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Existence of spinning solitons in gauge field theory
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Erik Wöhnert†

Theoretisch-Physikalisches Institut, Friedrich Schiller Universita¨t Jena, Fröbelstieg 1, 07743 Jena, Germany
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We study the existence of classical soliton solutions with intrinsic angular momentum in Yang-Mills-Higgs
theory with a compact gauge groupG in (311)-dimensional Minkowski space. We show that for symmetric
gauge fields the Noether charges corresponding to rigid spatial symmetries, as the angular momentum, can be
expressed in terms of surface integrals. Using this result, we demonstrate in the case ofG5SU(2) the
nonexistence of stationary and axially symmetric spinning excitations for all known topological solitons in the
one-soliton sector, that is, for ’t Hooft–Polyakov monopoles, Julia-Zee dyons, sphalerons, and also vortices.

DOI: 10.1103/PhysRevD.67.105006 PACS number~s!: 11.10.Lm, 11.15.Kc, 11.27.1d, 11.30.2j
a
i

s

he

st
m
e

ls
ym
ta

th
n

ny
s

ld
d
p
ac
e
r
e

dy

ons

en-
used

ns

of
be

uch
and
on-

iven
ore
ime,
ng.

ra
hi
o-

gral

of
d

en-
he
d
ral.
s
et-

lar

elf

m
a
t

r,
I. INTRODUCTION

The existence of globally regular soliton solutions with
nonvanishing angular momentum in classical field theory
an interesting open issue, which has recently been addre
in a number of publications@1–7#. Up to now, such spinning
solutions in Minkowski space have been found only in t
theory of a self-interacting complex scalar field (Q balls!
@5#.1 For these solutions the energy-momentum tensor is
tionary and axially symmetric, while the angular momentu
J;vN is generated by the rotating phase of the scalar fi
F5f(r ,q)e2 ivt1 iNw.

It is natural to wonder whether rotating solitons can a
exist in gauge field theories with spontaneously broken s
metries. For stationary, axially symmetric systems the ro
ing phase of the Higgs field can be gauged away.2 A nonzero
angular momentum could then be supported only by
Poynting vector of the gauge field, and in fact such solutio
can indeed be obtained, as for example rotating@3,4#
monopole-antimonopole pairs@8–10#. However, the rotation
is then rather associated with the orbital motion in a ma
body system. The real challenge is to construct rotating
lutions in theone-soliton sector, where the rotation wou
indeed be associated with spinning excitations of an in
vidual object. For some strange reason, up to now such s
ning solitons have been found only in anti–de Sitter sp
@6,7#, while their possible existence in Minkowski space r
mains rather obscure. In fact, the results obtained so fa
this area have all been negative. For example, it has b
shown that ’t Hooft–Polyakov monopoles and Julia-Zee

*Electronic address: volkov@phys.univ-tours.fr
†Electronic address: pew@tpi.uni-jena.de
1In curved space similar rotating solutions are known for a s

gravitating scalar field~boson stars! @1,2#.
2It is not excluded that the action could be invariant under ti

translations and axial rotations while the fields are not station
and axially symmetric. In such a case it would not be possible
gauge away the rotating phases. Such a possibility, howeve
beyond the scope of our present consideration.
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ons in Minkowski space cannot rotate slowly@3#. The same
conclusion holds for gravitating monopoles and sphaler
@12#. In addition, it was noticed in@4# that for axially sym-
metric deformations of Julia-Zee dyons the angular mom
tum can be represented as a flux integral, a fact that was
in @4# to argue that dyons cannot rotate rapidly either.

In this paper we study the existence of spinning solito
in the context of Yang-Mills-Higgs~YMH ! theory for an
arbitrary compact gauge groupG in (311)-dimensional
Minkowski space. First of all, we analyze the observation
@4# that the angular momentum of Julia-Zee dyons can
expressed as a flux integral. It is natural to wonder why s
a representation of the angular momentum exists at all
whether it can be generalized to other models. Usually, c
served quantities associated with Poincare´ symmetries in
Minkowski space, such as, for example, the energy, are g
by volume integrals and not surface integrals. We theref
study the relationship between conservation laws, spacet
and gauge symmetries, and what we find is the followi
For symmetricgauge fields, the action of arigid spacetime
symmetry generated by a Killing vectorX is equivalent to
that of a local gauge symmetry generated by a Lie algeb
valued functionWX . It is then a consequence of the Bianc
identities imposed by the local gauge symmetry that the N
ether current for the global Poincare´ symmetry is essentially
a total divergence. In the case ofspatial symmetries, the
Noether charge can then be expressed by a surface inte

QX5 R ^~AX2WX!F0k&dSk , ~1!

whereAX is theX projection of the gauge field. In the case
spatial rotationsX5]/]w, this gives the conserved an
gauge invariant angular momentum.

Making use of this representation of the angular mom
tum, we then systematically study the fields in t
asymptotic region near spatial infinity, looking for fiel
modes that could give a contribution to the surface integ
In this way we show that for ’t Hooft–Polyakov monopole
and Julia-Zee dyons there are no stationary, axially symm
ric deformations giving a nonzero contribution to the angu
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momentum. We then carry out a similar analysis for spha
rons and also for vortices—with the same conclusion. A
result, we in fact show the absence of stationary and axi
symmetric spinning excitations in the one-soliton sector
all known topological solitons with gauge groupG
5SU(2). The still remaining possibilities of constructin
rotating solutions can then be related only either to study
solutions with higher gauge groups or to considering fie
that are not manifestly stationary or axially symmetric.

II. YANG-MILLS-HIGGS THEORY

The theory under consideration is a Yang-Mills-Hig
theory with compact gauge groupG defined by the action

SYMH5E Ld4x, ~2!

where

L52
1

4
^FmnFmn&1

1

2
~DmF!†D mF2

l

4
~F†F21!2.

~3!

Here, the gauge field strengthFmn[TaFa
mn5]mAn2]nAm

1@Am ,An# with the gauge fieldAm[TaAm
a . The anti-

Hermitian gauge group generatorsTa (a51,2, . . . ,dimG)
satisfy the relations

@Ta ,Tb#5 f abcTc , tr~TaTb!5Kdab . ~4!

The invariant scalar product in the Lie algebra is defined
^AB&5(1/K) tr(AB). The Higgs fieldF is a vector in the
representation space ofG where the generatorsTa act; this
space can be complex or real.DmF5(]m1Am)F is the co-
variant derivative of the Higgs field. The units are chos
such that the gauge coupling constant and the vacuum v
of the Higgs field are equal to 1. Spacetime indices are lif
with the Minkowski metric.

Below, we will consider two important particular cas
corresponding toG5SU(2). TheHiggs fieldF then will be
chosen to be either in the real triplet representation, in wh
case

~Ta! ik52«aik , ~5!

or in the complex doublet representation with

Ta5
ta

2i
, ~6!

whereta are the Pauli matrices.
The action is invariant under gauge transformations

Am→U~Am1]m!U21, F→UF, ~7!

where U is a G valued function. Varying the action with
respect to the gauge and Higgs fields gives the equation
motion
10500
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DsFsm5
1

2
@F†TaD mF2~D mF!†TaF#Ta , ~8!

DmD mF52l~F†F21!F, ~9!

whereDm5]m1@Am , # is the covariant derivative in the ad
joint representation.

In what follows, we will consider stationary, axially sym
metric fields subject to the symmetry conditions@13#

Ljm
Am5DmWm , Ljm

F52WmF, m5t,w. ~10!

Here,Ljm
are the Lie derivatives along the two Killing vec

tors j t5] t and jw5]w , while Wm are compensating Lie
algebra valued functions. The general solution of these eq
tions is well known: since the two Killing vectors commut
there exists a gauge whereWm50. Therefore, the symmetry
conditions in this gauge require simply the independe
from t andw. As a result, the most general solution is

Am5TaAm
a ~r,z!dxm, F5F~r,z!. ~11!

The regularity on the symmetry axis requires that

Aw~0,z!5 f ~z!T, ~12!

whereT is an element of the Cartan subalgebra of the
algebra ofG and f (z) is a bounded function. Passing to
new gauge with the gauge transformationU5e2w f (z)T will
then sendAw(0,z) to zero.

III. NOETHER CHARGES AS FLUX INTEGRALS

Conserved quantities in field theory are determined
Noether charges corresponding to global symmetries of
action. These charges can be expressed as volume inte
of the local charge densities. In some cases, such as
example, for the electric charge, these volume integrals
be further transformed to surface integrals. The reason
this is as follows~see@14# for a discussion!. Electric charge
is conserved owing to the invariance under global phase
tations. In gauge field theory, this symmetry is a special c
of the local gauge invariance. The local gauge invarian
leads to the existence of identity relations between the fi
equations~Bianchi identities! and implies the identical con
servation of Noether’s currents, since they can be rep
sented as divergences of antisymmetric quantities~some-
times called superpotentials!

Qm5]s@v~x!F sm#. ~13!

Here,v(x) is the parameter of local gauge transformatio
the case of global phase rotations corresponding to cons
v ’s. SinceQ0 is a total divergence, the Noether charge c
be expressed as a surface integral.

The procedure described above is very well illustrated
the context of general relativity, where the conserved ene
momentum, and angular momentum are given by flux in
grals. This can be traced back to the fact that the Poinc´
symmetries are a special case of general spacetime di
6-2
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morphisms. For theories in Minkowski space, on the ot
hand, there is no diffeomorphism invariance, and so Poinc´
symmetries are not related to any local symmetries. A
result, the energy, for example, cannot be expressed as a
integral. However, forsymmetricgauge fields some of th
spacetime symmetries can be equivalent to local gauge s
metries in the sense that the result of Poincare´ transforma-
tions can be compensated by gauge transformations. A
result, the corresponding Noether charges will have es
tially the same structure as in Eq.~13!, and the Noether
charges can be expressed as flux integrals. We will now s
how this works in the context of YMH theory.

It is well known @15,16# that in the presence of gaug
invariance spacetime symmetries must be combined with
internal gauge symmetries in order to give conserved
gauge invariantcharges via Noether’s procedure. IfXm is a
Killing vector of the system3 then the corresponding con
served and gauge invariant Noether current is

Qm5(
B

]L

]~]muB!
duB2XmL. ~14!

Here,uB collectively denotes the fields (Am ,F,F†), and the
variationsduB include the part generated byXm plus another
part due to an infinitesimal gauge transformation genera
by a Lie algebra valued functionW:

duB5L XuB2dWuB. ~15!

Here, the Lie derivatives are

LXAm5Xa]aAm1Aa]aXm , LXF5Xa]aF, ~16!

while the gauge variations are given by

dWAm5DmW, dWF52WF. ~17!

The functionW is determined by the requirement that t
variationsduB transform under gauge transformationscova-
riantly, thus ensuring the gauge invariance of the Noet
current. Using the identity@15,16#

LXAm5XaFam1Dm~XaAa!, ~18!

one obtains

dAm5XaFam1Dm~XaAa2W!,

dF5XaDaF2~XaAa2W!, ~19!

which shows that the transformation law forW must be

W→U~W1Xs]s!U21, ~20!

since then (XaAa2W) transforms covariantly. Having thi
in mind and inserting Eqs.~15!–~17! into Eq. ~14!, one ob-
tains after straightforward calculations

3Thus, one has]mXn1]nXm50.
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Qm5XaTa
m1]s^~XnAn2W!Fsm&. ~21!

Here the tensor

Tn
m52^FmsFns&1

1

2
@~D mF!†DnF1~DnF!†D mF!2dn

m
L

~22!

coincides with the metrical energy-momentum tensor
tained by varying the action with respect to the spaceti
metric. This tensor is symmetric and divergence-fr
]mTmn50.

The Noether current~21! is conserved and gauge invar
ant. However, it is not yet completely defined, sinceW is not
uniquely determined by the condition~20!. This reflects the
well-known ambiguity in the definition of Noether current
as they can always be changed by adding the divergenc
an antisymmetric tensor. The way to uniquely define the N
ether currents~see, for example,@15–17#! is dictated by the
agreement with the general relativity~GR!, since they should
coincide with the conserved currents obtained from the m
rical energy-momentum tensor. Thecanonical Noether
energy-momentum tensor will then be symmetric and w
coincide with the metrical one. All this is achieved if on
one chooses@15,16#

W5XaAa ~23!

@notice that this transforms according to Eq.~20!# in order to
get rid of the second term on the right in Eq.~21!. The
Noether current then becomes

Qm5XaTa
m . ~24!

This coincides with the standard GR current and leads to
conserved charge expressed by the volume integral ove
three-space,

QX5E XaTa
0d3x. ~25!

This formula reproduces the known result for the conser
and gauge invariant Noether charge associated with a r
Poincare´ symmetryXm @15#.

Let us now repeat the calculation above by assuming
the symmetry generated byXm is not only a symmetry of the
action, but also a symmetry of thefields, in the sense tha
there exists a Lie algebra valued functionWX such that

LXAm5DmWX , LXF52WXF. ~26!

Substituting this into Eq.~15! and using Eq.~17! gives

dAm52DmCX , dF5CXF, ~27!

where CX5W2WX5XaAa2WX . Therefore, the field
variations generated byXm can in this case be viewed aspure
gaugevariations. Inserting Eq.~27! into Eq. ~14! gives
6-3
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Qm5^FmaDaCX&1
1

2
~D mF!†CXF2

1

2
F†CXD mF

2XmL, ~28!

and using the equations of motion~8! this reduces to

Qm52]a^CXFam&2XmL. ~29!

This almost has the structure of an identically conserved
rent, if it were not for the last term. This term is the remna
of the fact that the symmetries under consideration, altho
closely related to gauge symmetries, are actually space
symmetries. Now, if the vectorXm is spacelike, as is the case
for strictly spatial translations and rotations, then there e
reference frames where the temporal componentX0 van-
ishes. As a result,Q0 is a total divergence and its integr
over the spatial hypersurface can be transformed into a
face integral~provided that there is no contribution from th
inner boundary!. The conserved and gauge invariant Noeth
charge is then given by the flux integral over a closed tw
surface at spatial infinity:

QX52 R ^CXFk0&dSk . ~30!

This is the main result of this section. It shows that t
Noether charges associated withrigid spatial symmetries can
be represented as flux integrals when the fields under con
eration aresymmetric.

It is instructive to see how the general Noether curr
~24! assumes the special form~29! when the symmetry con
ditions ~26! are imposed. One has

Qm5XaTa
m52Xa^FmsFas&1

1

2
Xa@~D mF!†DaF

1~DaF!†D mF#2XmL. ~31!

Using Eqs.~27!, ~19!, and~23!, one obtains

FsmXm5DsCX , XmDmF5CXF. ~32!

As a result, the first term in Eq.~31! can be transformed as

2Xa^FmsFas&52^FsmDsCX&

52^Ds~FsmCX!&1^CXDsFsm&

52]s^CXFsm&

1
1

2
@F†CXD mF2~D mF!†CXF#, ~33!

where the equations of motion have been used. Inserting
into Eq. ~31! and using Eq.~32! the terms containing the
Higgs field exactly cancel, giving

Qm5XaTa
m52]s^CXFsm&2XmL, ~34!

which coincides with Eq.~29!.
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IV. CALCULATION OF THE ANGULAR MOMENTUM

Let us now chooseX5]w in Eqs.~25!,~30!. This gives the
conserved and gauge invariant angular momentum

J5E Tw
0d3x52 R ^~Aw2Ww!Fk0&dSk . ~35!

Here the second equality on the right applies for fields s
ject to the symmetry conditions~10!, Ww being the compen-
sating parameter in these conditions. In addition, one ha
make sure that, when transforming the volume integral i
the surface integral, the contribution of the inner boundary
zero. This can be checked in the gauge~11!, whereWw50
while Aw given by Eq.~12! is finite at the origin, so that the
integral over a small surface enclosing the origin would
nonzero only if the electric field was;1/r 2. This, however,
would imply that the total energy is infinite.

The surface integral structure ofJ shows that only the
asymptotic long-range tails of the fields can contribute to
angular momentum. In order to calculate this integral, it s
fices therefore to analyze the asymptotics of the fields n
spatial infinity, where the problem reduces to studying
linearized field equations. More precisely, let (Am ,F) be a
given static soliton solution withJ50. We consider all pos-
sible axial deformation of this solution with the only cond
tion that, asymptotically, the deformed configurations a
proach the initial static solution, such that they will belong
the same topological sector. Therefore, the deformed c
figurations can be described by (Am1cm ,F1f), where the
deformations (cm ,f) can be arbitrary, with the only condi
tion that they vanish asr→`. As a result, in the asymptotic
region the deformations satisfy the YMH equations line
ized around the (Am ,F) background:

DsDscm2DmDscs12@Fms ,cs#2Mabcm
a Tb

5
1

2
$f†TaDmF2~DmF!†Taf1F†TaDmf

2~Dmf!†TaF%Ta , ~36!

DsD sf1DscsF12csD sF

52l$~F†F21!f1~F†f1f†F!F%, ~37!

where the mass matrix is

Mab5
1

2
F†~TaTb1TbTa!F. ~38!

Our strategy now is to solve these linearized equations in
asymptotic region to see if there are modes giving a non
nishing contribution to the flux integral~35!. We shall study
axial deformations of all known topological solutions for th
gauge groupG5SU(2): ’t Hooft–Polyakov monopoles an
Julia-Zee dyons, sphalerons, and also vortices.
6-4
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A. ’t Hooft –Polyakov monopoles and Julia-Zee dyons

These are spherically symmetric solutions of YMH theo
with G5SU(2) and the Higgs field in the real triplet repre
sentation@18–20#. The gauge group generatorsTa are cho-
sen according to Eq.~5!, (Ta) ik52«aik . The mass matrix
~38! has one zero eigenvalue corresponding to a mass
gauge boson. Hence, there are long-range gauge field m
that may give a nonzero contribution to Eq.~35!.

Static, spherically symmetric YMH fields are charact
ized in this case by the following gauge connection and
Higgs field @passing in the gauge~11! to spherical coordi-
nates#:

A5V~r !T3dt1w~r !~2T2dq1T1 sinqdw!

1T3 cosqdw, ~39!

Fk5d3
kF~r !. ~40!

The field equations~8! and ~9! reduce to

~r 2V8!852w2V, ~41!

~r 2F8!852w2F1lr 2~F221!F, ~42!

r 2w95w~w221!1r 2~F22V2!w. ~43!

The ’t Hooft–Polyakov monopoles (V50) and Julia-Zee
dyons (V5” 0) are solutions of this system that are regular
the origin, corresponding toV(0)5F(0)50 and w(0)
51, while for larger they approach exponentially fast~for
l5” 0) the asymptotic values

V5S1
Q

r
, F51, w50, ~44!

with constantQ,S. These solutions have finite energy, ele
tric chargeQ, and unit magnetic charge. For non-zero valu
of the self-couplingl these solutions can be obtained n
merically. Forl50 the Higgs field is massless and has
long-range Coulomb tail:F511O(1/r ) as r→`. In this
case, the solution is known analytically@21#:

V5SF, F5cothCr2
1

Cr
, w5

Cr

sinhCr
, ~45!

with C5A12S2.
We would now like to study all possible axial deform

tions of these solutions in the asymptotic region by solv
the linearized equations~36! and ~37!. The first step is to
carry out a multipole decomposition of perturbations to ide
tify the most general modes corresponding to axial deform
tions of the background solutions. Since the backgrounds
spherically symmetric, the angular quantum numberj is con-
served and perturbations for different values ofj decouple
from each other. It is convenient to introduce the basis
complex one-forms
10500
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u05dt, u15dr, u25
r

A2
~dq2 i sinqdw!, u35~u2!* ,

~46!

whose nonzero scalar productsuab[(ua,ub) are u005
2u1152u2351. In addition, one introduces the new L
algebra basisL15T11 iT2 , L25T12 iT2 , L35T3. The
perturbations are then expanded as

cmdxm5Laca
aua, fa5^LaTb& f b. ~47!

A complete separation of the angular variables in the per
bation equations~36! and ~37! is achieved by making the
following ansatz:

ca
a5Za

a~r !sYjm~q,w!, f a5Ua~r ! sYjm~q,w!. ~48!

Here, sYjm(q,w) are the spin-weighted spherical harmoni
@22#. The quantum numbersj ,m are the same for all value
of the indicesa,a, while the values of the spin weightss
5s(a,a) ands5s(a) are determined by direct inspectio
of Eqs. ~36! and ~37! using the properties of the spin
weighted harmonics@22#.

Within the multipole decomposition obtained, we speci
ize to the dipole (j 51) and axially symmetric (m50) sec-
tor. The most general perturbations in this case are descr
by ~passing back to the standard basis!

c5S T1

Z1~r !

r
sinq1T3

Z2~r !

r
cosq Ddt1T2Z3~r !sinqdr

1T2Z5~r !cosqdq1@2T1Z5~r !cosq

1T3Z4~r !sinq#sinqdw,

fk5d1
k U1~r !

r
sinq1d3

k U2~r !

r
cosq. ~49!

This ansatz has a residualU(1) gauge symmetry generate
by the infinitesimal gauge transformations~7! with U
5exp(2L),

c→c1dL1@A,L#, f→f2LF, ~50!

whereL5a(r )T2 sinq. This symmetry does not change th
values ofZ2 andU2, while

Z1→Z12rVa, Z3→Z31a8, Z4→Z41wa,

Z5→Z51a, U1→U12raF, ~51!

which can be used to impose the gauge condition4 Z350.
Inserting now the ansatz~49! into the perturbation equation
~36! and~37!, the angular dependence decouples and we
tain a system of radial equations for the amplitud
Z1 ,Z2 ,Z4 ,Z5 ,U1 ,U2 which is listed in the Appendix. Insert
ing the ansatz into the angular momentum integral~35! gives
@we are working in the gauge~11! whereWw50]

4There remains one pure gauge mode generated by constanta.
6-5
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J5 lim
r→`

r 2 R ^~Aw1cw!~A01c0!8&sinqdqdw

5
4p

3
lim
r→`

r 2F2wS Z1

r D 8
1S Z2

r D 8
12V8Z4G . ~52!

Since the background amplitudes approach their asymp
values ~for large r ) exponentially fast, we can replac
V,F,w by their asymptotics~44!. This gives

J5
4p

3
lim
r→`

r 2F S Z2

r D 8
2

2Q

r 2
Z4G . ~53!

The asymptotic behavior of the amplitudesZ2 andZ4 is de-
termined from the radial equations~A2! and ~A3!, which in
the asymptotic region reduce to

S 2
d2

dr2
1

2

r 2D Z250, S 2
d2

dr2
1

2

r 2D Z450. ~54!

Solutions that are regular at infinity are

Z2;
1

r
, Z4;

1

r
. ~55!

Inserting these into Eq.~53! finally gives5

J50. ~56!

In fact, in order to ensure a nonzero value ofJ, the ampli-
tudesZ2 ,Z4 should approach nonzero constant values at
finity, which is not the case. The conclusion is that there
no stationary, axial deformations of the ’t Hooft–Polyak
monopoles and Julia-Zee dyons that would support a n
zero angular momentum. The same is true for higher~quad-
rupole, etc.! multipole deformations, since all of them deca
at infinity even faster than the dipole ones. This conclus
did not require smallness of deformations for allr, the only
requirement having been that deformed configurations m
approach the spherically symmetric solutions forr→`.6

B. Sphalerons and vortices

Sphalerons are spherically symmetric solutions of a YM
theory with G5SU(2) and the Higgs field in the comple
doublet representation@23,24#. The gauge group generato
Ta are thus chosen according to Eq.~6!, (Ta)5(1/2i )ta. In
the simplest case@23#, static and spherically symmetri

5The same result is obtained forl50, in which case all pertur-
bation equations can be solved exactly@3#.

6The rotational excitations of monopoles were also studied in R
@3#; this work, however, used thevolumeintegral representation o
the angular momentum. In view of this, it was necessary to ass
the perturbative regime of rotational deformationseverywhere, thus
restricting consideration to the case ofslowrotation. In our analysis,
on the other hand, the rotation is not assumed to be slow.
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YMH fields are characterized by the following purely ma
netic gauge connection and Higgs field:

A5w~r !~2T2dq1T1 sinqdw!1T3 cosqdw, ~57!

Fk5d1
kF~r !. ~58!

The field equations~8! and ~9! reduce to

~r 2F8!85
1

2
~w11!2F1lr 2~F221!F, ~59!

r 2w95w~w221!1
r 2

2
F2~w11!. ~60!

Sphalerons are solutions of this system which are regula
the origin @F(0)50, w(0)51# and approach the
asymptotic values

w521, F51 ~61!

for large r exponentially fast. The crucial point now is tha
all deformations of these background solutions also appro
zero exponentially fast. This is a manifestation of the fa
that the gauge symmetry of the vacuum~61! is broken com-
pletely, since all eigenvalues of the mass matrix~38! are
nonzero. As a result, there are no long-range solutions of
linearized field equations, and the angular momentum in
gral is zero. The only subtlety is the limitl→0, since then
the Higgs field becomes long range. However, as the ba
ground fields are purely magnetic, the equations for the m
general dipole, axially symmetric gauge field perturbatio
do not contain any Higgs field perturbations.7 The relevant
perturbation equations, therefore, contain only massive
plitudes. Thus, their solutions approach zero exponenti
fast. The conclusion8 is that there are no stationary and ax
ally symmetric spinning excitations of sphalerons.

To complete our considerations, we also want to consi
the YMH vortices. It is known that the Abelian Nielsen
Olesen vortex@25# does not admit spinning generalization
within the original YMH theory withG5U(1) @20#. How-
ever, it is not excluded that such generalizations may e
within a YMH theory with a larger gauge groupG. Let us
restrict consideration to cylindrically symmetric, i.e
z-independent, YMH fields. Then one can straightforward
obtain from Eq.~35! the angular momentum per unit leng
z,

J52 R ^~Aw2Ww!F0r&dl, ~62!

where the integration is over a circle of radiusr→` in a
plane of constantz. For spinning excitations that asymptot
cally approach the Nielsen-Olesen vortex, bothAw and Ww

stay finite asr→`, and so the integral will be nonzerof.

e
7The same thing happens for the dyons, since Eqs.~A1! and~A2!

decouple from the rest in the purely magnetic limitV→0.
8This conclusion also applies to the deformed sphalerons of@24#.
6-6
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only F0r;1/r. However, this would imply that the energy
divergent. The conclusion is that there are no axially sy
metric, spinning excitations of the Nielsen-Olesen vor
within YMH theory9 for a compact gauge groupG.

V. CONCLUDING REMARKS

Summarizing our results, we have shown that none of
‘‘canonical’’ topological solitons of theG5SU(2) YMH
theory admit spinning excitations in the stationary and a
symmetric one-soliton sector. Although not complete
eliminating all spinning solitons in gauge field theory, th
conclusion renders their existence somewhat less proba
Therefore, we would like to list the remaining possibilitie
for constructing spinning solutions~if they exist at all!. First,
one can try to consider YMH theories withG.SU(2),
which might work in the case of monopoles or dyons. T
pattern of symmetry breaking can be quite different
higher gauge groups and for different representations of
Higgs field. If there remain several massless gauge gr
generators after symmetry breaking, then there is a be
chance to have long-range modes giving a contribution to
angular momentum surface integral.10

The other possibility is to consider YMH systems that a
not symmetric under the combined action of axial rotatio
and gauge transformations, while their actionis symmetric.
The angular momentum then will still be conserved, bu
will be given by a volume integral. Thus, it may receiv
contributions also from short-range field modes.

Finally, we would like to make some remarks on the no
existence of rotating monopoles. First, it should be emp
sized that monopoles do not rotate only within classi
theory. Quantum monopoles, on the other hand,do have an-
gular momentum associated with the fermionic zero mo
@28#; this effect, however, disappears in the classical lim
For example, supersymmetric monopoles are conjecture
be dual to the elementary particles with spin~Monteon-Olive
duality!, thus implying that monopoles themselves have
spin. However, this spin is carried by the fermionic sup
partners of monopoles and not by the bosonic monopole c
figurations.

Second, it is well known that the angular momentum
an electric charge moving around a magnetic monopole c
tains an extra term that can be interpreted as the ang
momentum of the field@16#. At first glance, this disagree
with our conclusion that the angular momentum of t
monopole field is zero. However, this extra term does no
fact relate to the monopole alone, but to the system of b
charges, one of which is electric and the other magne

9Spinning vortices can exist in generalized YMH theories inclu
ing the Chern-Simons term@26,27#.

10In the Einstein-Yang-Mills theory, for example, where the sy
metry is not broken at all, there exist static solitons whose lin
axial deformations do support a nonzero angular momentum@11#. It
is, however, unclear at present whether these linear rotati
modes can be promoted to spinning solutions also at the nonli
level @4#.
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Even when these charges are at rest, the angular mome
of the total field*rW3(EW 3BW )d3x does not vanish. However
if the electric field EW of the electric charge is zero~no
charge!, the contribution of the magnetic charge alone w
be zero.

We would also like to emphasize once again that our
sults apply only within theone-solitonsector, thus showing
the absence ofspinningexcitations of isolated solitons. Out
side this sector one can have solutions withJ5” 0 describing
orbital motions of solitons. Such solutions are explicit
known in the case of rotating monopole-antimonopoles p
@3,4,8#.11 It is also not excluded that in many-soliton system
as for example in soliton scatterings, solitons might deve
some kind of spinlike deformation due to their mutual pola
ization. However, such deformations will tend to zero in t
limit of infinite separation of solitons.
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APPENDIX

In this appendix we list the full system of radial equatio
describing the most general stationary, axially symmetric
citations of the Julia-Zee dyons. These equations are
tained by putting Eq.~49! ~with Z350) into the field equa-
tions ~36! and ~37!,

05S 2
d2

dr2
1

w211

r 2
1F2D Z12

2w

r 2
Z21

V

r
~Z52wZ4!

2VFU1 , ~A1!

05S 2
d2

dr2
12

w211

r 2 D Z22
4w

r 2
Z12

4wV

r
Z5 , ~A2!

05S 2
d2

dr2
1

w212

r 2 D Z42
3w

r 2
Z51

w

r
~VZ12FU1!,

~A3!

05S 2
d2

dr2
1

3w2

r 2
1F22V2D Z52

3w

r 2
Z4

1
V

r
~2wZ22Z1!1

F

r
~U122wU2!, ~A4!

-

-
r

al
ar11However, axially symmetric dyons with higher values of top
logical charge@29# do not rotate@4#.
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05S 2rV
d

dr
1~rV!8DZ12

dZ5

dr
1S 2w

d

dr
1w8DZ4

1S rF
d

dr
2~rF!8DU1 , ~A5!

05S 2
d2

dr2
1

w211

r 2
2V21l~F221!D U12

2w

r 2
U2

1
F

r
~Z52wZ4!1VFZ1 , ~A6!

05S 2
d2

dr2
12

w211

r 2
1l~3F221!D U22

4w

r 2
U1

2
4wF

r
Z5 . ~A7!

It is instructive to verify that forl50 these equations adm
.

lar
t,’

v

10500
a global symmetry: if $Z1(r ),Z2(r ),Z4(r ),
Z5(r ),U1(r ),U2(r )% is a solution for the purely magneti
background$V(r )50,F(r ),w(r )%, then

Z1
g~r !5Z1~gr !1A12g2U1~gr !,

Z2
g~r !5Z2~gr !1A12g2U2~gr !,

U1
g~r !5U1~gr !1A12g2Z1~gr !,

U2
g~r !5U2~gr !1A12g2Z2~gr !,

Z4
g~r !5gZ4~gr !, Z5

g~r !5gZ5~gr !

is a solution corresponding to a ‘‘rotated’’ background ch
acterized by

Vg~r !5A12g2F~gr !, Fg~r !5F~gr !,

wg~r !5w~gr !.
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