenot supersymmetrjcYM theory has the
takes place, withh, playing the role of the Higgs field in the Same features is an intriguing task which we postpone for the
adjoint representation. Unpleasantlyy, is not Lorentz- future.
invariant, but the effect is there. The nonzero value of the
colored gluino condensatéA?®) is a Lorentz-invariant ACKNOWLEDGMENTS
manifestation of the same symmetry breaking.

Interestingly, the value of the color gluino condensate we We are grateful to Gennady Danilov, Alexander Gorsky,
have found does not depend on the compactification circumAlex Kovner, Alexei Yung, and Ariel Zhitnitsky for useful

V. DISCUSSION
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RFBR Grant No. 00-15-96610. Both of us are grateful toimpossible to add them up in the hedgehog gauge: one has to
Klaus Goeke and Maxim Polyakov for the hospitality at Bo- “gauge-comb” them to a gauge wher&] has the same
chum University where part of this work had been done, anchsymptotic value at spatial infinity for all monopoles in-
for support from Deutsche Forschungsgemeinschaft and Seolved, say, along the third color axis. It is achieved with the
fia Kovalevskaya grants. help of two unitary matrices dependent on the spherical
anglesd, ¢:
APPENDIX: L,M MONOPOLES

S+(0'¢):e—i(q5/2)73ei(0/2)72ei(¢/2)73, S.(n T)SK_ =7,
We give here explicit expressions for the fields of the four

dyons in the compactifie®®x S! space, with all four pos- (AB)
sible signs of the electric and magnetic charges. The two S (6 ¢):ei(d,,z)fsei[(ﬂ,H),Z]Tzei((b,z)fs

usual Bogomol'nyi-Prasad-SommerfiglBPS dyons in the - '
regular(“*hedgehog”) gauge have the form: S ——i?s,, S (n-ns =-7~ (A7)

a_ f—
As=Fnao®(ur), We shall gauge-transform théd-monopole field withS_

Al — ) . .
12" 1 (A1) and theM-monopole field withS, . As the result theiA,
®(z)=cothz— = — 1—=+0(e ?), components become equal:
z z
MM 7 1 | T
1-R(vr) Ay =vd(vr)s=lv—=+0(e ") |=. (A8)
Al=e i~ 2 r 2
i aij'lj r ’
(A2) On the contrary, the spatial components differ in sign. We
700 write them in spherical components:
— —Z
R(Z) sinhz — O(ze™). (Ar:O,
_ _ A _ R(vr
Herer = X2+ x3+x2, na—xa/réTheaupE)er sign i, cor A, ( )(Tl sing-+ 72 cose),
responds to the self-duakf=Ff,=Bf=3 ¢ F},) and the B 2r
lower sign to the anti-self-dualE’'= —BF) solution. We = AMM_ R(ur) , (A9)
shall call themM andM monopoles, respectively. Ay=—5, (T COSp—77sin¢)
The magnetic field strength in the hedgehog gauge is
given by two structures: + itang 3
([ 2r

B?:(5ai_nani)Fl(r)+naniF2(r)r where (A3)
The azimuthal component of the gauge field has a singu-

1 larity along the negative axis, therefore we shall call it the
Fa(r)=+ g7 R@") stringy gauge. The field strength, however, has no singulari-
ties. The electric field both o1 and M monopoles in the
_ R(vr)®(vr) stringy gauge is
r
Fo(r r—e 1 3

__v (1 t E=- 22()73_’ _277'
~ sinh(vr) \vr coth(vr) r

2 _ Fl(r) 1 2
=p°0(e "), (A4) E,= > (— 7 cos¢p+ 77 sing)

VM= (A10)
. d ® =v20(e™""),
r=-—— r
2(r)== gro®(or) fn
Es= 5 (77 sing+ 77 cose)

R2(vr)—1

- =v?0(e™""),
2 1 while the magnetic field iB;=*=E;. Therefore, theM

= morEpoIe hagelectric, magnetic charges ¢ +) whereas

sinff(or)  r the M one has ¢ —).

1 There is a second pair of dyohkl]: a self-dual one with

=—= +0v20(e” "), (A5)  the charges< —) which we shall namé& monopole, and an

anti-self-dual one with charges-(+) which we shall name

105007-8
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TABLE |. Four dyons ofSU(2).

M M L L
electric charge + + — —
magnetic charge + - - +

4l v v 2 2
action, —- T T
g
top. charge +3 -3 +3 -3

L monopole. They are obtained from Eq#1)—(A5) by
replacingu — (27/1) —v. One first transforms them from the

hedgehog to the stringy gauge with the help of the unitary

matricesS, andS_, respectively. As the result, they get the
same asymptoticsA,()=[—(2x/)+v+ (1fr)]7/2. To
put the asymptotics in the same form asKbyM monopoles

[see Eq(A8)] one makes an additional gauge transformation

with the help of the time-dependent matrix

a
U= ex;{ —i I—x4r3) :

This gives the following fields oL,L monopoles in the
stringy gauge:

(A1)

PHYSICAL REVIEW D57, 105007 (2003

ALI_ 21 ® 2 2] 73 1=
O AR TYY T T
B A12
=V r 21 ( )
Fo(r) ;7= 17
E=— "~ 27
Fq(r
_ Ea__L)U(X“)
EFt= 2
! X (— 7t cosg+ 2 sing)UT (x4,
F(r
E(,,:—%U(x“)
X (rrsing+ 72 cosg)UT(x*),

Bl

bl=+ght,

(A13)
The “profile” functions F, , are given by Eqs(A4),(A5),
with the replacement — (27/l)—v. We notice that “the
interior” of the L,L dyons, represented by the ¢ field
components are time dependent. This is why in the trde 3
case these objects do not exist.

The properties of the four dyons are summarized in Table
l.
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