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Time-independent stochastic quantization, Dyson-Schwinger equations, and infrared
critical exponents in QCD

Daniel Zwanziger*
Physics Department, New York University, New York, New York 10003

~Received 14 June 2002; published 2 May 2003!

We derive the equations of time-independent stochastic quantization, without reference to an unphysical fifth
time, from the principle of gauge equivalence. It asserts that probability distributionsP that give the same
expectation values for gauge-invariant observables^W&5*dAWP are physically indistinguishable. This
method escapes the Gribov critique. We derive an exact system of equations that closely resembles the
Dyson-Schwinger equations of Faddeev-Popov theory. The system is truncated and solved nonperturbatively,
by means of a power law ansatz, for the critical exponents that characterize the asymptotic form atk'0 of the
gluon propagator in Landau gauge. For the transverse and longitudinal parts, we find, respectively,DT

;(k2)212aT'(k2)0.043, suppressed and in fact vanishing, though weakly, andDL;a(k2)212aL

'a(k2)21.521, enhanced, withaT522aL . Although the longitudinal part vanishes with the gauge parameter
a in the Landau-gauge limita→0 there are vertices of ordera21 so, counterintuitively, the longitudinal part of
the gluon propagator does contribute in internal lines in the Landau gauge, replacing the ghost that occurs in
Faddeev-Popov theory. We compare our results with the corresponding results in Faddeev-Popov theory.

DOI: 10.1103/PhysRevD.67.105001 PACS number~s!: 12.38.Aw, 11.15.Tk, 14.70.Dj
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I. INTRODUCTION

A. Some recent developments in nonperturbative QCD

The problem of the strong interaction presents an exci
challenge. One would like to understand how and why Q
describes a world of color-neutral hadrons with a mass g
even though it appears perturbatively to be a theory of
confined and massless gluons and quarks. Clearly an un
standing of non-Abelian gauge theory at the nonperturba
level is required. Happily, a convergence of results by diff
ent methods has recently developed:~i! nonperturbative so-
lutions of the truncated Dyson-Schwinger~DS! equations in
Faddeev-Popov theory,~ii ! numerical evaluation of gauge
fixed, lattice QCD propagators, and~iii ! exact analytic re-
sults. The agreement between these very different meth
almost five decades after the appearance of the origina
ticle of Yang and Mills@1#, would indicate that by~ii ! we are
beginning to get reliable values of the gluon propagator
the unbroken phase and by~i! an understanding of the
mechanism that determines it. This motivates the presen
vestigation in which we derive the DS equations of tim
independent stochastic quantization and solve them by t
cation and a power-law ansatz for the gluon propagator in
asymptotic, low-momentum regime. In accordance with e
lier results by methods~i!, ~ii !, and ~iii !, we find that, com-
pared to the free propagator 1/k2, the would-be physical
transverse component of the gluon propagator is sh
range, while the unphysical, longitudinal component is lo
range.

As concerns~i!, solutions of the DS equations, the dec
sive step was taken in Ref.@2#, where a solution of the trun
cated DS equations in Faddeev-Popov quantization in L
dau gauge was obtained for whichthe transverse gluon
propagator is short range, while the ghost propagator is lo
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range. These properties were confirmed in subsequent
calculations, using a variety of approximations for the ver
@3–6#. More recent calculations extend the asymptotic inf
red and ultraviolet solutions to finite momentumk, without
angular approximation@7,8#. All these calculations1 give a
transverse gluon propagator in Landau gaugeDT(k) that is
highly suppressed in the infrared compared to the free m
less propagator 1/k2, and that in fact vanishes
limk→0DT(k)50, at k50, in some cases weakly, such as
small positive power ofk. Indeed, according to the prese
calculation it vanishes as (k2)0.043. A review of DS equations
in QCD may be found in Ref.@10#. In the present work we
shall discover a close conection between the ghost prop
tor in Faddeev-Popov theory and the longitudinal part of
gluon propagator in time-independent stochastic quant
tion.

Concerning~ii !, numerical studies, it is striking that a
accumulation of numerical evaluations of the gluon propa
tor in Landau gauge also show qualitative suppression of
gluon propagator at low momentum, both in thre
dimensions on relatively large lattices@11–13# and in four
dimensions@14–17#. Suppression of the gluon propagat
and enhancement of the ghost propagator at low momen
has been reported by Refs.@18–20#. Similar numerical re-
sults were obtained in Coulomb gauge, where an extrap
tion to infinite lattice volume of the three-dimensional
transverse, would-be physical, equal-time gluon propag
Di j (kW ) was consistent with its vanishing atkW50 @21#. In
QCD in the Coulomb gauge, the instantaneous Coulo
propagatorD44 is closely related to the ghost or Faddee

1Stingl @9# had earlier obtained a solution of the DS equation w
the property thatDT(k) vanishes atk50, without, however, includ-
ing the ghost loop, whereas the ghost loop gives the dominant
tribution in the infrared region in the recent solutions.
©2003 The American Physical Society01-1
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Popov propagator, and is a strong candidate for a confin
potential. Significantly,D44 was found to be long range@21#.

A recent numerical calculation in the Landau gauge@16#
reports a finite value ofDT(k) at k50. This is strongly sup-
pressed compared to 1/k2, and suffices to exclude a fre
massless gluon. It might be thought that the finite value
DT(0) reported in Ref.@16# contradicts the zero valu
DT(0)50 found here. However, it is difficult to distinguis
numerically between a finite value atk50 and one that van
ishes weakly, such as (k2)g, with a small value for the infra-
red anomalous dimension such asg50.043 found here. Fo
this function is almost constant down to very lowk, and then
veers toward zero with an infinite slope. Moreover a nume
cal determination of the continuum propagator atk50 re-
quires an extrapolation to infinite lattice volume. To establ
a discrepancy it would be necessary to takeg as a fitting
parameter, and determine the numerical uncertainty in
quantity after extrapolation to infinite lattice volume, and th
has not been done. Present numerical and analytic result
not inconsistent, within the considerable uncertainty of
numerical extrapolation to infinite lattice volume, and bo
agree that there is strong suppression compared to 1/k2.

Infrared suppression of the gluon propagatorD(k) and
enhancement of the ghost propagatorG(k) in the Landau
gauge was first found by Gribov, using avowedly rough a
proximations @22#. He obtained the formulasD(k)
5k2/@(k2)21M4# and, in the infrared,G(k);1/(k2)2 by re-
stricting the region of functional integration to the interior
the Gribov horizon in order to avoid Gribov copies.2 He also
obtained a long-range Coulomb potential in the Coulo
gauge. Concerning~iii !, exact analytic results, it was subs
quently found@25,26# that restriction to the interior of the
Gribov horizon, enforced by ahorizon condition, yields at
k50 both the vanishing of the gluon propagat
limk→0D(k)50 in the Landau and Coulomb gauges and
enhancement of the ghost propagator limk→0k2G(k)5`.3

It was at first surprising that the solution of the DS equ
tions obtained in Refs.@2–5# agreed with these exact resul

2We remind the reader that numerical gauge fixing to the Lan
gauge is achieved by minimizing, with respect to local gauge tra
formationsg(x), a lattice analogue ofFA(g)5*d4xugAu2. At any
minimum, this functional is~a! stationary and~b! the matrix of
second derivatives is non-negative. These conditions correspo
~a! the Landau gauge condition]•A50 and~b! the positivity of the
Faddeev-Popov operator2D(A)•] which, moreover is symmetric
2D(A)•]52]•D(A), for ]•A50. Condition~b! defines the Gri-
bov region, so numerical studies of the Landau gauge automati
select configurations within the Gribov region. Positivity
2]•D(A) means that all its eigenvaluesln are positive, and the
boundary of the Gribov region, known as the~first! Gribov horizon,
is where the first ~nontrivial! eigenvalue vanishes. Thus th
Faddeev-Popov determinant det@2D(A)•]#5Pnln , which is the
product of the eigenvalues, is positive inside the Gribov horiz
and vanishes on it. These considerations do not apply to nume
gauge fixing to the Laplacian gauge@23,24#.

3It is noteworthy that the confinement criterion of Kugo a
Ojima @27# and @28# also entails limk→0k2G(k)5`.
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that are a consequence of cutting off the functional integra
the Gribov horizon, for this condition was not imposed
solving the DS equations. However it was subsequen
pointed out @6# that the DS equations in Faddeev-Pop
theory depend only on the integrand, and the fact that
integral of a derivative vanishesprovided only that the inte-
grand vanishes on the boundary. The key point is thatthe
integrand does vanish on the Gribov horizonfor the
Faddeev-Popov determinant det@2D(A)•]# ~as explained in
footnote 2!. Thus Gribov’s prescription to cut off the func
tional integral at the~first! Gribov horizon, is not a constrain
that changes the DS equations, but rather it resolves an
biguity in the solution of these equations@6#. The cutoff at
the first Gribov horizon assures that both the gluon and gh
Euclidean propagators are positive, which is a property
the solutions obtained for the truncated DS equations. Mo
over the solution of the DS equations in Faddeev-Pop
theory with a cutoff at the Gribov horizon is the only one f
which a comparison with numerical gauge fixing to the l
tice Landau gauge is~approximately! justified. For as ex-
plained in footnote 2, numerical gauge fixing to the Land
gauge automatically produces a configuration that lies ins
the Gribov horizon. Thus a consistent picture emerges of
gluon and ghost propagators in QCD using the differ
methods~i!, ~ii !, and~iii !.

B. Diffulties of Faddeev-Popov method at
nonperturbative level

The DS calculations@2–5# rely on Faddeev-Popov theor
which, however, is subject to the well-known critiques
Gribov @22# and Singer @29#. At the perturbative level,
Faddeev-Popov theory is unexceptionable, and eleg
Becchi-Rouet-Stora-Tyutin~BRST! proofs are available of
perturbative renormalizability and perturbative unitarity@30#.
In lattice gauge theory, however, the BRST method fails
cause the total number of Gribov copies is even, but th
contribute with opposite signs, leading to an exact cance
tion @31,32#. In continuum gauge theory, the Faddeev-Pop
BRST method may nevertheless be formally correct at
nonperturbative level without a cutoff at the Gribov horizo
if ones sums over all signed Gribov copies@33,34#. However
even if this is true, it would imply large cancellations b
tween copies, that may amplify the error of an approxim
nonperturbative calculation, and even the Euclidean glu
propagatorD(k) is not necessarily positive. Alternatively
one may choose the solution of the DS equations in Fadd
Popov theory that corresponds to a cutoff at the first Grib
horizon, which indeed is our interpretation of the solutions
Refs. @2–8#. Hopefully, this is an excellent approximation
But it remains anad hocprescription that is not correct in
principle because of the existence of Gribov copies inside
Gribov horizon@35,36#.

Wilson’s lattice gauge theory provides a quantization t
is both theoretically sound and well suited to numeric
simulation. It also provides a simple analytic model of co
finement in QCD by giving an area law for Wilson loops
the strong-coupling limit. A striking feature of lattice gaug
theory is that both the numerical simulations and the stro
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coupling expansion are manifestly gauge invariant. T
manifest gauge invariance provides a paradigm for cont
ing efforts to understand confinement in QCD. Neverthel
it may be worthwhile to pursue other approaches. The vex
problem of bound states in quantum field theory is parti
larly urgent in QCD where confinement causes all phys
particles to be bound states of the fundamental quark
gluon constituents. In this regard it is noteworthy that ev
the simplest of all bound-state problems, the hydrogen at
is not easily solved in a gauge-invariant formulation.

C. Review of stochastic quantization

In order to avoid the difficulties just mentioned of th
Faddeev-Popov method, we turn to stochastic quantizatio
gauge fields for, as we shall see, this method provide
correct continuum quantization at the non-perturbative le
Stochastic quantization has been developed by a numbe
authors@37,38#, who have expressed the solution as a fu
tional integral@39#, and demonstrated the renormalizabili
of this approach@40,41#. A systematic development is pre
sented in Refs.@42–47#, reviewed in Ref.@48#, that includes
the four- and five-dimensional Dyson-Schwinger equat
for the quantum effective action, an extension of the meth
to gravity, and gauge-invariant regularization by smooth
in the fifth time. Renormalizability has also been establish
by an elaboration of BRST techniques@49,50#. Stochastic
quantization may be and has been exactly simulated num
cally including on rather large lattices, of volume (48)4 @51–
55#. This suggests the possibility of a promising interplay
DS and numerical methods.

In its original formulation @37#, stochastic quantization
relies on the observation that the formal Euclidean proba
ity distribution P0(A)5N exp@2SYM(A)#, with four-
dimensional Euclidean Yang-Mills actionSYM(A), is the
equilibrium distribution of the stochastic process defined
the equation

]P

]t
5E d4x

d

dAm
a ~x! S dP

dAm
a ~x!

1
dSYM

dAm
a ~x!

PD . ~1.1!

Indeed it is obvious thatP0(A) is a time-independent solu
tion of this equation. Heret is an artificial fifth time that is a
continuum analog of the number of sweeps in a Monte Ca
simulation of the Euclidean theory defined by the act
SYM(A). As explained in Sec. III, this equation has the for
of the diffusion equation with ‘‘drift force’’
2dSYM /dAm

a (x), and is known as the Fokker-Planck equ
tion. The same stochastic process may equivalently be
resented by the Langevin equation

]Am
a

]t
52

dSYM

dAm
a 1hm

a , ~1.2!

where Am
a 5Am

a (x,t) depends on the artificial fifth time
and corresponds in a Monte Carlo simulation to the c
figuration on the lattice with pointsxm , with m51,...,4 at
sweep t. Here hm

a 5hm
a (x,t) is Gaussian white noise

defined by ^hm
a (x,t)&50 and ^hn

b(x,t)hm
a (y,t8)&
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5^2d(x2y)dmnd
abd(t2t8)&. If N exp@2SYM(A)# were a nor-

malizable probability distribution—which it is not—ever
normalized solution to Eq.~1.1! would relax to it as equilib-
rium distribution. However, the process defined by Eq.~1.1!
or ~1.2! does not provide a restoring force in gauge or
directions, so probability escapes to infinity along the gau
orbits, and as a resultP(A,t) does not relax to a well-define
limiting distribution limt→`P(A,t)ÞN exp@2SYM(A)#.
Nevertheless, according to Ref.@37#, expectation values
^O(A)& t of gauge-invariant quantitiesO(A) calculated at
fixed but finite timet according to either of the above equ
tions do relax to the desired Euclidean expectation va
^O&5 limt→`^O& t .

Unfortunately the renormalization program cannot be c
ried out in this scheme as stated, because that requires
gauge-non-invariant correlators also be well defined. A re
edy is provided by the observation@38# that the Langevin
equation may be modified by the addition of an infinitesim
gauge transformationDm

acvc5(]mdac1 f abcAm
b )vc,

]Am
a

]t
52

dS

dAm
a 1Dm

acvc1hm
a . ~1.3!

Clearly this cannot alter the expecation value of gau
invariant quantities. Symmetry and power-counting arg
ments determineva5a21]lAl

a5a21]•Aa, wherea is a free
parameter. Fora.0, the new term, that is tangent to th
gauge orbit, provides a restoring force along gauge orbit
rections, so gauge-noninvariant correlators also exist.4 The
new scheme is renormalizable. Only a harmless gauge tr
formation has been introduced, so the Gribov problem
globally correct gauge fixing is by-passed, and a continu
quantization of gauge fields that is correct at the nonper
bative level has been achieved.

The modified Langevin equation is equivalent to t
modified Fokker-Planck equation

]P

]t
5E d4x

d

dAm
a ~x! S dP

dAm
a ~x!

2Km
a ~x!PD , ~1.4!

where the ‘‘drift force’’ now includes the infinitesimal gaug
transformation@38#

Km
a ~x![2

dSYM

dAm
a ~x!

1a21Dm
ac]•Ac~x!. ~1.5!

The additional ‘‘force’’ is not conservative, and cannot b
written, like the first term, as the gradient of some fou

4To establish that the new force is globally restoring, we note t
the Hilbert norm ofA is decreasing under the flow defined by th

new force alone,Ȧm5a21Dm]•A. We have]iAi2/]t52(Am ,Ȧm)
5 2a21(Am , Dm] •A) 5 2a21(Am , ]m] •A) 5 22a21i] •Ai2 < 0.
This also shows that the region of equilibrium under this force is
set of transverse configurations]•A50. Similarly, from

]i]•Ai2/]t52(]•A,]•Ȧ)52a21(]•A,]•D]•A) it follows that
this equilibrium isstableinside the Gribov horizon, where2]•D is
a positive operator, andunstableoutside it.
1-3
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dimensional gauge-fixing action a21Dm
ac]•Ac(x)Þ

2dSgf /dAm
a (x). With this term, the normalized solution

P(A,t) to Eq. ~1.4! do relax to an equilibrium distribution
limt→`P(A,t)5P(A), and Euclidean expectation values a
given by the four-dimensional functional integral^O&
5*dA O(A)P(A). Although we cannot writeP(A) explic-
itly because the force is not conservative, we do know tha
is the normalized solution of the time-independent Fokk
Planck equation

HFPP[E d4x
d

dAm
a ~x! S 2

dP

dAm
a ~x!

1Km
a PD 50. ~1.6!

This equation defines what we call ‘‘time-independent s
chastic quantization,’’ andHFP is called the ‘‘Fokker-Planck
Hamiltonian.’’ The solutionP(A) of this equation provides a
satisfactory nonperturbative quantization of gauge fields.

@To avoid possible confusion of terminology, we note th
stochastic quantization, whether in the time-dependen
time-independent formulation—where ‘‘time’’ is the artificia
fifth time—increases the number of dimensions by one
compared to the corresponding standard Faddeev-Popov
mulation of gauge field theory. Thus the solution of the tim
dependent Fokker-Planck equation~1.4! can be usefully rep-
resented@39# as a functional integral with alocal five-
dimensional action I 5*dtd4xL5 , whereas in Faddeev
Popov theory, expectation values may be calculated b
functional integral with alocal four-dimensionalaction S

5*d4x@( 1
4 )Fmn

2 1¯#. Likewise the Fokker-Planck ‘‘Hamil-
tonian’’ HFP determines, by the time-independent Fokk
Planck equationHFPP50, a Euclidean probability distribu
tion P(A) whose argument is a fieldA(x) that is a function
in four-dimensionalspace-time with pointsxm , m51,...,4.
By comparison the quantum mechanical HamiltonianHQM in
ordinary quantum field theory determines, by the tim
independent Schro¨dinger equationHQMC5EC, a wave-
functional C(A), whose argument is a fieldA(xW ) that is a
function in ordinarythree-space xW5(x1 ,x2 ,x3). ThusHFP is
not a quantum mechanical Hamiltonian at all, but rather
claims the name ‘‘Hamiltonian’’ as the generator of tim
translations in the time-dependent Fokker-Planck equa
~1.4!, where the ‘‘time’’ is the artificial fifth time. Unlike the
quantum-mechanical Hamiltonian formulation, tim
independent stochastic quantization is four-dimension
Lorentz ~Euclidean! covariant.#

Despite the development of stochastic quantization
Refs. @37–50# it has apparently not so far been used
non-perturbative calculations in QCD, apart from Ref.@6#.5

This may possibly be due to the complication caused by
extra ‘‘time’’ variable. Although the time-dependent formu
lation allows an elegant representation, with a local fiv
dimensional action, it has the complication in practice t
the gluon propagator depends on two invariantsD(k2,v)

5The equations of stochastic quantization have, however, been
plied to dissipative problems in QCD, wheret is the physical time,
andx physical three-space@56#.
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instead of only oneD(k2). This prevents a simple powe
ansatz for the infrared behavior 1/(k2)11a that allows one to
determine the infrared behavior of the four-dimension
theory self-consistently. For this reason we turn to tim
independent stochastic quantization, where the correla
have the same number of invariants as in Faddeev-Po
theory.

D. Outline of the present article

We shall not use the five-dimensional formulation he
but only the four-dimensional, time-independent Fokk
Planck equation~1.6!. The solutionP(A) to this equation
cannot be represented as a functional integral over a l
four-dimensional action. Nor shall we attempt to construct
explicit solution to Eq.~1.6!. Our strategy instead will be to
convert it into a system of tractable DS equations for
correlators.

As a first step, we convert Eq.~1.6! into the DS equation
~6.3! below for the quantum effective actionG. The DS equa-
tion for G appears relatively complicated, with asecond-
order structure inherited from the second-order operator
Eq. ~1.6!. The main methodological innovation of the prese
approach is that the second-order equation forG is replaced,
in Secs. VI and VII, by the much simpler DS equation~6.6!
for a quantityQm

a (x) that we call ‘‘the quantum effective
drift force.’’ Indeed the new equationQm

a (x)5Km
a (x)

1(loop integrals), where Km
a (x)52dSYM /dAm

a (x)
1a21(Dm]•A)c, has the same structure as thefirst-order
DS equation forG in Faddeev-Popov theorydG/dAm

a (x)
5dS/dAm

a (x)1(loop integrals). In both of these equation
the leading term may be interpreted as a drift force and, m
helpfully for the renormalization program, it is local inA(x).

In the present work we give an improved treatment,
compared to Ref.@6#, of the longitudinal degrees of freedom
in the Landau-gauge limita→0. In that work we integrated
out the longitudinal degrees of freedom in the Landau-ga
limit a→0. This gave a time-independent Fokker-Plan
equation for the transverse degrees of freedom only, with
effective drift force that was however nonpolynomial a
nonlocal.6 By contrast, in the present work, the difficulty of
nonpolynomial drift force is avoided by retaining the long
tudinal degrees of freedom. Of course the longitudinal p
of the propagator vanishes with the gauge parametera in the
Landau-gauge limit lim→0. However the drift force~1.5!
gives a vertex that diverges as 1/a and so, counterintuitively,
the longitudinal part of the propagator in the Landau gau
limit gives a finite contribution in internal loops, somewh
similar to the ghost in Faddeev-Popov theory.

We shall be satisfied here to calculate only the infra
asymptotic form of the propagator, because that is where
challenging, nonperturbative confining phenomena mani
themselves. At high momentum, QCD is perturbative, an
has been verified to one-loop order by various meth
@57,46#, including the background field method@58#, that sto-
chastic quantization yields the standardb function. We leave

p-6This was in turn decomposed into a conservative force that
produced the Faddeev-Popov determinent plus a second term
was neglected in the solution found in Ref.@6#.
1-4
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for another occasion a numerical calculation which would
necessary to connect the high- and low-momentum limit

Since we use only the time-independent formulation he
we present, in Secs. II and III, a new derivation of Eq.~1.6!
that does not refer to the unphysical fifth time. At the end
Sec. III the Minkowskian form of time-independent stocha
tic quantization is presented.@Some readers may prefer to g
directly to Sec. IV, which begins with Eq.~1.6!.# The new
derivation is more powerful, and yields new results, in p
ticular, the Ward identity of Appendix C, and the proof
Appendix A that the kernel of the Fokker-Planck Ham
tonian for quarks depends on gauge parameters only.
shall derive it from the obvious principle ofgauge equiva-
lencewhich asserts that probability distributionsP(A) that
give the same expectation values for gauge-invariant obs
ables ^W&5*dAW(A)P(A) are physically indistinguish-
able. We show that time-independent stochastic quantiza
provides a class of positive, normalized probability distrib
tions P(A,a), parametrized by a a gauge parametera that
are gauge equivalentP(A,a1);P(A,a2), and that includes
the Yang-Mills distributionN exp(2SYM) as a limiting case.
This method of quantization of gauge fields, in which t
unphysical degrees of freedom are retained but controlle
closely related to the physics of our solution of the DS eq
tions. Indeed we find that the physical degrees of freed
are short range, whereas the unphysical degrees of free
are not only present but of long range. In Appendix A, w
extend the method to include quarks, and in Appendix B
lattice gauge theory. In Appendix C, we derive a Ward ide
tity that controls the divergences of the theory.

In Sec. VIII we derive the explicit form of the DS equa
tion for the gluon propagator. In Secs. IX–XI we adopt
simple truncation scheme, and by means of a power-law
satz we solve for the infrared critical exponents that char
terize the gluon propagator in Landau gauge asymptotic
at low momentum. The transverse part of the gluon propa
tor is short range, and the longitudinal part long range. In
concluding section we compare our results with calculati
in Faddeev-Popov theory, and we interpret their qualitat
features in a confinement scenario. We also suggest s
challenging open problems, and possibilities for compari
with numerical simulation in lattice gauge theory.

II. GAUGE EQUIVALENCE

We first consider Euclidean gauge theory and later
Minkowskian case. Non-Abelian gauge theories are
scribed by the Yang-Mills action SYM(A)
5(1/4)*d4x(Fmn

a )2, where Fmn
a 5]mAn

a2]nAm
a

1g fabcAm
b An

c . The Euclidean quantum field theory is fo
mally defined by the probability distributionPYM(A)
5N exp@2SYM(A)#, and by the expectation valueŝW&
5*dA W(A) PYM(A), normalized so^1&51. The chal-
lenge of quantizing a non-Abelian gauge theory is t
PYM(A) is not really normalizable because of the infin
volume of the local gauge group.

The challenge would be hopeless, but for the fact that
are interested only in observables that are invariant un
local gauge transformationsW(gA)5W(A) for all g(x),
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where gAm5g21Amg1g21]mg. This suggests the notion o
gauge-equivalentprobability distributions. Two probability
distributions are gauge equivalent,P1(A);P2(A), if and
only if ^W&15^W&2 , for all gauge-invariant observablesW,
where^W& i5*dAW(A)Pi(A). Gauge equivalence of prob
ability distributions is dual to gauge invariance of obse
ables. Distributions that are gauge equivalent are physic
indistinguishable. Our solution to the quantization pro
lem will be to replace the formal probability distributio
N exp@2SYM(A)#, by a normalizable distribution that i
gauge equivalent to it. More precisely we shall exhibit
class of gauge-equivalent normalized distributions that
cludesN exp@2SYM(A)# as a limiting case.

III. A MACHINE THAT MAKES GAUGE-EQUIVALENT
PROBABILITY DISTRIBUTIONS

The construction of gauge-equivalent probability distrib
tions relies on an equation that has the same form as
time-independent Fokker-Planck equation that is used to
scribe diffusion in the presence of a drift force. In this se
tion, for simplicity, we deal with continuum gauge fields,
gluodynamics, only. The extension to quarks is given in A
pendix A, and to lattice gauge theory in Appendix B.

In order to simplify the appearance of various equatio
we shall, as convenient, use the index notationAx , instead of
Am

a (x), where the subscriptx represents the tripletx,m,a. We
use discrete notation and the summation convention on
new index so, for example, ]Jx /]Ax replaces
*d4x@dJm

a (x)/dAm
a (x)#.

Let P(A) be a positive, P(A).0, normalized,
*dAP(A)51, probability distribution or concentration. I
simple diffusion theory there is associated with this distrib
tion a current

Jx52\
]P

]Ax
1KxP, ~3.1!

that is composed of a diffusive term2\(]P/]Ax), propor-
tional to the gradient of the concentration, with diffusio
constant\, and a drift termKxP. HereKx is the drift force,
as in Ohm’s law with unit conductivity. We have introduce
\ for future convenience for a loop expansion which is
expansion in powers of\. Conservation of probability is ex
pressed by the equation of continuity]P/]t52]Jx /]Ax .
The analogy of interest to us here is associated with
time-independent situation only.7 In this case the current is
divergenceless

7Stochastic quantization@37#, including a drift force tangent to the
gauge orbit@38#, has traditionally been based on the time-depend
Fokker-Planck equation]P/]t52HFPP, and relied on relaxation
of the stochastic process to an equilibrium distribution that satis
HFPP50. Heret is an additional unphysical time variable that co
responds to computer time in a Monte Carlo simulation. By co
trast, in the present article, the quantization of the non-Abe
gauge field follows from the geometrical principle of gauge equi
lence, from which we derive the time-independent equationHFPP
50 directly, without reference to the additional time variable.
1-5
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DANIEL ZWANZIGER PHYSICAL REVIEW D 67, 105001 ~2003!
]Jx

]Ax
50, ~3.2!

which reads

HFPP[
]

]Ax
S 2\

]

]Ax
1KxD P50. ~3.3!

This is the time-independent diffusion equation with dr
force Kx . We call the linear operator defined here t
Fokker-Planck ‘‘Hamiltonian,’’ althoughHFP is not Hermit-
ian, as it would be in quantum mechanics, and it certainly
not the quantum mechanical Hamiltonian of the gauge fie

We must be sure to choose a drift force that is restori
so this equation determines a positive normalized distri
tion P(A). If the drift force were conservativeKx5
2]SYM /]Ax , then the normalized solution would beP(A)
5N exp(2SYM). Gauge invariance of the Yang-Mills actio
Dm

a @dSYM /dAm
a (x)#50, means, however, that the conserv

tive drift force 2dSYM /dAm(x) provides no restoring force
in gauge-orbit directions. This is remedied by introducing
additional forceKGT,m

a (x)5Dm
acvc that is an infinitesimal

gauge transformation, so the drift force is made of a con
vative piece and a piece that is tangent to the gauge orb

Km
a ~x!52

dSYM

dAm
a ~x!

1KGT,m
a ~x!52

dSYM

dAm
a ~x!

1Dm
acvc.

~3.4!

Geometrically, the drift force is a vector field or flow, and
is intuitively clear that a flow that is tangent to the gau
orbit has no effect on gauge-invariant observables. We
not fail to chooseva(x;A) so thatDmv is a restoring force,
to insure that Eq.~3.3! possesses a positive, normalized s
lution. Apart from this restoring property,va(x;A) may in
principle be an arbitrary functional ofA. The time-
independent Fokker-Planck equation reads explicitly

HFPP[E d4x
d

dAm
a ~x!

3F2\
dP

dAm
a ~x!

1S 2
dSYM

dAm
a ~x!

1Dm
acvcD PG

50. ~3.5!

This equation is a machine that produces normalized p
ability distributions Pv(A) that are gauge equivalent t
N exp(2SYM).

We now prove the basic result.Positive, normalized solu
tions of the diffusion equation (3.5) for differentv are gauge
equivalent Pv;Pv8 , and include Nexp@2SYM(A)# as a lim-
iting case. Our solution to the problem of quantizing a gau
field is to use any one of thePv(A) to calculate expectation
values of gauge-invariant observables. We consider obs
ables that are invariant under infinitesimal local gauge tra
formations, namely, that satisfyGa(x)W50. HereGa(x)[
2Dm

ac@d/dAm
c (x)#, is the generator of an infinitesimal gaug
10500
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transformation, with local Lie algebra@Ga(x),Gb(y)#5d(x
2y) f abcGc(x), and (DmX)a[]mXa1g fabcAm

b Xc is the
gauge-covariant derivative in the adjoint representation.

The proof relies upon the decomposition ofHFP,

HFP5H inv2~v,G!†,

H inv[E d4x
d

dAm
a ~x! F2\

d

dAm
a ~x!

2
dSYM

dAm
a ~x!G ,

~v,G![2E d4xvaDm
ac d

dAm
c ~x!

5E d4x~Dmv !a
d

dAm
a ~x!

,

2~v,G!†5~G,v !5E d4x
d

dAm
a ~x!

~Dmv !a, ~3.6!

where a dagger is the adjoint with respect to the inner pr
uct defined by*dA, and (v,G) is the generator of the loca
gauge transformationva(x). Note that H inv is a gauge-
invariant operator@Ga(x),H inv#50, that has exp(2SYM) as a
null vector,H inv exp(2SYM)50. Let P(A) be the normalized
solution of HFP P50 for given v. It is sufficient to show
that ^W&5*dA W(A)P(A) is independent ofva(x) for
gauge-invariant observablesW. Let dva(x) be an arbitrary
infinitesimal variation ofva(x). The corresponding chang
in P(A) satisfies dHFP P1HFPdP50, where dHFP
5(G,dv), so

dP52HFP
21 dHFPP. ~3.7!

Note that dHFP P has the form of a divergence, so it
orthogonal to the null space ofHFP. This change inP in-
duces the change in expectation value

d^W&5E dAdPW

52E dA~HFP
21dHFPP!W

52E dAP@dHFP
† ~HFP

† !21W#

5E dAP@~dv,G!~HFP
† !21W#, ~3.8!

where HFP
† 5H inv

† 2(v,G). It is sufficient to show that
d^W&50. The proof is almost immediate, but we must ver
that the dependence ofva(x;A) anddva(x;A) on A does not
cause any problem. Recall thatW is gauge invariant
Ga(x)W50, so we haveHFP

† W5H inv
† W, which implies that

HFP
† W is gauge invariant
1-6
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Ga~x!HFP
† W5Ga~x!H inv

† W50.

It follows by induction that (HFP
† )nW5(H inv

† )nW is gauge
invariant for any integern, Ga(x) (HFP

† )nW50, which im-
plies that for any analytic function,f (HFP

† )W5 f (H inv
† )W is

gauge invariantGa(x) f (HFP
† ) W50. This holds in particu-

lar for f (z)51/z, and we haveGa(x) (HFP
† )21 W50. This

implies thatd^W&50 as asserted. Note also that ifv50,
then the formal solution isP5N exp(2SYM)/\.

This proof does not rely on Faddeev-Popov gauge-fix
which would require a gauge choice that selects a sin
representative on each gauge orbit. The Gribov critique
by-passed, and Singer’s theorem@29# does not apply. Gauge
equivalence is a weaker condition than gauge fixing, but s
ficient for physics. In the present approach we do not atte
to eliminate ‘‘unphysical’’ variables and keep only ‘‘phys
cal’’ degrees of freedom. Rather we work in the fullA space,
keeping all variables, but taming the gauge degrees of f
dom by exploiting the freedom of gauge equivalence. It
the unphysical degrees of freedom that provide a long-ra
correlator, and a strong candidate for a confining potenti

Another way to obtain a gauge-equivalent probability d
tribution is by gauge transformation. If our class of gaug
equivalent probability distributionsPv(A) is large enough,
then it is possible to absorb an infinitesimal gauge trans
mation dAm5Dme by an appropriate changedv of v,
Pv(A1Dme)5Pv1dv(A). This is true and leads to a usef
Ward identity that is derived in Appendix C.

There remains to choosev so it has a globally restoring
property. An optimal way to do this is to require that th
forceDmv, that is tangent to the gauge orbit, points along
direction of steepest descent, restricted to gauge-orbit di
tions, of a conveniently chosen functional. For the minim
ing functional, we take the Hilbert norm squareF(A)
5iAi25*d4xuAu2, and we consider a variationdAm
5hDmv that is tangent to the gauge orbit in thev direction,
whereh is an infinitesimal parameter. We have

dF52~A,dA!

52h~A,Dv !

52hE d4xAm
a ~]mva1 f abcAm

b vc!

522hE d4x]mAm
a va. ~3.9!

Thus the direction of steepest descent, restricted to ga
orbit directions, is given by

va5a21]mAm
a , ~3.10!

wherea.0 is a positive constant. We shall take this optim
choice forv, so the total drift force that appears in the d
fusion equation is given by8

8An alternative choice suitable for the Higgs phase was propo
in Ref. @50#.
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a~x;A!5Dm

acFml
c 1a21Dl

ac]mAm
c . ~3.11!

Here a is a dimensionless gauge parameter. This comple
the specification of the time-independent stochastic quant
tion.

The drift forcea21Dl]mAm tends to concentrate the prob
ability distributionP(A) close to its region of stable equilib
rium, especially ifa is small. Let us find the region of stabl
equilibrium. From Eq.~3.9! we see thatdF,0 unlessA
satisfies]mAm50. This defines the region of equilibrium
which may be stable or unstable. The region of~local! stable
equilibrium is determined by the additional condition that t
second variation be non-negatived2F.0, for all variations
dA tangent to the gauge orbit, namely,dA5Dme, for arbi-
trary ea(x). We have just found that the first variation
given by dF522(e,]mAm). So we have, for the secon
variation d2F522(e,]mdAm)522(e,]mDme). Thus the
region ofstableequilibrium is determined by the two cond
tions ]mAm50 and2]mDm(A).0, namely, transverse con
figurations A, for which the Faddeev-Popov operat
2]mDm(A) is positive. These two conditions define the G
bov region. We expect that in the limita→0, both conditions
will be satisfied. This is the Landau gauge, with probabil
restricted to the interior of the first Gribov horizon.

So far we have discussed Euclidean quantum field the
which is characterized by elliptic differential operator
However, the above considerations also apply to
Minkowski case. Here the formal weight isQ(A)
5N exp@iSYM#, where SYM5(21/4)*d4xFmnFmn is the
Minkowskian Yang-Mills action, where indices are raise
and lowered by the metricglm5glm5diag(1,1,1,21). Ex-
pectation values of gauge-invariant time-ordered obse
ables, are given by the Feynman path integral^W&
5*dAW(A)Q(A), with ^1&51. Instead of Eq.~3.5!, we
take gauge-equivalent configurations that are solution of
equation

HMQ50, ~3.12!

where HM is the corresponding Minkowskian ‘‘Hamil
tonian’’

HM[E d4x~ i !
d

dAk~x!
gklF ~ i\!

d

dAl~x!
1Kl~x;A!G

~3.13!

and the ‘‘drift force’’ is given by

Kl~x;A![
dSYM

dAl~x!
1a21Dl]•A5DmFml1a21Dl]mAm .

~3.14!

The linear part of this force is

]kgkm~]mAn2]nAm!1a21]ngkm]kAm

which, for a.0 defines a regular hyperbolic operator that
invertible with Feynman boundary conditions. As above, o
may show that the solutions to this equation for differe
d

1-7
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values of the gauge-parametera are gauge equivalent to eac
other, and for a→`, one regains the formal weigh
N exp(iSYM)/\.

The drift forceDl]•A is not conservative, so one cann
write down an exact solution to the time-independe
Fokker-Planck equationHFPP50. Nor can one express th
solution as a functional integral over a local fou
dimensional action. However, we shall, by success
changes of variable, transform this equation into an equa
of Dyson-Schwinger type that may be used for perturba
expansion and nonperturbative solution.

IV. QUANTUM EFFECTIVE ACTION IN STOCHASTIC
QUANTIZATION

The partition functionZ(J), which is the generating func
tional of correlation functions with sourceJ, is defined by

Z~J![E dA exp~JxAx /\!P~A!. ~4.1!

It is the Fourier transform~with respect toiJx) of the prob-
ability distribution P(A), and satisfies the fourier
transformed time-independent Fokker-Planck equation

JxFJx2KxS \
]

]JD GZ~J!50. ~4.2!

HereKx@\(]/]J)# is the local cubic polynomial in its argu
ment \(]/]J) that is defined in Eq.~3.11!. We setZ(J)
5exp@W(J)/\#, where the ‘‘free energy’’W(J) is the gener-
ating functional of connected correlation functions, in ter
of which the time-independent Fokker-Planck equation re

JxFJx2KxS ]W

]J
1\

]

]JD1G50. ~4.3!

The quantum effective action

G~Acl!5JxAcl,x2W~J! ~4.4!

is obtained by Legendre transformation fromW(J), by in-
verting

Acl,x~J![
]W

]Jx
5

\

Z

]Z

]Jx
5^Ax&J , ~4.5!

to obtainJx5Jx(Acl). In the following we shall writeG(A)
instead ofG(Acl) when there is no ambiguity caused by u
ing the same symbol for the quantum Euclidean fieldA and
the classical sourceA5Acl . The gluon propagator in the
presence of the sourceJ is given by

Dxy~J![\21^~Ax2^Ax&J!~Ay2^Ay&J!&J

5
]Ay

]Jx

5
]2W

]Jx]Jy
. ~4.6!
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We note in passing that the gluon propagatorDxy(J) in the
presence of the sourceJ is a positive matrix, since one ha
for any f x , Sxyf xDxy(J) f y5\21^X2&J>0, where X
[Sxf x(Ax2^Ax&J), which is positive since it is the expec
tation value of a square. It is expressed in terms of
Legendre-transformed variablesA andG(A) by

D21
xy~A!5

]2G~A!

]Ax]Ay
. ~4.7!

Expectation values of functionalsO5O(A) are expressed in
terms ofZ(J), W(J) or G(A) by

^O&J5Z21OS \
]

]JDZ5OS ]W

]J
1\

]

]JD1,

~4.8!

^O&A5OS A1\D~A!
]

]AD1,

where the subscript indicates that the expectation valu
calculated in the presence of the sourceJ or A. In the last
line, the argument ofO is written in matrix notation, and
reads explicitlyAx1\Dxy(A)(]/]Ay).

The gluon propagatorDxy(J) is a positive matrix, as is its
inverseDxy

21(A), so bothW(J) andG(A) are convex func-
tionals. Physics is regained when the sourceJ is set to 0,
namely,Jx5]G/]Ax50. SinceG(A) is a convex functional,
the point]G/]Ax50 is an absolute minimum ofG. In the
absence of spontaneous symmetry breaking, this minimu
unique and defines the quantum vacuum. Thus physic
regained at the absolute minimum ofG(A), which justifies
the name ‘‘quantum effective action.’’

In terms of the Legendre-transformed variables, the tim
independent Fokker-Planck equation~4.3! reads

]G

]Ax
F ]G

]Ax
1KxS A1\D~A!

]

]AD1G50. ~4.9!

HereD(A) is expressed in terms ofG(A) by Eq. ~4.7!, and
Kx@A1\D(A)(]/]A)#1 is evaluated next.

V. QUANTUM EFFECTIVE DRIFT FORCE

We call

Qx~A![KxS A1\D~A!
]

]AD1 ~5.1!

the ‘‘quantum effective drift force.’’ It is the expectatio
value

Qx~Acl!5^Kx&Acl
~5.2!

of the drift force~3.11! in the presence of the sourceAcl , as
one sees from Eq.~4.8!. To evaluate it, we expandKx(A) in
terms of its coefficient functions
1-8
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Kx~A!5Kxy
~1!Ay1~2! !21Kx;yz

~2! AyAz1~3! !21Kxyzw
~3! AyAzAw .

~5.3!

The coefficient functions are found from Eq.~3.11!, and are
given in the explicit notation by

K ~1!
kl
ab~x,y!52SYM

~2!
kl
ab~x,y!

5dab@~]2dkl2]k]l!1a21]k]l#

3d~x2y!, ~5.4!

K ~2!
klm
abc ~x;y,z!52SYM

~3!
klm
abc ~x,y,z!

1a21KGT
~2!

klm
abc ~x;y,z! ~5.5!

2SYM
~3!

klm
abc ~x,y,z!5g fabc@] [ld~x2y!dm]kd~y2z!

1] [md~y2z!dk]ld~z2x!

1] [kd~z2x!dl]md~x2y!#, ~5.6!

KGT
~2!

klm
abc ~x;y,z!5g fabc] [md~x2z!dl]kd~x2y!,

~5.7!

K ~3!
klmn
abcd ~x,y,z,w!52SYM

~4!
klmn
abcd ~x,y,z,w!

52g2~ f abef cdedk[mdn]l

1 f acef bdedk[ldn]m

1 f adef cbedk[mdl]n!d~x2y!

3d~x2z!d~x2w!, ~5.8!

wheredk[ldn]m[dkldnm2dkndlm , etc. The contribution to
each coefficientK (n) from SYM is symmetric in all its argu-
ments, including the first. ThusK (3)

klmn
abcd (x,y,z,w) is sym-

metric under permutations of its four arguments. Moreo
K (1)

kl
ab(x,y) is manifestly symmetric in its arguments. On th

other hand the first argument ofKGT
(2)

klm
abc (x;y,z) is distin-

guished.
The evaluation of the quantum effective drift forc

Qx(A)5Kx@A1\D(]/]A)#1, is straightforward. By substi
tution into Eq.~5.3! we have

Qx~A!5Kxy
~1!Ay1~2! !21Kx;yz

~2! S Ay1\Dyu

]

]Au
DAz

1~3! !21Kxyzw
~3! S Ay1\Dyu

]

]Au
D

3S Az1\Dzv

]

]Av
DAw

5Kxy
~1!Ay1~2! !21Kx;yz

~2! ~AyAz1\Dyz!1~3! !21Kxyzw
~3!

3S Ay1\Dyu

]

]Au
D ~AzAw1\Dzw!. ~5.9!

Use of the identity
10500
r

]Dzw~A!

]Ar
52Dzs~A!Dwt~A!

]3G~A!

]Ar]As]At
, ~5.10!

that follows from (D21)z,w(A)5]2G(A)/]Az]Aw , gives the
formula for Qx(A) that is the first equation of next section

VI. BASIC EQUATIONS FOR Q AND G

The first basic equation of the present method is the
mula, just derived, for the quantum effective drift force

Qx~A!5Kx~A!1\~2! !21Kx;yz
~2! Dyz1\~2! !21Kxyzw

~3! DyzAw

2\2~3! !21Kxyzw
~3! DyrDzsDwt

]3G~A!

]Ar]As]At
, ~6.1!

whereD5D(A) is the gluon propagator in the presence
the sourceA, and is expressed in terms ofG(A) by
(D21)z,w5]2G(A)/]Az]Aw . This equation is represente
graphically in Fig. 1. The terms of order\ and\2 correspond
to one and two loops in the figure, and we write

Qx5Kx1\Q1loop,x~G!1\2Q2loop,x~G!. ~6.2!

The second basic equation of the present approach is
tained by writing the time-independent Fokker-Planck eq
tion ~4.9!, satisfied by the quantum effective actionG, in
terms of the quantum effective drift forceQx(A)

]G

]Ax
F ]G

]Ax
1Qx~A!G50. ~6.3!

This equation is of classic Hamilton-Jacobi type, with ene
E50, and HamiltonianH(p,A)5px@px1Qx(A)#.

The pair of equations~6.1! and ~6.3! forms the basis of
the present approach and allows a systematic calculatio
the correlation functions. Equation~6.1! resembles the DS
equation for the gluon field in Faddeev-Popov theo
namely, ]G/]Ax5(]S/]Ax)@A1\D(]/]A)#1, where S
5SYM1SGF1Sgh, and Sgh is the ghost action. Indeed th
same expressions appear in both equations, as is seen
easily from Fig. 1, except that the contribution from th
ghost actiondSgh/dAm@A1\D(d/dA)#1, is replaced by the
term proportional toa21 in the gluon vertexK (2).

In the functional equations~6.1! and ~6.3!, satisfied by
Qx(A) andG(A), A is a dummy variable, and each of the
functional equations represents a set of equations satisfie
the coefficient functions that appear in the expansions
powers ofA,

Qx~A!5Qx;y
~1!Ay1~2! !21Qx;y1 ,y2

~2! Ay1
Ay2

1¯ , ~6.4!

G~A!5~2! !21Gy1 ,y2

~2! Ay1
Ay2

1~3! !21Gy1 ,y2 ,y3

~3! Ay1
Ay2

Ay3
1¯ , ~6.5!

whereG (n) is the propern vertex. The individual equations
for the coefficient functions are conveniently obtained
differentiating Eqs.~6.1! and ~6.3! n times with respect to
Az , and then settingA50.
1-9
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We now come to an important point. The tim
independent Fokker-Planck equation~4.9! satisfied byG(A)
is equivalent to the pair of coupled equations~6.1! and~6.3!
that is satisfied by the pairG(A) and Qx(A). Indeedevery
solution of Eqs. (6.1) and (6.3) yields a solution of Eq. (4
and conversely. This remark is the key to transforming th
time-independent Fokker-Planck equation into an equatio
DS type. For it turns out that the Hamilton-Jacobi equat
~6.3! may be solved exactly and explicitly for the coefficie
functionsG (n) of G(A) in terms of the coefficient function
Qx

(m) of Qx(A), where m,n. In fact we shall obtain
a simple algebraic—indeed, rational—formula forG (n)

5G (n)(Q) for every n. This allows us to change variabl
from the quantum effective actionG5G(Q) to the quantum
effective drift forceQx . It will be the last in our series o
changes of variableP(A)→Z(J)→W(J)→G(A)→Qx(A).

Neither the Hamilton-Jacobi equation~6.3! nor its solu-
tion G5G(Q) contains\. When the solution of Eq.~6.3!,
G5G(Q), is substituted into Eq.~6.2!, one obtains an equa
tion of the form

Qx5Kx1\Q1loop,x~Q!1\2Q2loop,x~Q!. ~6.6!

This is an equation of DS type for the quantum effective d
force Qx . By iteration, it provides the\ expansion ofQx .
The zeroth-order termKx , given in Eq. ~3.11!, is a local

FIG. 1. Diagrammatic representation of the functional DS eq
tion for the quantum effective drift forceQ(A) in the presence of
external sourcesA, Eq. ~6.1!. The vertices are the tree-level vertice
of the drift force K. The internal lines represent the exact glu
propagatorD(A) in the presence of the external source. The cir
is the exact three-gluon vertex of the quantum effective actionG(A)
in the presence of the external source.
10500
)
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function ofA. We shall find an approximate, nonperturbati
solution of this equation. But first we must findG~Q!.

VII. SOLUTION FOR QUANTUM EFFECTIVE ACTION
G„Q…

In this section we solve Eq.~6.3! for the coefficient func-
tions G (2)5G (2)(Q) and G (3)5G (3)(Q). The solution for
G (4) andG (n) for arbitraryn is found in Appendix D.

The solution forG (2), reads simply

Gx1x2

~2! 52Qx1 ;x2

~1! . ~7.1!

Note that by definition,Gx1x2 ,...,xn

(n) is symmetric in itsn ar-

guments, whereasQx1 ;x2 ,...,xn

(n21) has a distinguished first argu

ment and is symmetric only in the remainingn21 argu-
ments, so in general the equationGx1x2 ,...,xn

(n) 52Qx1 ;x2 ,...,xn

(n21)

would not be consistent. However, symmetries in fact c
strain Qx1 ;x2

(1) to be symmetric,Qx1 ;x2

(1) 5Qx2 ;x1

(1) , as we will

see, so Eq.~7.1! is in fact consistent.
To prove Eq.~7.1!, we differentiate Eq.~6.3! with respect

to Ax1
andAx2

, and obtain, after settingA50,

Gx1x
~2! ~Gxx2

~2! 1Qx;x2

~1! !1~x1↔x2!50. ~7.2!

To solve this equation forG (2), we diagonalize all the matri-
ces by taking Fourier transforms. In the extended notat
this equation reads

E d4x$G~2!
m1m
a1a

~x1 ,x!@G~2!
mm2

aa2 ~x,x2!1Q~1!
mm2

aa2 ~x;x2!#

1@~x1 ,m1 ,a1!↔~x2 ,m2 ,a2!#%50, ~7.3!

and we take Fourier transforms:

Q~1!
lm
ab ~x;y!5dab~2p!24E d4k exp@ ik•~x2y!#Q̃lm

~1!~k!,

~7.4!

G~2!
lm
ab ~x,y!5dab~2p!24E d4k exp@ ik•~x2y!#G̃lm

~2!~k!.

Color, translation, and Lorentz invariance, and use of
transverse and longitudinal projectorsPlm

T (k)5(dlm

2klkm /k2) and Plm
L (k)5klkm /k2 give the decomposition

of these quantities into their transverse and longitudinal
variant functions

Q̃lm
~1!~k!5Q~1!T~k2!Plm

T ~k!1Q~1!L~k2!Plm
L ~k!,

~7.5!
G̃lm

~2!~k!5T~k2!Plm
T ~k!1a21L~k2!Plm

L ~k!.

The coefficienta21 is introduced here for later convenienc
In terms of the Fourier transforms, Eq.~7.3! reads

G̃m1m
~2! ~k!@G̃mm2

~2! ~k!1Q̃mm2

~1! ~k!#1~k,m1 ,m2↔2k,m2 ,m1!

50. ~7.6!

Color and Lorentz symmetries, as expressed in Eq.~7.5!,
constrainQ̃ln

(1)(k) to be a symmetric tensor that is even ink,

-

1-10
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Q̃ln
(1)(k)5Q̃nl

(1)(k)5Q̃ln
(1)(2k), as is G̃ln

(2)(k). Products of
such tensors have the same property, and as a result, the two
terms in Eq. (7.6) are equal, and we have

G̃m1m
~2! ~k!@G̃mm2

~2! ~k!1Q̃mm2

~1! ~k!#50, ~7.7!

which proves the assertion~7.1!. For future reference, we
note

~D̃21!lm~k!5G̃lm
~2!~k!52Q̃lm

~1!~k!

5T~k2!Plm
T ~k!1a21L~k2!Plm

L ~k!. ~7.8!

Here we have introduced the usual gluon propagator, w
sources set to 0,Dxy5Dxy(A)uA50 . It is given in terms ofG
by (D21)xy5]2G/]Ax]AyuA505Gxy

(2) .
We next findG (3). For this purpose we differentiate Eq

~6.3! with respect toAx1
, Ax2

, and Ax3
, and obtain, after

settingA50,

Gx1x
~2! ~Gxx2x3

~3! 1Qx;x2x3

~2! !1~cyclic!50, ~7.9!

where we have usedG (2)52Q(1), and ~cyclic! represents
the cyclic permutations of~1,2,3!. A novelty of the stochastic
method is now apparent. ForQx;x2,x3

(2) , unlike Qx;x2

(1) , is not

completely symmetric in all its arguments as it would be
the drift force were conservative. As a result, the equat
Gx,x2 ,x3

(3) 1Qx;x2 ,x3

(2) 50 has no solution. This is already appa

ent to zero order in\, whereQx;x2 ,x3

(2) 5Kx;x2 ,x3

(2) , but Kx;x2 ,x3

(2)

is not symmetric in its three arguments, as noted above.
To solve Eq.~7.9! for Gxx2x3

(3) , we again diagonalize the

matrix Gx1x
(2) by Fourier transformation. To do so, we write th

last equation in the extended notation

E d4x$G~2!
m1m
a1a

~x1 ,x!@G~3!
mm2m3

aa2a3 ~x,x2 ,x3!

1Q~2!
mm2m3

aa2a3 ~x;x2 ,x3!#1~cyclic!%50, ~7.10!

and take Fourier transforms

Q~2!
m1m2m3

a1a2a3 ~x1 ;x2 ,x3!5~2p!28E d4k1d4k3d4k3

3exp~ ik1•x11 ik2•x21 ik3•x3!

3d~k11k21k3!

3Q̃~2!
m1m2m3

a1a2a3 ~k1 ;k2 ,k3!, ~7.11!

G~3!
m1m2m3

a1a2a3 ~x1 ,x2 ,x3!5~2p!28E d4k1d4k3d4k3

3exp~ ik1•x11 ik2•x21 ik3•x3!

3d~k11k21k3!

3G̃~3!
m1m2m3

a1a2a3 ~k1 ,k2 ,k3!, ~7.12!
10500
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where Q̃(2)
m1m2m3

a1a2a3 (k1 ;k2 ,k3) and G̃ (3)
m1m2m3

a1a2a3 (k1 ,k2 ,k3) are

defined only fork11k21k350. This gives

G̃m1m
~2! ~k1!@G̃~3!

mm2m3

a1a2a3~k1 ,k2 ,k3!1Q̃~2!
mm2m3

a1a2a3~k1 ;k2 ,k3!#

1~cyclic!50. ~7.13!

We use the symmetry ofG̃ (3)
m1m2m3

a1a2a3 (k1 ,k2 ,k3) in its three

arguments to write this as

@G̃m1n1

~2! ~k1!dm2n2
dm3n3

1~cyclic!#G̃~3!
n1n2n3

a1a2a3~k1 ,k2 ,k3!

52H ~3!
m1m2m3

a1a2a3 ~k1 ,k2 ,k3!, ~7.14!

where

H ~3!
m1m2m3

a1a2a3 ~k1 ,k2 ,k3![G̃m1m
~2! ~k1!Q̃~2!

mm2m3

a1a2a3~k1 ;k2 ,k3!

1~cyclic!. ~7.15!

To complete the diagonalization ofG̃lm
(2)(k), and solve Eq.

~7.14! for G̃m1m2m3

a1a2a3 (k1 ,k2 ,k3), we apply a transverse or lon

gitudinal projector to each of its three arguments, and use

transverse and longitudinal decomposition ofG̃lm
(2)(k) given

in Eq. ~7.8!. One obtainsG̃ (3)
m1m2m3

a1a2a3 (k1 ,k2 ,k3) in terms of

its transverse and longitudinal projections, defined
Xm

T(k)[Pmn
T (k)Xn(k) andXm

L (k)[Pmn
L (k)Xn(k),

G̃~3!TTT
m1m2m3

a1a2a3 ~k1 ,k2 ,k3!52@T~k1
2!1T~k2

2!1T~k3
2!#21

3H ~3!TTT
m1m2m3

a1a2a3 ~k1 ,k2 ,k3!,

~7.16!

G̃~3!LTT
m1m2m3

a1a2a3 ~k1 ,k2 ,k3!52@a21L~k1
2!1T~k2

2!

1T~k3
2!#21

3H ~3!LTT
m1m2m3

a1a2a3 ~k1 ,k2 ,k3!,

~7.17!

etc. The corresponding formulas forG̃ (4) and G̃ (n) are found
in Appendix D.

VIII. DYSON-SCHWINGER EQUATION FOR THE GLUON
PROPAGATOR

We have solved the second basic equation~6.3! for the

coefficient functionsG̃ (n), and expressed them in terms
the Q̃(m), for m,n. We now turn to the first basic equatio
~6.1!, and derive the equations for the coefficient functio
Q(m) by the same method of taking derivatives and sett
A50. To derive the equation forQ(1), we differentiate Eq.
~6.1! with respect toAy , and obtain, after settingA50,
1-11



e

the
s
a-
ree-

DANIEL ZWANZIGER PHYSICAL REVIEW D 67, 105001 ~2003!
Qx;y
~1!5Kx;y

~1!2\~2! !21Kx;x1 ,x2

~2! Dx1y1
Dx2y2

Gy1y2y
~3! 1\~2! !21

3Kxx1x2y
~3! Dx1x2

2\2~3! !21Kxx1x2x3

~3! Dx1y1
Dx2y2

3Dx3y3
Gy1y2y3y

~4! 1\2~2! !21Kxx1x2x3

~3! Dx1z1
Dx2z2

3Gz1z2z3

~3! Dz3y1
Dx3y2

Gy1 ,y2 ,y
~3! , ~8.1!

where we have again used Eq.~5.10!. This equation is rep-
resented diagrammatically in Fig. 2.

In momentum space the coefficients~5.4!–~5.8! of the
drift force read

K ~1!
lm
ab ~x;y!5dab~2p!24E d4k

3exp@ ik•~x2y!#K̃lm
~1!~k!,

~8.2!

K ~2!
m1m2m3

a1a2a3 ~x1 ;x2 ,x3!5 f a1a2a3~2p!28E d4k1

3d4k3d4k3 exp~ ik1•x1

1 ik2•x21 ik3•x3!

3d~k11k21k3!

3K̃m1m2m3

~2! ~k1 ;k2 ,k3!, ~8.3!

K ~3!
m1m2m3m4

a1a2a3a4 ~x1 ,x2 ,x3 ,x4!5~2p!212E d4k1d4k3d4k3d4k4

3expS i(
i 51

4

k1•xi D
3d~k11k21k31k4!

3K̃ ~3!
m1m2m3m4

a1a2a3a44 , ~8.4!

where

2K̃lm
~1!~k!5@~k2dlm2klkm!1a21klkm# ~8.5!

K̃m1m2m3

~2! ~k1 ;k2 ,k3!52S̃YMm1m2m3

~3! ~k1 ,k2 ,k3!

1a21K̃GT
~2!

m1m2m3
~k1 ;k2 ,k3!,

2S̃YMm1m2m3

~3! ~k1 ,k2 ,k3![ ig@~k1!@m2
dm3]m1

1~cyclic! ~8.6!

K̃GT
~2!

m1m2m3
~k1 ;k2 ,k3![ ig@~k3!m3

dm1m2
2~2↔3!#

2K̃ ~3!
m1m2m3m4

a1a2a3a4 5g2~ f a1a2ef a3a4edm1@m3
dm4]m2

1 f a1a3ef a2a4edm1@m2
dm4]m3

1 f a1a4ef a3a2edm1@m3
dm2]m4

!. ~8.7!
10500
With Q̃(1)52D̃21, we obtain finally the DS equation for th
gluon propagator

2dab~D̃21!lm~k!52dab@~k2dkl2kkkl!1a21kkkl#

2\ f aa1a2~2! !21~2p!24E dk1K̃ll1l2

~2! ~k;2k1 ,k12k!

3D̃l1m1
~k1!D̃l2m2

~k2k1!G̃~3!
m1m2m
a1a2b

~k1 ,k2k1 ,2k!

1\~2! !21~2p!24E dk1K̃ ~3!
ll1l2m
a c c bD̃l1l2

~k1!

1dabQ̃21,lm
~1! ~k!, ~8.8!

where the two-loop term is given by

FIG. 2. Diagrammatic representation of the DS equation for
gluon propagator, Eq.~8.1!. The vertices are the tree level vertice
of the drift forceK. The internal lines are the exact gluon propag
tor D with sources set to 0. The circles represent the exact th
and four-gluon vertices of the quantum effective actionG, with
sources set to 0.
1-12
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dabQ̃21,lm
~1! ~k![2\2~3! !21~2p!28E dk1dk2K̃ ~3!

ll1l2l3

aa1a2a3 D̃l1m1
~k1!D̃l2m2

~k2!D̃l3m3
~k2k12k2!

3G̃~4!
m1m2m3m
a1a2a3b

~k1 ,k2 ,k2k12k2 ,2k!1\2~2! !21~2p!28E dk1dk2K̃ ~3!
ll1l2l3

aa1a2a3 D̃l1n1
~k1!

3D̃l2n2
~k2!G̃~3!

n1n2n3

a1a2b1~k1 ,k2 ,2k12k2!D̃n3m1
~k11k2!D̃l3m2

~k2k12k2!

3G̃~3!
m1m2m
b1a3b

~k11k2 ,k2k12k2 ,2k!. ~8.9!
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IX. TRUNCATION SCHEME

To obtain a nonperturbative solution of the DS equatio
it is necessary to truncate them in some way. Needless to
truncation remains an uncontrolled approximation until it
tested by varying the scheme, or by comparison with num
cal simulation, as discussed in the Introduction and Con
sion. Moreover the truncation scheme is gauge depend
This situation is familiar in atomic physics where bound st
calculations are done in the Coulomb gauge. We shall u
mately solve the truncated system in the Landau-gauge li

As a first step we neglect the two-loop contribution in E
~8.8!. We shall also not retain the tadpole term, which in a
case gets absorbed in the renormalization. The three-ve
that we will obtain

G̃~3!
m1m2m3

a1a2a3 ~k1 ,k2 ,k3!5 f a1a2a3G̃m1m2m3

~3! ~k1 ,k2 ,k3!,

~9.1!

defined for k11k21k350, has the color dependence th
allows us to use the identityf aa1a2f a1a2b5Ndab for SU~N!
color group. As a result, the DS equation~8.8! simplifies to

~D̃21!lm~k!5~k2dkl2kkkl!1a21kkkl

1\N~2! !21~2p!24E dk1

3K̃ll1l2

~2! ~k;2k1 ,k12k!D̃l1m1
~k1!

3D̃l2m2
~k2k1!G̃m1m2m

~3! ~k1 ,k2k1 ,2k!.

~9.2!

We convert this into a DS equation for the invaria
propagator functionsT(k2) andL(k2). The gluon propagato
is given by

D̃lm~k!5
Plm

T ~k!

T~k2!
1a

Plm
L ~k!

L~k2!
. ~9.3!

To get the DS equation forT(k2), we apply projectors
Pk,n

T (k) to both free indices of Eq.~9.2!, and obtain

@PT(k)D̃21(k)PT(k)#lm5T(k2)Plm
T (k) on the left hand

side. We take the trace on Lorentz indices ind space-time
dimensions, and usePll

T (k2)5d21, to obtain the DS equa
tion for T(k2),
10500
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T~k2!5k21
\N

2~d21!~2p!d E ddk1@ I T,TT~k1 ,k!

12I T,TL~k1 ,k!1I T,LL~k1 ,k!#, ~9.4!

where

I T,TT~k1 ,k!

5
K̃ ~2!

ll1l2

TT T ~k,2k1 ,2k2!G̃~3!
l1l2l
T T T~k1 ,k2 ,2k!

T~k1
2!T~k2

2!
, ~9.5!

I T,TL~k1 ,k!

5a
K̃ ~2!

ll1l2

TT L ~k;2k1 ,2k2!G̃~3!
l1l2l
T L T~k1 ,k2 ,2k!

T~k1
2!L~k2

2!
,

~9.6!

I T,LL~k1 ,k!

5a2
K̃ ~2!

ll1l2

TL L ~k;2k1 ,2k2!G̃~3!
l1l2l
L L T~k1 ,k2 ,2k!

L~k1
2!L~k2

2!
,

~9.7!

k25k2k1 , and the transverse and longitudinal projectio
are defined in Sec. VII.

Similarly, to get the DS equation forL(k2), we apply
projectorsPk,n

L (k) to both free indices of Eq.~9.2!, and ob-

tain @PL(k)D̃21(k)PL(k)#lm5a21L(k2)Plm
L (k) on the left

hand side. We take the trace on Lorentz indices ind space-
time dimensions, and usePll

L (k2)51, to obtain the DS
equation forL(k2),

a21L~k2!5a21k21
\N

2~2p!d E ddk1@ I L,TT~k1 ,k!

12I L,TL~k1 ,k!1I L,LL~k1 ,k!#, ~9.8!

where

I L,TT~k1 ,k!

5
K̃ ~2!

ll1l2

LT T ~k,2k1 ,2k2!G̃~3!
l1l2l
T T L~k1 ,k2 ,2k!

T~k1
2!T~k2

2!
, ~9.9!
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I L,TL~k1 ,k!

5a
K̃ ~2!

ll1l2

LT L ~k;2k1 ,2k2!G̃~3!
l1l2l
T L L~k1 ,k2 ,2k!

T~k1
2!T~k2

2!
,

~9.10!

I L,LL~k1 ,k!

5a
K̃ ~2!

ll1l2

LL L ~k;2k1 ,2k2!G̃~3!
l1l2l
L L L~k1 ,k2 ,2k!

L~k1
2!L~k2

2!
.

~9.11!

The vertexK̃ (2) is given in Eq.~8.6!. To complete the
truncation scheme and obtain closed equations forT(k2) and

L(k2), we need an approximation for the vertexG̃ (3). We

will approximateG̃ (3) by its value to zero order in\. This
vertex is expressed linearly in terms ofQ̃(2) by the exact

formulas of Sec. VII, which may be writtenG̃ (3)5MQ̃(2),
whereM5M (D̃). At tree level,Q̃(2) is given by

Q̃~2!5K̃ ~2!

52S̃YM
~3! 1a21K̃GT

~2! , ~9.12!

where we have used Eqs.~6.2! and~8.6!. Each of these terms

contributes additively toG̃ (3)5MQ̃(2). Moreover S̃YM
(3) , is

symmetric in all its arguments. As a result, it contribut

unchanged toG̃ (3), as one sees from Eq.~7.9!, and we have

G̃m1m2m3

~3! ~k1 ,k2 ,k3!5S̃YMm1m2m3

~3! ~k1 ,k2 ,k3!

1G̃GT m1m2m3

~3! ~k1 ,k2 ,k3!, ~9.13!

where G̃GT
(3)5MK̃GT

(2) is obtained from Eqs.~7.15!–~7.17! by
the substitutions

Q̃m1m2m3

~2! ~k1 ;k2 ,k3!→a21K̃GT m1m2m3

~2! ~k1 ;k2 ,k3!,

~9.14!
G̃m1m2m3

~3! ~k1 ,k2 ,k3!→G̃GT m1m2m3

~3! ~k1 ,k2 ,k3!.

Finally, to obtainG̃GT
(3) to zero order in\, we substitute the

tree-level propagators

T~k2!→k2, L~k2!→k2, ~9.15!

into the formulas of Sec. VII. This gives for the vertexG̃GT
(3) ,

G̃GT m1m2m3

~3!T T T ~k1 ,k2 ,k3!50,

G̃GTm1m2m3

~3!T T L ~k1 ,k2 ,k3!52 ig
k1

22k2
2

ak1
21ak2

21k3
2 ~k3!m3

3@PT~k1!PT~k2!#m1m2
, ~9.16!
10500
G̃GT m1m2m3

~3!T L L ~k1 ,k2 ,k3!52 ia21gS k3
22ak1

2

ak1
21k2

21k3
2 ~k2!m2

3@PT~k1!PL~k3!#m1m3
2~2↔3! D ,

G̃GT m1m2m3

~3!L L L ~k1 ,k2 ,k3!52 ia21gS k2
22k3

2

k1
21k2

21k3
2 ~k1!m1

3@PL~k2!PL~k3!#m2m3
1~cyclic! D ,

valid to zero order in\. Because of the denominators, th

vertex G̃GT
(3) is nonlocal even to this order. Equations~9.13!

and ~9.16! complete the specification ofG̃ (3) that appears in
the truncated DS equations~9.4! and~9.8! for the two invari-
ant propagator functionsT(k2) andL(k2).

In Faddeev-Popov theory there are, by contrast, three
variant propagator functions, namely, these two plus
ghost propagator. However in Faddeev-Popov theory,
Slavnov-Taylor identity in its BRST version implies that th
gluon self-energy is transverse, so there are finally only t
independent invariant propagator functions in Fadde
Popov theory also, namely, the transverse part of the inv
gluon propagator and the ghost propagator.9 In the present
theory, the longitudinal part of the gluon propagator repla
the ghost propagator as the second invariant propagator f
tion. There is no BRST symmetry in the present theory, bu
possesses a Ward identity, derived in Appendix C, that
presses the effect of a gauge transformation and constr
the form of divergences.

X. LANDAU GAUGE LIMIT

We now specialize to the Landau gauge limita→0. We
cannot directly seta50 in the DS equations~9.4! and ~9.8!
because both vertices contain terms of ordera21. With the
gluon propagator given by Eq.~9.3!, we take as an ansat
that the invariant propagator functionsT(k2) and L(k2) re-
main finite in the limita→0. This accords with the behavio
obtained in Ref.@6# by a Born-Oppenheimer type calcula
tion. At a50, the propagator is indeed transverse, which
the defining condition for the Landau gauge, andL(k2) does
drop out of the propagator. However, the vertices cont
terms of ordera21 and, remarkably, the longitudinal propa
gator functionL(k2) does not decouple ata50, but remains
an essential component of the dynamics.

We next determine thea dependence of the vertices a
ymptotically, at smalla. By Eq. ~8.6!, we have K (2)5

2SYM
(3) 1a21KGT

(2) , so this vertex contains a term of ordera0

and a term of ordera21. We take the asymptotic limit of Eq
~9.16! at smalla, and obtain the interestinga dependence

9In practice the truncated DS equations in Faddeev-Popov th
violate the Slavnov-Taylor identities to some extent.
1-14
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G̃GT m1m2m3

~3!T T T ~k1 ,k2 ,k3!50,

G̃GT m1m2m3

~3!T T L ~k1 ,k2 ,k3!5g̃m1m2m3

T T L ~k1 ,k2 ,k3!,

~10.1!

G̃GT m1m2m3

~3!T L L ~k1 ,k2 ,k3!5a21g̃m1m2m3

T L L ~k1 ,k2 ,k3!,

G̃GT m1m2m3

~3!L L L ~k1 ,k2 ,k3!5a21g̃m1m2m3

L L L ~k1 ,k2 ,k3!,

where

g̃m1m2m3

T T L ~k1 ,k2 ,k3!

52 ig
k1

22k2
2

k3
2 ~k3!m3

@PT~k1!PT~k2!#m1m2
,

g̃m1m2m3

T L L ~k1 ,k2 ,k3!

52 ig
k3

2

k2
21k3

2 ~k2!m2
@PT~k1!PL~k3!#m1m3

2~2↔3!,

~10.2!

g̃m1m2m3

L L L ~k1 ,k2 ,k3!

52 ig
k2

22k3
2

k1
21k2

21k3
2 ~k1!m1

@PL~k2!PL~k3!#m2m3
1~cyclic!

are independent ofa. These quantities are anti-symmetric
their three arguments so, for example,g̃m1m2m3

T T L (k1 ,k2 ,k3)5

2g̃m1m3m2

T L T (k1 ,k3 ,k2), etc. We see thatG̃ (3) also contains a

term of ordera0 and a term of ordera21.
The DS equation forL(k2), Eq. ~9.8!, is consistent with

our ansatz in the Landau gauge limit only if the leading te
on the right is also of ordera21. This is nontrivial, because
both vertices contain terms of ordera21, so in principle
terms of ordera22 could appear on the right-hand sid
which would invalidate our ansatz.

We now derive the DS equation forL(k2) in the Landau-
gauge limit by evaluating in succession the terms~i! I L,TT,
~ii ! I L,LL, and~iii ! I L,TL that appear on the right-hand side
Eq. ~9.8!, in the limit a→0.

~i! Consider Eq.~9.9! for I L,TT. It contains no explicit

powers of a. Moreover the vertexG̃ (3)
m1m2m
T T L (k1 ,k2 ,2k),

given in Eq.~10.1!, is of ordera0. Thus the inconsistency o
a term of ordera22 is avoided, and this intermediate sta
will give a contribution of required ordera21 only if the
vertex K̃ (3)

ll1l2

LT T (k;2k1 ,2k2) gives a contribution of orde

a21. The terma21K̃GT ll1l2

(3) (k;2k1 ,2k2) in Eq. ~8.6! is in

fact of this order. The projected components ofK̃GT
(2) are eas-

ily read off Eq. ~8.6! by writing dlm5@PT(k)1PL(k)#lm ,
which gives
10500
K̃GT m1g2m3

~2! ~k1 ;k2 ,k3!5 ig~k3!m3
~@PT~k1!1PL~k1!#

3@PT~k2!1PL~k2!# !m1 ,m2

2~2↔3!. ~10.3!

The polarization vector (k3)m3
is purely longitudinal, as is

(k2)m2
, and this implies

K̃GT ll1l2

~2!L T T ~k;2k1 ,2k2!5K̃GT ll1l2

~2!T T T ~k;2k1 ,2k2!50.

~10.4!

Thus there is no contribution of the required ordera21 from
I L,TT.

~ii ! Consider Eq.~9.11! for I L,LL. It has the coefficienta2,
so there is no contribution of the required ordera21 from
I L,LL either.

~iii ! Now consider Eq.~9.10! for I L,TL. It has the coeffi-
cient a. So when each vertex is of ordera21 there is an
overall contribution toa21L(k2) of the required ordera21.
As a result, the DS equation~9.8! for L(k2) simplifies in
Landau gauge to

L~k2!5k21\N~2p!24E d4k1

3
K̃GT ll1l2

~2!L T L ~k;2k1 ,2k2!g̃l1l2l
T L L~k1 ,k2 ,2k!

T~k1
2!L~k2

2!
.

~10.5!

By Eqs.~10.3! and ~10.2!, we have

K̃GT ll1l2

~2!L T L ~k;2k1 ,2k2!g̃l1l2l
T L L~k1 ,k2 ,2k!

52
g2k2

2

k2
21k2 @k•PT~k1!•k1k•PT~k1!•k2#

522
g2k2

2

k2
21k2 k•PT~k1!•k, ~10.6!

where we have usedk25k2k1 . Note that a factor of the
external momentumk appears at each vertex. This corr
sponds to the factorization of external ghost momentum
the Landau gauge in Faddeev-Popov theory. This gives
truncated DS equation forL(k2) in Landau gauge

L~k2!5k22
2\g2N

~2p!4 E d4k1

k2
2@k2k1

22~k•k1!2#

k1
2~k2

21k2!T~k1
2!L~k2

2!
.

~10.7!

The DS equation forT(k2), Eq. ~9.4!, is consistent with
our ansatz in the Landau gauge limit only if the leading te
on the right is also of ordera0. This is nontrivial, because
both vertices contain terms of ordera21, so in principle
terms of ordera21 anda22 could appear on the right han
side which would invalidate our ansatz.
1-15
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We now derive the DS equation forT(k2) in the Landau-
gauge limit by evaluating in succession the terms~i! I T,TT,
~ii ! I T,TL, and~iii ! I T,LL that appear on the right hand side
Eq. ~9.4!, in the limit a→0.

~i! Consider Eq.~9.5! for I T,TT. It contains no explicit
powers ofa. By Eqs. ~10.1! and ~10.4!, the vertices from
K̃GT ll1l2

(2)TT T (k;2k1 ,2k2) and G̃GT m1m2m
(3)T T T (k1 ,k2 ,2k) vanish,

and we obtain from Eqs.~8.6! and ~9.13!,

K̃ ~2!
ll1l2

T T T~k;2k1 ,2k2!52S̃YMll1l2

~3! TT T~k,2k1 ,2k2!

~10.8!

and

G̃~3!
m1m2m
T T T~k1 ,k2 ,2k!5S̃YMm1m2m

~3! T T T~k1 ,k2 ,2k!.

~10.9!

This gives a contribution of the required order.
~ii ! Next consider Eq.~9.6! for I T,TL. It has coefficienta.

By Eqs.~9.13! and ~10.1!, we have

G̃~3!
m1m2m
T L T~k1 ,k2 ,2k!5S̃~3!

m1m2m
T L T~k1 ,k2 ,2k!

1g̃~3!
m1m2m
T L T~k1 ,k2 ,2k!,

~10.10!
th
on
al
.
r-

lo

10500
which is of order a0. Thus only that part of the vertex
K̃ (2)

ll1l2

TT L (k;2k1 ,2k2) that is of ordera21 will contribute

to the desired ordera0. However, from Eq.~10.2! for
g̃ (3)

m1m2m3

T T L (k1 ,k2 ,k3), and by evaluation of

S̃(3)
m1m2m
T L T (k1 ,k2 ,2k), one obtains

G̃~3!
m1m2m
T L T~k1 ,k2 ,2k!50. ~10.11!

~iii ! Finally consider Eq.~9.7! for I T,LL. It has coefficient
a2. To get a net contribution of ordera0, we make the sub-
stitutions of the relevant projected vertices

K̃ ~2!
ll1l2

TL L ~k;2k1 ,2k2!→a21K̃GT
~2!

ll1l2

TL L ~k;2k1 ,2k2!,

~10.12!

G̃~3!
m1m2m
L L T ~k1 ,k2 ,2k!→a21g̃~3!

m1m2m
L L T ~k1 ,k2 ,2k!,

by Eqs. ~8.6!, ~9.13!, and ~10.1!. Again the conclusion is
consistent with our ansatz.

We have now found all the terms on the right hand side
Eq. ~9.4! that contribute toT(k2) in the Landau gauge limit,
namely,
I T,TT~k1 ,k!5
2S̃YMll1l2

~3!TT T ~k,2k1 ,2k2!S̃YMl1l2l
~3!T T T~k1 ,k2 ,2k!

T~k1
2!T~k2

2!
, ~10.13!

I T,TL~k1 ,k!50, ~10.14!

I T,LL~k1 ,k!5
K̃GTll1l2

~2!TL L ~k;2k1 ,2k2!g̃~3!
l1l2l
L L T~k1 ,k2 ,2k!

L~k1
2!L~k2

2!
, ~10.15!

andk25k2k1 . The last term is given explicitly by

I T,LL~k1 ,k!52g2
~k1

21k2
2!k1•PT~k!•k22k2

2k1•PT~k!•k12k1
2k2•PT~k!•k2

~k1
21k2

2!L~k1
2!L~k2

2!
, ~10.16!

I T,LL~k1 ,k!52g2
k1

2k22~k1•k!2

k2L~k1
2!L~k2

2!
, ~10.17!
t
l

where we have usedk1•PT(k)•k15k2•PT(k)•k252k1

•PT(k)•k2 . The nonlocal denominator (k1
21k2

2)21 has can-
celed out of this expression.

We have obtained a consistent Landau gauge limit of
truncated DS equations for the invariant propagator functi
T(k2) and L(k2). As asserted, the invariant longitudin
propagator functionL(k2) does not decouple in this limit
The reader will have noticed a striking similarity to the co
responding equations in Faddeev-Popov theory, with the
gitudinal propagator replacing the ghost propagator.
e
s

n-

XI. INFRARED CRITICAL EXPONENTS

We shall solve the DS equations~9.4! and ~10.7! for the
asymptotic forms ofT(k2) and L(k2) in Landau gauge a
low momentum. We suppose that at asymptotically smalk,
they obey simple power laws

T~k2!;CT~k2!11aT,
~11.1!

L~k2!;CL~k2!11aL,
1-16
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whereaT andaL are infrared critical exponents whose val
we wish to determine. Canonical dimension correspond
aT5aL50. As explained in Sec. III, we know that in th
Landau gauge limita→0, the gauge fieldA is constrained to
be transverse]•A50, and to lie inside the Gribov horizon
that is to say, where the Faddeev-Popov operator is posi
2]•D(A).0. The transversality condition is satisfied b
our ansatz. As has been shown many times@22,26#, the posi-
tivity condition strongly suppresses the low-momentu
components ofÃ(k). Recalling that the transverse part of th
gluon propagator is given byDT(k2)5^uÃ(k)u2&, we look
for a solution for whichDT(k2)51/T(k2) is suppressed a
low k, so T(k2) is enhanced at smallk compared to the
canonical powerT(k2)5k2. This meansaT,0.

We now estimate the power ofk of the various terms in
the DS equation~9.4! for T(k2). The analysis is similar to
the Faddeev-Popov case@2–6#. The left hand side has th
power (k2)11aT. The tree-level term isk2, so with aT,0,
the tree level term is subdominant in the infrared and may
neglected. To evaluate the loop integral*d4k1 , asymptoti-
cally at low external momentumk we takek to be small
compared to a QCD mass scale,uku!LQCD, and we rescale
the variable of integration according tok1

m5ukuxm. We now
have a dimensionless integral in which the QCD mass s
appears only in the very small ratiouku/LQCD. In the
asymptotic infrared limit, this ratio goes to 0, and eve
where in the integrand we use the asymptotic forms~11.1!.
This is equivalent to using the asymptotic forms~11.1! ev-
erywhere in the original integral. We shall see that the res
ing integral is convergent, which means that the integra
effectively cut off at momentumk1;k.

We now estimate the contributions of the termsI T,TT and
I T,LL, Eqs.~10.13! and~10.15!, to the right hand side of the
DS equation~9.4!, by simply counting powers ofk andk1 .
One finds that, after integration*d4k1 , these terms are o
order (k2)122aT and (k2)122aL, respectively, while the left-
hand side is of order (k2)11aT, with aT,0. The powers
match on both sides only ifaL.0. In this case,I T,LL is the
dominant term on the right, and by equating powers ofk, one
obtains

aT522aL , ~11.2!

and aL.0. We retain only the dominant termI T,LL on the
right in Eq. ~9.4!, which simplifies, for arbitrary space-tim
dimensiond, to

CT~k2!11aT5
\g2N

~d21!CL
2~2p!dk2 E ddk1

k1
2k22~k1•k!2

~k1
2!11aL~k2

2!11aL
,

~11.3!

wherek25k2k1 , and we have used Eq.~10.17!. This agrees
with Eq. ~6.14! of Ref. @6# in Faddeev-Popov theory. W
write it as

CTCL
2

\g2N
5I T , ~11.4!
10500
to

e,

e

le

-

t-
is

whereI T is evaluated in Appendix F. We have generalized
arbitrary space-time dimeniond, and we taked in the range
2,d<4. By equating powers ofk for arbitrary d, we find
that the critical exponents are related by

aT12aL52~42d!/2. ~11.5!

The last integral is ultraviolet convergent provided thataL
.(d22)/4, which corresponds toaT,21. For d54, we
obtainaL.1/2 as the condition for convergence of the int
gral.

Now consider the DS equation~10.7! for L(k2) in the
infrared asymptotic limit

CL~k2!11aL5k22
2\g2N

CTCL~2p!4 E d4k1

3
k2k1

22~k•k1!2

~k1
2!21aT~k2

2!aL~k2
21k2!

, ~11.6!

for d54. By power counting, the integral on the right has t
power (k2)12aT2aL. This agrees with the power on the lef
providedaT52aL , which is identical the previous equation
However we have also previously foundaL.0. In this case,
the tree level termk2 is dominant in the infrared, and th
equation appears inconsistent. However the degree of d
gence of the integral is 2aL , so the integral diverges fo
aL.0, and a subtraction is required. The integral contains
explicit factor ofk2, and the divergence is of the formBk2,
whereB is an infinite constant. We subtract the integrand
k50, which makes the integral vanish more rapidly thank2,
and addbk2 on the right, whereb is an arbitrary finite con-
stant. The dominant terms are now the tree level termk2 and
bk2. For the equation to be consistent, the subtraction te
must precisely cancel the tree-level term, sob521. This
gives

CL~k2!11aL5
2\g2N

CTCL~2p!4 E d4k1

k2k1
22~k•k1!2

~k1
2!21aT

3S 1

~k1
2!aLk1

22
1

~k2
2!aL~k2

21k2! D . ~11.7!

This integral is also convergent in the infrared foraT5
22aL,0. The right hand side now vanishes more rapid
than k2. This conclusion, agrees with the ‘‘horizon cond
tion’’ @25#, and with the confinement criterion of Kugo an
Ojima in the BRST framework@27,28#. Conversely we could
have imposed the horizon condition on the DS equation
L(k2), and derived the suppression of the transverse pro
gator 1/T(k2) at low momentum.

The subtracted expression on the right is most sim
evaluated by continuing in space-time dimensiond. In this
case one can ignore the subtraction term, and evaluate
unsubtracted integral with dimensional regularization ford
,4, and continue the resulting expression tod54,
1-17
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CL~k2!11aL52
2\g2N

CTCL~2p!d E ddk1

3
k2k1

22~k•k1!2

~k1
2!21aT~k2

2!aL~k2
21k2!

. ~11.8!

The denominatork2
21k2 results from the nonlocal expres

sion for the vertex. One obtains the corresponding equa
for the ghost propagator in Faddeev-Popov theory, Eq.~6.15!
of Ref. @6#, from this equation by the substitution 2/(k2

2

1k2)→1/k2
2.

By equating powers ofk for general space-time dimensio
d, one again gets Eqs.~11.5!, and we see that the DS equ
tions for the transverse and longitudinal parts are consist
The degree of divergence of this integral is 2aL , and after
one subtraction its degree of divergence is 2aL22, so the
subtracted integral is convergent provided thataL,1, or
equivalently thataT.222(42d)/2. From this and our pre
vious bound, we conclude that ford54, this subtracted in-
tegral and Eq.~11.3! are both finite provided thataL is in the
range 1/2,aL,1, or equivalently thataT is in the range
22,aT,21. We write the preceding equation as

CTCL
2

\g2N
5I L , ~11.9!

whereI L is evaluated in Appendix F.
Upon comparison with Eq.~11.4!, we obtain

I T~aL!5I L~aL! ~11.10!

which determines the critical exponentaL . From Appendix
F, this gives, ford54,

G2~22aL!G~2aL21!

G2~11aL!G~422aL!

5
3~2aL

212aL12!G2~12aL!G~2aL11!

aLG~aL12!G~aL13!G~222aL!
. ~11.11!

Both expressions are finite and positive, as they should
for aL in the interval 1/2,aL,1. Moreover ataL51/2, the
left-hand side diverges whereas the right is finite. On
other hand ataL51, the left-hand side is finite whereas th
right diverges. Consequently there is at least one root in
interval 1/2,aL,1. After cancellingG functions, the last
two equations give the quartic equation

49aL
42189aL

31133aL
21117aL27450. ~11.12!

From a numerical investigation it appears that there is o
one root in the interval 1/2,aL,1, with the value

aL'0.5214602698,

aT522aL'21.04292054. ~11.13!
10500
n
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XII. CONCLUSION

We derived time-independent stochastic quantization fr
the principle of gauge equivalence which states that pr
ability distributions that give the same expectation values
all gauge-invariant observables are physically indistingui
able. This quantization is expressed by an equation for
Euclidean probability distributionP(A) that is of time-
independent Fokker-Planck form, with a correspond
equation for the Minkowski case. By making several chan
of variable, we transformed this equation into an equation
DS type, suitable for nonperturbative calculations. The m
novel of these changes of variable is accomplished when
equation for the quantum effective actionG is exchanged for
an equation for the quantum effective drift forceQx . We
then adopted a truncation scheme and obtained a consi
Landau gauge limit,a→0, and found, remarkably, that th
longitudinal propagator functionL(k2) that appears in the
longitudinal part of the gluon propagatorDL5a/L(k2), does
not decouple in thea→0 limit, but plays a role similar to the
ghost in Faddeev-Popov theory.

We calculated the infrared critical exponents that char
terize the asymptotic form at low momentum of the tran
verse and longitudinal components of the gluon propaga
in Landau gaugeDT;1/(k2)11aT andDL;a/(k2)11aL, and
obtained the valuesaL'0.5214602698 andaT522aL'
21.04292054. In the Landau-gauge limita→0 only the
transverse part survives. As a function ofk, it vanishes atk
50, albeit rather weakly,DT;(k2)212aT;(k2)0.043. On the
other hand, the longitudinal part of the propagator is lo
range DL;a/(k2)1.521. Qualitatively similar values have
been obtained recently for the infrared critical exponents
the gluon and ghost propagators in Landau gauge from
DS equation in Faddeev-Popov theory, using a variety
approximations for the vertex@2–6#, in particular@5,6#, aT
522aG521.1906 andaG50.595353, respectively. As we
have argued recently@6#, these calculations in Faddeev
Popov theory should be interpreted as including a cutof
the Gribov horizon. This makes them similar in spirit to th
present calculation for which, as shown in Sec. III, the pro
ability also gets concentrated inside the Gribov horizon
the Landau gauge limita→0. Reassuringly, the solutions o
the DS equation in Faddeev-Popov theory and in the pre
time-independent stochastic method are in satisfactory ag
ment.

We comment briefly on the physical significance of o
results.~i! We have avoided gauge fixing and instead deriv
the equation of time-independent stochastic quantiza
from the principle ofgauge equivalence, thereby overcoming
the Gribov critique. Since we do not gaugefix, we do not
brutally eliminate ‘‘unphysical’’ variables and keep on
‘‘physical’’ degrees of freedom, which would violate Sing
er’s theorem@29#. Instead, we gentlytamethe gauge degree
of freedom by exploiting the principle of gauge equivalenc
~ii ! We derived a set of equations of DS type that was sol
approximately but nonperturbatively in Landau gauge
ymptotically at low momentum.~iii ! The values we obtained
for the infrared critical exponents of the gluon propagator
Landau gauge are in satisfactory agreement with corresp
1-18
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ing values in Faddeev-Popov theory, and also with numer
simulations.~iv! A striking result of this investigation is tha
the invariant longitudinal propagator functionL(k2) does not
decouple in stochastic quantization, even though the long
dinal part of the gluon propagatorDL5a/L(k2) vanishes
with the gauge parametera in the Landau gauge limita
→0. Indeed, because some vertices are of ordera21, trans-
verse gluons exchange longitudinal gluons as virtual p
ticles, with an amplitude that remains finite in the limita
→0. Thus, while ghosts are absent in time-independent
chastic quantization, they are replaced dynamically by
longitudinal part of the gluon propagator in the Land
gauge limit. In fact, the DS equations~9.4! and ~10.7! for
T(k2) and L(k2) bear a remarkable similarity to the D
equations for the gluon and ghost propagatorsD and G in
Landau gauge in Faddeev-Popov theory, with the corresp
dencesD↔1/T and G↔1/L. In both cases, it is the ghos
loop or longitudinal-gluon loop that gives the dominant co
tribution to the transverse-gluon inverse propagator in
infrared region, and causes suppression of the would
physical, transverse gluon propagator atk50, a signal that
the gluon has left the physical spectrum.

To conclude, we mention some challenging open pr
lems.~i! The possibility of comparison with numerical simu
lations is an essential and promising aspect of the pre
situation. Any DS calculation involves a truncation whic
remains an uncontrolled approximation, without further
vestigation. It may be controlled by varying the vertex fun
tion @5#, or by extending the calculation to include the vert
self-consistently. Fortunately, comparison with numeri
simulation provides an independent control. In this regard
note that the stochastic quantization used here may be an
fact, has been effected on the lattice in numerical simulati
by Nakamura and collaborators@51–55#. A direct compari-
son with this data would require a solution of the DS eq
tions for finite gauge parametera, or extrapolation of lattice
data toa50. Naturally, a comparison of numerical resu
with asymptotic infrared calculations also requires contro
finite-volume lattice artifacts.~ii ! Conversely the results o
the DS calculations suggest new numerical calculations
particular our prediction that, for small values of the gau
parametera, the longitudinal part of the gluon propagator
long range, should be tested numerically.~iii ! The present
scheme is not based on a local action, but rather on the
equations of time-independent stochastic quantizat
Renormalizability follows from the indirect argument th
correlators of the four-dimensional time-independent form
lation used here coincide with the equal-time correlators o
local, five-dimensional theory whose renormalizability h
been established@49#. The renormalization constants of th
five-dimensional theory were calculated some time ago at
one-loop level, and were found to yield the usualb function
@57,58,46#. However, a direct proof of renormalizability i
the present time-independent formulation remains a c
lenge. The Ward identity, derived in Appendix C, is a fir
step.~iv! One should extend the solution obtained here
the asymptotic infrared region to finite momentumk. ~v! The
Landau gauge is a singular limita→0 of the DS equations
for finite gauge parametera. It would be valuable to also
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solve the DS equations for arbitrary, finitea. ~vi! One should
extend the solution of the DS equations to include quar
~vii ! As we have explained, our results are intuitively tran
parent and lend themselves to a simple confinement scen
in which the would-be-physical transverse gluon leaves
physical spectrum. However, it is clear that our discussion
confinement remains at the level of a scenario because
have dealt here only with the gluon propagator which is
gauge-dependent quantity. This is only a first step in a p
gram, some of whose elements have just been indica
Clearly the goal is to calculate gauge-invariant quantiti
Gauge-invariant states, the hadrons, appear as interme
states in gluon-gluon and quark-anti-quark scattering am
tudes. One must extend to this sector the solution of the
equations obtained here, and of the Bethe-Salpeter equa
that follow from them.
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APPENDIX A: TIME-INDEPENDENT FOKKER-PLANCK
EQUATION FOR QUARKS

We extend to quarks the derivation of time-independ
stochastic quantization from the principle of gauge equi
lence. Following the method of Sec. III, we seek a weig
function P5P(A,c,c̄) that depends on the gluon and qua
and antiquark fields. We wish to establish a class of gau
equivalent normalized distributions that includes the form
gauge-invariant weightP5N exp(2S) as a limiting case.
Here

S[SYM1E d4xc̄~m1D” !c ~A1!

is the Euclidean action of gluons and quarks,D” [gmDm

5gm(]m1gAm
a ta), where $gm ,gn%52dmn , and theta are

the quark representation of the Lie algebra of the struct
group @ ta,tb#5 f abctc. We take P to be the solution of
HFPP50, where we now specify the extended Fokke
Planck Hamiltonian.

As in Sec. III, we takeHFP to be of the form

HFP5H inv2~v,G!†

5H inv1E d4xS d

dAm
a

Dm
ac2g

d

dc
tcc1g

d

dc̄
~c̄tc!D vc,

~A2!

where H inv is a gauge-invariant operator, specified belo
that has exp(2S) as null vector,H inv exp(2S)50, and the
Grassmannian deriveratives are left derivatives. Here
1-19
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Ga~x!52Dm
ac d

dAm
c ~x!

2g~ tac!
d

dc~x!
1g~ c̄ta!

d

dc̄~x!

~A3!

is the generator of local gauge transformations that satis

@Ga~x!,Am
b ~y!#52Dm

abd~x2y!,

@Ga~x!,c~y!#52gtac~x!d~x2y!,

@Ga~x!,c̄~y!#5gc̄~x!tad~x2y!,
~A4!

@Ga~x!,Gb~y!#5d~x2y!g fabcGc~x!,

@Ga~x!,H inv#50.

With gauge-invariant observables defined by the condit
Ga(x)W50, the proof of Sec. III, that the expectation-valu
of gauge invariant observables^W&5*dAdcdc̄WP is inde-
pendent ofv, applies here as well. As explained in Sec. I
we takeva(x)5a21]lAl(x), wherea is a gauge paramete

There remains to specifyH inv . We suppose that it is a
sum of gluon and quark and antiquark Hamiltonians

H inv5H11H21H3 , ~A5!

where H1 is the gauge-invariant gluon Hamiltonian as
Sec. III,

H15E d4x
d

dA S 2
d

dA
2

dS

dAD . ~A6!

For the quark and antiquark Hamiltonians we take

H25E d4x
d

dc
N2S d

dc̄
1

dS

dc̄
D ,

~A7!

H35E d4x
d

dc̄
N3S d

dc
1

dS

dc
D ,

whereN2 andN3 are gauge-covariant kernels with engine
ing dimensions of mass. All terms inHFP contain a derivative
on the left, which assures thatHFP has a null eigenvalue, fo
we have*dAdcdc̄HFPF50 for any F. The corresponding
right eigenvectorP that satisfiesHFPP50, is the physical
distribution that we seek, that depends on the gauge pa
eters. Each of the operatorsHi satisfiesHi exp(2S)50, so
also H inv exp(2S)50. This assures the applicability of th
proof of Sec. III, namely, thatthe normalized solutions fo
differentv are gauge equivalent Pv(A);Pv8(A) and include
N exp(2S) as a limiting distribution.

We have obtained this result without any assumptio
about the kernelsN2 and N3 , apart from gauge covarianc
~and regularity!. This would not be consistent unlessthe nor-
malized solutions for different choices of the kernels g
gauge-equivalent distributions PN(A);PN8(A) or, in other
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words, the parameters that specify N2 are and N3 are gauge
parameters. We prove this directly.

Let dN2 be an infinitesimal variation ofN2 . It induces a
corresponding change inH2

dH25E d4x
d

dc
dN2S d

dc̄
1

dS

dc̄
D . ~A8!

The corresponding change inP satisfies dH2P1HFPdP
50, sodP52HFP

21dH2P. Let W be a gauge-invariant ob
servable. We have

d^W&5E dAdcdc̄dPW

52E dAdcdc̄HFP
21dH2PW

52E dAdcdc̄PdH2
†~HFP

† !21W

52E dAdcdc̄PdH2
†~H inv

† !21W

52E dAdcdc̄dH2P~H inv
† !21W, ~A9!

where we have used (HFP
† )21W5(H inv

† )21W which holds
for a gauge-invariant observable, as was shown in Sec.
MoreoverdH2

† (H inv
† )21W is gauge invariant, so the last ex

pression is independent of the gauge parametera, as was also
shown in Sec. III, and we may evaluate it fora→`. We
have

lim
a→`

dH2P5E d4x
d

dc
dN2S d

dc̄
1

dS

dc̄
D lim

a→`

P50,

~A10!

because lima→` P;N exp(2S). Thusd^W& vanishes, as as
serted.

The quark action satisfies

Squ5E d4xc̄~m1D” !c52E d4xcC21~m1D” !Cc̄,

~A11!

whereC is a numerical matrix that acts on spinor and gro
indices and satisfiesC21gmC52gm

tr and C21taC5
2(ta) tr, so we have

dS

dc̄~x!
5~m1D” !c~x!,

~A12!
dS

dc~x!
52C21~m1D” !Cc̄~x!,

where the Grassmannian derivatives are left derivatives.
most general expressions forN2 andN3 that are local, gauge
covariant, and have dimension of mass are
1-20
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N25m22b2D” ,
~A13!

N352C21~m32b3D” !C,

where themi and bi are gauge parameters. We expect t
the kernel ultimately appears in the denominator in loop
tegrals so, to improve convergence, we should takeb2Þ0
and b3Þ0. For the gauge choice to respect charg
conjugation invariance, we takeb25b3 and m15m25cm,
which gives

H25E d4x
d

dc
~cm2bD” !S d

dc̄
1~m1D” !c D ,

~A14!

H35E d4x
d

dc̄
~21!C21~cm2bD” !C

3S d

dc
1~21!C21~m1D” !Cc̄ D ,

whereb andc are gauge parameters. This gauge choice a
respects chiral symmetry in the limitm→0. One may show
that the eigenvalues ofH2 and H3 are the eigenvalues o
Fermi oscillators, with frequenciesln that are the eigenval
ues of the operator (cm2bD” )(m1D” ), which for b5c.0,
simplifies tob(m22D” 2). In this caseH2 and H3 have the
unique null eigenvector exp(2S), and all other their eigen
values are strictly positive, as occurs forH1 . IndeedH1
satisfies

exp~1S/2!H1 exp~2S/2!5E d4xS d

dAx
2~1/2!

dS

dAx
D

3S 2
d

dAx
2~1/2!

dS

dAx
D ,

~A15!

where the operator on the right is manifestly positive, w
the unique null vector exp(2S/2). ThusH1 has the unique
null vector exp(2S), and all its other eigenvalues are strict
positive. However, we expect thatb and c must be kept as
independent constants when needed as renormalization c
terterms.

Altogether, the total Fokker-Planck Hamiltonian, inclu
ing quarks, is given by

HFP5E d4xF d

dAm
S 2

d

dAm

2
dS

dAm
D 1

d

dc
~cm2bD” !

3S d

dc̄
c1

dS

dc̄
D 1

d

dc̄
~21!C21~cm2bD” !C

3S d

dc
1

dS

dc
D 1a21S d

dAm
a

Dm
ac2g

d

dc
~ tcc!

1g
d

dc̄
~c̄tc!D ]•AcG , ~A16!

wherea.0, b.0 andc.0 are gauge parameters.
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APPENDIX B: TIME-INDEPENDENT STOCHASTIC
QUANTIZATION ON THE LATTICE

We briefly outline how to extend time-independent s
chastic quantization to lattice gauge theory. To each l
(x,m) of the lattice is associated a variableUx,mPSU(N).
These variables are subject to the local gauge transforma
Ux,m→gUx,m5gx

21Ux,mgx1m̂ , wheregxPSU(N) is associ-
ated to the sitex of the lattice. ObservablesW(U) are invari-
ant under this transformation,W(gUx,m)5W(Ux,m). Expec-
tation values are calculated bŷW&5*dUW(U)PW(U),
wheredU is the product of Haar measure over all link va
ables of the lattice, andPW5N exp(2SW) is the normalized
probability distribution associated to the gauge-invaria
Wilson actionSW .

We shall exhibit a Fokker-Planck HamiltonianHFP for the
lattice, such that the positive normalized solutionsP to
HFPP50 are gauge equivalent toPW , P;PW . Let Jx,m

a be
the Lie differential operator associated to the group varia
on the link (x,m), that satisfies the Lie algebra commutatio
relations @Jx,m

a ,Jy,n
b #5dxydmn f abcJx,m

c . And let Gx be the
generator of local gauge transformations that is defined
(11(xexGx)F(U)5F(gU), wheregx511ex is an infini-
tesimal local gauge transformation. These generators s
fied the Lie algebra commutation relations of the local gau
group of the lattice@Gx

a ,Gy
b#5dxyf abcGx

c , and may be ex-
pressed as a linear combination of theJ’s. A Hamiltonian
with the desired properties is given by

HFP5H inv2~v,G!†,

H inv5(
x

Jx,m~2Jx,m2@Jx,m ,SW# !, ~B1!

~v,G!5(
x

vxGx ,

where † is the adjoint with respect to the inner productdU,
and vx

a is a site variable with values in the Lie algebra. I
deed, the argument of Sec. III holds here, with the subst
tion SYM(A)→SW(U), and shows that the probability distr
butionsPv for different v, defined byHFPP50, are gauge
equivalent to each otherPv;Pv8 and toPW . As in Sec. III,
we choosevx

a(U) so the infinitesimal gauge transformatio
gx511etavx

a is the direction of steepest descent in gau
orbit directions of a minimizing functionalF(U). A conve-
nient choice isF(U)5(^xy&tr(I 2U ^xy&), where the sum ex-
tends over all linkŝxy& of the lattice.

APPENDIX C: WARD IDENTITY

In Sec. III we showed that probability distributionsPv(A)
for different v are gauge equivalent,Pv(A);Pv8(A). An-
other way to make gauge equivalent distributions is by m
ing a local gauge transformation, because, for all gau
invariant observablesW(A), this cannot change the
1-21
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expectation value*dAW(A)Pv(A)5*dAW(A)Pv(gA), and
we havePv(A);Pv(gA). If the class of gauge-equivalen
distributionsPv(A) that was introduced in Sec. III is larg
enough, then the gauge transformation corresponds
change ofv,

Pv~gA!5Pv8~A! ~C1!

for somev8. This is in fact the case, and provides a Wa
identity.

To prove this, we apply the infinitesimal local gaug
transformation 11(e,G), where (e,G)[*d4xea(x)Ga(x),
to the time-independent Fokker-Planck equations~3.5! and
~3.6!,

@11~e,G!#@H inv1~G,v !#Pv50. ~C2!

From the commutation relations

@~e,G!,H inv#50,
~C3!

@~e,G!,Ga~x!#52 f abceb~x!Gc~x!,

we obtain

@~e,G!,~G,v !#5~G,dv !, ~C4!

where

dva[@~e,G!,va#1 f abcebvc, ~C5!

and, to first order ine,

@H inv1~G,v1dv !#@11~e,G!#Pv50. ~C6!

Note that whileva(x) andea(x) are both local gauge trans
formations,va(x)5va(x,A) depends onA, but ea(x), by
assumption, does not. By comparison with the defining eq
tion for the probability distributionPv1dv ,

@H inv1~G,v1dv !#Pv1dv50, ~C7!

we conclude that the gauge-transformed probability distri
tion @11(e,G)#Pv(A)5Pv(A1De) coincides withPv1dv ,

Pv~A1De!5Pv1dv~A!, ~C8!

wheredv is given above. This states how a gauge trans
mation is absorbed by a change inv, and provides the Ward
identity.

This identity is inherited by the functionals we intro
duced, the quantum effective actionGv and the quantum ef
fective drift forceQv , and we have

Gv~A1De!5Gv1dv~A!,
~C9!

Qv
a~x,A1De!5Qv1dv

a ~x,A!

2 f abceb~x!Qv1dv
c ~x,A!.

We now specialize tov5a21]•A, and obtain
10500
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dva5a21]•Dac~A!ec1a21f abceb]•Ac

5a21Dac~A!•]ec

5a21@]2ea1 f abcAm
b ]mec#. ~C10!

Only the derivative of e appears here because, forv
5a21]•A, the probability distributionPv(A) is invariant
under global~x independent! gauge transformations. We fur
ther specialize to a linear dependence ofe on x, ea(x)
5hm

a xm , where thehm
a are infinitesimal constants. In thi

case we have

dva5a21f abcAm
b hm

c . ~C11!

Although this breaks Lorentz invariance, it does not bre
translational invariance, so the perturbed Hamiltonian
fined by

HFP1dHFP5H inv1~G,v !1~G,dv !

5H inv1a21~G,]•A!1a21~G,Am3hm!,

~C12!

where (Am3hm)a[ f abcAm
b hm

c , is translationally invariant,
even thoughAm

a 1Dm
acec5Am

a 1hm
a 1 f abcAm

b hn
cxn , has an

explicit x dependence. Moreover the inhomogeneous te
a21]2e in dv vanishes with this choice ofe, so A50 re-
mains the classical vacuum. Without further calculation
conclude that the transformed quantum effective act
Gv(A1De)5Gv1dv(A) is a translationally invariant func
tional of A for v5a21]•A andea(x)5hm

a xm , with A50 as
classical vacuum.

More generally, we note that the gauge fieldAm
a appears

undifferentiated indva5a21f abcAm
b 3hm

c , whereas it is dif-
ferentiated inva5a21]•Aa. This means that the perturba
tion dHFP is softer than the unperturbed HamiltonianHFP or,
in other words, less divergent in the ultraviolet. If we calc
late with the original Hamiltonian, we get a certain numb
of divergent constants in the correlators. The result o
gauge transformationea5hm

a xm on these correlators mus
agree with a calculation using the soft perturbation. This c
strains the divergent constants.

APPENDIX D: SOLUTION FOR G „4… AND G „n…

The solution forG (4) and higher coefficient functions i
similar to the solution forG (3) found in Sec. VII. We differ-
entiate Eq.~6.3! with respect toAxi

four times and obtain,

after settingA50,

Gx1 ,x
~2! ~Gx,x2 ,x3 ,x4

~4! 1Qx;x2 ,x3 ,x4

~3! !1( part~4,1!1Gx1 ,x2 ,x
~3!

3~Gx,x3 ,x4

~3! 1Qx;x3 ,x4

~2! !1( part~4,2!50, ~D1!

whereG (2) andG (3) are already known, and we have aga
used G (2)52Q(1). Here (part(n,n1) is the sum over all
1-22
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partitions of the set ofn objects,x1 ,x2 ,...,xn , into subsets of
n1 andn25n2n1 objects. In terms of the Fourier transform

Q~3!
m1m2m3m4

a1a2a3a4 ~x1 ;x2 ,x3 ,x4!5~2p!212E d4k1d4k3d4k3d4k4

3expS i(
i 51

4

ki•xi D
3d~k11k21k31k4!

3Q̃~3!
m1m2m3m4

a1a2a3a4 ~k1 ;k2 ,k3 ,k4!,

~D2!

G~4!
m1m2m3m4

a1a2a3a4 ~x1 ,x2 ,x3 ,x4!5~2p!212E d4k1d4k3d4k3d4k4

3expS i(
i 51

4

ki•xi D
3d~k11k21k31k4!

3G̃~4!
m1m2m3m4

a1a2a3a4 ~k1 ,k2 ,k3 ,k4!,

~D3!

where Q̃(3)
m1m2m3m4

a1a2a3a4 (k1 ;k2 ,k3 ,k4) and

G̃ (4)
m1m2m3m4

a1a2a3a4 (k1 ,k2 ,k3 ,k4) are defined only fork11k21k3

1k450, the equation forG̃ (4) reads

G̃m1n1

~2! ~k1!G̃~4!
n1m2m3m4

a1a2a3a4 ~k1 ,k2 ,k3 ,k4!1( part~4,1!

52H ~4!
m1m2m3m3

a1a2a3a4 ~k1 ,k2 ,k3 ,k4!, ~D4!

where

H ~4!
m1m2m3m4

a1a2a3a4 ~k1 ,k2 ,k3 ,k4![G̃m1m
~2! ~k1!Q̃~3!

mm2m3m4

a1a2a3a4

3~k1 ;k2 ,k3 ,k4!

1( part~4,1!

1R~4!
m1m2m3m4

a1a2a3a4 ~k1 ,k2 ,k3 ,k4!,

~D5!

R~4!
m1m2m3m4

a1a2a3a4 ~k1 ,k2 ,k3 ,k4![G̃~3!
m1m2m
a1a2a

~k1 ,k2 ,2k32k4!

3@G̃~3!
mm3m4

aa3a4 ~2k12k2 ,k3 ,k4!

1Q̃~2!
mm3m4

aa3a4 ~2k12k2 ;k3 ,k4!#

1( part~4,2!. ~D6!
10500
To solve Eq.~D4!, we project on each argument with
transverse transverse or longitudinal projector to obtain

G̃~4!TTTT
m1m2m3m4

a1a2a3a4 ~k1 ,k2 ,k3 ,k4!

52@T~k1
2!1T~k2

2!1T~k3
2!1T~k4

2!#21

3H ~4!TTTT
m1m2m3m4

a1a2a3a4 ~k1 ,k2 ,k3 ,k4!, ~D7!

G̃~4!LTTT
m1m2m3m4

a1a2a3a4 ~k1 ,k2 ,k3 ,k4!

5@a21L~k1
2!1T~k2

2!1T~k3
2!1T~k4

2!#21

3H ~4!LTTT
m1m2m3m4

a1a2a3a4 ~k1 ,k2 ,k3 ,k4!, ~D8!

etc.
The formula forG (n) for arbitraryn is similar. EachG (n) is

expressed explicitly and uniquely in terms ofQ(n21) and of
G (2) to G (n21) which are already known. It is given by
symmetrized sum of products of two factors, as in Eqs.~D5!
and ~D6!, to which is applied a transverse or longitu
dinal projector onto each argument, and a division
( i 51

n G i
(2)(ki

2), where G i
(2)(k2)5T(k2) or G (2)(k2)

5a21L(k2). This gives all theG (n) uniquely in terms of
Q(1) to Q(n21).

APPENDIX E: EVALUATION OF GGT
„3…

We evaluateGGT
(3) , using the formulas of Sec. VII, with the

substitutions~9.14!. From Eqs.~7.15! and ~8.6!, we obtain

Hm1m2m3

~3! ~k1 ,k2 ,k3!5a21G̃m1m
~2! ~k1!K̃GTmm2m3

~2! ~k1 ;k2 ,k3!

1~cyclic!

5 ia21g„~k3!m3
@G̃m1m2

~2! ~k1!2~1↔2!#

1~cyclic!…. ~E1!

We apply transverse or longitudinal projectors to ea

Lorentz index, and use G̃lm
(2)(k)5T(k2)Plm

T (k)
1a21L(k2)Plm

L (k) to obtain

H ~3!
m1m2m3

T T T ~k1 ,k2 ,k3!50,

H ~3!
m1m2m3

T T L ~k1 ,k2 ,k3!5 ia21g~T12T2!~k3!m3

3@PT~k1!PT~k2!#m1m2
,

~E2!
H ~3!

m1m2m3

T L L ~k1 ,k2 ,k3!5 ia21g~a21L32T1!~k2!m2

3@PT~k1!PL~k3!#m1m3
2~2↔3!,

H ~3!
m1m2m3

L L L ~k1 ,k2 ,k3!5 ia22g~L22L3!~k1!m1

3@PL~k2!PL~k3!#m2m3
1cyclic,
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where we have used the notationTi[T(ki
2) and Li

[L(ki
2). From Eqs.~7.16! and ~7.17!, we obtain finally

G̃GT m1m2m3

~3! T T T ~k1 ,k2 ,k3!50,

G̃GT m1m2m3

~3! T T L ~k1 ,k2 ,k3!52 ig
T12T2

aT11aT21L3
~k3!m3

3@PT~k1!PT~k2!#m1m2
,

~E3!

G̃GT m1m2m3

~3! T L L ~k1 ,k2 ,k3!52 ia21gS L32aT1

aT11L21L3
~k2!m2

3@PT~k1!PL~k3!#m1m3

2
L22aT1

aT11L21L3
~k3!m3

3@PT~k1!PL~k2!#m1m2D ,

G̃GT m1m2m3

~3! L L L ~k1 ,k2 ,k3!52 ia21gS L22L3

L11L21L3
~k1!m1

3@PL~k2!PL~k3!#m2m3

1~cyclic! D .

APPENDIX F: EVALUATION OF LOOP-INTEGRALS

We evaluate the integral that appears in Eq.~11.4!:
namely,

I T[
1

~k2!aT12~d21!~2p!d

3E ddk1

k1
2k22~k1•k!2

~k1
2!11aL@~k2k1!2#11aL

. ~F1!

We write this as

I T5
1

~k2!aT12~d21!G2~11aL!
E

0

`

dadb aaLbaLRT ,

~F2!

where

RT[~2p!2dE ddk1@k1
2k22~k1•k!2#

3exp@2ak1
22b~k12k!2#. ~F3!

We complete the square in the exponent

ak1
21b~k12k!25~a1b!p21~a1b!21abk2,

wherep5k12(a1b)21bk, and obtain
10500
RT5exp@2~a1b!21abk2#~2p!2dE ddp

3@p2k22~p•k!2#exp@2~a1b!p2#

5
~d21!k2

2~4p!d/2~a1b!11d/2 exp@2~a1b!21abk2#.

~F4!

This gives

I T5
1

2~4p!d/2~k2!aT11G2~11aL!
ST , ~F5!

where

ST5E
0

`

dadb
aaLbaL

~a1b!11d/2 exp@2~a1b!21abk2#.

~F6!

We insert the identity 15*0
`dsd(a1b2s), and change

variables according toa5sa8 andb5sb8. This gives, af-
ter dropping primes,

ST5E
0

`

dadbdsd~a1b21!aaL

3baLs2aL2d/2 exp@2absk2#

5~k2!d/222aL21G~2aL112d/2!

3E
0

`

dadbd~a1b21!ad/22aL21bd/22aL21

5~k2!d/222aL21
G~2aL112d/2!G2~d/22aL!

G~d22aL!
. ~F7!

We obtain, finally,

I T5
G~2aL112d/2!G2~d/22aL!

2~4p!d/2G2~11aL!G~d22aL!

5
G~2aL21!G2~22aL!

2~4p!2G2~11aL!G~422aL!
, ~F8!

for d54.
We also evaluate the integral that appears in Eq.~11.9!,

I L[
22

~k2!11aL~2p!d E ddk1

3
k2k1

22~k•k1!2

~k1
2!21aT@~k12k!2#aL@~k12k!21k2#

. ~F9!

It contains the denominator@(k12k)21k2# that comes from
the nonlocal vertex. This integral is convergent in the ult
violet for d,412aT12aL . We shall evaluate it ford sat-
isfying this condition, and then continue ind. We write it as
1-24
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I L5
22

~k2!11aLG~21aT!G~aL!

3E
0

`

dadbdg a11aT baL21 exp~2gk2!RL ,

~F10!

where

RL[~2p!2dE ddk1@k1
2k22~k1•k!2#

3exp@2ak1
22~b1g!~k12k!2#. ~F11!

We complete the square in the exponent

ak1
21~b1g!~k12k!25~a1b1g!p21~a1b1g!21

3a~b1g!k2,

wherep5k12(a1b1g)21(b1g)k, and obtain

RL5exp@2~a1b1g!21a~b1g!k2#

3~2p!2dE ddp@p2k22~p•k!2#exp@2~a1b1g!p2#

5
~d21!k2

2~4p!d/2~a1b1g!11d/2

3exp@2~a1b1g!21a~b1g!k2#. ~F12!

This gives

I L52
~d21!

~k2!aL~4p!d/2G~21aT!G~aL!
SL , ~F13!

where

SL5E
0

`

dadbdg
a11aTbaL21

~a1b1g!11d/2 exp@2gk22~a1b

1g!21a~b1g!k2#. ~F14!

We insert the identity 15*0
`dsd(a1b1g2s), and

change variables according toa5sa8, b5sb8 and g
5sg8. This gives, after dropping primes,

SL5E
0

`

dadbdgdsd~a1b1g21!a11aT

3baL21s11aT1aL2d/2exp$2s@g1a~b1g!#k2%

5~k2!2aT2aL221d/2G~21aT1aL2d/2!ML . ~F15!

The argument of theG function is positive in the region o
convergence of the integrald,412aT12aL . HereML is
the finite integral
10500
ML[E
0

`

dadbdgd~a1b1g21!a11aT

3baL21@a~b1g!1g#aL

5E
0

1

dbE
0

12b

daa11aTbaL21~12a22b!aL,

~F16!

where we have usedaT12aL52(42d)/2. This gives

I L52
~d21!G~2aL!

~4p!d/2G~21aT!G~aL!
ML

5
~d21!G~12aL!

~4p!d/2G~21aT!G~11aL!
ML . ~F17!

Note thatI L is negative in the region of convergence of t
integral, but after the continuation ind, it is positive.

To evaluateML we change variable tox5a2, and obtain

ML5~1/2!E
0

1

dbE
0

~12b!2

dxxaT/2baL21~12b2x!aL,

~F18!

and upon changing variables tox5(12b)y, we get

ML5~1/2!E
0

1

dbE
0

12b

dyyaT/2

3baL21~12b!11aL1aT/2~12y!aL. ~F19!

We again useaT12aL52(42d)/2 to write this as

ML5~1/2!E
0

1

dyyaT/2~12y!aLE
0

12y

dbbaL21~12b!d/4.

~F20!

This is integrable by quadrature ford54, and in this case it
gives

ML5~1/2!E
0

1

dyy2aLS ~12y!2aL

aL
2

~12y!2aL11

aL11 D
5~1/2!S G~12aL!G~112aL!

aL G~21aL!
2

G~12aL!G~212aL!

~aL11!G~31aL! D
5

~2aL
212aL12!G~12aL!G~2aL11!

2aL~aL11!G~aL13!
, ~F21!

where we usedaT522aL . This gives finally

I L5
3~2aL

212aL12!G2~12aL!G~2aL11!

2~4p!2aL G~222aL!G~aL12!G~aL13!
.

~F22!
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