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Thick domain wall spacetimes with and without reflection symmetry
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We show that different thick domain wall spacetimes, for which the scalar field configuration and the
potential are the same, can be found as solutions to the coupled Einstein-scalar field equations, depending on
whether or not reflection symmetry on the wall is imposed. Spacetimes with reflection symmetry may be
dynamic or static, while the asymmetric ones are static. Asymmetric walls are asymptotically flat on one side
and reduce to the Taub spacetime on the other. Examples of asymmetric thick walls inD-dimensional space-
times are given, and previous analysis on the distributional thin-wall limit of the dynamic symmetric thick
walls are extended to the asymmetric case. A new family of reflection symmetric, static thick domain wall
spacetimes, including previously known Bogomol’nyi-Prasad-Sommerfield walls, is presented.
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I. INTRODUCTION

Scalar fields as sources for the Einstein field equati
have been the subject of recent interest. Configurations
a plane-parallel symmetry, i.e. scalar field walls, are parti
larly appealing, since they can be topologically stable.
though in four dimensions they are in conflict with standa
cosmology@1#, in theories with extra dimensions the pos
bility of realizing four-dimensional gravity in a 3-brane o
thin domain wall@2#, already suggested in@3#, has attracted
wide attention.

Self-gravitating domain walls are solutions to the coup
Einstein-scalar field system, with a potentialV(f) possess-
ing a ~spontaneously broken! discrete symmetry. The
coupled system of equations is solved for the fieldf and the
metric tensor componentsgab . A topological charge for the
wall is obtained by mapping the values off at spatial infin-
ity to the vacuum manifold in a nontrivial way. To simplif
matters, one looks for solutions representing static dom
walls; that is, one requires the energy and momentum den
to be time independent. Because the field is required to
values at the~degenerate! minima of the potential at spatia
infinity on both sides of the wall, the energy and moment
densities are invariant under reflections on the wall’s pla

These features of the domain wall solution, staticity a
reflection symmetry, need not be shared by the space
metric. As shown by Vilenkin@4#, the most general stati
vacuum solution with plane-parallel and reflection symme
obtained by Taub@5# cannot be the external spacetime of
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true domain wall source~in the absence of a cosmologic
constant!. The first vacuum solution for a spacetime conta
ing an infinitely thin sheet of scalar field compatible with th
equation of state of a domain wall was obtained in@4#. The
spacetime is not static, but has a de Sitter expansion on
wall’s plane. Other vacuum solutions can be found by add
a cosmological constant, or by allowing for curvature on t
wall. Once all the possible vacuum solutions are known, th
can be appropriately matched across a surface with
Darmois-Israel thin shell formalism, and all the possible s
lutions representing an infinitely thin wall spacetime ha
thus been found and classified@6,7#. Infinitely thin walls
have distributional energy-momentum tensor fields prop
tional to a d distribution supported on the wall’s surfac
However, as pointed out in@8#, a thin wall limit may be a
very artificial construction in terms of the coupling constan
of the underlying theory, in addition to the fact that distrib
tional curvatures are in general ill defined due to the non
earities of general relativity@9#.

Dynamic and reflection symmetric spacetimes as so
tions to the coupled Einstein-scalar field equations with
symmetry breaking potential have also been found@10,11#,
representing a thick domain wall with the appropriate bou
ary conditions for the scalar field at spatial infinity that gua
antee topological stability. On the other hand, one can ha
static metric as long as the wall is allowed to interpola
between anti–de Sitter~AdS! asymptotic vacua, the so-calle
Bogomol’nyi-Prasad-Sommerfield~BPS! walls @12,13#. The
thin wall limit of these configurations was studied in@14#.

Within the thin wall context,@15# envisages the situation
in which the reflection symmetry is relaxed and consid
static thin domain walls embedded in spacetimes with v
ishing cosmological constant. These and the non-reflec
symmetric thin domain walls between spacetimes with ne
©2003 The American Physical Society03-1
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tive and zero cosmological constant are discussed in@16#.
Asymmetric thin domain wall spacetimes or asymmet
brane-world scenarios in which the reflection symme
along the extra dimension was broken by gluing two A
spacetimes with different cosmological constants have b
considered in@17–20#, and their possible realization by th
introduction of a gauge form field has been proposed in@21#.
For thick domain wall spacetimes, a less known result is t
the condition of staticity of the metric can be maintain
even in the absence of a cosmological constant term, if on
willing to sacrifice reflection symmetry. We only know of a
example in the literature so far, for a domain wall in fo
dimensions, that interpolates between a Minkowski an
Taub spacetime@11#. This solution to the coupled Einstein
scalar field equations has the peculiarity of having the sa
scalar field potentialV(f) as the well-known dynamic solu
tion of Ref. @10#, which has prompted us to study this iss
in more detail, and to consider the extension to high
dimensional spacetimes.

In what follows we show that two types of thick doma
wall spacetimes can be found as solutions of the Einst
scalar field equations inD dimensions, for which the scala
field f and the potentialV(f) are the same:~a! reflection
symmetric spacetimes, either with a de Sitter expansion
the wall’s plane or static ones representing walls embed
in a spacetime with a cosmological constant, and~b! asym-
metric static spacetimes, interpolating between Minkow
and Taub spacetimes~rather, theirD-dimensional equiva-
lents!. They are found with the same boundary conditions
f at infinity, and their energy density is in both cases sta
and reflection symmetric. Thus, the metric is not uniqu
determined but depends on subsidiary conditions impose
its components.

Both classes of spacetimes cannot be related with a c
dinate transformation, but there is a one-to-one corresp
dence between the dynamic and the asymmetric soluti
We take advantage of this by applying a recently repor
method@14# for solving the coupled Einstein-scalar field sy
tem to obtain asymmetric solutions, by appropriately scal
the vacuum solutions. Results reported in@14# concerning
the thin-wall limit of these solutions are shown to be valid
the asymmetric case. The results are then extended to
general case of a (D-2)-dimensional brane in a
D-dimensional spacetime.

In order to obtain further examples, we show how n
solutions can be obtained by a different way of scal
vacuum solutions. A particularly interesting class of sta
solutions representing a parametric family of ‘‘doubl
walls, i.e. walls with energy density concentrated in two p
allel sheets, is considered in some detail. These walls red
to a known BPS thick domain wall@22# for a particular value
of the parameter. Other solutions, for theories with less
pealing scalar field potentials, are also presented.

II. DYNAMIC VS ASYMMETRIC SOLUTIONS

The most general metric for a 5-dimensional spacet
with a plane-parallel symmetry can be written as
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gab5e2m(j)@2dtadtb1C~j,t !2dxa
i dxb

i #1e2n(j)djadjb
~1!

where latin indices run over the spatial variables on
brane. The functionm(j) in Eq. ~1! is redundant, since only
two functions are needed in general. We will keep it, ho
ever, and choose it conveniently as a function ofn(j) and
C(j,t) later. We look for solutions to

Gab1gabL5Tab ,

Tab5]af]bf2gabS 1

2
]cf]cf1V~f! D , ~2!

satisfying the requirements
~1! f5f(j).
~2! V(f) has a~spontaneously broken! discrete symme-

try.
~3! f(j) takes different values at two different minima o

V(f) for uju→`.
~4! f(j)82 is symmetric under reflections in thej50

plane ~here and in what follows primes denote derivativ
with respect toj and dots denote derivatives with respe
to t).

Following the usual strategy, we will first findC(j,t) by
imposing the requirements of staticity and reflection symm
try of f(j)82 andV„f(j)…, given by

f~j!825e2n~G4
42G0

0!, ~3!

V„f~j!…1L52
1

2
~G4

41G0
0!, ~4!

and then look for solutions$f(j),V(f1L% in terms of the
‘‘warp factor’’ n(j). We have from Eq.~2!

G4
053e22m

Ċ8

C
50, ~5!

thereforeC(j,t) is the sum of a function fort and a function
of j. With this, by requiring

G0
02G1

1522e22mS Ċ

C
D .

1e22nF S C8

C D 8
1

C8

C S 4m82n813
C8

C D G50 ~6!

for arbitraryn(j), two types of solutions are possible.

A. Static solutions, with CÄC„j…Æeg„j…

Since the most general static metric can be written
terms of two functions, we can conveniently set

m5
1

4
n2

3

4
g. ~7!
3-2
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In this case Eq.~6! is integrated to giveg(j)5bj and we
have

fA8
25

3

4
@n822b22n9# ~8!

V~f!A52
3

8
e22nn92L ~9!

static as required. They will also be reflection symmetric
n(j) is.

B. Dynamic solutions, with CÄC„t…Æeh„t…

Equation~6! givesh(t)5bt, and we can now setm5n,
obtaining

fB8
253@n822b22n9# ~10!

V~f!B52
3

2
e22n@n913n8223b2#2L. ~11!

While we have ensured that the field’s gradient and
tential are static and symmetric under reflections in thej
50 plane, the spacetimes of solutionsA andB are not. The
metric of solutionsA is manifestly asymmetric, althoug
static

~gA!ab5en(j)/223bj/2@2dtadtb1e2bjdxa
i dxb

i #

1e2n(j)djadjb . ~12!

Instead, the metric in solutionsB is dynamic, but symmetric

~gB!ab5e2n(j)@2dtadtb1e2btdxa
i dxb

i #1e2n(j)djadjb .
~13!

Solutions of typeB are encountered in the literature, both
4 and 5 dimensional spacetimes@10,14,22,23#, while only
one example of those of typeA has been discussed, in
dimensions@11#.

The coupled system of equations~2! has now to be solved
by proposing a warp factor such that$f(j),V(f)% can be
integrated. The remarkable point is that the equation forf is
the same in both cases. Therefore the warp factors
vacuum solutions in both spacetimes, obtained by integra
the equationsf8250 for n(j), are the same. However, th
spacetimes will have different cosmological constants.

Now, in Ref. @14# we presented a method for generati
solutions to the system~2! ~in 4 dimensions! with a space-
time of typeB by scaling the vacuum solutions. Specifical
we showed that ifn0(j) is a vacuum solution with a~non-
null! cosmological constantL0, the system can be integrate
with the function

n~j!5dn0~j/d! ~14!

where 0,d,1. This holds true for a higher-dimension
wall, and, more importantly, for spacetimes of typeA. We
obtain
10500
f
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f5A2L0

a
Ad~12d!E

j0

j/d
en0(v)dv ~15!

V~f!5
@11d~a21!#

a

L0

d
exp@2n0~j/d!~12d!#, L50,

~16!

wherea51 for caseA anda54 for caseB.
So, it is not only possible to generate solutions for asy

metric spacetimes by using this method: the point is that
scalar field and the potential in the asymmetric and the
namic cases differ by an overall constant only. Therefo
given a theory with a scalar potential, two solutions can
found to the Einstein-scalar field equations with essentia
the same scalar field configuration, but representing differ
spacetimes.

To further illustrate this point, consider the solution foun
by scaling the vacuum solutionn0(j)52 ln@cosh(bj)#, L0
53a2b2/8:

n~j!52d ln@cosh~bj/d!#. ~17!

We have

f~j!5f0tan21@sinh~bj/d!#, f05A2L0

a

Ad~12d!

b
,

~18!

V~f!5
@11d~a21!#

d

L0

a
@cos~f/f0!#2(12d). ~19!

With the dynamic metric of caseB, this is just the
5-dimensional analogue of Goetz’s solution@10,23#. With the
asymmetric metric of caseA, this is the 5-dimensional ana
logue of the solution found in@11#.

We now wish to make contact with the brane-world sc
narios and take the thin wall limit of Eqs.~12!,~17! and its
curvature tensor fields. In Ref.@14#, it was shown that the
domain wall spacetime with metric given by Eqs.~13!,~17!
has a well-defined thin wall limit. The corresponding asy
metric wall shares this property.

It is easy to see that Eqs.~12!,~17! are a regular metric in
the sense of@9#. We have that bothgab and (g21)ab are
locally bounded. Further, withhab the ordinary Minkowski
metric in 5 dimensions, we find that the weak derivative
hab of gab exists and is locally square integrable. Hencegab
can be considered as a distributional metric and its curva
tensor fields make sense as tensor distributions. Taking
d→0 limit ~in the sense of distributions! we find

lim
d→0

gab5e2b(uju13j)/2@2dtadtb1e2bjdxa
i dxb

i #

1e22bujudjadjb ~20!

lim
d→0

Gb
a52

3

2
bd~j!@] t

adtb1]xi
a dxa

i #. ~21!
3-3
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For j.0, Eq. ~20! is just the Minkowski spacetime, while
for j,0 it is the 5-dimensional analogue of the Taub so
tion @5#. By performing two different coordinate transform
tions, the metrics on both sides of the wall can be cast
more familiar form ~see @11# for this, and for a detailed
analysis of geodesics in the 4-dimensional case!. Hence, the
spacetime withgab given by Eqs.~12!,~17! is an explicit
realization of an asymmetric thick domain wall spacetim
with a well defined thin domain wall limit.

III. EXTENSION TO D DIMENSIONS

It is straightforward to extend these results for a th
(D-2)-brane embedded in aD-dimensional spacetime. Writ
ing the metrics as

~gA!ab5e2(n(j)2(D22)bj)/(D21)@2dtadtb1e2bjdxa
i dxb

i #

1e2n(j)djadjb ~22!

~gB!ab5e2n(j)@2dtadtb1e2btdxa
i dxb

i 1djadjb#
~23!

we get

f~j!825aD

~D22!

~D21!
@n822b22n9# ~24!

V~j!52
aD

2

~D22!

~D21!
e22n@n91~aD21!~n822b2!#2L,

~25!

where nowaD51 for caseA andaD5D21 for caseB. In
particular, withn(j) given by Eq.~17!, solutions~18! and
~19! for the field and the potential are found, withL0

5b2aD
2 (D22)/2(D21).

One can now proceed to obtain other solutions by sca
all the vacuum solutions, namely,

n5 ln@cosh~bj!#, L05aD
2 b2

2

D22

D21
~26!

56bj, L050 ~27!

5 ln@sinh~bj!#, L05aD
2 b2

2

D22

D21
~28!

whenbÞ0, and

n5 ln~aj!, L05aD

a2

4
~29!

50, L050 ~30!

whenb50, wherea is an integration constant. Notice th
with metric A, the two solutions~27! correspond to the
D-dimensional analogues of Minkowski and Taub spa
times, respectively. A number of solutions were found in R
@14# for the dynamic spacetime of caseB by scaling these
vacuum solutions. For each of these solutions there is a
10500
-

a

g

-
f.

r-

responding asymmetric one. However, it was shown t
among them the only domain wall solution, meaning one t
interpolates between two minima of the potential, is~17!–
~19! and this is also true for the asymmetric solutions.

It should be stressed that the asymmetric thick bra
considered arise as solutions to the Einstein-scalar fi
equations with asymmetric potentialpossessing aZ2 sym-
metry. Furthermore, the spacetime asymmetry cannot
eliminated by a coordinate change. This can be readily s
from the Kretschmann scalar (K5RabgdRabgd),

KA5
2e24n

~D21!3
@2~D21!2n9224~D21!~D22!n9

3~n822b2!1~D22!~2D23!~n822b2!2

12b2~D22!2~D23!~n81b!2# ~31!

which for the solution~17!–~19! is manifestly asymmetric

KA5
2

~D21!3
b4@cosh~bj/d!#24(12d)

3F22
1

d2
~D21!224

1

d
~D21!~D22!

1~D22!~2D23!12~D22!2

3~D23!cosh2~bj/d!e22bj/dG ~32!

and diverges asj→`, but goes to zero forj→1`. The
asymmetry is not present in the Ricci scalar, which vanis
for uju→`. The corresponding solutions of typeB, on the
other hand, are asymptotically flat. Notice that while t
asymmetric solutions are static, they are not in general B
domain walls.

The fact that the scalar potential for these two differe
solutions is the same is a consequence of the scaling pr
dure we have followed. In the next section, we generate o
thick domain wall solutions that do not share this property
proposing a different type of scaling.

IV. A SYMMETRIC, STATIC FAMILY OF WALLS

The warp factor for a thick domain-wall solution can b
obtainedvia scaling of the vacuum solutions warp factors
more than one way. A very useful one is the following: ta
two different vacuum solutions with warp factors exp(n1) and
exp(n2), respectively, and define the warp factor for the thi
wall as

n~j!52
1

2s
ln@exp~22sn1!1exp~22sn2!#. ~33!

It turns out that the Einstein-scalar field equations can alw
be integrated with Eq.~33!. Naturally, this scaling will pro-
vide asymmetric as well as dynamic solutions, and as co
be expected, it will work for the spacetimes of arbitrary d
3-4
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THICK DOMAIN WALL SPACETIMES WITH AND . . . PHYSICAL REVIEW D 67, 105003 ~2003!
mensions considered in the previous section. In@23# this type
of scaling has been used for a pair of vacuum solutions
5-dimensional spacetime of typeB.

We get solutions with metrics~22! or ~23! for f(j) and
V(j) as

f~j!5A~D22!aD

D21

A2s21

2s
tan21@sinh~sDn!# ~34!

V~j!5
aD

2

D22

D21
e2nH cosh22~sDn!

4
@~2s21!~Dn!82

2aD~n18e
2sDn1n28e

sDn!2#1aDb2J ~35!

whereDn[n22n1. By choosing the vacuum solutions~27!,
the result~17!–~19! is recuperated. In this case, the para
eter s plays the role of the inverse of the wall’s thicknes
d21, but this is not true in general.

The particular case of symmetric, static solutions is fou
by using vacuum solutions withb50, namely taking

n52
1

2s
ln@11~aj!2s#. ~36!

We get, forD55,

f5f0tan21~asjs!, f05
A3~2s21!

s
, ~37!

V~f!1L53a2sin~f/f0!222/sF2s13

2
cos2~f/f0!22G ,

~38!

so thatL526a2. In this case, the parameters cannot be
identified with the wall’s inverse thickness. Solutions ex
only for s a positive integer, and fors even they are no
domain walls, since the field takes values at infinity at
same minimum of the potential. Fors51, this solution has
been presented in@22# in 5 dimensions. A change of coord
nates allows one to identify it with the regularized version
the usual Randall-Sundrum brane. For other~odd! values of
s, the potential has a local minimum between two glob
ones. In a region around the origin, the field takes value
this local minimum, and falls to~different! global minima at
spatial infinity.

Let us take a closer look at the solutions withs odd. We
would like to explore the thin-wall limit of these configura
tions. Following @14#, we introduce a new parameterd by
scaling the solutions~36! so that the metric is now

dgab5F11S aj

d D 2sG2d/s

~2dtadtb1dxa
i dxb

i !b f

1F11S aj

d D 2sG21/s

djadjb . ~39!

Notice that the scaling is performed so that this is stil
solution to the Einstein-scalar field equations with
10500
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f~j!5f0tan21S asjs

ds D , f05
A3d~2s21!

s
, ~40!

V~f!1L53a2sin~f/f0!222/s

3F2s14d21

2d
cos2~f/f0!22G , ~41!

and

Gj
j56a2F11S aj

d D 22sG1/s22

~42!

Gt
t56a2F11S aj

d D 22sG1/s22H 11
122s

2d S aj

d D 22sJ . ~43!

The function2Gt
t , i.e. the energy density, has two maxim

at

j656d@~s21!/~s12d!#1/(2s) ~44!

and the wall can in this sense be considered a ‘‘double w
for s.1.

It is not difficult to show that the metric~39! is regular in
the sense of Ref.@9#, thus all the curvature tensor fields mak
sense as distributions. Taking the distributional limit asd
→0 of Eqs.~42!,~43! we obtain

lim
d→0

Gj
j56a2,

lim
d→0

Gt
t56a223a

~2s21!

s

FGS 12
1

2sD G
2

GS 22
1

sD d~j! ~45!

corresponding to an infinitely thin domain wall located atj
50 embedded in an AdS5 spacetime. However, ford→0
Eq. ~39! is not a regular metric in the differentiable structu
arising from the given chart, and we cannot use the appr
mation theorems of@9# in order to relate the limit of the
curvature tensor distributions with the limit of the metr
tensor field. Whether or not a metric is regular depends
general on the differentiable structure imposed on the un
lying manifold. A different chart may exist for which th
resulting differentiable structure gives a regular metric, b
this is of no concern to us here.

V. SUMMARY AND DISCUSSION

Thick domain wall solutions are not uniquely determin
by the scalar field potential and the boundary conditions
the field at spatial infinity, but depend also on the subsidi
conditions imposed on the spacetime metric. We have sh
that a theory with a given scalar field potential admits
general two kinds of solutions, depending on whether or
one demands reflection symmetry on the wall plane. If
appropriate coordinate chart is chosen, the scalar field lo
the same in both solutions. However, their spacetimes
3-5



o
rv
m
h
a

he

v

li
tr

u
e

o
n
on

o
s

the
lls

o-
d in

ns
e-

the
ity
re

rk

of

MELFO, PANTOJA, AND SKIRZEWSKI PHYSICAL REVIEW D67, 105003 ~2003!
intrinsically different and cannot be related by a global c
ordinate change. This is readily seen when comparing cu
ture scalars for both cases. Solutions with reflection sym
try have been shown to have a time-dependent metric, w
the asymmetric ones are static. Asymmetric solutions are
ymptotically flat on one side of the wall, and become t
Taub spacetime on the other side. This result is valid forD-2
walls in D dimensions.

By appropriately choosing the coordinate chart, we ha
shown that the Einstein equations for both cases can
solved by the same strategy, namely the appropriate sca
of vacuum solutions, allowing us to associate an asymme
solution to any dynamic one. Using the method of@14# for
generating thick wall solutions by scaling thin wall~vacuum!
solutions, we have given examples of this, and extend res
on the thin-wall limit of dynamic thick wall solutions to th
asymmetric case.

A different way of scaling thin wall solutions that als
provides thick solutions has been presented, and show
provide exact solutions to the Einstein-scalar field equati
for both cases. As an example, we have found a family
static, symmetric, ‘‘double’’ wall solutions, which contain
tu

y

10500
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as a particular case a previously known BPS solution. In
thin-wall limit, the energy density and pressure of these wa
correspond to a single infinitely thin sheet.

How four-dimensional gravity arises on non-singular d
main walls or thick 3-brane models has been considere
various five-dimensional models withZ2 symmetry@13,22–
24#. It would be interesting to analyze the metric fluctuatio
in the Z2-symmetric case of the double domain wall spac
times with metrics given by Eq.~39!. On the other hand, is
the spectrum of general linearized tensor fluctuations of
asymmetric walls consistent with four-dimensional grav
on the wall? We leave this interesting question for a futu
publication.
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