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Existence of spinning solitons in gauge field theory
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We study the existence of classical soliton solutions with intrinsic angular momentum in Yang-Mills-Higgs
theory with a compact gauge grogpin (3+ 1)-dimensional Minkowski space. We show that for symmetric
gauge fields the Noether charges corresponding to rigid spatial symmetries, as the angular momentum, can be
expressed in terms of surface integrals. Using this result, we demonstrate in the ddseSbf2) the
nonexistence of stationary and axially symmetric spinning excitations for all known topological solitons in the
one-soliton sector, that is, for 't Hooft—Polyakov monopoles, Julia-Zee dyons, sphalerons, and also vortices.
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[. INTRODUCTION ons in Minkowski space cannot rotate sloy/B]. The same
conclusion holds for gravitating monopoles and sphalerons
The existence of globally regular soliton solutions with a[12]. In addition, it was noticed if4] that for axially sym-
nonvanishing angular momentum in classical field theory ignetric deformations of Julia-Zee dyons the angular momen-
an interesting open issue, which has recently been addressédn can be represented as a flux integral, a fact that was used
in a number of publication§l—7]. Up to now, such spinning in [4] to argue that dyons cannot rotate rapidly either.
solutions in Minkowski space have been found only in the In this paper we study the existence of spinning solitons
theory of a self-interacting complex scalar fiel® (pally N the context of Yang-Mills-Higgs(YMH) theory for an

[5].1 For these solutions the energy-momentum tensor is stg/Pitrary compact gauge groug in (3+1)-dimensional
tionary and axially symmetric, while the angular momentulinkowsk| space. First of all, we analyze the observation of

J~wN is generated by the rotating phase of the scalar fieltg4] that the angular_momentum of Julia-Zee dyons can be
D= p(r,9)e triNe expressed as a flux integral. It is natural to Won_der why such
It is natural to wonder whether rotating solitons can alsg? fepresentation of the angular momentum exists at all and

exist in gauge field theories with spontaneously broken Sym\_/vhether it can be generalized to other models. Usually, con-

metries. For stationary, axially symmetric systems the rotat—served quantities associated with Poincagenmetries in

: . , Minkowski space, such as, for example, the energy, are given
ing phase of the Higgs field can be gauged afvayionzero ; .
ar?gﬁlar momenturggcould then beg su%ported yc])nly by thé)y volume integrals and not surface integrals. We therefore

Poynting vector of the gauge field, and in fact such solution?at#ddy ;hue ;e?t:ﬂrﬂfgt'ﬁeze?f;zvﬁg?sﬁévﬁmnilsamsé ?(?Ii)cvsitémel
can indeed be obtained, as for example rotat[i3g] gauge sy ' 9-

monopole-antimonopole paif8—10]. However, the rotation For symmetricgauge fields, the action of r@gid spacetime

is then rather associated with the orbital motion in a many_symmetry generated by a Killing vectot is equivalent to

body system. The real challenge is to construct rotating sot—hat of alocal gauge symmetry generated by a Lie algebra

lutions in theonesoliton sector, where the rotation would valued functioniWy . Itis then a consequence of the Bianchi
indeed be associated with spinning excitations of an indi-'dentltles imposed by the local gauge symmetry that the No-

vidual object. For some strange reason, up to now such spir?—ther current for the global Poincasgmmetry is essentially

ning solitons have been found only in anti-de Sitter spac to:ﬁ' rdl\;]errgence.n It?} tgeb CaSXe rebatlrall k?ymme:?es, it:te iy
[6,7], while their possible existence in Minkowski space re- oether charge can then be expressed by a surface integra

mains rather obscure. In fact, the results obtained so far in
this area have all been negative. For example, it has been Oy= 4; ((Ax—Wy)FOYdS,, (1)
shown that 't Hooft—Polyakov monopoles and Julia-Zee dy-

whereAy is theX projection of the gauge field. In the case of

*Electronic address: volkov@phys.univ-tours. fr spatial rotationsX=4/d¢, this gives the conserved and

TElectronic address: pew@tpi.uni-jena.de gauge invariant angular momentum.

Uin curved space similar rotating solutions are known for a self- Making use of this representation of the angular momen-
gravitating scalar fieldboson stars[1,2]. tum, we then systematically study the fields in the

%It is not excluded that the action could be invariant under time@symptotic region near spatial infinity, looking for field
translations and axial rotations while the fields are not stationarynodes that could give a contribution to the surface integral.
and axially symmetric. In such a case it would not be possible tdn this way we show that for 't Hooft—Polyakov monopoles
gauge away the rotating phases. Such a possibility, however, i@nd Julia-Zee dyons there are no stationary, axially symmet-
beyond the scope of our present consideration. ric deformations giving a nonzero contribution to the angular
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momentum. We then carry out a similar analysis for sphale- 1

rons and also for vortices—with the same conclusion. As a D F7#= E[(DTTaD#(D_(DMq))TTa(D]Ta- (8
result, we in fact show the absence of stationary and axially

symmetric spinning excitations in the one-soliton sector for D,DHD= —NOTD-1)D, )

all known topological solitons with gauge grougy

=SU(2). The still remaining possibilities of constructing whereD,=4,+[A,, ] is the covariant derivative in the ad-
rotating solutions can then be related only either to studyingoint representanon

solutions with higher gauge groups or to considering fields |n what follows, we will consider stationary, axially sym-
that are not manifestly stationary or axially symmetric. metric fields subject to the symmetry conditidds]

Il. YANG-MILLS-HIGGS THEORY Le Ay=D Wn, L ®=-WndP, m=te. (10

The theory under consideration is a Yang-Mills-Higgs Here, £, are the Lie derivatives along the two Killing vec-
theory with compact gauge grogpdefined by the action tors &=, and £,=4,, while W,, are compensating Lie
algebra valued functions. The general solution of these equa-
Sywn = f 7%, (2)  tions is well known: since the two Killing vectors commute,
there exists a gauge whevé,,=0. Therefore, the symmetry
conditions in this gauge require simply the independence

where from t and¢. As a result, the most general solution is

1 1 N = a =
_Z<F#”FW>+E(D#Q))TDM(D_Z(CDT@_DZ' AL TaAM(p,Z)dx'“, P=P(p,z). (11
(3)  The regularity on the symmetry axis requires that

Here, the gauge field strength, ,=T,F?,,=d,A,—d,A, A (02)=f(2)T, (12
+[A,.A,] with the gauge fieldA,=T,A%. The anti-
Hermitian gauge group generatofg (a=1,2, .. .,dimG)
satisfy the relations

whereT is an element of the Cartan subalgebra of the Lie
algebra ofG and f(z) is a bounded function. Passing to a
new gauge with the gauge transformatidr= e~ ¢f@T will

[T, Tol=fapcTe, tr(ToTp)=Kap. (4) then sendA,(0,2) to zero.

The invariant scalar product in the Lie algebra is defined as  Ill. NOETHER CHARGES AS FLUX INTEGRALS
(AB)=(1/K) tr(AB). The Higgs field® is a vector in the

' . Conserved quantities in field theory are determined b
representation space ¢f where the generatofg, act; this q y y

! Noether charges corresponding to global symmetries of the
spacetcgn betcompflet}(] ordeﬁ) qf> Iéla TJ;]A )(Dt is the cho action. These charges can be expressed as volume integrals
variant derivative of the Higgs e € units are cnosenye ypa |ocal charge densities. In some cases, such as, for

such th?t the_gauge coupling constant a_md t_he_vacuum _val ample, for the electric charge, these volume integrals can
Of. the H|ggs field are qual to 1. Spacetime indices are lifte e further transformed to surface integrals. The reason for
with the Minkowski metric. this is as follows(see[14] for a discussioh Electric charge
Below, we will consider two important particular cases; is conserved owing to the invariance under global phase ro-
corresponding t@/=SU(2). TheHiggs field® then will be 54004 1 gauge field theory, this symmetry is a special case
chosen to be either in the real triplet representation, in Whlcfbf the local gauge invariance. The local gauge invariance
case leads to the existence of identity relations between the field
equationg(Bianchi identitie$ and implies the identical con-
(Ta)ik= = €aik. ®) servation of Noether's currents, since they can be repre-
sented as divergences of antisymmetric quanti{esme-

or in the complex doublet representation with times called superpotentials

T, - ou
Tazz_?, (6) ® —é’a[w(X)f ] (13)
Here, w(x) is the parameter of local gauge transformations,
where 7, are the Pauli matrices. the case of global phase rotations corresponding to constant
The action is invariant under gauge transformations w's. Since®? is a total divergence, the Noether charge can
be expressed as a surface integral.
A,—U(A,+ &M)U’l, d-UD, (7) The procedure described above is very well illustrated in
the context of general relativity, where the conserved energy,
where U is a G valued function. Varying the action with  momentum, and angular momentum are given by flux inte-
respect to the gauge and Higgs fields gives the equations gials. This can be traced back to the fact that the Poincare
motion symmetries are a special case of general spacetime diffeo-
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morphisms. For theories in Minkowski space, on the ’other OF=XT 43, ((X*"A,—W)F7-). (21)
hand, there is no diffeomorphism invariance, and so Poincare

symmetries are not related to any local symmetries. As @jere the tensor

result, the energy, for example, cannot be expressed as a flux

integral. However, forsymmetricgauge fields some of the

spacetime symmetries can be equivalent to local gauge syni= —(F*’F ,,(,)+ [(D*®)'D,®+ (D, @) D+d)— 6"~
metries in the sense that the result of Poindaa@sforma- 22)
tions can be compensated by gauge transformations. As a

result, the corresponding Noether charges will have esseNincides with the metrical energy-momentum tensor ob-

tially the same structure as in E_q13), and the _Noether tained by varying the action with respect to the spacetime
charges can be expressed as flux integrals. We will now ShOY¥1etnc This tensor is symmetric and divergence-free,
how this works in the context of YMH theory. wr—Q

. . J
e wad g The Nocthr curtert2 is consered and gge nar
internal gauge symmetries in order to give conserved aném' However, it is not yet completely defined, siias not
. ) ; ) . niquely determined by the conditiq20). This reflects the
gauge invanianicharges waﬁ}Noethers procedure.x_l’* IS@ " \well-known ambiguity in the definition of Noether currents,
Killing vector of th? syste then the correspondlng con- as they can always be changed by adding the divergence of
served and gauge invariant Noether current is an antisymmetric tensor. The way to uniquely define the No-
5% ether currentgsee, for examplg,15-17) is dictated by the
or=3 L SUB—XE Y (14) agreement with the general relativit$R), since they should
B d(d,u®) coincide with the conserved currents obtained from the met-
rical energy-momentum tensor. Theanonical Noether
Here,uB coIIectlver denotes the fields\(, ,® ,®"), and the  energy-momentum tensor will then be symmetric and will
variationssu® include the part generated b§# plus another coincide with the metrical one. All this is achieved if only
part due to an infinitesimal gauge transformation generatedne choosefl5,16|
by a Lie algebra valued functiow:

W= X“A,, (23
SuB= £ wuB— 5,uB. (15
) o [notice that this transforms according to E20)] in order to
Here, the Lie derivatives are get rid of the second term on the right in E@®1). The
Noether current then becomes
LA, =XC9 A, + A X,, Ly®=X%,D, (16)

M= X OTH
while the gauge variations are given by OF=XT, . (24)
SwA, =D, W, Sy®=—-Wb. (17)  This coincides with the standard GR current and leads to the
oo conserved charge expressed by the volume integral over the
The functionW is determined by the requirement that the three-space,
variationssu® transform under gauge transformatiars/a-

riantly, thus ensuring the gauge invariance of the Noether B w0 43
current. Using the identity15,16| Oy= | XoT d>x. (25)
LxAL=XF 0t D u(XA,), (18 This formula reproduces the known result for the conserved

and gauge invariant Noether charge associated with a rigid
PoincaresymmetryX* [15].

Let us now repeat the calculation above by assuming that
the symmetry generated b§/* is not only a symmetry of the
action, but also a symmetry of théelds in the sense that
there exists a Lie algebra valued functidfy such that

one obtains
OA,=XF 4, + D, (X*A,—W),
P =X*D,D—(X*A,—W), (19
which shows that the transformation law fdf must be
LXA,U,: D,LLWX y EX(I) = - WX(I) . (26)
W—U(W+X%9,)U", (20) " . . -
Substituting this into Eq(15) and using Eq(17) gives
since then X“A,—W) transforms covariantly. Having this
in mind and inserting Eqg15—(17) into Eq. (14), one ob- oA,=—D, ¥y, o6P=VyD, (27
tains after straightforward calculations
where Wy=W-Wy=X*A,—Wy. Therefore, the field

variations generated b¢* can in this case be viewed pare
*Thus, one hag,X,+4d,X,=0. gaugevariations. Inserting Eq27) into Eq. (14) gives
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1 1 IV. CALCULATION OF THE ANGULAR MOMENTUM
4= (F**D W)+ 5(D*®) "Wy D~ SO, D D . o

2 2 Let us now choos&=d,, in Egs.(25),(30). This gives the
conserved and gauge invariant angular momentum

— Xt L, (28)
and using the equations of moti this reduces to
g the eq 8 J=j TOd%x= — ff (A,—W,)F)dS,. (35
Ok = — 9 (WxF ™) = XM L. (29

. _ _ Here the second equality on the right applies for fields sub-
This almost has the structure of an identically conserved CUliact to the symmetry conditiond0), W, being the compen-
rent, if it were not for the last term. This term is the remnantsaiing parameter in these conditions. In addition, one has to
of the fact that the symmetries under consideration, although,axe sure that, when transforming the volume integral into

closely related to gauge symmetries, are actually spacetimge gyrface integral, the contribution of the inner boundary is
symmetries. Now, if the vectot” is spacelikeas is the case ;o109 This can be checked in the gaude), wherew,=0
. ’ )

for strictly spatial translations and rotations, then there exisf, jjije A given by Eq.(12) is finite at the origin, so that the

(3 ) ’
reference frames V\éh.ere the temporal comporlvé?wt.van- integral over a small surface enclosing the origin would be
ishes. As a result™ is a total divergence and its integral onzero only if the electric field was 1/r2. This, however,
over the spatial hypersurface can be transformed into a sufyg g imply that the total energy is infinite.
face integralprovided that there is no contribution from the The surface integral structure df shows that only the
inner boundary. The conserved and gauge invariant Noether,sy mptotic long-range tails of the fields can contribute to the
charge is then given by the flux integral over a closed tWongylar momentum. In order to calculate this integral, it suf-

surface at spatial infinity: fices therefore to analyze the asymptotics of the fields near
spatial infinity, where the problem reduces to studying the
Oy=— fﬁ (P FROdS,. (30) linearized field equations. More precisely, l& (,®) be a
given static soliton solution witd=0. We consider all pos-

sible axial deformation of this solution with the only condi-
tion that, asymptotically, the deformed configurations ap-
: i .proach the initial static solution, such that they will belong to
be represented as flux integrals when the fields under consi ie same topological sector. Therefore, the deformed con-
eration aresymmetric figurations can be described b&(+ 4, ,®+ ¢), where the

It is instructive to see how the general Noether currenty ¢ w0 c ¢ .4) can be arbitrary, with the only condi-
(2.4) assumes the special for(29) when the symmetry con- tion that they vgnish as—oo. As a result, in the asymptotic
ditions (26) are imposed. One has region the deformations satisfy the YMH equations linear-
ized around the4, ,®) background:

This is the main result of this section. It shows that the
Noether charges associated wittid spatial symmetries can

1
OF=XTy=—XYFIF )+ SXUD D) D@
DzrDolr///L_ D/LD(rlr//O'—i_ Z[F/ur ’ l/,a'] - Mabszb

+(D, D) DrD]— X . (31

Using Egs.(27), (19), and(23), one obtains - %{QSTT""D"@_(D“q))TTa(ﬁ-l_q)TTaD“qb

Fo X*=D, Uy, X‘D,0=Wyd. (32) —(D,¢) " Ta®}Ta, (36)
As a result, the first term in Eq31) can be transformed as D,D¢+D "D+ 24, DD
—XHF*F o) = —(F7*D V)
(D (F7M))+(W,D, FH) =—M@"®-1)p+(@Tp+ o' P)D}, (37
=— 9 WyF7*) where the mass matrix is

1
+ = [DT DD — (D D)W D], (33 1
o X xP] Mab=§¢T(TaTb+TbTa)¢>. (38)

where the equations of motion have been used. Inserting this
into Eg. (31) and using Eq.{32) the terms containing the Our strategy now is to solve these linearized equations in the

Higgs field exactly cancel, giving asymptotic region to see if there are modes giving a nonva-
nishing contribution to the flux integraB5). We shall study
OHF=XTh=—9 (VxF7*)— X' 7, (34  axial deformations of all known topological solutions for the
gauge grougy=SU(2): 't Hooft—Polyakov monopoles and
which coincides with Eq(29). Julia-Zee dyons, sphalerons, and also vortices.
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A. 't Hooft —Polyakov monopoles and Julia-Zee dyons

r
These are spherically symmetric solutions of YMH theory #°=dt, ¢*=dr, 6 E(dﬁ_' sindde), 6°=(6%)*,

with G=SU(2) and the Higgs field in the real triplet repre- (46)

sentation18—-20. The gauge group generatofg are cho-

sen according to EQ5), (Ta)ik=—eaik- The mass matrix whose nonzero scalar product®=(6% 6°) are §°=

(38) has one zero eigenvalue corresponding to a masslessg!l= — 22=1. In addition, one introduces the new Lie

gauge boson. Hence, there are long-range gauge field modagjebra basisL,=T,;+iT,, L,=T,;—iT,, L3=T3. The

that may give a nonzero contribution to E§5). perturbations are then expanded as
Static, spherically symmetric YMH fields are character-
ized in this case by the following gauge connection and the P dx=L,050% ¢2=(L,Ty)f". (47
Higgs field [passing in the gaugéll) to spherical coordi- . , )
nateg: A complete separation of the angular variables in the pertur-
bation equationg36) and (37) is achieved by making the
A=Q(r)Tzdt+w(r)(—=T,dd+T;sindde) following ansatz:
+Tzcosdde, (39 Pa=Zo(N)Yim(9, @), FA=U3r),Yin(9,¢). (48
dk= 55(1,(”_ (40) Here, Y (3, ¢) are the spin-weighted spherical harmonics

[22]. The quantum numbelism are the same for all values
of the indicesa, «, while the values of the spin weighss

=s(a,a) ando=oc(a) are determined by direct inspection
of Egs. (36) and (37) using the properties of the spin-

The field equation$8) and (9) reduce to

2007\ — 2
(r°Qy")" =2w, (42) weighted harmonic§22].
Within the multipole decomposition obtained, we special-
(r’®")" =2w?®+\r3(®2-1)P, (42 ize to the dipole {=1) and axially symmetricro=0) sec-
tor. The most general perturbations in this case are described
r2w” =w(w?—1)+r3(d2—-Q?)w. (43 by (passing back to the standard basis
The 't Hooft—Polyakov monopoles{X=0) and Julia-Zee 21 Zo(1) i
M / Pa =T, sing+T, cosd |dt+T,Z5(r)sinvdr
dyons () #0) are solutions of this system that are regular at r r
the origin, corresponding td2(0)=®(0)=0 and w(0) T+ T.Ze(r)cosId O+ — T-Ze(r)cosd
=1, while for larger they approach exponentially fagor 22s() [=Tazs(r)
A #0) the asymptotic values +T3Z4(r)sind]sindd e,
Ua(r) Ua(r)
Q=3+ % d=1, w=0, 44 = 5‘{Tsmﬁ+ 55 —cos?. (49)

. . - This ansatz has a residud(1) gauge symmetry generated
W.'th constanQ, .. These solu_tlons have finite energy, elec—by the infinitesimal gauge transformationd) with U
tric chargeQ, and unit magnetic charge. For non-zero values

of the self-couplingh these solutions can be obtained nu- =expC-L),

merically. ForA=0 the Higgs field is massless and has a y—yp+dL+[AL], ¢—p—LD, (50)
long-range Coulomb taild=1+O(1/r) asr—o. In this

case, the solution is known analyticallg1]: whereL = «(r) T, sind. This symmetry does not change the

values ofZ, andU,, while

1
Q=3®, &=cothCr——, w

Cr ~ sinhCr’ (49 2,—721—1Qa, Zz—Zzta', Z,—Z4+Wa,

Z5—>ZS+(1, U1—>U1—I’a<D, (51)
with C=1-32.

We would now like to study all possible axial deforma- which can be used to impose the gauge conditiBg=0.
tions of these solutions in the asymptotic region by solvinglnserting now the ansatz9) into the perturbation equations
the linearized equationé36) and (37). The first step is to  (36) and(37), the angular dependence decouples and we ob-
carry out a multipole decomposition of perturbations to identain a system of radial equations for the amplitudes
tify the most general modes corresponding to axial deformaZ,,Z,,Z4,Z5,U;,U, which is listed in the Appendix. Insert-
tions of the background solutions. Since the backgrounds ar@g the ansatz into the angular momentum inte@38) gives
spherically symmetric, the angular quantum nunjkisrcon-  [we are working in the gaugel) whereW,=0]
served and perturbations for different valuesj afecouple
from each other. It is convenient to introduce the basis of —
complex one-forms “There remains one pure gauge mode generated by comrstant
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YMH fields are characterized by the following purely mag-

J=limr? fﬁ ((Agt ) (Aot o) )sindddde netic gauge connection and Higgs field:
r—o

, , A=w(r)(=T,d9+T,;sinddg)+Tycosdde, (57)
47T ) Zl Zz
=—1limr? 2w(— +| = +ZQ’Z4} (52) o«

3, r DK= KD (r). (58)

Since the background amplitudes approach their asymptoti€he field equation$8) and(9) reduce to

values (for large r) exponentially fast, we can replace 1
Q,®,w by their asymptoticg44). This gives (r2dp’)’ = E(W+l)2¢+“2(¢z_ 1)®, (59)
4 Z,\" 2
J= Tlimr2 (—2) ——(324 . (53 r2

3 r raw” =w(w?—1)+ §d>z(w+ 1). (60)

The asymptotic behavior of the amplitudés andZ, is de-
termined from the radial equatiori82) and (A3), which in
the asymptotic region reduce to

d2

22=0. (‘ﬁ

2 2
- — 4+ +21z,=0. (54
dr?  r? 2]t 54

Solutions that are regular at infinity are

Sphalerons are solutions of this system which are regular at
the origin [®(0)=0, w(0)=1] and approach the
asymptotic values

w=-1, &=1 (61
for larger exponentially fast. The crucial point now is that
all deformations of these background solutions also approach

zero exponentially fast. This is a manifestation of the fact
that the gauge symmetry of the vacu@éi) is broken com-

1 1
ZZ~F, Z4~F (55  pletely, since all eigenvalues of the mass mati38) are
nonzero. As a result, there are no long-range solutions of the
. . ' . linearized field equations, and the angular momentum inte-
Inserting these into E¢53) finally gives’ gral is zero. The only subtlety is the limit—0, since then
J=0 (56) the Higgs field becomes long range. However, as the back-

ground fields are purely magnetic, the equations for the most

In fact, in order to ensure a nonzero valueJothe ampli- general dipol_e, axially symmetric gauge_field perturbations
tudesZ,,Z, should approach nonzero constant values at ind0 Not contain any Higgs field perturbatioh3he relevant

finity, which is not the case. The conclusion is that there aré)grturbanon equations, thgrefore, contain only massive am-
no stationary, axial deformations of the 't Hooft—Polyakoy Plitudes. Thus, their solutions approach zero exponentially
monopoles and Julia-Zee dyons that would support a norfast. The conclusidhis that there are no stationary and axi-
zero angular momentum. The same is true for highead-  &lly Symmetric spinning excitations of sphalerons. .
rupole, etd. multipole deformations, since all of them decay N To complete our copggeratmni, wehalsobw?nt to _(:(l)n3|der
at infinity even faster than the dipole ones. This conclusiofl® YMH vortices. It is known that the Abelian Nielsen-
did not require smallness of deformations for mithe only ~ O/€Sen vorte25] does not admit spinning generalizations

requirement having been that deformed configurations mué’f’ithin_the original YMH theory With(j:U(_l) [.20]‘ How- .
approach the spherically symmetric solutions ffes . ever, it is not excluded that such generalizations may exist
' within a YMH theory with a larger gauge group Let us

restrict consideration to cylindrically symmetric, i.e.,

z-independent, YMH fields. Then one can straightforwardly
Sphalerons are spherically symmetric solutions of a YMHobtain from Eq.(35) the angular momentum per unit length

theory with G=SU(2) and the Higgs field in the complex z

doublet representatiof23,24]. The gauge group generators

T, are thus chosen according to E), (T,)=(1/2))72 In

the simplest casg23], static and spherically symmetric

B. Sphalerons and vortices

J=— 3@ ((A,—W,)Fo,)dl, (62)

where the integration is over a circle of radigs-e in a

5The same result is obtained far=0, in which case all pertur- plane of constanz. Fo_r spinning excitations that asymptoti-
bation equations can be solved exad8y. cally approach the Nielsen-Olesen vortex, béghandW,,
®The rotational excitations of monopoles were also studied in RefStay finite asp—co, and so the integral will be nonzero if
[3]; this work, however, used theolumeintegral representation of
the angular momentum. In view of this, it was necessary to assume
the perturbative regime of rotational deformati@verywherethus
restricting consideration to the casestdwrotation. In our analysis,
on the other hand, the rotation is not assumed to be slow.

"The same thing happens for the dyons, since Es) and(A2)
decouple from the rest in the purely magnetic lifit-0.
8This conclusion also applies to the deformed sphalerorig4if

105006-6



EXISTENCE OF SPINNING SOLITONS IN GAUE. .. PHYSICAL REVIEW D 67, 105006 (2003

only Fo,~ 1/p. However, this would imply that the energy is Even when these charges are at rest, the angular momentum

divergent. The conclusion is that there are no axially symvf the total field/r x (Ex B)d®x does not vanish. However,
metric, spinning excitations of the Nielsen-Olesen vorteXe the electric field E of the electric charge is zer@o

within YMH theory” for a compact gauge group charge, the contribution of the magnetic charge alone will
be zero.

We would also like to emphasize once again that our re-
sults apply only within theone-solitonsector, thus showing

Summarizing our results, we have shown that none of théhe absence agpinningexcitations of isolated solitons. Out-
“canonical” topological solitons of theG=SU(2) YMH side this sector one can have solutions withO describing
theory admit spinning excitations in the stationary and axi-orbital motions of solitons. Such solutions are explicitly
symmetric one-soliton sector. Although not completelyknown in the case of rotating monopole-antimonopoles pairs
eliminating all spinning solitons in gauge field theory, this[3,4,8."* Itis also not excluded that in many-soliton systems,
conclusion renders their existence somewhat less probablas for example in soliton scatterings, solitons might develop
Therefore, we would like to list the remaining possibilities Some kind of spinlike deformation due to their mutual polar-
for constructing spinning solutior(¥ they exist at all. First,  ization. However, such deformations will tend to zero in the

V. CONCLUDING REMARKS

one can try to consider YMH theories witg>SU(2), limit of infinite separation of solitons.
which might work in the case of monopoles or dyons. The
pattern of symmetry breaking can be quite different for ACKNOWLEDGMENTS

higher gauge groups and for different representations of the
Higgs field. If there remain several massless gauge group M.S.V. thanks Peter Forgacs for numerous discussions
generators after symmetry breaking, then there is a betteand acknowledges conversations with Bernard Julia, Jochum
chance to have long-range modes giving a contribution to thgan der Bij, and Eugen Radu. E.W. thanks Tom Heinzl for
angular momentum surface integtl. many discussions and a careful reading of the manuscript.
The other possibility is to consider YMH systems that areThe work of E.W. was supported by the DFG. We would also
not symmetric under the combined action of axial rotationslike to thank Andreas Wipf for his support and comments.
and gauge transformations, while their actisrsymmetric.
The angular momentum then will still be conserved, but it
will be given by a volume integral. Thus, it may receive
contributions also from short-range field modes. In this appendix we list the full system of radial equations
Finally, we would like to make some remarks on the non-describing the most general stationary, axially symmetric ex-
existence of rotating monopoles. First, it should be emphagitations of the Julia-Zee dyons. These equations are ob-
sized that monopoles do not rotate only within classicakained by putting Eq(49) (with Z;=0) into the field equa-
theory. Quantum monopoles, on the other hatwhave an-  tions (36) and(37),
gular momentum associated with the fermionic zero modes

APPENDIX

[28]; this effect, however, disappears in the classical limit. 2 2
For example, supersymmetric monopoles are conjectured to _( _ d w+i 2) _ 2w Q _
p ' p y ) p . ] N 0— —+ +(I) Zl _Zz+_(25 WZ4)

be dual to the elementary particles with sgliionteon-Olive dr? r2 r2 r
duality), thus implying that monopoles themselves have a
spin. However, this spin is carried by the fermionic super- —QoUy, (A1)
partners of monopoles and not by the bosonic monopole con-
figurations. a2 w2+1 4w A0

Second, it is well known that the angular momentum of 0=< 22—y 2y —— s, (A2)
an electric charge moving around a magnetic monopole con- dr r r r

tains an extra term that can be interpreted as the angular
momentum of the field16]. At first glance, this disagrees ( d2

with our conclusion that the angular momentum of the 0=
monopole field is zero. However, this extra term does not in

fact relate to the monopole alone, but to the system of both (A3)
charges, one of which is electric and the other magnetic.

w
Z4_r_225+ T(Qzl_q)ul),

e 3wt 3w
0= —F-Fr—z'i‘q) -0 Zs—r—224

9Spinning vortices can exist in generalized YMH theories includ-
ing the Chern-Simons terii26,27. Q ®
9 the Einstein-Yang-Mills theory, for example, where the sym- +—(2wZ,—Z;) + —(U;—2wU,), (A4)
metry is not broken at all, there exist static solitons whose linear r r
axial deformations do support a nonzero angular momeiun It
is, however, unclear at present whether these linear rotational
modes can be promoted to spinning solutions also at the nonlinear'*However, axially symmetric dyons with higher values of topo-
level [4]. logical chargd29] do not rotatd 4].
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d / dzs d / global symmetry: it {Z(r),Z5(r),Z4(r),
0=| —rQ g +(r Q) |Zy ==+ | —wg +w' | Z, Z5(r),U4(r),U,(r)} is a solution for the purely magnetic
background Q(r)=0,d(r),w(r)}, then
d
+ r¢a—(r®)')U1, (AS) ZY(r)=Zy(yr)+ V1= y°Uy(yr),
a2 wi+1 ow ZY(r)=Zy(yr)+ V1= »"Us(yr),
0: _—2+ > _QZ+)\((I)2_1) Ul__2U2
dre r UI(r) =Us(yr)+ 1= y*Zi(yr),
b
+ T (Zs—WZy) + 007, (A6) U3(r)=Ua(yr)+ V1= 9°Z5(y1),
ZX(r)y=yZ4(yr), ZX(r)=yZs(yr
) 92 W2t 1 ) aw A(1)=yZy(yr) &(r)=vyZs(yr)
0=| - W+2 2~ TAMBPT-1) U, r—2U1 is a solution corresponding to a “rotated” background char-
acterized by
4wd
e (A7) QYN =VI= Y2 (yr), DU(1)=D(y1),

It is instructive to verify that foln =0 these equations admit wY(r)=w(yr).
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