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Thick domain wall spacetimes with and without reflection symmetry
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We show that different thick domain wall spacetimes, for which the scalar field configuration and the
potential are the same, can be found as solutions to the coupled Einstein-scalar field equations, depending on
whether or not reflection symmetry on the wall is imposed. Spacetimes with reflection symmetry may be
dynamic or static, while the asymmetric ones are static. Asymmetric walls are asymptotically flat on one side
and reduce to the Taub spacetime on the other. Examples of asymmetric thick widtiinmensional space-
times are given, and previous analysis on the distributional thin-wall limit of the dynamic symmetric thick
walls are extended to the asymmetric case. A new family of reflection symmetric, static thick domain wall
spacetimes, including previously known Bogomol'nyi-Prasad-Sommerfield walls, is presented.
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I. INTRODUCTION true domain wall sourcéin the absence of a cosmological
constant The first vacuum solution for a spacetime contain-
Scalar fields as sources for the Einstein field equationgng an infinitely thin sheet of scalar field compatible with the
have been the subject of recent interest. Configurations witequation of state of a domain wall was obtained4h The
a plane-parallel symmetry, i.e. scalar field walls, are particuspacetime is not static, but has a de Sitter expansion on the
larly appealing, since they can be topologically stable. Al-wall's plane. Other vacuum solutions can be found by adding
though in four dimensions they are in conflict with standarda cosmological constant, or by allowing for curvature on the
cosmology[1], in theories with extra dimensions the possi- wall. Once all the possible vacuum solutions are known, they
bility of realizing four-dimensional gravity in a 3-brane or can be appropriately matched across a surface with the
thin domain wall[2], already suggested {i3], has attracted Darmois-Israel thin shell formalism, and all the possible so-
wide attention. lutions representing an infinitely thin wall spacetime have
Self-gravitating domain walls are solutions to the coupledthus been found and classifig@,7]. Infinitely thin walls
Einstein-scalar field system, with a potenti4l¢) possess- have distributional energy-momentum tensor fields propor-
ing a (spontaneously brokendiscrete symmetry. The tional to a § distribution supported on the wall's surface.
coupled system of equations is solved for the figldnd the  However, as pointed out i[8], a thin wall limit may be a
metric tensor components,,. A topological charge for the very artificial construction in terms of the coupling constants
wall is obtained by mapping the values ¢fat spatial infin-  of the underlying theory, in addition to the fact that distribu-
ity to the vacuum manifold in a nontrivial way. To simplify tional curvatures are in general ill defined due to the nonlin-
matters, one looks for solutions representing static domaiearities of general relativit}9].
walls; that is, one requires the energy and momentum density Dynamic and reflection symmetric spacetimes as solu-
to be time independent. Because the field is required to takéons to the coupled Einstein-scalar field equations with a
values at thgdegenerateminima of the potential at spatial symmetry breaking potential have also been fo{ih@,11],
infinity on both sides of the wall, the energy and momentunmrepresenting a thick domain wall with the appropriate bound-
densities are invariant under reflections on the wall’'s planeary conditions for the scalar field at spatial infinity that guar-
These features of the domain wall solution, staticity andantee topological stability. On the other hand, one can have a
reflection symmetry, need not be shared by the spacetimstatic metric as long as the wall is allowed to interpolate
metric. As shown by Vilenkin4], the most general static between anti—de Sitt¢AdS) asymptotic vacua, the so-called
vacuum solution with plane-parallel and reflection symmetryBogomol’nyi-Prasad-Sommerfiel@PS walls [12,13. The
obtained by Taulj5] cannot be the external spacetime of athin wall limit of these configurations was studied[itd].
Within the thin wall context[15] envisages the situation
in which the reflection symmetry is relaxed and considers
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tive and zero cosmological constant are discussefl@. Uap= 2O —dt,dty+ C(£,1)2dx,dx, ]+ e?"Odé,dé,
Asymmetric thin domain wall spacetimes or asymmetric (1)
brane-world scenarios in which the reflection symmetry

along the extra dimension was broken by gluing two AdSwhere latin indices run over the spatial variables on the
spacetimes with different cosmological constants have beebrane. The function.(¢) in Eq. (1) is redundant, since only
considered if17-20, and their possible realization by the two functions are needed in general. We will keep it, how-
introduction of a gauge form field has been proposg@ij.  ever, and choose it conveniently as a functionv6f) and
For thick domain wall spacetimes, a less known result is tha€(§,t) later. We look for solutions to

the condition of staticity of the metric can be maintained

even in the absence of a cosmological constant term, if one is Gabt JabA =Tap,

willing to sacrifice reflection symmetry. We only know of an

example in the literature so far, for a domain wall in four 1

dimenpsions, that interpolates between a Minkowski and a Tap= aa¢ab¢_gab<§ac¢‘90¢+v(¢))’ @
Taub spacetimgll]. This solution to the coupled Einstein-

scalar field equations has the peculiarity of having the samgatisfying the requirements

scalar field potential/(¢) as the well-known dynamic solu- (1) ¢=p(&).

tion of Ref. [10], which has prompted us to Study this issue (2) V(¢) has a(spontaneous|y brokerdiscrete symme-
in more detail, and to consider the extension to higher4yy,

dimensional spacetimes. _ _ (3) (&) takes different values at two different minima of
In what follows we show that two types of thick domain v/( ) for | &—co.
wall spacetimes can be found as solutions of the Einstein- (4) 4(£)'2 is symmetric under reflections in the=0

field ¢ and the potential/(¢) are the sameta) reflection  yjth respect toz and dots denote derivatives with respect
symmetric spacetimes, either with a de Sitter expansion og, t).
the wall's plane or static ones representing walls embedded Foiowing the usual strategy, we will first fin@(,t) by

in a spacetime with a cosmological constant, dodasym-  imposing the requirements of staticity and reflection symme-
metric static spacetimes, interpolating between Minkowskiry of ¢(£)’2 andV(4(£)), given by

and Taub spacetimegather, theirD-dimensional equiva-

Ients): Thgy are founq with the same bpundary conditions on ¢(§)’2=e2V(Gj—Gg), 3)

¢ at infinity, and their energy density is in both cases static

and reflection symmetric. Thus, the metric is not uniquely 1

_determlned but depends on subsidiary conditions imposed on V(p(E)+A=— E(GEH 68), (4)

its components.

Both classes of spacetimes cannot be related with a coor- _ _

dinate transformation, but there is a one-to-one correspornd then look for solution§(¢),V(¢+ A} in terms of the

dence between the dynamic and the asymmetric solutionéwarp factor” »(&). We have from Eq(2)

We take advantage of this by applying a recently reported _

method[ 14] for solving the coupled Einstein-scalar field sys- 0 . C’

tem to obtain asymmetric solutions, by appropriately scaling Gy=3e = =0, (5

the vacuum solutions. Results reported[im] concerning

the thin-wall Iw_mt of these solutions are shown to be valid 'nthereforeC(g,t) is the sum of a function forand a function

the asymmetric case. The results are then extended to ﬂg? ) : o
: . ) &. With this, by requiring

general case of a [-2)-dimensional brane in a

D-dimensional spacetime. e

In order to obtain further examples, we show how new Go_Glz_Ze_zﬂ(E)
solutions can be obtained by a different way of scaling ° ~*
vacuum solutions. A particularly interesting class of static croc cr
(E +—(4,u’—v'+3—)

solutions representing a parametric family of “double” +e 2
C C

walls, i.e. walls with energy density concentrated in two par-
allel sheets, is considered in some detail. These walls reduce
to a known BPS thick domain wdlR2] for a particular value for arbitrary v(§), two types of solutions are possible.
of the parameter. Other solutions, for theories with less ap-

pealing scalar field potentials, are also presented. A. Static solutions, with C=C(&)=e9(®

=0 (6)

Since the most general static metric can be written in

Il. DYNAMIC VS ASYMMETRIC SOLUTIONS terms of two functions, we can conveniently set

The most general metric for a 5-dimensional spacetime _ EV_ §g @
with a plane-parallel symmetry can be written as VESEVES
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In this case Eq(6) is integrated to givg (&) = B¢ and we 2A éls
have b= \/TO\/(S(I— ) L e"0@)d e (15)
3
A= g0 2= p2=v"] 8 [1+8(a—1)] Ao
V($)=————— s exd2r(¢/6)(1-9)], A=0,
3 (16
V(p)a=— ge’ZVV”—A 9

wherea=1 for caseA anda=4 for caseB.

So, it is not only possible to generate solutions for asym-
metric spacetimes by using this method: the point is that the
scalar field and the potential in the asymmetric and the dy-
namic cases differ by an overall constant only. Therefore,
given a theory with a scalar potential, two solutions can be
Equation(6) givesh(t)=Bt, and we can now sgi= v, found to the Einstein-scalar field equations with essentially

static as required. They will also be reflection symmetric if

(&) is.

B. Dynamic solutions, with C=C(t)=e"®

obtaining the same scalar field configuration, but representing different
' P spacetimes.
dg" =3[V =B "] (10) To further illustrate this point, consider the solution found
by scaling the vacuum solutiony(&) = —In[coshB€)], Ag
3 a2 ) =3a2B%/8:
V(¢>)B=—§e Tv"+3v'°—=3B]—A. (1)
v(§)=—dIn[cosh B&/6)]. 17
While we have ensured that the field’s gradient and po-
tential are static and symmetric under reflections in ¢he We have
=0 plane, the spacetimes of solutiohsandB are not. The
metric of solutionsA is manifestly asymmetric, although _ 2A0\O(1-6)
static B(&)= potan '[sinh(BE/S)], o= a5
(G)ap= €024 —dit ity + €4, 19
+e"9d¢ dé, . 12 [1+d6(a—1)] Ag _
e B2 )= Pcog gl PO, (a9

Instead, the metric in solutior® is dynamic, but symmetric

With the dynamic metric of caseéB, this is just the
5-dimensional analogue of Goetz’s solutid®,23. With the
asymmetric metric of casA, this is the 5-dimensional ana-
logue of the solution found ifill].

We now wish to make contact with the brane-world sce-
narios and take the thin wall limit of Eq$12),(17) and its
curvature tensor fields. In Reff14], it was shown that the
domain wall spacetime with metric given by Eq$3),(17)
has a well-defined thin wall limit. The corresponding asym-
metric wall shares this property.

It is easy to see that Eqgl2),(17) are a regular metric in

e sense of9]. We have that botty,, and @ *)2° are
cally bounded. Further, withy,;, the ordinary Minkowski
metric in 5 dimensions, we find that the weak derivative in
nap Of Jap €Xists and is locally square integrable. Hegg

can be considered as a distributional metric and its curvature
tensor fields make sense as tensor distributions. Taking the
6—0 limit (in the sense of distributionsve find

(9g) an=€2"O[ — dt,dt, +e?ldx,dx ]+ e*Odé,dé, .

Solutions of typeB are encountered in the literature, both in
4 and 5 dimensional spacetimgs0,14,22,23 while only
one example of those of typA has been discussed, in 4
dimensiong 11].

The coupled system of equatiof® has now to be solved
by proposing a warp factor such thp(¢),V(¢)} can be
integrated. The remarkable point is that the equationfis
the same in both cases. Therefore the warp factors forh
vacuum solutions in both spacetimes, obtained by integratinh)
the equationsp’?=0 for v(&), are the same. However, the
spacetimes will have different cosmological constants.

Now, in Ref.[14] we presented a method for generating
solutions to the systert2) (in 4 dimensionswith a space-
time of typeB by scaling the vacuum solutions. Specifically,
we showed that ifvy(€) is a vacuum solution with &non-
null) cosmological constant,, the system can be integrated

with the function lim gap=e~ AU 3972 —dt dt, + ePidx,dx,]

5—0
(&)= ovo(¢/0) (19 +e 2Plddg dé, (20)
where 0<6<1. This holds true for a higher-dimensional 3 '
\(/)vk?tlgir?nd, more importantly, for spacetimes of type We JsimoGg: — Eﬁg(g)[gfdthr c9§idX;]- (21)
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For ¢>0, Eq.(20) is just the Minkowski spacetime, while responding asymmetric one. However, it was shown that
for £€<0 it is the 5-dimensional analogue of the Taub solu-among them the only domain wall solution, meaning one that
tion [5]. By performing two different coordinate transforma- interpolates between two minima of the potential(13)—
tions, the metrics on both sides of the wall can be cast in &19) and this is also true for the asymmetric solutions.

more familiar form (see[11] for this, and for a detailed It should be stressed that the asymmetric thick branes
analysis of geodesics in the 4-dimensional gakskence, the considered arise as solutions to the Einstein-scalar field
spacetime withg,, given by Egs.(12),(17) is an explicit equations with ssymmetric potentiapossessing &, sym-
realization of an asymmetric thick domain wall spacetimemetry. Furthermore, the spacetime asymmetry cannot be
with a well defined thin domain wall limit. eliminated by a coordinate change. This can be readily seen

from the Kretschmann scalaKE&R,, 5., sR*#79),

aBy
IIl. EXTENSION TO D DIMENSIONS

2e %
It is straightforward to extend these results for a thick Ka= 3[2(D—1)2v”2—4(D—1)(D—2)y”
(D-2)-brane embedded in@-dimensional spacetime. Writ- D-1)
ing the metrics as X (v'2— B%)+(D—2)(2D —3)(v'2— B?)2
(ga)ap= €79~ (O=2BIE-1 —dt dt, + e dxdx;] +2B%D—-2)2(D-3)(v' +B)?] (31)
+e2dedé, (22

which for the solution(17)—(19) is manifestly asymmetric

(98)ap=2"O[ — dt,dt,+e?Pdx,dx, + d&,d&p]

23 4 4(1-9)
(23 Ka= D- 1)3B[cosf(ﬁ§/5)]
we get
X —2£(D—1)2—4E(D—1)(D—2)
¢<§)'2=aoggii;[V’Z—Bz—v"] (24) & o
+(D—-2)(2D—3)+2(D—2)?
ap (D—-2
V(§)=—7DED_1;62”[V”+(ao—1)(1/’2—,82)]—/\,

_ —2p¢ls
- X (D —3)cosh(Bél 5)e (32

where nowap=1 for caseA andap=D—1 for caseB. In  4nq diverges ag—, but goes to zero fog— +. The

particular, with»(&) given by Eq.(17), solutions(18) and  asymmetry is not present in the Ricci scalar, which vanishes
(19) for the field and the potential are found, withy  for |£|— 0. The corresponding solutions of tyf& on the

=pap(D—2)/2(D-1). _ _ ~ other hand, are asymptotically flat. Notice that while the
One can now proceed to obtain other solutions by scalingssymmetric solutions are static, they are not in general BPS
all the vacuum solutions, namely, domain walls.
2p The fact that the scalar potential for these two different
=In[cosh BE)], Ag= azD'B (26) solutions is the same is a consequence of the scaling proce-
2 D-1 dure we have followed. In the next section, we generate other
thick domain wall solutions that do not share this property by
=xBE  Ap=0 (27)  proposing a different type of scaling.
2
—In[sinh(B&)], A= aéﬂz > 28) IV. A SYMMETRIC, STATIC FAMILY OF WALLS

The warp factor for a thick domain-wall solution can be
when8+0, and obtainedvia scaling of the vacuum solutions warp factors in
more than one way. A very useful one is the following: take
two different vacuum solutions with warp factors ex)(and
v=In(ag), AO:aDZ (29 exp(v,), respectively, and define the warp factor for the thick

wall as

2

=0, Ay=0 (30 1
when 8=0, wherea is an integration constant. Notice that (€)=~ ginlexp(—2svy) +exp(—2sv,)]. (39
with metric A, the two solutions(27) correspond to the
D-dimensional analogues of Minkowski and Taub spacedt turns out that the Einstein-scalar field equations can always
times, respectively. A number of solutions were found in Refbe integrated with Eq(33). Naturally, this scaling will pro-
[14] for the dynamic spacetime of cagby scaling these vide asymmetric as well as dynamic solutions, and as could
vacuum solutions. For each of these solutions there is a cobe expected, it will work for the spacetimes of arbitrary di-
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mensions considered in the previous sectioi2B] this type

. . yPe asEs 38(2s—1)
of scaling has been used for a pair of vacuum solutions in a d(&)= potan — | $o=——=—— (40
5-dimensional spacetime of tyji® o S
We get solutions with metric&22) or (23) for ¢(¢) and ] B
V(&) as V() +A=3a?sin( ¢l pg)? 2
2s+46—1
D—2)ap y2s—1 B — _
(&)= \/ ( )0y tan [sinh(sAv)] (39 725 coS($/ ¢o) 2}, (42)
D-1 2s
and
ap D—2 , [cosh ?(sAv) )
V(é)=— e’ [(2s—1)(Av)’ — 257152
2 D-1 4 ag
Gi=6a” —= (42)
o
—ap(vie S+ vyest’) 2]+ ap B2 (35) | 25152 128 ag| -2
Gi=6a? 1+ ?) } (1+ 5 (7 ] (43)
whereA v=wv,— v,. By choosing the vacuum solutioK27),

the result(17)—(19) is recuperated. In this case, the param- The function— Gt
eter s plays the role of the inverse of the wall's thickness
571, but this is not true in general.

The particular case of symmetric, static solutions is found .=+ 8[(s—1)/(s+28)]Y@) (44)
by using vacuum solutions witB=0, namely taking

i.e. the energy density, has two maxima
at

and the wall can in this sense be considered a “double wall”

1 26 for s>1.
ve 2—Sln[1+(a§) 1. (36) It is not difficult to show that the metri39) is regular in
the sense of Ref9], thus all the curvature tensor fields make
We get, forD=5, sense as distributions. Taking the distributional limit &s
—0 of Egs.(42),(43) we obtain
— —1 S¢S — 3(25_ l)
¢=¢otan (a°¢”), o=, (37 limG§=6a?,
6—0
V() + A =3a2Sin 1 0)? 2 > o) 2|, r( 1 i) i
o ) (2s—1) 2s
(38 limG;=6a"—3«a 1 8(&€) (45
so thatA=—6a?. In this case, the parametsrcannot be e F(Z_ g)

identified with the wall’s inverse thickness. Solutions exist
only for s a positive integer, and fos even they are not corresponding to an infinitely thin domain wall locatedéat
domain walls, since the field takes values at infinity at the=0 embedded in an AdSspacetime. However, fof— 0
same minimum of the potential. Fer=1, this solution has Eq. (39) is not a regular metric in the differentiable structure
been presented i22] in 5 dimensions. A change of coordi- arising from the given chart, and we cannot use the approxi-
nates allows one to identify it with the regularized version ofmation theorems of9] in order to relate the limit of the
the usual Randall-Sundrum brane. For otfwid) values of  curvature tensor distributions with the limit of the metric
s, the potential has a local minimum between two globaltensor field. Whether or not a metric is regular depends in
ones. In a region around the origin, the field takes values ajeneral on the differentiable structure imposed on the under-
this local minimum, and falls tédiffereny global minima at  lying manifold. A different chart may exist for which the
spatial infinity. resulting differentiable structure gives a regular metric, but
Let us take a closer look at the solutions witlodd. We  this is of no concern to us here.

would like to explore the thin-wall limit of these configura-
tions. Following[14], we introduce a new parametérby V. SUMMARY AND DISCUSSION
scaling the solution$36) so that the metric is now

Thick domain wall solutions are not uniquely determined

ag| %] o by the scalar field potential and the boundary conditions on
59ab= | 1+ ?) (—dtadty+ dxadx,) bf the field at spatial infinity, but depend also on the subsidiary
conditions imposed on the spacetime metric. We have shown
G that a theory with a given scalar field potential admits in
1 S d&adgp .- (39 general two kinds of solutions, depending on whether or not

one demands reflection symmetry on the wall plane. If an
Notice that the scaling is performed so that this is still aappropriate coordinate chart is chosen, the scalar field looks
solution to the Einstein-scalar field equations with the same in both solutions. However, their spacetimes are
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intrinsically different and cannot be related by a global co-as a particular case a previously known BPS solution. In the
ordinate change. This is readily seen when comparing curvahin-wall limit, the energy density and pressure of these walls
ture scalars for both cases. Solutions with reflection symmeeorrespond to a single infinitely thin sheet.

try have been shown to have a time-dependent metric, while  How four-dimensional gravity arises on non-singular do-
the asymmetric ones are static. Asymmetric solutions are agnain walls or thick 3-brane models has been considered in
ymptotically flat on one side of the wall, and become theyarious five-dimensional models with, symmetry[13,22—
Taub spacetime on the other side. This result is valid¥&  24]. It would be interesting to analyze the metric fluctuations
walls in D dimensions. in the Z-symmetric case of the double domain wall space-

By appropriately choosing the coordinate chart, we havgimes with metrics given by Eq39). On the other hand, is
shown that the Einstein equations for both cases can bge spectrum of general linearized tensor fluctuations of the
solved by the same strategy, namely the appropriate scalingsymmetric walls consistent with four-dimensional gravity
of vacuum solutions, allowing us to associate an asymmetrign the wall? We leave this interesting question for a future
solution to any dynamic one. Using the method[ 4] for  pyplication.
generating thick wall solutions by scaling thin walacuun)
solutions, we have given examples of this, and extend results
on the thin-wall limit of dynamic thick wall solutions to the ACKNOWLEDGMENTS
asymmetric case.
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