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We derive the equations of time-independent stochastic quantization, without reference to an unphysical fifth
time, from the principle of gauge equivalence. It asserts that probability distribufichat give the same
expectation values for gauge-invariant observalild=[dAWP are physically indistinguishable. This
method escapes the Gribov critique. We derive an exact system of equations that closely resembles the
Dyson-Schwinger equations of Faddeev-Popov theory. The system is truncated and solved nonperturbatively,
by means of a power law ansatz, for the critical exponents that characterize the asymptotickerth aftthe
gluon propagator in Landau gauge. For the transverse and longitudinal parts, we find, respe@fively,
~(K?) 17t~ (k%0043 suppressed and in fact vanishing, though weakly, abt~a(k?) 1«
~a(k?)~152L enhanced, withvr=— 2, . Although the longitudinal part vanishes with the gauge parameter
ain the Landau-gauge limia— 0 there are vertices of ordar ! so, counterintuitively, the longitudinal part of
the gluon propagator does contribute in internal lines in the Landau gauge, replacing the ghost that occurs in
Faddeev-Popov theory. We compare our results with the corresponding results in Faddeev-Popov theory.
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I. INTRODUCTION range These properties were confirmed in subsequent DS
calculations, using a variety of approximations for the vertex
[3—6]. More recent calculations extend the asymptotic infra-
The problem of the strong interaction presents an excitinged and ultraviolet solutions to finite momentumwithout
challenge. One would like to understand how and why QCDanguIar approximationi7,8]. All these calculationsgive a
describes a world of color-neutral hadrons with a mass gaRyansverse gluon propagator in Landau galj¢k) that is

even though it appears perturbatively to be a theory of Ungigniy suppressed in the infrared compared to the free mass-
confined and massless gluons and quarks. Clearly an und%-

. . ~Jess propagator kf, and that in fact vanishes
standing of non-Abelian gauge theory at the nonperturbanv:ﬁm DT(k)=0, atk=0, in some cases weakly, such as a
k—0 — Y, — Y ’

level is required. Happily, a convergence of results by differ- " .

ent methods has recently developéd:nonperturbative so- small positive power ok méj &egd’ acc_ordmg (o the present

lutions of the truncated Dyson-Schwing@S) equations in palculatlon it vanishes ‘?Sk{) - Areview of DS equations
in QCD may be found in Ref.10]. In the present work we

Faddeev-Popov theoryiji) numerical evaluation of gauge- : :
fixed, lattice QCD propagators, arii) exact analytic re- shall discover a close conection between the ghost propaga-

sults. The agreement between these very different method8r in Faddeev-Popov theory and the longitudinal part of the
almost five decades after the appearance of the original aE!JUOﬂ propagator in time-independent stochastic quantiza-
ticle of Yang and Mills[1], would indicate that byii) we are ~ tion.
beginning to get reliable values of the gluon propagator in Concerning(ii), numerical studies, it is striking that an
the unbroken phase and hy) an understanding of the accumulation of numerical evaluations of the gluon propaga-
mechanism that determines it. This motivates the present irtor in Landau gauge also show qualitative suppression of the
vestigation in which we derive the DS equations of time-gluon propagator at low momentum, both in three-
independent stochastic quantization and solve them by trurdimensions on relatively large lattic$1-13 and in four
cation and a power-law ansatz for the gluon propagator in thdimensions[14—-17. Suppression of the gluon propagator
asymptotic, low-momentum regime. In accordance with earand enhancement of the ghost propagator at low momentum
lier results by method§), (ii), and(iii), we find that, com- has been reported by Refd8-20. Similar numerical re-
pared to the free propagatorki/ the would-be physical, sults were obtained in Coulomb gauge, where an extrapola-
transverse component of the gluon propagator is shortion to infinite lattice volume of the three-dimensionally
range, while the unphysical, longitudinal component is longtransverse, would-be physical, equal-time gluon propagator
range D;;(K) was consistent with its vanishing &=0 [21]. In

As concernd(i), solutions of the DS equations, the deci- QCD in the Coulomb gauge, the instantaneous Coulomb
sive step was taken in R¢R], where a solution of the trun- propagatorD ,, is closely related to the ghost or Faddeev-
cated DS equations in Faddeev-Popov quantization in Lan-
dau gauge was obtained for whigche transverse gluon

propagator is short range, while the ghost propagator is long stingi[9] had earlier obtained a solution of the DS equation with
the property thab (k) vanishes ak=0, without, however, includ-
ing the ghost loop, whereas the ghost loop gives the dominant con-
*Email address: Daniel.Zwanziger@nyu.edu tribution in the infrared region in the recent solutions.

A. Some recent developments in nonperturbative QCD
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Popov propagator, and is a strong candidate for a confininthat are a consequence of cutting off the functional integral at
potential. SignificantlyD 4, was found to be long rand@1].  the Gribov horizon, for this condition was not imposed in
A recent numerical calculation in the Landau ga(iy¢]  solving the DS equations. However it was subsequently
reports a finite value db (k) atk=0. This is strongly sup- pointed out[6] that the DS equations in Faddeev-Popov
pressed compared tok?/ and suffices to exclude a free theory depend only on the integrand, and the fact that the
massless gluon. It might be thought that the finite value ofntegral of a derivative vanishggovided only that the inte-
DT(0) reported in Ref.[16] contradicts the zero value grand vanishes on the boundaryhe key point is thathe
DT(0)=0 found here. However, it is difficult to distinguish integrand does vanish on the Gribov horizdor the
numerically between a finite value lat=0 and one that van- Faddeev-Popov determinant [deD(A)-d] (as explained in
ishes weakly, such ak?{)?, with a small value for the infra- footnote 3. Thus Gribov’s prescription to cut off the func-
red anomalous dimension such gs 0.043 found here. For tional integral at théfirst) Gribov horizon, is not a constraint
this function is almost constant down to very leywand then that changes the DS equations, but rather it resolves an am-
veers toward zero with an infinite slope. Moreover a numeri-iguity in the solution of these equatiof§|. The cutoff at
cal determination of the continuum propagatorkatO re-  the first Gribov horizon assures that both the gluon and ghost
quires an extrapolation to infinite lattice volume. To establishEuclidean propagators are positive, which is a property of
a discrepancy it would be necessary to takas a fitting the solutions obtained for the truncated DS equations. More-
parameter, and determine the numerical uncertainty in thigver the solution of the DS equations in Faddeev-Popov
quantity after extrapolation to infinite lattice volume, and thistheory with a cutoff at the Gribov horizon is the only one for
has not been done. Present numerical and analytic results akéich a comparison with numerical gauge fixing to the lat-
not inconsistent, within the considerable uncertainty of thefice Landau gauge isapproximately justified. For as ex-
numerical extrapolation to infinite lattice volume, and bothPlained in footnote 2, numerical gauge fixing to the Landau
agree that there is strong suppression comparedkfo 1/ gauge automatically produces a configuration that lies inside
Infrared suppression of the gluon propagaotk) and the Gribov horizon. Thus a consistent picture emerges of the
enhancement of the ghost propaga@(k) in the Landau gluon and ghost propagators in QCD using the different
gauge was first found by Gribov, using avowedly rough apmethods(i), (i), and(iii).
proximations [22]. He obtained the formulasD(k)

=k?/[(k?)2+M*] and, in the infrared (k) ~ 1/(k?)? by re- B. Diffulties of Faddeev-Popov method at
stricting the region of functional integration to the interior of nonperturbative level
the Gribov horizon in order to avoid Gribov copieble also The DS calculationf2—5] rely on Faddeev-Popov theory

obtained a long-range Coulomb potential in the Coulombyhich, however, is subject to the well-known critiques of
gauge. Concerningjii), exact analytic results, it was subse- gyipoy [22] and Singer[29]. At the perturbative level,
quently found[25,26 that restriction to the interior of the Faddeev-Popov theory is unexceptionable, and elegant
Gribov horizon, enforc.ed.by horizon condition yields at Becchi-Rouet-Stora-TyutifBRST) proofs are available of
k=0 both the vanishing of the gluon propagator hertyrhative renormalizability and perturbative unitafg].
lim_.oD(k)=0 in the Landau and Coulomb gauges 33”d then Jattice gauge theory, however, the BRST method fails be-
enhancement of the ghost propagatorlingk®G (k) = . cause the total number of Gribov copies is even, but they
~ It was at first surprising that the solution of the DS equa-contribute with opposite signs, leading to an exact cancella-
tions obtained in Ref§2-5] agreed with these exact results tjgn [31,32. In continuum gauge theory, the Faddeev-Popov-
BRST method may nevertheless be formally correct at the
nonperturbative level without a cutoff at the Gribov horizon,
2We remind the reader that numerical gauge fixing to the Landagf gpnes sums over all signed Gribov cop[&8,34. However
gauge is achieved by minimizing, with respect to local gauge transeven if this is true, it would imply large cancellations be-
formationsg(x), a lattice analogue oF 5(g)=Jd*x|°A]>. Atany  tyeen copies, that may amplify the error of an approximate
minimgn;, this functional is(a) s_tatio$ﬁry and(b()i_t_he matrix of ; nonperturbative calculation, and even the Euclidean gluon
second derivatives is non-negative. These conditions correspon ; ; i ;
@ e Landu gauge condiianA—0 and e posioy o e b oo 9 8 104 necesearl posive, emaliely
Eag‘(j:)elvt;'iofg\.'[;)Fz)rat]%frg(ﬁ)_'(z)Wg;r;itrigazz%irﬁ'rfezréngtrri'_c Popov theory that corresponds to a cutoff at the first Gribov
bov region, so numerical studies of the Landau gauge automaticallgc;?szo[g’_vg 'C:(;ngﬁje”d Istr?igri;ntaerrlp;i?:l(liann?fatherf)gilrl‘Jr::;[irl)SnOf
select configurations within the Gribov region. Positivity of But i't rema'ins gmd K’ocprescription that is nFZ)F': correct in.

—d-D(A) means that all its eigenvalues, are positive, and the o ) . T
boundary of the Gribov region, known as tfiiest) Gribov horizon, principle because of the existence of Gribov copies inside the

is where the first(nontrivia) eigenvalue vanishes. Thus the Gribov hqrizon_[35,3(§|. _ o
Faddeev-Popov determinant feD(A)-9]=TT,\,, which is the ~ Wilson's lattice gauge theory provides a quantization that
product of the eigenvalues, is positive inside the Gribov horizoniS both theoretically sound and well suited to numerical

and vanishes on it. These considerations do not apply to numericgimulation. It also provides a simple analytic model of con-

gauge fixing to the Laplacian gauf®23,24. finement in QCD by giving an area law for Wilson loops in
3It is noteworthy that the confinement criterion of Kugo and the strong-coupling limit. A striking feature of lattice gauge
Ojima[27] and[28] also entails lim_, ok?G (k)= . theory is that both the numerical simulations and the strong-
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coupling expansion are manifestly gauge invariant. Thisz<25(x_y)5w5ab5(t_t')>_ If Nexgd—S,u(A)] were a nor-

manifest gauge invariance provides a paradigm for continumalizable probability distribution—which it is not—every

ing efforts to understand confinement in QCD. Neverthelesg,grmalized solution to Eq1.1) would relax to it as equilib-

it may be worthwhile to pursue other approaches. The vexingiym distribution. However, the process defined by Eql)

problem of bound states in quantum field theory is particuyy (1.2) does not provide a restoring force in gauge orbit

larly urgent in QCD where confinement causes all physicaljirections, so probability escapes to infinity along the gauge

particles to be bound states of the fundamental quark angrpits and as a resu(A,t) does not relax to a well-defined

gluon constituents. In this regard it is noteworthy that evenimiting  distribution lim_...P(A,t)#N exd —Syu(A)].

the simplest of all bound-state problems, the hydrogen atoneyertheless, according to Relf37], expectation values

is not easily solved in a gauge-invariant formulation. (O(A)), of gauge-invariant quantitie®(A) calculated at

fixed but finite timet according to either of the above equa-

C. Review of stochastic quantization tions do relax to the desired Euclidean expectation value

In order to avoid the difficulties just mentioned of the (O)=lim_..(O);. o
Faddeev-Popov method, we turn to stochastic quantization of Unfortunately the renormalization program cannot be car-
gauge fields for, as we shall see, this method provides Hed out in t.hIS s_cheme as stated, because that_ requires that
correct continuum quantization at the non-perturbative levelgauge-non-invariant correlators also be well defined. A rem-
Stochastic quantization has been developed by a number 8fly is provided by the observatid88] that the Langevin
authors[37,38, who have expressed the solution as a func-equation may be modified by the addition of an infinitesimal
tional integral[39], and demonstrated the renormalizability 9auge transformatio® 2% = (4, 6%+ f22A2)v°,
of this approacH40,41]. A systematic development is pre- a
sented in Refd.42—-47), reviewed in Ref[48], that includes ‘9A_u: _ ﬁ+ Da%C4 2 1.3
the four- and five-dimensional Dyson-Schwinger equation ot 5AZ w T '
for the quantum effective action, an extension of the method
to gravity, and gauge-invariant regularization by smoothingClearly this cannot alter the expecation value of gauge-
in the fifth time. Renormalizability has also been establishednvariant quantities. Symmetry and power-counting argu-
by an elaboration of BRST techniqug49,50. Stochastic Mments determine®=a"'9,A}=a"'9-A? whereais a free
quantization may be and has been exactly simulated numerparameter. Fom>0, the new term, that is tangent to the

cally including on rather large lattices, of volume (4851—  gauge orbit, provides a restoring force along gauge orbit di-
55]. This suggests the possibility of a promising interplay ofrections, so gauge-noninvariant correlators also éxigte
DS and numerical methods. new scheme is renormalizable. Only a harmless gauge trans-

In its original formulation[37], stochastic quantization formation has been introduced, so the Gribov problem of
relies on the observation that the formal Euclidean probabilglobally correct gauge fixing is by-passed, and a continuum
ity distribution Po(A)=Nexd—-Su(A)], with four- quantization of gauge fields that is correct at the nonpertur-
dimensional Euclidean Yang-Mills actioByy(A), is the bative level has been achieved.
equilibrium distribution of the stochastic process defined by The modified Langevin equation is equivalent to the

the equation modified Fokker-Planck equation
JP B 5P 8Sym JP f s ( . )
— = 4 + . ) —=| d* KE(X)P |, 1.4
at f d X A (%) <5Aj;(x) SAS(X) Pl 4D It SAL(X) | BAL(X) w0 4

Indeed it is obvious thaP,(A) is a time-independent solu- where the “drift force” now includes the infinitesimal gauge
tion of this equation. Hereis an artificial fifth time that is a  transformatior{38]

continuum analog of the number of sweeps in a Monte Carlo 5S,

simulation of the_ Euc_lidean theory defingd by the action K3(x)=~ —= M +a‘1foa-A°(x). (1.5
Sym(A). As explained in Sec. lIl, this equation has the form oA, (X)

of e Mifusion equation —with ‘drift force’ The additional “force” is not conservative, and cannot be
_ a ; : ) iti [ vative,

; OSym /oA, (x), and is k_nown as the Fokker Planck equa ritten, like the first term, as the gradient of some four-
tion. The same stochastic process may equivalently be reﬂ‘-’ ' '

resented by the Langevin equation

AR 5S, “To establish that the new force is globally restoring, we note that
—k__ aM + ,7‘;, (1.2 the Hilbert norm ofA is decreasing under the flow defined by the
Jt SAL new force aloneA,=a 'D ,d-A. We haved|All?/at=2(A, ,A,)

A ra o _ =2a (A, D,d-A)=2a Y(A,,d,0-A)=—2a"Yd Al*<0.
where A=A, (x,t) depends on the artificial fifth time, Thjs also shows that the region of equilibrium under this force is the
and corresponds in a Monte Carlo simulation to the conset of transverse configurations)-A=0. Similarly, from

figuration on the Igtticea with ppintxw wjth p=1l..4at g5 Al2at=2(9-A,0-A)=2a }(d-A,a-Dd-A) it follows that
sweep t. Here 7,=7,(x,t) is Gaussian white noise thjs equilibrium isstableinside the Gribov horizon, where 3-D is
defined by (7}(x,t))=0 and (7°(x,1) 75(y,t"))  a positive operator, andnstableoutside it.
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dimensional  gauge-fixing  action a‘lDf‘f&Ac(x)#
—5ng/5AZ(x). With this term, the normalized solutions
P(A,t) to Eq. (1.4 do relax to an equilibrium distribution

lim,_..P(A,t)=P(A), and Euclidean expectation values are

given by the four-dimensional functional integr&l©O)
=[dA O(A)P(A). Although we cannot writd®(A) explic-
itly because the force is not conservative, we do know that

is the normalized solution of the time-independent Fokker-

Planck equation

5P
AZ(X)

o
4 a
HFPP_——f d*x Z(X)(_ +KMP)—0. (1.6)
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instead of only oneD(k?). This prevents a simple power
ansatz for the infrared behavior kfj1* ¢ that allows one to
determine the infrared behavior of the four-dimensional
theory self-consistently. For this reason we turn to time-
independent stochastic quantization, where the correlators
have the same number of invariants as in Faddeev-Popov

theory.

it

D. Outline of the present article
We shall not use the five-dimensional formulation here,
but only the four-dimensional, time-independent Fokker-
Planck equation(1.6). The solutionP(A) to this equation

cannot be represented as a functional integral over a local
four-dimensional action. Nor shall we attempt to construct an

This equation defines what we call “time-independent sto-€Xplicit solution to Eq(1.6). Our strategy instead will be to

chastic quantization,” antH -y is called the “Fokker-Planck
Hamiltonian.” The solutionP(A) of this equation provides a
satisfactory nonperturbative quantization of gauge fields.

[To avoid possible confusion of terminology, we note that
stochastic quantization, whether in the time-dependent of

time-independent formulation—where “time” is the artificial

fifth time—increases the number of dimensions by one a

compared to the corresponding standard Faddeev-Popov f
mulation of gauge field theory. Thus the solution of the time
dependent Fokker-Planck equatidn4) can be usefully rep-
resented[39] as a functional integral with docal five-
dimensional action |=fdtd*xLs, whereas in Faddeev-
Popov theory, expectation values may be calculated by
functional integral with alocal four-dimensionalaction S
=fd4x[(%)Ffw+---]. Likewise the Fokker-Planck “Hamil-
tonian” Hgp determines, by the time-independent Fokker
Planck equatioHpP =0, a Euclidean probability distribu-
tion P(A) whose argument is a field(x) that is a function
in four-dimensionalspace-time with pointx,, u=1,...,4.
By comparison the quantum mechanical Hamiltortg), in
ordinary quantum field theory determines, by the time
independent Schdinger equationHoy¥ =EW¥, a wave-
functional ¥ (A), whose argument is a field(X) that is a
function in ordinarythree-space * (X1 ,X»,X3). ThusHgpis

convert it into a system of tractable DS equations for the
correlators.

As a first step, we convert E¢L.6) into the DS equation
(6.3) below for the quantum effective actidh The DS equa-
ion for I' appears relatively complicated, with second-
order structure inherited from the second-order operator in
Eqg.(1.6). The main methodological innovation of the present
%pproach is that the second-order equationfds replaced,

9h Secs. VI and VII, by the much simpler DS equati@6)

“for a quantity Q7 (x) that we call “the quantum effective
drift force.” Indeed the new equationQZ(x)zKZ(x)
+ (loop integrals), where K% (x)=—8Syy /6A5(X)
+a*1(DMa-A)°, has the same structure as tfiest-order
BS equation forl" in Faddeev-Popov theory?F/&Ai(x)

= 55/5A2(x)+(loop integrals). In both of these equations,

the leading term may be interpreted as a drift force and, most

“helpfully for the renormalization program, it is local &(X).

In the present work we give an improved treatment, as
compared to Ref.6], of the longitudinal degrees of freedom
in the Landau-gauge lima— 0. In that work we integrated
out the longitudinal degrees of freedom in the Landau-gauge
-limit a—0. This gave a time-independent Fokker-Planck
equation for the transverse degrees of freedom only, with an
effective drift force that was however nonpolynomial and
nonlocal® By contrast, in the present work, the difficulty of a

not a quantum mechanical Hamiltonian at all, but rather, inonpolynomial drift force is avoided by retaining the longi-
claims the name “Hamiltonian” as the generator of time tudinal degrees of freedom. Of course the longitudinal part
translations in the time-dependent Fokker-Planck equatioof the propagator vanishes with the gauge paranseierthe

(1.4), where the “time” is the artificial fifth time. Unlike the
guantum-mechanical Hamiltonian  formulation, time-
independent stochastic quantization is four-dimensionall
Lorentz (Euclidean covariant]

Despite the development of stochastic quantization i

Refs. [37-5( it has apparently not so far been used for

non-perturbative calculations in QCD, apart from Réf.°

Landau-gauge limit lim>0. However the drift forcg1.5
gives a vertex that diverges asldnd so, counterintuitively,
\the longitudinal part of the propagator in the Landau gauge
limit gives a finite contribution in internal loops, somewhat
rsimilar to the ghost in Faddeev-Popov theory.

We shall be satisfied here to calculate only the infrared
asymptotic form of the propagator, because that is where the

This may possibly be due to the complication caused by thehallenging, nonperturbative confining phenomena manifest
extra “time” variable. Although the time-dependent formu- themselves. At high momentum, QCD is perturbative, and it
lation allows an elegant representation, with a local five-has been verified to one-loop order by various methods
dimensional action, it has the complication in practice tha{57,44, including the background field meth§sg], that sto-
the gluon propagator depends on two invariabt&?, ) chastic quantization yields the stand#@dunction. We leave

SThe equations of stochastic quantization have, however, been apThis was in turn decomposed into a conservative force that re-
plied to dissipative problems in QCD, wherrés the physical time, produced the Faddeev-Popov determinent plus a second term that
andx physical three-spadé6]. was neglected in the solution found in RES].
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for another occasion a numerical calculation which would bevhere gAlL:gflAMgnLg*laMg. This suggests the notion of

necessary to connect the high- and low-momentum limits. gauge-equivalenprobability distributions. Two probability
Since we use only the time-independent formulation hereglistributions are gauge equivaler®®,(A)~P,(A), if and

we present, in Secs. Il and I, a new derivation of E§6)  only if (W);=(W),, for all gauge-invariant observabl&¥,

that does not refer to the unphysical fifth time. At the end ofwhere(W);= [dAW(A)P;(A). Gauge equivalence of prob-

Sec. Ill the Minkowskian form of time-independent stochas-ability distributions is dual to gauge invariance of observ-

tic quantization is presentefSome readers may prefer to go ables. Distributions that are gauge equivalent are physically

directly to Sec. IV, which begins with Eq1.6).] The new indistinguishable. Our solution to the quantization prob-

derivation is more powerful, and yields new results, in parlem will be to replace the formal probability distribution

ticular, the Ward identity of Appendix C, and the proof in Nexd—Syw(A)], by a normalizable distribution that is

Appendix A that the kernel of the Fokker-Planck Hamil- gauge equivalent to it. More precisely we shall exhibit a

tonian for quarks depends on gauge parameters 0n|y_ \/\@aSS of gauge-equivalent normalized distributions that in-

shall derive it from the obvious principle afauge equiva- cludesN exfg—Syy(A)] as a limiting case.

lencewhich asserts that probability distributiof{A) that

give the same expectation values for gauge-invariant observ-1ll. A MACHINE THAT MAKES GAUGE-EQUIVALENT

ables (W)= [dAWA)P(A) are physically indistinguish- PROBABILITY DISTRIBUTIONS

able. We show that time-independent stochastic quantization

provides a class of positive, normalized probability distribu-

tions P(A,a), parametrized Yy a a gauge parameter that

are gauge equivale®(A,a;)~P(A,a,), and that includes

the Yang-Mills distributionN exp(—Sy),) as a limiting case.

This method of quantization of gauge fields, in which the

unphysical degrees of freedom are retained but controlled, i

closely related to the physics of our solution of the DS equa- In order to simplify the appearance of various equations,

tions. Indeed we find that the physical degrees of freedon;;ve shall, as convenient, use the index notafign instead of
are short range, whereas the unphysical degrees of freedo ' X f

are not only present but of long range. In Appendix A, weRﬂZ(X)' where the subscriptrepresents the triplat,..a. We

extend the method to include quarks, and in Appendix B, touse discrete notation and the summation convention on the

lattice gauge theory. In Appendix C, we derive a Ward iden—ng\iv 532deX/5Aio' for example, 3J,/dA,  replaces
tity that controls the divergences of the theory. Jd™X[83,()/ A, (x)].

In Sec. VIII we derive the explicit form of the DS equa- Let P(A) be a pogiti\{e, .P(A)>0’ norma!ized,
tion for the gluon propagator. In Secs. IX—XI we adopt afdAP(A)zl, probability distribution or concentration. In

simple truncation scheme, and by means of a power-law arsimple diffusion theory there is associated with this distribu-
satz we solve for the infrared critical exponents that charaction @ current

terize the gluon propagator in Landau gauge asymptotically, oP

at low momentum. The transverse part of the gluon propaga- Jy=—h—+K,P, (3.2

tor is short range, and the longitudinal part long range. In the 9Py

concluding section we compare our results with calculationgy o+ is composed of a diffusive term7(dP/3A,), propor-

in Faddeev-Popov theory, and we interpret their qualitativgjona| to the gradient of the concentration, withdiffusion

features in a confinement scenario. We also suggest SOM® hstanth. and a drift termK.P. HereK. is the drift force

challenging_ open prob!em_s, and_ possibilities for comparisonyg i, Ohnil’s law with unit C(;(nductivity.XWe have introduéed

with numerical simulation in lattice gauge theory. # for future convenience for a loop expansion which is an

expansion in powers df. Conservation of probability is ex-

Il. GAUGE EQUIVALENCE pressed by the equation of continuif/dt=—aJ,/JA,.

We first consider Euclidean gauge theory and later thd N€ @nalogy of interest to us here is associated with the
Minkowskian case. Non-Abelian gauge theories are depme-mdependent situation onfyin this case the current is
scribed by the  Yang-Mills  action Sy,(A)  divergenceless
= (U4)[d*x(F5,)?, where Fo,=0,A5—0,A;
+gfabCAZA§. The Euclidean quantum field theory is for-
mally defined by the probability distributiorPyy(A)

The construction of gauge-equivalent probability distribu-
tions relies on an equation that has the same form as the
time-independent Fokker-Planck equation that is used to de-
scribe diffusion in the presence of a drift force. In this sec-
tion, for simplicity, we deal with continuum gauge fields, or
luodynamics, only. The extension to quarks is given in Ap-
endix A, and to lattice gauge theory in Appendix B.

"Stochastic quantizatidi37], including a drift force tangent to the

_ . gauge orbif38], has traditionally been based on the time-dependent
=Nexgd—Sy(A)], and by the expectation valuen) Fokker-Planck equatiodP/dt=—HgP, and relied on relaxation

=JdA W(A) Pyy(A), normalized so(1)=1. The chal- e stochastic process to an equilibrium distribution that satisfies
lenge of quantizing a non-Abelian gauge theory is thaty_p—_o. Heret is an additional unphysical time variable that cor-
Pym(A) is not really normalizable because of the infinite responds to computer time in a Monte Carlo simulation. By con-
volume of the local gauge group. trast, in the present article, the quantization of the non-Abelian
The challenge would be hopeless, but for the fact that weyauge field follows from the geometrical principle of gauge equiva-
are interested only in observables that are invariant undeence, from which we derive the time-independent equatipP
local gauge transformationg/(9A)=W(A) for all g(x), =0 directly, without reference to the additional time variable.
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AN transformation, with local Lie algebiagG?(x),GP(y)]= 8(x
oA, =0, (32 —y)faGE(x), and 0,X)*=a,X*+gfPALX® is the
gauge-covariant derivative in the adjoint representation.
which reads The proof relies upon the decompositiontfp,

4. T
P=0. 3.3 Hep=Hinv— (v,6)",

HesP= | 14k
FPP= A, A,

o OSym
ST oAI(x) SAR(X) |

This is the time-independent diffusion equation with drift [ o
force K,. We call the linear operator defined here the Hi“V:f d*x SAZ(X)
Fokker-Planck “Hamiltonian,” althoughH g is not Hermit- .
ian, as it would be in quantum mechanics, and it certainly is
not the quantum mechanical Hamiltonian of the gauge field. _ 4 amac O
We must be sure to choose a drift force that is restoring, (U’G)Z_I d*xv®D), SAC (x)
so this equation determines a positive normalized distribu- K’
tion P(A). If the drift force were conservativek,=
—dSym 1 9A,, then the normalized solution would B A)
=N exp(—Syy). Gauge invariance of the Yang-Mills action
DE[8Sym ! 6A%(X)]1=0, means, however, that the conserva-
tive drift force — dSyy / 6A ,(X) provides no restoring force —(v,G)T=(G,v)=f d*x
in gauge-orbit directions. This is remedied by introducing an
additional forceKgr ,(x)=D%° that is an infinitesimal . o _
gauge transformation, so the drift force is made of a consepvhere a dagger is the adjoint with respect to the inner prod-

vative piece and a piece that is tangent to the gauge orbit Uct defined by/dA, and ,G) is the generator of the local
gauge transformation®(x). Note thatH;,, is a gauge-

5S, 55, invariant operatof G?(x),H;,,]=0, that has exp{S,,) as a
a(x)=— a_'\" +KE, (X)=— T’V‘ +Dac%,c. null vector,H;,, exp(—Syy) =0. Let P(A) be the normalized
. OAL(X) * OAL(X) T H solution of Hgp P=0 for givenu. It is sufficient to show

(34 that (W)=JdA WA)P(A) is independent ofv?(x) for
t gauge-invariant observablé§. Let sv?(x) be an arbitrary

Geometrically, the drift force is a vector field or flow, and it Z°."2~ . o a :
is intuitively clear that a flow that is tangent to the gauge!nfm'tes'rm‘I variation ofv™(x). The corresponding change

orbit has no effect on gauge-invariant observables. We will"

J d4x(DMv)a—5Aa(X),
y

P
A2 (x)

(D,0)?, (3.6

P(A) satisfies 6Hgp P+HgpdP=0, where SHgp

not fail to choosey?(x;A) so thatD ,v is a restoring force, =(G,dv), so
to insure that Eq(3.3) possesses a positive, normalized so-
lution. Apart from this restoring property,?(x;A) may in SP= —H;Pl SHEepP. (3.7
principle be an arbitrary functional ofA. The time-
independent Fokker-Planck equation reads explicitly Note that sHep P has the form of a divergence, so it is
orthogonal to the null space ¢ip. This change irP in-
4 duces the change in expectation value
H;:F:PE d*x a
oA, (X)
SP S 5<W>=J' dASPW
X| =g+ — S,;YM +Da%v°|P
oA, (X) oA, (X) K

o (3.5 = —f dA(Hg 8HepP)W
This equation is a machine that produces normalized prob-
ability distributions P,(A) that are gauge equivalent to

N exp(=Syw)- _ - .

_ We now pr_ove_the baS|c_ resul?osmve,_ normalized solu- :j dAp[(gv,G)(HEP)—l\N], (3.8
tions of the diffusion equation (3.5) for differantare gauge

equivalent B~P,,, and include Nexgd —Sy(A)] as a lim-

iting case Our solution to the problem of quantizing a gaugeWhere Hlp=Hl —(v,G). It is sufficient to show that
field is to use any one of the,(A) to calculate expectation &(W)=0. The proof is almost immediate, but we must verify
values of gauge-invariant observables. We consider obser¢hat the dependence of(x;A) and sv®(x;A) on A does not
ables that are invariant under infinitesimal local gauge transsause any problem. Recall thal is gauge invariant
formations, namely, that satisf@*(x) W=0. HereG¥(x)= G3(x)W=0, so we havéH[W=H W, which implies that
—DIT 6l 6A;(x)], is the generator of an infinitesimal gauge Hl W is gauge invariant

:_f dAP[SHp (HIp) W]
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GA(X)HIW=G(x)H] W=0. K3(x;A)=D2%FS, +a *D§% ,AS. (3.1
It follows by induction that Hi)"W=(H! )"W is gauge Herea is a dimensionless gauge parameter. This completes
FP nv.

invariant for any integen, G3(x) (H{,)"W=0, which im-  the specification of the time-independent stochastic quantiza-
plies that for any analytic functiorf,(HEP)W=f(Hrnv)W is  tion. _ .
gauge invarianG3(x) f(H{p) W=0. This holds in particu- The drift forcea™ "D, d,,A, tends to concentrate the prob-
lar for f(z)=1/z, and we haveG3(x) (HT )~1 W=0. This ability distributionP(A) close to its region of stable equilib-
implies that 5<W>=0 as asserted. Notgpalso thatui= 0 rium, especially ifa is small. Let us find the region of stable
then the formal solution i®=N exp(—Syy)/#. eql_JiIi_brium. From Eq.(3.9)_we see tha_t5F<O unl_e_ss_A

This proof does not rely on Faddeev-Popov gauge-fixingatisfiesd,A,=0. This defines the region of equilibrium,
which would require a gauge choice that selects a singld/Nich may be stable or unstable. The regiorilota) stable
representative on each gauge orbit. The Gribov critique i€quilibrium is determined by the additional condition that the

by-passed, and Singer’s theor¢2®] does not apply. Gauge second variation be non-neggtivﬁéF>O, for all variations
equivalence is a weaker condition than gauge fixing, but sufo? tanagent to the gauge orbit, name§A=D ¢, for arbi- -
ficient for physics. In the present approach we do not attemgfary €'(x). We have just found that the first variation is
to eliminate “unphysical” variables and keep only “physi- 9ivén by 552 —2(e,d,A,). So we have, for the second
cal” degrees of freedom. Rather we work in the flspace, varnation 6°F=—2(e,9,0A,)=—2(¢,d,D ,€). Thus the
keeping all variables, but taming the gauge degrees of fred€gion ofstableequilibrium is determined by the two condi-
dom by exploiting the freedom of gauge equivalence. It istions ,A,=0 and—a,D ,(A)>0, namely, transverse con-
the unphysical degrees of freedom that provide a long-rangfigurations A, for which the Faddeev-Popov operator
correlator, and a strong candidate for a confining potential. — 9D .(A) is positive. These two conditions define the Gri-
Another way to obtain a gauge-equivalent probability dis-POV region. We expect that in the linst— 0, both conditions
tribution is by gauge transformation. If our class of gauge-W'” be satisfied. This is the Landau gauge, with probability

then it is possible to absorb an infinitesimal gauge transfor- SO far we have discussed Euclidean quantum field theory,

mation 6A,=D,e by an appropriate changév of v, which is characterized by _eIIiptif: differential operators.
P,(A+D,€)=P,. 5 (A). This is true and leads to a useful However, the above considerations also apply to the
Ward identity that is derived in Appendix C. Minkowski case. Here the formal4 weight iQ(A)
There remains to chooseso it has a globally restoring =N €xfiSyu], where Syy=(—1/4)Jd"xF*"F,, is the
property. An optimal way to do this is to require that the Minkowskian Yang-Mills _actlon,xwher_e indices are raised
forceD v, that is tangent to the gauge orbit, points along theAnd lowered by the metrig, , =g"*=diag(1,1,1--1). Ex-
direction of steepest descent, restricted to gauge-orbit diref2€ctation values of gauge-invariant time-ordered observ-
tions, of a conveniently chosen functional. For the minimiz-ables, are given by the Feynman path integ(al)
ing functional, we take the Hilbert norm squaf(A) —JdAWA)Q(A), with (1)=1. Instead of Eq.(3.5, we
=||A|2=sd*x|A[?, and we consider a variatiorsA, take gauge-equivalent configurations that are solution of the
= 7D v that is tangent to the gauge orbit in thelirection, ~ equation
where 7 is an infinitesimal parameter. We have

HuQ=0, (3.12
OF=2(A,6A _ . . : .
( ) where H,, is the corresponding Minkowskian “Hamil-
=27n(A,Dv) tonian”
=277f d*xA%(9,v3+ FAP°AP ) H Ef d4X(i)Lg (iﬁ)L-i—K)‘(X'A)
o g . A (X) TN SAL(X) ’
=-2y f d*xa,A%v?. (3.9 (313

and the “drift force” is given by

Thus the direction of steepest descent, restricted to gauge
orbit directions, is given by \ SSym i B
" = —+ . — ,LL)\+ 1A g .
K*(x;A) AL (X) a 'D"9-A=D,F a DA,

vd=a19,A2 (3.10 (3.14

uo

wherea>0 is a positive constant. We shall take this optimalThe linear part of this force is
choice forv, so the total drift force that appears in the dif-
fusion equation is given By &Kg"“(&ﬂAv—(9VAM)+aflﬁ,,g""&KAM

which, fora>0 defines a regular hyperbolic operator that is

8An alternative choice suitable for the Higgs phase was proposetnvertible with Feynman boundary conditions. As above, one
in Ref. [50]. may show that the solutions to this equation for different
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values of the gauge-parameteare gauge equivalent to each We note in passing that the gluon propagémgy(J) in the

other, and for a—o,
N exp(Sym)/#.

The drift forceD, d- A is not conservative, so one cannot

one regains the formal weight presence of the sourckis a positive matrix, since one has,

for any fy, 3,fDe(Ify=f %X?),;=0, where X
=3, f,(Ay—(Ay);), Which is positive since it is the expec-

write down an exact solution to the time-independenttation value of a square. It is expressed in terms of the
Fokker-Planck equatioflpP=0. Nor can one express the Legendre-transformed variablésandI'(A) by

solution as a functional local

dimensional action.

integral over a
However, we shall,

expansion and nonperturbative solution.

IV. QUANTUM EFFECTIVE ACTION IN STOCHASTIC
QUANTIZATION

The partition functiorZ(J), which is the generating func-

tional of correlation functions with sourck is defined by

Z(J)EJ dAexp(J,A, /7 )P(A). 4.1

It is the Fourier transfornfwith respect taJ,) of the prob-
ability distribution P(A), and satisfies
transformed time-independent Fokker-Planck equation

J
3 h— K o3

Z(J)=0. (4.2

HereK,[%(d/4J)] is the local cubic polynomial in its argu-

ment 7 (d/3J) that is defined in Eq(3.11). We setZ(J)
=exgW(J)/%], where the “free energyW(J) is the gener-

four-

by successive
changes of variable, transform this equation into an equation
of Dyson-Schwinger type that may be used for perturbative

the fourier-

T (A)

— l —
A= G A,

(4.7)

Expectation values of functiona@®=O(A) are expressed in
terms ofZ(J), W(J) or I'(A) by

—+h

Y NN

4.9

(O)a=0

J
A+#D(A) [?—A)l,

where the subscript indicates that the expectation value is
calculated in the presence of the soudcer A. In the last
line, the argument oD is written in matrix notation, and
reads explicitlyA, +ﬁDXy(A)(¢9/ IAy).

The quon propagatdb,(J) is a positive matrix, as is its
inverseD,, (A) so bothW(J) andI'(A) are convex func-
tionals. Phy3|cs is regained when the soudcis set to O,
namely,J,= dI'/ 9A,= 0. Sincel (A) is a convex functional,
the pointdl’/9dA,=0 is an absolute minimum df. In the
absence of spontaneous symmetry breaking, this minimum is

ating functional of connected correlation functions, in termsunique and defines the quantum vacuum. Thus physics is
of which the time-independent Fokker-Planck equation readsegained at the absolute minimum B{A), which justifies

JW
Jy| Ix— Ky =7 +h =0. (4.3
The quantum effective action
1_‘(Acl):JxAcI,x_\N(J) (4.9

is obtained by Legendre transformation fraM(J), by in-
verting

&W h 9z

cI x(J) Z (9\]

<AX>J ’ (45)

to obtainJ,=J,(Ag). In the following we shall writd (A)

instead ofl'(Ay) when there is no ambiguity caused by us-

ing the same symbol for the quantum Euclidean figldnd
the classical sourc&=A,.
presence of the sourckis given by
Dy (D=1 (A (A (A= (Ay)3));

_ ﬁAy
9,

_PW
03,09

(4.6

The gluon propagator in the

the name “quantum effective action.”
In terms of the Legendre-transformed variables, the time-
independent Fokker-Planck equati@h3) reads

ar

A —0.

(4.9

a
AT A AD(A) ﬂ) 1

Here D(A) is expressed in terms a@f(A) by Eq. (4.7), and
K A+hD(A)(d/dA)]1 is evaluated next.

V. QUANTUM EFFECTIVE DRIFT FORCE

We call

Qu(A) =Ky (5.1

p)
A+AD(A) ﬂ)1

the “quantum effective drift force.” It is the expectation
value

(A= < KX>AC| (5.2
of the drift force(3.11) in the presence of the sourég,, as

one sees from Ed4.8). To evaluate it, we expand,(A) in
terms of its coefficient functions
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(3)

Xyz

K (A)=KJA+(2D) 7K EZAA,+(3D) TIKELAAA, .

(5.3
The coefficient functions are found from E®.11), and are

given in the explicit notation by

(2) ab

KR y) == SR

(x,y)
= 5ab[((9261()\_ (9/((9)\) + a_lak‘?)\]

X 8(x—y), (5.4
K@ (x;y,2) = — S\ans(x,y,2)
+a K (xy.2) (5.5
_ «a(3)abc — fab O O(X—V)S 1.5(v—
SYMK}\/.L(X!y’Z) g C[ [A (X y) nlx (y Z)
+ 9, 0(Y—2) 8,4\ 6(Z2—X)
+ 91 0(2—X) 8,1, 6(x—Y)], (5.6
KE12e (x:y,2) =gy, 8(X—2) 8,1, 8(x—y),
(5.7
K(3)i7lzj:.gl(x’yiziw) = S(Y4|\3|i)hifti(xayyzaw)
— _ gz(fabedee(SK[/,L5v])\
+ facefbdeék[)\gv]'u
+ fadefd)eék[p,&)\] V) 5(X_Y)
X 8(Xx—2)8(x—w), (5.8
where 8, 8,),= 6, 6, — 9,6\ . » €tC. The contribution to

each coefficienK(™ from Sy, is symmetric in all its argu-

ments, including the first. Thus®)22¢%(x,y,z,w) is sym-

metric under permutations of its four arguments. Moreove
l;’(x,y) is manifestly symmetric in its arguments. On the

K(l)a

K

other hand the first argument &f
guished.

The evaluation of the quantum effective drift force
O (A)=K,[A+hD(aldA)]1, is straightforward. By substi-
tution into Eq.(5.3) we have

(2)abc

Stana(X:Y,2) is distin-

_k@ -1 (2) 9
QA =KZA+(21) 1KY, Ay+m>yua—Au A,
3N"KS A +AD 7
+(3D) K A+ VA,

J

X AZ+hDZUc9_AU Aw

(3)

= Kg/)Ay"' (21) 71K£(?))’Z(AYAZ+ hDy,) +(3!) 71KXVZW

i )(AZAW+ AD,). (5.9

X(Ay'f'ﬁDyua—Au

Use of the identity

PHYSICAL REVIEW D 67, 105001 (2003

PT(A)

ID,(A)
IR IAIA,’

A,

— D, A)Dyr(A) (5.10

that follows from (0™ 1), ,(A) = °T'(A)/dA,3A,,, gives the
formula for Q,(A) that is the first equation of next section.

VI. BASIC EQUATIONS FOR Q AND I

The first basic equation of the present method is the for-
mula, just derived, for the quantum effective drift force

QA =K ((A) +4(21) K Z) Dyt h(21) 7KW Dy A
_ T (A)
—h?%(31) 1K;3y>zmz>yrDstwtm, (6.1)

where D="D(A) is the gluon propagator in the presence of
the sourceA, and is expressed in terms df(A) by
(DY) w= 3T (A)9A,0A,. This equation is represented
graphically in Fig. 1. The terms of ordérand#? correspond

to one and two loops in the figure, and we write

Qx:Kx+thloopx(r)+h2Q2loopx(F)- (6.2

The second basic equation of the present approach is ob-
tained by writing the time-independent Fokker-Planck equa-
tion (4.9), satisfied by the quantum effective actidh in
terms of the quantum effective drift fora@,(A)

T
A,

r
+Ou(A)

oy —0.

6.3

This equation is of classic Hamilton-Jacobi type, with energy
E=0, and HamiltoniarH (p,A) = py[ px+ Ox(A)].

The pair of equation$6.1) and (6.3) forms the basis of
the present approach and allows a systematic calculation of
the correlation functions. Equatiof®.1) resembles the DS
requation for the gluon field in Faddeev-Popov theory,
namely, JI'/dA=(9SIdA)[A+AD(dldA)]1, where S
=Sym+ Sert Sy, and Sy, is the ghost action. Indeed the
same expressions appear in both equations, as is seen most
easily from Fig. 1, except that the contribution from the
' ghost actionsSy/ 6A [ A+AD(6/ 6A) 11, is replaced by the

term proportional ta ™~ in the gluon vertex< (),

In the functional equation$6.1) and (6.3), satisfied by
9,(A) andI'(A), Ais a dummy variable, and each of these
functional equations represents a set of equations satisfied by
the coefficient functions that appear in the expansions in
powers ofA,

QA = QLA+ (2D) MG L AV A, T, (64
— -11(2)
T(A)=(2) 7 Ay A,
-1 (3)
+@TITY L AAA T, (85

whereT'("™ is the propem vertex. The individual equations
for the coefficient functions are conveniently obtained by
differentiating Eqgs.(6.1) and (6.3) n times with respect to
A,, and then settind\=0.
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Qfx) = —_— K(x) function of A. We shall find an approximate, nonperturbative
solution of this equation. But first we must fild Q).

VIl. SOLUTION FOR QUANTUM EFFECTIVE ACTION

In this section we solve Ed6.3) for the coefficient func-
tions T@=T®)(Q) and I'®=1®)(Q). The solution for
I'® andI'™ for arbitraryn is found in Appendix D.

The solution forl'®), reads simply

r@ =—qQW . (7.2

X1X2 X13%X2

+1/2 X A

ment and is symmetnc only in the remainimg-1 argu-

ments, so in general the equatib) , =—Q Y

would not be consistent. However symmetries in fact con-
strain Q{"), to be symmetricQ{!), =Q\, , as we will
see, SO Eq(? 1) is in fact consistent.

To prove Eq(7.1), we differentiate Eq(6.3) with respect

to Ay, andAx , and obtain, after setting=0,

-1/3! X

F<2)(F(2)+Q§(;1))( )+ (Xg2X5) =0. (7.2

X1X XX2
FIG. 1. Diagrammatic representation of the functional DS equa- @
tion for the quantum effective drift forc@(A) in the presence of 10 Solve this equation fof*~, we diagonalize all the matri-

external sources, Eq. (6.1). The vertices are the tree-level vertices €S Dy taking Fourier transforms In the extended notation
of the drift force K. The internal lines represent the exact gluon this equation reads

propagatorD(A) in the presence of the external source. The circle

I i . . aja aa aa; .

is the exact three-gluon vertex of the quantum effective adtigh) J d4X{F(2)M1M(X1 ,x)[F(Z)WZ (X,Xp) + Q(1>Wz (X;X5) ]

in the presence of the external source. 1 2 2

. . . (X, p1,81) (X, 12,82) ]} =0, (7.3

We now come to an important point. The time-
independent Fokker-Planck equati@h9) satisfied byl'(A)  and we take Fourier transforms:
is equivalent to the pair of coupled equatigfsl) and (6.3
that is satisfied by the palf(A) and Q,(A). Indeedevery (1ab (y vy = 5ab(2 17 “‘f d*k exd ik - (x—y) 1O k),
solution of Egs. (6.1) and (6.3) yields a solution of Eq. (4.9) Q) (zm k- vk
and converselyThis remark is the key to transforming the (7.9
time-independent Fokker-Planck equation into an equation of 1°(2 (x y)=5820(2m)~ 4J' d*k exdik- (x— y)]I‘<2>
DS type. For it turns out that the Hamilton-Jacobi equation
(6.3) may be solved exactly and explicitly for the coefficient color, translation, and Lorentz invariance, and use of the
functionsI"(™ of T'(A) in terms of the coefficient functions ransverse and longitudinal _projector®] (k)= (6,
Q{" of Q,(A), where m<n. In fact we shall obtain _j k /k?) and Pt ,(k)=kyk,/k? give the decomposition

a simple algebraic—indeed, rational—formula faK"™ o these quantities into their transverse and longitudinal in-
=TM(Q) for everyn. This allows us to change variable yariant functions

from the quantum effective actidn=1"(Q) to the quantum

effective drift force Q,. It will be the last in our series of QLK) =QMT(k?)PJ (k) + QN (k?) Py, (k),
changes of variabl®(A) —Z(J) —=W(J) =T (A)— Q,(A). _ (7.5
Neither the Hamilton-Jacobi equatid@f.3) nor its solu- T2k =T(k?)PJ (k) +a *L(k?)Py (k).

tion I'=T"(Q) containsf. When the solution of Eq(6.3), o L )
I'=I(Q), is substituted into E¢(6.2), one obtains an equa- 1 he coefficienia”~ is introduced here for later convenience.

tion of the form In terms of the Fourier transforms, E{.3) reads

0= Kot 1 Qoo Q)+ 120peop( @), (6.6 w00+ QL 0T+ (upag g —kopiz )

=0. (7.6
This is an equation of DS type for the quantum effective drift . .
force Q,. By iteration, it provides thé expansion ofQ,.  Color and Lorentz symmetries, as expressed in @),

The zeroth-order ternK,, given in Eq.(3.1D, is a local  constrainQ{})(k) to be a symmetric tensor that is evenkin
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QM) =0W ) =@M (~k), as is T (k). Products of
such tensors hae the same propertyand as a resultthe two
terms in Eq (7.6) are equa) and we hae

T2 (0[T2 (0 +3%E, (K1=0, -

Mo

which proves the assertiofY.1). For future reference, we

note

(D Y.k =T&(k=—Q1 (k)
=T(k?)PJ (k) +a 'L(k*)P} (k). (7.8

Here we have introduced the usual gluon propagator, with

sources set to My, =Dy, (A)|ar—o. Itis given in terms of"
by (D™ 1) yy=d?T10AGA | a—o=T").

PHYSICAL REVIEW D 67, 105001 (2003

where Q2% (ky;k, ks) and f<3>21112553(k1,k2,k3) are

defined only fork; +k,+k;=0. This gives

ff“zfﬂ(kl)[f(sif:sz(kl Kz ,K3) + Q(Z)Zfzzzz( KqiKs,K3)]

+(cyclic)=0. (7.13

We use the symmetry d”f"(3)ill‘jf:33(kl,k2,k3) in its three
arguments to write this as

(350 K0) BB+ (YOI K )

— _ p(3)a1aa3
HI®RE2 (K K ko),

(7.149

where

We next findI'®). For this purpose we differentiate Eq.
(6.3 with respect toA, , A,, andA,_, and obtain, after

settingA=0 H(3)%182% (kl,kz.ks)EFffM(kl)é(z)alazas(kl;kz,ks)

MipoM3 Mpp 3

. +(cyclic). 71
rerd, +Q2 )+ (cyclic)=0, (cyclic) (7.19

X1X

(7.9

where we have usef®=—0Q®, and (cyclic) represents To complete the diagonalization b{’)(k), and solve Eq.
a

the cyclic permutations dfL,2,3. A novelty of the stochastic  (7.14 for 'fﬂllzzjjs(kl,kz,kg), we apply a transverse or lon-
method is now apparent. F®{) |, , unlike Q(l)zi is not  gjtudinal projector to each of its three arguments, and use the

X;Xg X3 ? X; X
completely symmetric in all its arguments as it would be if transverse and longitudinal decompositionﬂﬁl}(k) given
the drift force were conservative. As a result, the equation

ing(3)318283 i
re . +Q¥ | =0 has no solution. This is already appar- n Eq. (7.8). One obtamsl“. '“']:”2”“3(k1’l.<2’k_3) n tem.13 of
ont io 32ero orzdear i, whereQ®  —K@  putK®) its transverse and longitudinal projections, defined by
' XiXp,X3 XiXp,X3 ! X; X9, X3

XT(k)=PT (K)X, (k) and X} (k)=P% (k) X,(K),
is not symmetric in its three arguments, as noted above. plRI=P (kX0 p(R =P (0X,00

To solve Eq.(7.9 for '), , we again diagonalize the
matrix Fizli by Fourier transformation. To do so, we write the
last equation in the extended notation

TETTT22% (1 ) ka) = —[T(K?) +T(k3) + T(k3)] 1

Mipop3
X HETTT8283 () Ky k),

MMom3
(7.16
[ a2 00
| TELTT22% (K Ky ka)=—[a "L(KD) +T(K})
+QPNE (xiX,,X3)]+ (cyclic)} =0, (7.10 2 11 ?
+T(k3) 1™
and take Fourier transforms 3

(3)LTTa1aza3
X H 3(k11k2!k3)1

MMM
(7.17

Q(2)211122333(X1 1X2,X3)=(2m) " BJ d*k,d*k3d%k4
Xexpliky-x;+iky- X+ iks- X3)

X 8(kq+ky+Ks)

etc. The corresponding formulas B andT™ are found
in Appendix D.

N (2)a1aza3 .
xXQ M1M2ﬂ3(k1,k2,k3),

(7.1)  vII. DYSON-SCHWINGER EQUATION FOR THE GLUON

PROPAGATOR

We have solved the second basic equatiér® for the
coefficient functionsl'(™, and expressed them in terms of
the Q™ for m<n. We now turn to the first basic equation
(6.1), and derive the equations for the coefficient functions
QM by the same method of taking derivatives and setting
A=0. To derive the equation fa®*), we differentiate Eq.
(6.1) with respect toA,, and obtain, after setting=0,

PO (6, x5 = (2m) [ dydladtis

LTk}
Xexpliky-xg+iky-Xo+ikg- X3)
X 6(kq+ky+Kkg)

T (3)a18za3
XF ﬂlﬂzl‘g(kl,kz'kS)’

(7.12
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Dy y T)

(1) — e (1) _ =1 (2)
Qx _KX:y a2 K D Xo¥2" Y1YoY

Y XiX1,X9 7 X1Yq

+h(21)71

xK® D

XXq Xy = XqXp

_z2 -1k (3)
A%(3!) Kxxlxzstxllexzyz

(4)
xD X3Y3F Y1YoY3y

XT®) , D,y Dyy T2

2975737 Z3Y1 ~ X3¥o" ¥1.Y2.Y!

+h2(21) K

XX1X2X3 XlleXZZZ

(8.2
where we have again used E§.10. This equation is rep-
resented diagrammatically in Fig. 2.

In momentum space the coefficients.4)—(5.8) of the
drift force read

KM (xy)= 5ab(27r)’4J' d*k

xexilik- (x—y)IK(K),
(8.2
K‘Z)leizjjs(xl;xz,xg)z fa1a2a3(27-r)*8J’ d*k,
X d*k3d*ks exp(iky - Xq
+iks- X5+ ik3-X3)
X 8(Ky+ Ko+ Ks)

K (2)
X Kl‘lﬂzl‘s

(ki;ka,k3), (8.3

K (3)21828334 (X1,X2,X3,X4) = (27) _12f d4k1d4k3d4k3d4k4

MMMty

PHYSICAL REVIEW D 67, 105001 (2003

QM y) = X y

12 x

+1/2 X

-
0
s

+1/2 X

FIG. 2. Diagrammatic representation of the DS equation for the

where

cod 30

X 8(ky+ Ko+ Kzt Ky)

% R(3)alaza3a44
Hykokgity’

(8.9

—KD(k) =[(K?8),,—kyk,)+a kk,] (8.5

w(2 . _ &3
K;;Wa( Ky Ko, kg)=— sgmlﬂzﬂs(kl Ko, k3)

+a lR(GZ%MMM( ki;ka.Ks),

~ Sy sigrug(K1: K2 Ka) =10 (K1) 1,8, T (CYCliC)  (8.6)

K& gy (Kiika kg) =ig[ (K3) 4,8, 0, — (253)]

_ KAz _ 92( faiazefagaze §

Mgy

+ fa1a3ef 32a465

1)

#1[//-3

6

malmoCrgl g

M4],U-2

+fkefes, 8,0, (8.7)

gluon propagator, Eq8.1). The vertices are the tree level vertices
of the drift forceK. The internal lines are the exact gluon propaga-
tor D with sources set to 0. The circles represent the exact three-
and four-gluon vertices of the quantum effective actionwith
sources set to 0.

With QW= —D !, we obtain finally the DS equation for the
gluon propagator

— (D7) = = (K200 —keky) +a Tk ky]
—hfaalaZ(Z!)‘l(Zw)‘4f dky K33 (K — kg ki —k)

XD, . (kp)Dy (k= k) T2 (k) k—ky, k)

MMM
+h(2h) (2m) f kK355, Do, (ko)

+672°QY%, . (K), (8.8

where the two-loop term is given by
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8°QY, (K =—#r2(31)"Y(2m) 8 f dk,d k%“ﬁ‘ilﬁii Dy iy (KD, (K2) Dy (K= K1 = k)

XT (93122330 (1 o Kk —ky, —K)+ ﬁz(zi)*l(zw)*f‘f dkdkK @028 D, (ky)

Mytotgh AgAohg

X f)wz(kz)f(s)alazb;(kl k2, —ki—ka)D, . (K1 +kp) Dy, (k= Ky = k)

VlVZV

XT P20 () 4k, k—ky—ky, —K). (8.9

Mk

IX. TRUNCATION SCHEME

T(k?)=k>+ ik f d¥q[ 17T T(ky k)
. . . . YIRS Y 1
To obtain a nonperturbative solution of the DS equations, 2(d—=1)(2m) ! !

it is necessary to truncate them in some way. Needless to say,

truncation rer¥1ains an uncontrolled approx%nation until it isy + 21T (kg k) + 1T (kg RO, ©4

tested by varying the scheme, or by comparison with numerig oo

cal simulation, as discussed in the Introduction and Conclu-

sion. Moreover the truncation scheme is gauge dependentl-TT(k, k)

This situation is familiar in atomic physics where bound state 5

calculations are done in the Coulomb gauge. We shall ulti- K@TT T (k,—kq,— k)T T T(ky ky,—k)

mately solve the truncated system in the Landau-gauge limit. = L2 > > 12 , (9.5
As a first step we neglect the two-loop contribution in Eq. T(kp)T(k3)

(8.8). We shall also not retain the tadpole term, which in any .

case gets absorbed in the renormalization. The three-vertéx  (K1,K)

that we will obtain

ROTT L (k— kg, - kz)f(g’)leLzAT(kl Kz, —K)
TIL(K) |
9.1) (9.6

defined fork;+k,+k;=0, has the color dependence thatIT,LL(k K)
allows us to use the identitf?222f2122°=N 2P for SU(N) L
color group. As a result, the DS equatith8) simplifies to

DTS (Ky ko ke) = F32%2%L0 | (Ke ko ko), =a

} KON bk = ke, = k) TR 4 Tk kg, =)
(D™ u(k)=(K?8,0,— K, ky) +a~ Tk ky -a L(K3)L(K3) ’

9.7

k,=k—Kk;, and the transverse and longitudinal projections
are defined in Sec. VII.

Similarly, to get the DS equation fdr(k?), we apply
projectorsPt’V(k) to both free indices of Eq9.2), and ob-
tain [P-(k)D " *(k)P*(K) 1, ,=a 'L(k?) P} (k) on the left
9.2 hand side. We take the trace on Lorentz indices space-

o . . ~time dimensions, and usBy,(k?)=1, to obtain the DS
We convert this into a DS equation for the invariant gquation forl (k?),

propagator function¥(k?) andL (k?). The gluon propagator

+hN(2!)’1(27r)’4j dk,

XK (K kg k=KD, (ko)

1M1

X Bk k)T, (kg k—ky, —k).

MqMpp

is given by AN
a—lL(k2)=a—1k2+mf dk[1-TT(ky k)
5 PRl PE(K) 09 .
w= T Fa e - +20TH kg K+ (R K], (99

To get the DS equation folf(k?), we apply projectors Where
PI’V(k) to both free indices of Eq(9.2), and obtain LTk K
[PT(k)D Y(K)PT(K) ]\, =T(k})P} (k) on the left hand (ke k)
S|_de. We take the tl’&_ll_CG (2)n Lorentz |nd|c§sd|r$pace—t|me R(Z)H I(k,—kl,—kz)r(s)l )‘\I’)\L(klykz,_k)
dimensions, and usk,, (k“)=d— 1, to obtain the DS equa- = 172 e . (9.9
tion for T(k?), T(kDT(K3)
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IV T Ky k) -

T bt (ki K kg) = —ia g

k3—ak?

alkl+k2+ kg("z)ﬂz

RO 5k —kg, —ko) TOT L (kg ko, — k)

:a ;

T(K)T(k)) 010 x[pT(kl)pL(kg)]WS—(zHg)),
9.1
1Lt (ky k) — - 22
ROLL L (ke — k)T L Lk, ok, —K) TGt puous(K1.Ka Kg)=—ia""g m(kl)“
ANV TR TR NN VRL B2, 7

-a N 02 : .

L(k7)L(k3) ©.11 X[PL(kZ)PL(k3)]M2M3+(CyC|IC)>,

The vertexK® is given in Eq.(8.6). To complete the
truncation scheme and obtain closed equationd {&f) and

L(k?), we need an approximation for the verte®). We =g )
and(9.16) complete the specification ¢f®) that appears in

will approxmatel“ t.’y Its ve'llue to zero order ift. This the truncated DS equatiof8.4) and(9.8) for the two invari-
vertex is expressed linearly in terms @ by the exact ant propagator function(k?) andL (k?).

valid to zero order ink. Because of the denominators, the

vertex '$) is nonlocal even to this order. Equatiof@13

formulas of Sec. VII, which may be writteR (3= MO®@, In Faddeev-Popov theory there are, by contrast, three in-
whereM =M (D). At tree level,Q® is given by variant propagator functions, namely, these two plus the
ghost propagator. However in Faddeev-Popov theory, the

0@=K® Slavnov-Taylor identity in its BRST version implies that the
gluon self-energy is transverse, so there are finally only two
= _”§<Y3,\}|+a—lkgT>, (9.12 independent invariant propagator functions in Faddeev-

Popov theory also, namely, the transverse part of the inverse
where we have used Eq$.2) and(8.6). Each of these terms gluon propagator and the ghost propagatbr. the present
contributes additively td:(3)=MQ(2). Moreover~(3,\}|, is  theory, the longitudinal part of the glyon propagator replaces
symmetric in all its arguments. As a result, it contributest.he ghost propagator as the secon_d Invariant propagatorfunc—

=(3) tion. There is no BRST symmetry in the present' theory, but it
unchanged td"*, as one sees from E(.9), and we have  ssesses a Ward identity, derived in Appendix C, that ex-
presses the effect of a gauge transformation and constrains

D iuaKa ke ka) =S, (e Kz ka) the form of divergences.
+T&) ki.ko k), (9.1
ST wypang KKz ko), (913 X. LANDAU GAUGE LIMIT
whereT &) =MK&) is obtained from Eqs(7.15—(7.17) by We now specialize to the Landau gauge limit-0. We
the substitutions cannot directly sea=0 in the DS equation.4) and (9.8
because both vertices contain terms of ordef. With the
Qﬁ,,zl)uzﬂ?,(kﬂkz:ks)—’a_lR(GZT) Mluzus(kl;kz'k3)’ gluon propagator given by Ed9.3), we take as an ansatz

that the invariant propagator functiofigk?) andL(k?) re-
main finite in the limita— 0. This accords with the behavior
obtained in Ref[6] by a Born-Oppenheimer type calcula-
5 tion. At a=0, the propagator is indeed transverse, which is
Finally, to obtainT'$) to zero order inf, we substitute the the defining condition for the Landau gauge, ar{¢t”) does
tree-level propagators drop out of the propagator. However, the vertices contain
terms of ordera! and, remarkably, the longitudinal propa-
T(k?)—k?, L(k?»)—k? (9.15  gator functionL(k?) does not decouple at=0, but remains
N an essential component of the dynamics.
into the formulas of Sec. VII. This gives for the vertE§}, We next determine tha dependence of the vertices as-
ymptotically, at smalla. By Eq. (8.6), we have K(®)=
TATTT (K ko ks)=0, - s +a K2, so this vertex contains a term of orcat
Farats and a term of ordea . We take the asymptotic limit of Eq.
212 (9.16 at smalla, and obtain the interesting dependence
aki+aks+k3 (K3)ug

(9.19

Ffl)/‘2“3( Ky,K2,Ks) _’FgT) #1#2#3( K1,Kz,K3).

T h (K1 ko kg) = —ig

%In practice the truncated DS equations in Faddeev-Popov theory

T T
X[P (k)P (kZ)]Mlﬂz’ (9.16 violate the Slavnov-Taylor identities to some extent.
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T (ki ka k) =0, K& oyo(K1iKa ka) =19 (Kg) ([P (Ky) + PH(Ky)]
T L
~(3)T TL ~T T X[P (k2)+P (kZ)]),ul,lu,z
ety (K1.ka . ka) =7, 1 & (Ky,Ka,Ka),
1H2M3 Hakok —(23) (10.3
(10.2 ' '
f‘E;sT)T,LIl',LIZ'ME(|<1,kz,ka) &V ona(Ka K Ka), The polarization vectorks),,, is purely longitudinal, as is
(kZ)Mz’ and this implies
T L (ke ko ke)=a 27y L L (kg kg k), _ _
e e KgT)LMTleZ(k;—kl,—k2)=Kf:,2T)TMTleZ(k:—kl,—k2)=0-
where (10.4
T L (K Ky ka) Thus there is no contribution of the required ordér from
Yigpong\ 102,13 LT,
2 2 (ii) Consider Eq(9.11) for -1, It has the coefficiera?,
=—ig lsz(ks)MS[ PT(ky)PT(k2) 1,0 iy ISBLtLhZirterzls no contribution of the required order® from
(iii) Now consider Eq(9.10 for I“Tt. It has the coeffi-
~; /LL ,LL (kq,ky,k3) cient a. So when each vertex is of order ! there is an
1 overall contribution toa™*L(k?) of the required ordea .
2 As a result, the DS equatiof®.8) for L(k?) simplifies in
. 3 Landau gauge to
—ig kng%(kz)ﬂz[PT(kl)PL(ka)]Mlﬂs—(2<—>3),
10.
(102 L(k2)=k2+hN(2w)—4f d*k,
~L L L
kq Ko,k -
s K122 ) RELT L (ki—ky ko)7L Hky ko —K)
X .
2 K2 T(K3)L(k3)
— s L L
e +I(z(kl),Ll[P (k2)P=(K3) ], T (cyclic) (10.5

are independent ad. These quantities are anti-symmetric in By Egs.(10.3 and(10.2, we have

their three arguments so, for examp"@ #2M3(k1,k2,k3)=

_=TLT (3)
’)’Ml#s#z(kl,kg k,), etc. We see that ®) also contains a .

term of ordera® and a term of ordea . gks

KENT L (K kg, — k) TL b (ke ko, =)

The DS equation fot.(k?), Eq.(9.8), is consistent with - W[k' PT(k)-k+k-PT(ky) k]
our ansatz in the Landau gauge limit only if the leading term
on the right is also of ordea . This is nontrivial, because gzk2 T
both vertices contain terms of order !, so in principle = k2 2k Pk kK, (10.6

terms of ordera 2 could appear on the right-hand side

which would invalidate our ansatz.

We now derive the DS equation ftu(k?) in the Landau-
gauge limit by evaluating in succession the terfins -7,
(i) I™LL, and(iii) 1T+ that appear on the right-hand side of
Eqg. (9.8), in the limit a—0.

(i) Consider Eqg.(9.9 for I“TT. It contains no explicit

where we have usell,=k—k;. Note that a factor of the
external momentunk appears at each vertex. This corre-
sponds to the factorization of external ghost momentum in
the Landau gauge in Faddeev-Popov theory. This gives the
truncated DS equation fdr(k?) in Landau gauge

powers ofa. Moreover the verte><l~“(3)/TLT L (ki ks, —K), 292N K2 kK2~ (K- kq)?]
. . . 1kt ) L(k¥)=k?——— | d*
given in Eq.(10.1), is of ordera®. Thus the inconsistency of (2m)* lkf(k + kz)T(k )L(kz)
a term of ordera™? is avoided, and this intermediate state (10.7

will give a contribution of required ordea ! only if the

vertexK®{ 1 | (k;—ky,~k;) gives a contribution of order ~ The DS equation folf (k?), Eq.(9.4), is consistent with
1 13 . . . our ansatz in the Landau gauge limit only if the leading term

a " The terma *KEY,, (ki ke, ko) in EE' @81 o1 the right is also of ordea’. This is nontrivial, because

fact of this order. The projected componentsKrﬁT) are eas- both vertices contain terms of order !, so in principle

ily read off Eq.(8.6) by writing 8,,=[P"(k)+P"(k)],,, terms of ordea ! anda™? could appear on the right hand

which gives side which would invalidate our ansatz.
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We now derive the DS equation fai(k?) in the Landau- which is of ordera®. Thus only that part of the vertex
gauge limit by evaluating in succession the teris ™', K(Z)TFX (k;—ky,—ky) that is of ordera™* will contribute

Sy TLTL sy TLLL ; ;
(ii) | '?”d(“')_' . that appear on the right hand side of to the deS|red ordem®. However, from Eq.(10.2 for
Eqg. (9.4), in the limit a—0. FATTL

(i) Consider Eq.(9.5 for 17T, It contains no explicit pypigng(K1:K2,K), and by evaluation of
powers ofa. By Egs.(10.1) and (10.4, the vertices from S®7 LT (ki k;,—k), one obtains
Kgm;z(k;fkl,—kz) and TET,TT (k1 ko, —K) vanish,
and we obtain from Eq<8.6) and (9.13), TETL T(ky Ky, —K)=0. (10.19)

MMM
ROT Tk kg, — ko) = = SGnaian(k, ki, —ka)
(10.8 (iii ) Finally consider Eq(9.7) for I T"tL. It has coefficient

a2. To get a net contribution of orde®, we make the sub-

and stitutions of the relevant projected vertices

I‘(3) (k11k21 3’\3'”:-#1—2#1— 11k21_k)'

(10.9 K20 v, (6 ke, — k) —a KEN v, (K Ky, — ko),

10.1
This gives a contribution of the required order. ( 2
(i) Next consider Eq(9.6) for 1Tt It has coefficient. F(?’)/LLllLLZL(kl,kz,—k)—a 1”(3);1b2;(k1,k2,—k),
By E@s.(9.13 and(10.1), we have

TATL T Ky, BT LTk, —k by Egs.(8.6), (9.13, and (10.1). Again the conclusion is
g K1 K2, —h) = “1"2"( 1z, =k consistent with our ansatz.
3T LTk Ky, —K) We have now found all the terms on the right hand side of
Hqfom ’ !

Eq. (9.4) that contribute tdl (k?) in the Landau gauge limit,
(10.10 namely,

— S, (K = ke, = ko) SR T T(ke kz, =)

T,TT —
ITTT(ky k) TR , (10.13
T Tk, k) =0, (10.19
. K, ~ ¥ P (K ke, =)
andk,=k—k;. The last term is given explicitly by
k2+k3)ky- PT(K)-ky—kaky- PT(k) -k, —kik,- PT(k k
T (k)= — g , 2)K1- P (K)- 22 1P (K)-ky—kiky- PY(K) -k (10.16
(k3+k3)L(K2)L(k3)
k2k?— (kyq-k)?
ITLL (ky k) =2g2 ky k) (10.17

k2L(k$)L(k3) '

where we have used;-PT(k)-k;=ky-PT(k) ko= —k; XI. INFRARED CRITICAL EXPONENTS

'PlT(k) ' k2'fT?f nonlocal'denominatokhkg)‘l has can- We shall solve the DS equatio(8.4) and (10.7) for the
celed out of this expression. asymptotic forms off(k?) and L(k?) in Landau gauge at

We have obtained a consistent Landau gauge limit of thg, o mentum. We suppose that at asymptotically stiall
truncated DS equations for the invariant propagator funcuonghey obey simple power laws

T(k?) and L(k?). As asserted, the invariant longitudinal
propagator functiorl (k%) does not decouple in this limit. 2 N1ta
The reader will have noticed a striking similarity to the cor- T(k%)~Cr(kD™,
responding equations in Faddeev-Popov theory, with the lon- (11.3
gitudinal propagator replacing the ghost propagator. L(k?)~C(k?)1te,
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whereat anda,_ are infrared critical exponents whose value wherel ; is evaluated in Appendix F. We have generalized to
we wish to determine. Canonical dimension corresponds tarbitrary space-time dimeniath and we taked in the range
at=a =0. As explained in Sec. Ill, we know that in the 2<d=4. By equating powers ok for arbitrary d, we find
Landau gauge limia— 0, the gauge field\ is constrained to that the critical exponents are related by
be transvers@- A=0, and to lie inside the Gribov horizon,
that is to say, where the Faddgev—Popqy op(.arator'is.positive, ar+2a,=—(4—d)/2. (115
—d-D(A)>0. The transversality condition is satisfied by
our ansatz. As has been shown many tif#%26], the posi-
tivity condition strongly suppresses the low-momentum

y gy supp >(d—2)/4, which corresponds ta;<—1. Ford=4, we

components oA(k). Recalling that the transverse part of the obtaina >1/2 as the condition for convergence of the inte-
gluon propagator is given bpT(k?)=(|A(k)|?), we look gral.
for a solution for whichDT(k?)=1/T(k?) is suppressed at ~ Now consider the DS equatiofi0.7) for L(k?) in the
low k, so T(k?) is enhanced at smak compared to the infrared asymptotic limit
canonical powefl (k?)=k?. This meansx1<0.

We now estimate the power &fof the various terms in g2
the DS equatior(9.4) for T(k?). The analysis is similar to CL(K?)traL=Kk2— 2hg°N f d%k,

The last integral is ultraviolet convergent provided that

the Faddeev-Popov ca$—6]. The left hand side has the CsCL(2m)*
power k?)1*eT. The tree-level term i%?, so with a1<0, K2 (K. K )2
the tree level term is subdominant in the infrared and may be % 1~ (k-ky)
neglected. To evaluate the loop integfal*k,, asymptoti- (KDZF1(k3) “(K5+K?)
cally at low external momenturk we takek to be small
compared to a QCD mass sclle<Aqcp, and we rescale  for 4—4. By power counting, the integral on the right has the
the variable of integration according kf = |k|x*. We now power k)1~ eT-e This agrees with the power on the left,
have a dimensionless integral in which the QCD mass scalgrovidedar=2«, , which is identical the previous equation.
appears only in the very small ratik|/Aqcp. In the  However we have also previously foung>0. In this case,
asymptotic infrared limit, this ratio goes to 0, and every-the tree level ternk? is dominant in the infrared, and the
where in the integrand we use the asymptotic fofis1.  equation appears inconsistent. However the degree of diver-
This is equivalent to using the asymptotic forifid.1) ev-  gence of the integral is @ , so the integral diverges for
erywhere in the original integral. We shall see that the resulty, >0, and a subtraction is required. The integral contains an
ing integral is convergent, which means that the integral issxplicit factor ofk?, and the divergence is of the forBk?,
effectively cut off at momenturk; ~k. whereB is an infinite constant. We subtract the integrand at
We now estimate the contributions of the terms "and =0 which makes the integral vanish more rapidly th&n
I""", Eqs.(10.13 and(10.15, to the right hand side of the and addbk? on the right, wherd is an arbitrary finite con-
DS equation9.4), by simply counting powers df andk;.  stant. The dominant terms are now the tree level tefrand
One finds that, after integratiofd’k,, these terms are of 2 For the equation to be consistent, the subtraction term

order (?)*~ 2T and (k?)! 2., respectively, while the left-  myst precisely cancel the tree-level term, tse —1. This
hand side is of orderkf)'"“T, with ar<0. The powers gives

match on both sides only i, >0. In this case| "' is the
dominant term on the right, and by equating powerk, @ne

(11.9

2 212 2
obtains C (k)M L= 27ig°N f . Kki=(K-ky)
L CTCL(2’7T)4 1 (ki)2+a-|—
aT= —2a|_ y (112 ( 1 1
X| woae ez |- (17
and a >0. We retain only the dominant terid'‘" on the (kprky (k) (kp+k)
right in Eq. (9.4), which simplifies, for arbitrary space-time
dimensiond, to This integral is also convergent in the infrared for=
—2a <0. The right hand side now vanishes more rapidly
b1t 7.g°N § k2k?— (kyq-k)? than k. This conclusion, agrees with the “horizon condi-
Cr(k5)= 1= (d—l)CE(ZW)dkzj LK) T e () e tion” [25], and with the confinement criterion of Kugo and

(11.3 Ojima in the BRST frameworf27,28. Conversely we could
have imposed the horizon condition on the DS equation for

L(k?), and derived the suppression of the transverse propa-
gator 17 (k?) at low momentum.

The subtracted expression on the right is most simply
evaluated by continuing in space-time dimensgbnn this
) case one can ignore the subtraction term, and evaluate the
CCL - (11.4 unsubtracted integral with dimensional regularization dor
ng?N T ' <4, and continue the resulting expressiordte 4,

wherek,=k—Kk;, and we have used E¢L0.17. This agrees
with Eq. (6.14 of Ref. [6] in Faddeev-Popov theory. We
write it as
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27g°N XIl. CONCLUSION

CL(kA) o= — —————3 | d%, . o . o
C:CL(2m) We derived time-independent stochastic quantization from

K22 — 2 the principle of gauge equivalence which states that prob-
71— (k-kyq) bility distributi . .
Xy ———>——.  (11.9  ability distributions that give the same expectation values for
(k)= “T(k3) “t(ky+ k%) all gauge-invariant observables are physically indistinguish-
able. This quantization is expressed by an equation for the
The denominatok+k? results from the nonlocal expres- Euclidean probability distributionP(A) that is of time-
sion for the vertex. One obtains the corresponding equatiofhdependent Fokker-Planck form, with a corresponding
for the ghost propagator in Faddeev-Popov theory,(E49  equation for the Minkowski case. By making several changes
of Ref. [6], from this equation by the substitution R¥  of variable, we transformed this equation into an equation of
+k?)— 1/k3. DS type, suitable for nonperturbative calculations. The most
By equating powers d for general space-time dimension novel of these changes of variable is accomplished when the
d, one again gets Eq¢11.5, and we see that the DS equa- equation for the quantum effective actibris exchanged for
tions for the transverse and longitudinal parts are consistenin equation for the quantum effective drift for@,. We
The degree of divergence of this integral ig,2 and after  then adopted a truncation scheme and obtained a consistent
one subtraction its degree of divergence ig 22, so the | andau gauge limita— 0, and found, remarkably, that the
subtracted integral is convergent provided that<1, or  |ongitudinal propagator functioh(k?) that appears in the
equivalently thatr> —2—(4—d)/2. From this and our pre- |ongjtudinal part of the gluon propagatd=a/L (k?), does

vious bound, we conclude that fdr=4, this subtracted in- ot decouple in the— 0 limit, but plays a role similar to the
tegral and Eq(11.3 are both finite provided that, isinthe  ghost in Faddeev-Popov theory.

range 1/22« <1, or equivalently thatrr is in the range We calculated the infrared critical exponents that charac-
—2<ay<-—1. We write the preceding equation as terize the asymptotic form at low momentum of the trans-
verse and longitudinal components of the gluon propagator

C.C? in Landau gaug® "~ 1/(k?)***T andD-~a/(k?)'* ., and

AgIN L (119 optained the valuesy ~0.5214602698 andv;=—2a, ~

—1.04292054. In the Landau-gauge lindt—0 only the

wherel | is evaluated in Appendix F. transvers_e part survives. As a functionkpfit vanishes ak

Upon comparison with Eq.11.4), we obtain =0, albeit rather weaklyD T~ (k?) =1~ “7~ (k?)?%*% On the

other hand, the longitudinal part of the propagator is long
(1110  range DY~a/(k?)1%?1 Qualitatively similar values have
been obtained recently for the infrared critical exponents of
the gluon and ghost propagators in Landau gauge from the
DS equation in Faddeev-Popov theory, using a variety of
approximations for the vertef2—6], in particular[5,6], at
5 =—2ag=—1.1906 anda;=0.595353, respectively. As we
"2-a)l'(2a - 1) have argued recently6], these calculations in Faddeev-
I*(1+a )l (4-2a) Popov theory should be interpreted as including a cutoff at
the Gribov horizon. This makes them similar in spirit to the
_ 3(—af+2a +2)T*(1-a)T (20, +1) (1117  Present calculation for which, as shown in Sec. Ill, the prob-
a (e, +2)T (e +3)I'(2-2a) ' ability also gets concentrated inside the Gribov horizon in
the Landau gauge limi&— 0. Reassuringly, the solutions of
Both expressions are finite and positive, as they should béhe DS equation in Faddeev-Popov theory and in the present
for « in the interval 1/ o <1. Moreover alo; =1/2, the  time-independent stochastic method are in satisfactory agree-
left-hand side diverges whereas the right is finite. On thenent.
other hand aty =1, the left-hand side is finite whereas the ~We comment briefly on the physical significance of our
right diverges. Consequently there is at least one root in theesults.(i) We have avoided gauge fixing and instead derived
interval 1/2<a, <1. After cancellingl’ functions, the last the equation of time-independent stochastic quantization
two equations give the quartic equation from the principle ofgauge equivalengéhereby overcoming
the Gribov critique. Since we do not gaufjg, we do not
49af—189af+ 133af+ 117a, —74=0. (11.12 E)rutal!y ?Iiminate “unphysical” variables and_ keep (_)nly
physical” degrees of freedom, which would violate Sing-

From a numerical investigation it appears that there is onIyerS theoren(29]. Instead, we gentlfamethe gauge degrees

. ; X of freedom by exploiting the principle of gauge equivalence.
one root in the interval 12 ¢, <1, with the value (i) We derived a set of equations of DS type that was solved

approximately but nonperturbatively in Landau gauge as-
ymptotically at low momentum(iii) The values we obtained

for the infrared critical exponents of the gluon propagator in
at=—2a ~—1.04292054. (11.13 Landau gauge are in satisfactory agreement with correspond-

() =1 (a)

which determines the critical exponest . From Appendix
F, this gives, ford=4,

o ~0.5214602698,
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ing values in Faddeev-Popov theory, and also with numericadolve the DS equations for arbitrary, findée(vi) One should
simulations.(iv) A striking result of this investigation is that extend the solution of the DS equations to include quarks.
the invariant longitudinal propagator functitufk?) does not ~ (vii) As we have explained, our results are intuitively trans-
decouple in stochastic quantization, even though the longituparent and lend themselves to a simple confinement scenario
dinal part of the g|uon propagat@L:a/L(kz) vanishes in which the WOUld-be-phySical transverse gluon leaves the
with the gauge parametex in the Landau gauge limia physical spectrum. However, it is clear that our discussion of
—.0. Indeed, because some vertices are of oadér, trans- confinement remains at the level of a scenario because we
verse gluons exchange longitudinal gluons as virtual parhave dealt here only with the gluon propagator which is a
ticles, with an amplitude that remains finite in the linait ~9auge-dependent quantity. This is only a first step in a pro-
—0. Thus, while ghosts are absent in time-independent std@fam, some of whose elements have just been indicated.
chastic quantization, they are replaced dynamically by th&learly _the goal is to calculate gauge-invariant _quantme_s.
longitudinal part of the gluon propagator in the LandauGaugel-lnvarlant states, the hadron;, appear as mtermedlgte
gauge limit. In fact, the DS equation(8.4) and (10.7) for ~ Statés In gluon-gluon and qugrk—ann—quark scattering ampli-
T(k?) and L(k?) bear a remarkable similarity to the DS tudes._ One mu;t extend to this sector the solution of the I_Z)S
equations for the gluon and ghost propaga®rand G in equations obtained here, and of the Bethe-Salpeter equations
Landau gauge in Faddeev-Popov theory, with the corresporibat follow from them.

dencesD« 1/T and G« 1/L. In both cases, it is the ghost

loop or longitudinal-gluon loop that gives the dominant con- ACKNOWLEDGMENTS

tribution to the transverse-gluon inverse propagator in the
infrared region, and causes suppression of the Would-bF
physical, transverse gluon propagatorkatO, a signal that 1€
the gluon has left the physical spectrum.

To conclude, we mention some challenging open pro
lems.(i) The possibility of comparison with numerical simu-
lations is an essential and promising aspect of the prese
situation. Any DS calculation involves a truncation which
remains an uncontrolled approximation, without further in- APPENDIX A: TIME-INDEPENDENT FOKKER-PLANCK
vestigation. It may be controlled by varying the vertex func- EQUATION FOR QUARKS
tion [5], or by extending the calculation to include the vertex

2?4:323;’:%23?&e:g;ﬂggflﬁnggr?%iﬁ%? I\:]V':Eisr;gmaigcxlstochastic quantization from the principle of gauge equiva-
P P ' 9 fence. Following the method of Sec. Ill, we seek a weight

note that the stochastic quantization used here may be and, In -
fact, has been effected on the lattice in numerical simulationfnction P=P(A, 4, ¢) that depends on the gluon and quark

by Nakamura and collaboratof§1—55. A direct compari- and_antiquark fiel(_js. We_ wi_sh t_o establis_h a class of gauge-

son with this data would require a solution of the DS ewa_equwalgnt nprmahzgd distributions that mclgdg_s the formal

tions for finite gauge parameter or extrapolation of lattice 9auge-invariant weighP=Nexp(-S) as a limiting case.

data toa=0. Naturally, a comparison of numerical results Here

with asymptotic infrared calculations also requires control of

finite-volume Iat_tice artifacts(ii) Conversgly the resul_ts of S=Sy+ f d"’xE(m +D)y (A1)

the DS calculations suggest new numerical calculations. In

particular our prediction that, for small values of the gauge

parametes, the longitudinal part of the gluon propagator is is the Euclidean action of gluons and quarks=1y,D,

long range, should be tested numericaliji) The present =7v,.(d,+gAt?), where{y,,y,}=26,,, and thet® are

scheme is not based on a local action, but rather on the Dthe quark representation of the Lie algebra of the structure

equations of time-independent stochastic quantizationgroup [t%,t°]=f2"%°. We take P to be the solution of

Renormalizability follows from the indirect argument that HepP=0, where we now specify the extended Fokker-

correlators of the four-dimensional time-independent formu-Planck Hamiltonian.

lation used here coincide with the equal-time correlators of a As in Sec. lll, we takeHgp to be of the form

local, five-dimensional theory whose renormalizability has

been establishef#9]. The renormalization constants of the Hgp=H;,,— (v,G)’

five-dimensional theory were calculated some time ago at the

one-loop level, and were found to yield the uspgdunction f 4 (
= Hinv+ d*x

It is a pleasure to thank Reinhard Alkofer, Laurent Bau-
u, Richard Brandt, Christian Fischer, Stanislaw Glazek,
Martin Halpern, Alexander Rutenburg, Alan Sokal, and Lo-
prenz von Smekal for valuable discussions and correspon-
dence. This research was partially supported by the National

I%cience Foundation under Grant No. PHY-0099393.

We extend to quarks the derivation of time-independent

[57,58,48. However, a direct proof of renormalizability in
the present time-independent formulation remains a chal-
lenge. The Ward identity, derived in Appendix C, is a first (A2)
step.(iv) One should extend the solution obtained here for

the asymptotic infrared region to finite momentkniv) The  where H;,, is a gauge-invariant operator, specified below,
Landau gauge is a singular limgt— 0 of the DS equations that has exp{S as null vector,H;,, exp(~S9=0, and the
for finite gauge parametas. It would be valuable to also Grassmannian deriveratives are left derivatives. Here

O Do gyt g (1) | o
SAL T T sy S '
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words, the parameters that specify Hre and N; are gauge
# . —g(t3y) +g(¢// a) parametersWe prove this directly.
oA, (X) O(X) Si(X) Let 6N, be an infinitesimal variation dfl,. It induces a
(A3) corresponding change i,

G3(x)=-

is the generator of local gauge transformations that satisfies 5H2:f A% -2 SN ( _) (A8B)
[GA(x),A%(y)]=—D5(x~y), R
a B a The corresponding change iR satisfies SH,P + HgpoP
[G(x), ¢(y)]= ~gt(x) 8(x~y), =0, s06P=—Hg3H,P. Let W be a gauge-invariant ob-
o — servable. We have
[GH(X), () 1= g (x)t*5(x—y), o
A4 _
5<W)=f dAdydySPW
[G2(x),G (y)]= 8(x—y)gf**°Ge(x),
[G&x),H;,]=0. =—J dAdydyH 3 SH,PW

With gauge-invariant observables defined by the condition
G#(x)W=0, the proof of Sec. Ill, that the expectation-value
of gauge invariant observablé®/) = [dAdyd WP is inde-
pendent ofv, applies here as well. As explained in Sec. Il = _f dAdydyPSHI(HT )~tw
we takev?®(x)=a 19,A,(x), wherea is a gauge parameter.

There remains to specifif;,,. We suppose that it is a o
sum of gluon and quark and antiquark Hamiltonians = —J dAdydysH,P(H Inv) w, (A9)

— f dAdydyPSHI(HL) ~tw

Hin/=HatHa+Hs, A5 \yhere we have usedH() “*W=(H! ) ~*W which holds
where H, is the gauge-invariant gluon Hamiltonian as in for a gauge-invariant observable, as was shown in Sec. Ill.

Sec. I, MoreoversHJ (H{,) *W is gauge invariant, so the last ex-
pression is mdependent of the gauge paranwtas was also
4 0S shown in Sec. Ill, and we may evaluate it far-o. We
o= [ a5 x|~ 5a ) (A8 have

For the quark and antiguark Hamiltonians we take o 5 OS
q q lim 6H,P= | d*%— &N <—+—> lim P=0,

— 0 5lﬂ 5¢ 5¢ a—w
5 [ 5 2
5t/f Sy 5{// . .
(A7) because lim_,.. P~Nexp(—9). Thus 8(W) vanishes, as as-
s S serted.
ngj d* —Na| — + _) The quark action satisfies
Sy \oY oY
Sq= | d*xyp(m+D =—fd4 C Ym+D)Cy,
whereN, andN; are gauge-covariant kernels with engineer- " J X ) XyC )Cy
ing dimensions of mass. All terms ki contain a derivative (A11)

on the left, which assures thelizp has a null elgenvalue,.for whereC is a numerical matrix that acts on spinor and group
we have[dAdydyHepF=0 for anyF. The corresponding indices and satisfiesC ™ 1y C=—+" and C-lt°C=
right eigenvectorP that satisfiesHP=0, is the physical —(t3)", so we have K’ "

distribution that we seek, that depends on the gauge param-

eters. Each of the operatok$ satisfiesH; exp(—S=0, so

also H;,, exp(—S9=0. This assures the applicability of the ——=(m+D)(x),
proof of Sec. Ill, namely, thathe normalized solutions for OY(X)
differentv are gauge equivalent fA)~P,.(A) and include (A12)
N exp(—9) as a limiting distribution oS 1 —
We have obtained this result without any assumptions W__C (m+D)Cy(x),

about the kernel®, and N5, apart from gauge covariance

(and regularity. This would not be consistent unletse nor-  where the Grassmannian derivatives are left derivatives. The
malized solutions for different choices of the kernels givamost general expressions fidp andN; that are local, gauge
gauge-equivalent distributions\JPA) ~ Py (A) or, in other  covariant, and have dimension of mass are
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N2=m2—b2D,

N3=—C_1(m3—b3D)C, (A13)

PHYSICAL REVIEW D 67, 105001 (2003

APPENDIX B: TIME-INDEPENDENT STOCHASTIC
QUANTIZATION ON THE LATTICE

We briefly outline how to extend time-independent sto-

where them; andb; are gauge parameters. We expect thaichastic quantization to lattice gauge theory. To each link
the kernel ultimately appears in the denominator in loop in{x,u) of the lattice is associated a varialilg , € SU(N).

tegrals so, to improve convergence, we should take 0

These variables are subject to the local gauge transformation

and b;#0. For the gauge choice to respect Charge'Ux,MHgUx,MZgx_lUx,ﬂgxm, whereg, e SU(N) is associ-

conjugation invariance, we tak®,=b; and m;=m,=cm,
which gives

H =J d4xi(cm—bl2))
2 5

2 mtD)y
59

(Al14)

5
ngf d*x—(—1)C Ycm—bD)C
oY

X

i+(—1)c—1(m+ D)Cy
o0 b,

ated to the sitex of the lattice. Observablé&/(U) are invari-
ant under this transformatioly(°U, ,)=W(U, ,). Expec-
tation values are calculated byV)=[dUW(U)P(U),
wheredU is the product of Haar measure over all link vari-
ables of the lattice, anBy=N exp(—S,) is the normalized
probability distribution associated to the gauge-invariant
Wilson actionS,, .

We shall exhibit a Fokker-Planck Hamiltoni&h: for the
lattice, such that the positive normalized solutioRsto
HpP=0 are gauge equivalent 8,,, P~Pyy. LetJj# be
the Lie differential operator associated to the group variable
on the link , ), that satisfies the Lie algebra commutation

. b oq_
whereb andc are gauge parameters. This gauge choice alsgelations [ 35,37 1= 6,,5,,f3°J5 . And let G, be the

respects chiral symmetry in the limib— 0. One may show

that the eigenvalues dfl, and H; are the eigenvalues of

Fermi oscillators, with frequencies, that are the eigenval-
ues of the operatorctn—bD)(m+ D), which forb=c>0,
simplifies tob(m?—D?). In this caseH, andH; have the
unique null eigenvector exp(S), and all other their eigen-
values are strictly positive, as occurs foir;. IndeedH,
satisfies

+S/2)H —5/2—fd4 5—1/2 oS
B 1o 5S
|~ sa, YA 5a )
(A15)

where the operator on the right is manifestly positive, with

the unique null vector exp{§2). ThusH, has the unique

null vector exp(S), and all its other eigenvalues are strictly

positive. However, we expect thatand c must be kept as

generator of local gauge transformations that is defined by
(1+=,6,G)F(U)=F(%), whereg,=1+ ¢, is an infini-
tesimal local gauge transformation. These generators satis-
fied the Lie algebra commutation relations of the local gauge
group of the Iattice[Gf},GS]z 84, f2P°G¢, and may be ex-
pressed as a linear combination of this. A Hamiltonian

with the desired properties is given by

Hep= Hinv_(Uye)Tv

Hmv=§ I (= e[ 3 SWD), (B1)

(v,G)=2 vy

X

Gy,

independent constants when needed as renormalization couhere 1 is the adjoint with respect to the inner prodidt

terterms.

andvg is a site variable with values in the Lie algebra. In-

Altogether, the total Fokker-Planck Hamiltonian, includ- deed, the argument of Sec. Il holds here, with the substitu-

ing quarks, is given by
HFp:f d4X

5 5S 5
x(—_¢+—_ +—(—-1)C Y cm-bDb)C

5
SA,

5 &S
A, A,

L

+i(cm—bl2))
oy

sy Syl Sy
X(i+§ ra | 2 pre—g 1oy
8¢y Sy 5A; " g&p v

9-A°, (A16)

5 —
+g—(yt)
oy

wherea>0, b>0 andc>0 are gauge parameters.

tion Sy (A)— Sy(U), and shows that the probability distri-
butionsP,, for differentv, defined byHpP=0, are gauge
equivalent to each othé?,~P,. and toPy,. As in Sec. Ill,

we choosev$(U) so the infinitesimal gauge transformation
g,=1+ €t ¢ is the direction of steepest descent in gauge
orbit directions of a minimizing functiond(U). A conve-
nient choice is=(U) =2, tr(I —U y)), Where the sum ex-
tends over all linkgxy) of the lattice.

APPENDIX C: WARD IDENTITY

In Sec. Il we showed that probability distributioRg(A)
for differentv are gauge equivaleng,(A)~P,.(A). An-
other way to make gauge equivalent distributions is by mak-
ing a local gauge transformation, because, for all gauge-
invariant observablesW(A), this cannot change the
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expectation valug dAW(A)P,(A) = [dAWA)P,(%A), and Sv?=a " 19.-D2°(A)eS+a 1fabceby. AC

we haveP, (A)~P,(%A). If the class of gauge-equivalent Ciac .

distributionsP,(A) that was introduced in Sec. Il is large =a "D¥(A)-de

gﬁgggg,ogen the gauge transformation corresponds to a =a*1[326a+fab°AZaMe°]. (C10
P (9A)=P,,(A) (C1) Only the derivative of e appears here because, for

=a 19-A, the probability distributionP,(A) is invariant
for somev’. This is in fact the case, and provides a Wargynder globalx independentgauge transformations. We fur-
identity. ther specialize to a linear dependence eobn X, €%(x)
To prove this, we apply the infinitesimal local gauge = 7,X Where thex are infinitesimal constants. In this
transformation ¥ (€,G), where €,G)=[d*xe3(x)G2(x),  case we have
to the time-independent Fokker-Planck equati¢®.$) and

(3.6), Svd=a HabeAd 5° . (C13)
[1+(€,G)][Hn+(G,v)]P,=0. (C2)  Although this breaks Lorentz invariance, it does not break
translational invariance, so the perturbed Hamiltonian de-
From the commutation relations fined by
[(e,G),Hinv]=0, Hept SHep=Hin, +(G,v) + (G, dv)
C3 - _
[(€,6),G3(x)]=—f22€(x)G(x), ) ~Hin+ 2 H(G,0- A+ (G.AX 7).
(C12
we obtain
where @,X nﬂ)azfabcAz .., is translationally invariant,
[(€,G),(G,v)]=(G,dv), (€4 even thoughA2 + D2%°= A% + 73+ f2°°AD °,, has an
h explicit x dependence. Moreover the inhomogeneous term
where a~19%e in 6v vanishes with this choice of, S0 A=0 re-
a_ a1y fabeb, c mains the classical vacuum. Without further calcglanon we
ovi=1e,6)ve]+ e, (€5) conclude that the transformed quantum effective action
and. to first order ire I',(A+De)=T,, 5(A) is a translationally invariant func-
tional of Afor v=a"19-A ande?(x)= nixﬂ, with A=0 as
[Hiw* (G,v+6v)][1+(€,G)]P,=0. (Ce)  classical vacuum.

More generally, we note that the gauge fi@lg appears
Note that whilev®(x) and e?(x) are both local gauge trans- undifferentiated insv2=a~1f2PcAP x 77;, whereas it is dif-
formations,v®(x) =v®(x,A) depends omA, but €¥(x), by  ferentiated inv®=a"'9- A% This means that the perturba-
assumption, does not. By comparison with the defining equaion §Hgp is softer than the unperturbed Hamiltonidpe or,

tion for the probability distributiorP, . s, , in other words, less divergent in the ultraviolet. If we calcu-
late with the original Hamiltonian, we get a certain number
[Hiny+(G,v+6v)]P, 4 5,=0, (C7)  of divergent constants in the correlators. The result of a

gauge transformatior?®= WZX;L on these correlators must

we conclude that the gauge-transformed probability distribu

; o . F ith [culati ing th ft perturbation. Thi -
tion [1+ (E,G)]PU(A)Z PU(A+ De) coincides WItth+5u ' agree with a calculation using the soflt perturpation IS CON

strains the divergent constants.
P,(A+De)=P,, 5(A), (C9
APPENDIX D: SOLUTION FOR T'® AND T'™™

where év is given above. This states how a gauge transfor-

irgg’;:gglls absorbed by a changeuinand provides the Ward similar to the solution fol'®® found in Sec. VII. We differ-

This identity is inherited by the functionals we intro- entiate Eq.(6.3) with respect toAy four times and obtain,

duced, the quantum effective actibh and the quantum ef- after settingA=0,
fective drift forceQ, , and we have

I',(A+De)=T",, 5(A), I‘§<21)1X(F§:’1>)‘2 xaxg T Qg‘i)‘zyxs 'X4) +2 par(41)+ Fg‘i)rxz X

(C9
Qy(x,A+De)=Q; 5,(X,A) XTI QG ) T2 par(4,2=0, (D1)

X;X3
—fabeel(x) Q5 (X,A).

The solution forT'™® and higher coefficient functions is

whereTI'® andT'® are already known, and we have again
We now specialize te =a~19-A, and obtain usedI'®=—QW, Here Zpart(n,n;) is the sum over all
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partitions of the set ofi objects x4 ,X5,...,X,, into subsets of

PHYSICAL REVIEW D 67, 105001 (2003

To solve Eqg.(D4), we project on each argument with a

n; andn,=n—n, objects. In terms of the Fourier transforms transverse transverse or longitudinal projector to obtain

Q(S)alaZa3a4 (Xl iX,X3 ,X4) = (277) - 12f d4k1d4k3d4k3d4k4

Moy

4
XeX[{iz ki'Xi
i=1

X 8(Ky+ Ko+ Ka+Kg)

A (3)a1aza3a, .
xXQ #1M2M3M4(k1,k2,k3,k4),

(D2)

MM M3My

F(4)a1a2a3a4 (Xl X2, X3 ,X4) _ (277) —12f d4kld4k3d4k3d4k4

4
xexp(iZ K- X;
i=1

X 8(Kq+ Ko+ Ka+Ky)
T (4)a1a0a3a
xT Mlljzjsizl(kl,kz.ks,kﬁ,
(D3)
= (3)a1@zaza .
where Q ullezjai4(k1'k2’k3'k4) and
r<4>;1112;‘3:;4(k1,kz,ks,k4) are defined only fok;+k,+ ks

+k,=0, the equation fof ® reads

’f‘i’«zl)Vl( kl)f(4)ala2a3a4 (kl vk2 ) k3 vk4) + E par(4rl)

Vikot3ta

_ (42132358
H M1M2ﬂ3ﬂ3(k1’k2'k3'k4)'

(D4)
where

(4)@18p838y _T@ 0 (3)a132a33y
H #1/’-2#3#4(k1’k2’k3’k4) I‘f‘lr“(kl)Q KoMy

X (Kq;ka,Kz,Kye)
+ E pari(4,1)
+RW21%253% (k) Ky, kg, Ky),

MMMz tg

(D5)

(4)81828384 _T(3)aaza L
RO g s K K2 K Ka) =T RS (kg kg, — kg —ka)

X[F(3)Zi3§:4(—kl— Kz,K3,Kyq)

+ 0288 (. kooKka k)]

Mgy

+>, par(4,2). (D6)

T (4)TTTTa1azagay
r M1M2#3M4(k11k27k31k4)

= —[T(k})+T(k3)+T(k3)+T(k3)] 2

(4)TTTTA182a334
xXH #1#2M3M4(k1,k2,k3,k4).

(D7)

T (4)LTTTa1a0a33,
r Mlu2u3u4(k1’k2'k3’k4)

=[a (kD) +T(K3) +T(k)+T(kj]*

w H(4LTTTa132838, 4(k1 Ko k3,Kyg), (D8)

MMMz
etc.

The formula forl'(™ for arbitraryn is similar. EacH'(" is
expressed explicitly and uniquely in terms@f"~ %) and of
I'® to ™Y which are already known. It is given by a
symmetrized sum of products of two factors, as in EG&)
and (D6), to which is applied a transverse or longitu-
dinal projector onto each argument, and a division by
=Tk, where TEK)=T(k? or T@(k,)
=a L(k?. This gives all thel'™ uniquely in terms of
Q(l) to Q(ﬂ—l)_

APPENDIX E: EVALUATION OF T

We evaluatd'$}, using the formulas of Sec. VII, with the
substitutiong9.14). From Egs.(7.15 and(8.6), we obtain

HE, L (Kike ke =a T2 (k)RE,,, . (Kiiks ks)

MMMz

+ (cyclic)
=ia'g((ks) [T\, (k) = (12)]
+ (cyclic)). (ED

We apply transverse or longitudinal projectors to each
Lorgr;tz , inLdex, and ~ use Fﬁi}(k)=T(k2) PIM(k)
+a” "L (k%) Py,(K) to obtain

H(B)T T T3(k1,k2,k3):0,

MMM

HOT T L (k1,k2,k3):ia_lg(Tl_T2)(k3)ﬂ3

Hitom3

X[PT(k)PT(k2) ]y,
(E2)
HE L pns(Ka Kz kg) =ia ™ g(a ™ Ls=To) (k) .,

Hitom3

X [ PT(kl) PL(kS)],u.lp.3_ (2<—>3)1

HE v (K. kg ka) =ia " 2g(Lo—Lg)(Ky) .,

Katok3

X[P(ky) PL(ks)],LZ#3+ cyclic,
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where we have used the notatioﬁiET(kiz) and L;
=L(k?). From Egs(7.16 and(7.17), we obtain finally

f(S) o (ky,kz,k3)=0,

GT wypoms

~ T
3 TTL - 1 2
UGty upuy(Ki:K2 Kg) = Ig—aTl+aT2+L3(k3)M3
X[PT(kp)PT(Ky) ],
(E3)
= L;—aT
(3 TLL a1 3 1
UGt upnpny(Ki.Ko k)= —ia""g —aT1+L2+L3(k2)“2
X[PT(kl)PL(kS’)]MlMs
L,—aT,
CaT,+Ll,+Lls 3)us
X[PT( kl)PL(kz)]Wz) .
- L,—L
3)LLL __ia—1 2 =3
1—‘GT ,ul,u,z/_z,s(klik2|k3)_ 1a g L1+ L2+ L3( 1)1“1
X[PL(kZ)PL(k3)]/L2/L3
+(cyc|ic)) .

APPENDIX F: EVALUATION OF LOOP-INTEGRALS

We evaluate the integral that appears in Eijl.4:
namely,

1
(k)T 3(d—1)(2m)"

7

kik?—(k;-k)?
d 1 1
X f d kl(ki)l+aL[(k_k1)2]1+aL ' (Fl)
We write this as
= ! Ocd d “LBUR
T_(kZ)aT+2(d_1)r2(1+aL) J;) a B a ﬁ T
(F2)
where
Rr=(2m) 9 [ athalkie— (-]
x exd — ak?— B(k,—k)?]. (F3)

We complete the square in the exponent
aki+ Bk —k)’=(a+ B)p*+(a+B) tapk’,

wherep=k;— (a+ B) 1k, and obtain
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RTZE‘XF[—(a+,3)_1a/3k2](27f)_dj d’p

X[p?k?—(p-k)lexd — (a+B)p?]

(d—1)k? L
- 2(4w)d/2(a+’8)1+dlzexq_(a+ﬂ) apk].

(F4)
This gives
1
T G T T T 1t ) T (FS)
where
S;= Omdad,B(a:—’;)l‘tdﬁexr[—(a%—B)la,Bkz].
(F6)

We insert the identity ¥ [;dod(a+B—0), and change
variables according ta=oa’ andB=ocp’. This gives, af-
ter dropping primes,

S;= fwdadﬂdob‘(a-f-ﬁ— 1)a™t
0

X BeLg?a~ 92 exp[ — aBok?]

= (k%927 20710 (2 +1—d/2)

xf dadBd(a+B—1)a%? a-tgd2-a -1
0

I'(2a +1—d/2)T2(d/2— )

— (1L2\d/2—2a; —1
We obtain, finally,
L I'(2a +1—d/2)T2(d/2— )
T 2(4m)9T?(1+ )T (d—2ay)
I'(2a—1)T%(2—
(2ay )=( @) (F)

T 24m T 1+ a )l (4—2ay)’

for d=4.
We also evaluate the integral that appears in (&8.9),

-2
= d
IL_ (k2)1+a|_(2ﬂ_)a d kl

y k2ki—(k-ky)? o
(K3)27 a7 (ky— k)21 (ky— k)2 + k2] 9

It contains the denominatd(k, —k)?+k?] that comes from
the nonlocal vertex. This integral is convergent in the ultra-
violet for d<4+2a++ 2« . We shall evaluate it fod sat-
isfying this condition, and then continue éh We write it as
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-2
T AT (2% apT ()

xf dadfdy a**er gu-lexp—ykAR,,
0

(F10
where
R =(2m) ¢ f d%k;[KEk?— (ky- k)2
xex —aki—(B+y)(ki—k)?.  (F1D)

We complete the square in the exponent
aki+(B+7)(ki—k)?*=(a+B+y)p*+(atp+y) "
X a(B+y)K,
wherep=k;— (a+ B+ 7y) B+ y)k, and obtain

Ri=exd —(a+B+7y) ta(B+y)K*]

><<2w>*df Al 22— (p-k)2]exd — (a+ B+ y)p?]

a (d—1)k?
2(4m) Y2 (a+ B+ y)Ltd2
xex —(a+B+y) ta(B+y)K]. (F12
This gives
(d-1)
= R T 2 apT(a) (LI
where

. a,1+a-|— a —1

— — yk2—
S = Oda’dﬁd‘ymqu yke—(a+ B

+9) (Bt y)K. (F14)

We insert the identity ¥ [jdod(a+pB+y—0o), and
change variables according te=ca’, B=cB’ and vy
=ovy'. This gives, after dropping primes,

S = j dadBdydod(a+ B+ y—1)altoT
0

% BQL—101+aT+aL—dlzeXp{_ o[ y+a(B+ y)]kz}
(F15

The argument of thé&" function is positive in the region of
convergence of the integral<4+2a;+2a, . HereM is
the finite integral

=(k?) T2 L (24 gpt a —dI2)M .
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M = f:dadﬂdy&(a+ﬁ+ y—1)atter
X B a(B+y)+y]n
0 0
(F16)

where we have used;+2a = —(4—d)/2. This gives

. (d=DI'(—ay) M
L Am) T 2+ ap)T(ay) -
(d=DI'(1-e)

T Gm I 2+ apT (1+ay)

M, . (F17)

Note thatl_ is negative in the region of convergence of the
integral, but after the continuation o it is positive.
To evaluateM, we change variable to= «?, and obtain

! (1-p? 12 pag —1
ML=(1/2)f dﬁf dxxT2BeL-1(1— g—x)“,
o Jo

(F18
and upon changing variables x&=(1— B)y, we get
1 1-8
ML=(1/2)f dﬁf dyy*r’?
0 0
XBaLfl(l_ﬁ)lJraLJraT/Z(l_y)aL. (Flg)

We again usert+2a = —(4—d)/2 to write this as

1 1-
v= 2 [y -y [ appn - g
(F20

This is integrable by quadrature fde=4, and in this case it
gives

(1_y)2aL (1_y)2al_+l
ap B C(L+1

1
ML:(1/2)J dyy“’L(
0

INl-ao)l'(1+2a)) F(l—aL)F(Z-I—ZaL))
a, T(2+a)  (q+1)I(3+a)

_(—af+2aL+2)r(1—aL)r(2aL+1)

B 2a (o +1)T (a +3) ’

:(1/2)(

(F21)

where we usedvr=—2«y . This gives finally

3(—a?+2a +2)T2(1— a )T (2a +1)

= am)2a T(2—2a )T (e + 2)T (a1 3)°
(F22
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