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We study the process of relaxation back to thermal equilibrium i 1)-dimensional conformal field
theory at finite temperature. When the size of the system is much larger than the inverse temperature, pertur-
bations decay exponentially with time. On the other hand, when the inverse temperature is large, the relaxation
is oscillatory with the characteristic period set by the size of the system. We then analyze the intermediate
regime in two specific models: namely, free fermions, and a strongly coupledKargeformal field theory
which is dual to string theory on (21)-dimensional anti—de Sitter spacetime. In the latter case, there is a
sharp transition between the two regimes in ke limit, which is a manifestation of the gravitational
Hawking-Page phase transition. In particular, we establish a direct connection between quasinormal and nor-
mal modes of the gravity system, and the decaying and oscillating behavior of the conformal field theory.
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[. INTRODUCTION calculations of quasinormal modes in anti—de Sitter back-
grounds have appeared [ib3].

An important problem in finite temperature field theory = The purpose of the present paper is to analyze finite vol-
and statistical mechanics is to study the response of a systeume effects for a quantum conformal field theory living in
in thermal equilibrium to a generic perturbation. In particu-one space-like dimensioflosed to form a circle of length
lar, one is typically interested in understanding the process df). In two limiting cases, when the dimensionless parameter
relaxation back to thermal equilibrium. For small perturba-LT is infinite or zero, conformal invariance completely de-
tions, this is well described by linear response theory, and theermines the correlation function, independent of the details
time evolution of the relaxation is determined by the retardedf the theory in question. The behavior of the retarded cor-
correlation function of the perturbatidd—3]. Generally, in  relation functions in these two cases is qualitatively different.
the presence of interactions this problem is addressed withitn the first case, the perturbation decays exponentially with
finite temperature perturbation theory. A special role ischaracteristic time proportional to the inverse temperature. In
played by scale invariant theories, where the zero temperdhe second case, we have oscillatory behavior with a charac-
ture 2-point functions are uniquely determing@gb to a nor-  teristic period determined bly. Our main purpose here is to
malization by scale invariance. However, finite temperaturestudy the relaxation process in the intermediate regime when
introduces a new scale and consequently the conformal WaildT changes from zero to infinity.
identities no longer determine the Green'’s functions com- After describing the qualitative behavior based on general
pletely. However, significant progress can be made if thearguments, we analyze quantitatively the case of a non-
conformal field theory(CFT) has a dual formulation in terms interacting theory, and contrast its behavior with the strongly
of gravity (or string theory on anti—de Sitter spaceé\dS) coupled largek CFT dual to supergravity on AdSsee also
spacetime. Indeed, the AdS/CFZ—-7] duality predicts that [14,15]). (The parametek plays the role ofN in the usual
the retarded CFT correlation functions are in 1-1 corresponterminology of largeN CFT dual to AdS gravity. In the
dence with Green’s functions on anti—de Sitter space witHatter case, we have an explicit expression for the 2-point
appropriate boundary conditiori8—12]. Furthermore, the function at finite temperature and finite volume. We can thus
poles of the retarded CFT correlators are given by the quaanalyze the linear response of the CFT. In the likwtoo,
sinormal modes in AdS8,11]. This correspondence was there is a sharp transition between a regime of exponential
verified explicitly in the high temperature regime of the two- decay and oscillation. This is a manifestation of the gravita-
dimensional CFT, dual to supergravity on AdR1]. Other  tional Hawking-Page phase transition between theaBas-

Teitelboim-Zanelli (BTZ) black hole and thermal AdS.
Moreover, we then establish a direct connection between the
*On leave from: Department of Mathematical Physics, Universitybehavior of the linear response and the behavior of the cor-
College, Dublin, Ireland; email address: birm@itp.stanford.edu  responding bulk perturbations. In particular, we show that
"Email address: ivo@maths.tcd.ie the regime of exponential decay is governed by the quasinor-
*Email address: soloduk@theorie.physik.uni-muenchen.de mal modes of the BTZ black hole, while the regime of os-
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cillation is governed by the normal modes of thermal AdS.verges, then we conclude thBX?(w,k) is a meromorphic
Thus, the behavior of the bulk AdS perturbation is mirroredfunction of  in the lower half plane, with simple poles on
precisely by the behavior of the linear response of the CFTthe real axis. Correspondingly, as can be seen from(&g.
Finally, we speculate on the expected behavior of thehe linear response will show oscillatory behavior. Indeed, as

strongly coupled CFT at finite values kf shown in[16-19, the energy spectrum for a system with
finite entropy is discrete, and will in general exhibit the phe-
Il. LINEAR RESPONSE THEORY nomenon of Poincareecurrence. If the energy levels are

_ L . _ continuous, the properties &"(w,k) can be more compli-

We consider a system initially in thermal equilibrium, and cateqd. At zero temperature, the retarded Green’s function will
apply a small perturbation. The main goal of linear responsgenerally have poles and cuts on the real axis, corresponding
theory is to study the change in the expectation value of af, gaple states and multi-particle states, respectively. Fur-
opergtorQ(x,t) as a result of this perturbation. The total thermore, there can also be poles in the lower halflane
Hamiltonian of the system takes the forf'(t)=H  corresponding to resonances. The distance of the poles from
+Hex(t), whereH is the unperturbed Hamiltonian, and the real line then determines the decay time of such a reso-
Hext(t)_ couples an external field to the system, with the asgnce. At finite temperature)}(w,k) is a meromorphic
sumption thaH ;=0 for t<to. The change in the ensemble fynction in the lower half plane. Equatid6) then shows that
average of0 is given by the characteristic times for the thermalization of an instanta-

. neous perturbation is determined by the imaginary part of the
5<0(X,t)>:if At THp[Hex(t),Ox,1)]}, (1)  poles of D¥(w,k) in the complexw plane. For a generic
to interacting theory, the location of these poles will depend
N non-trivially on the coupling constants, and concrete results
wherep is the unperturbed thermal density matrix. If we takeare known only in specific limits, where perturbation theory

the perturbation to be is applicable.

He’“(t):f dxJx DO 1), @ Ill. CONFORMAL FIELD THEORY
where J(x,t) is the external source, then E() takes the To see how these general results are realized in
form (1+1)-dimensional conformal field theory, we first calculate

the correlation functions on a torus with periodsand 8
* =T~ 1. The correlation function in real time, is then ob-
_ ’ ’ Y R R ’
5<O(X’t)>_f_xdt de IO DX XL L), (3) tained by the analytic continuatior=it, wherer is imagi-
nary time. When the size of one direction on the torus is

where taken to infinity, the torus becomes a cylinder. Using Cardy’s
. result[20], the correlation function on the cylinder is ob-
DR(x,t;x/,t")=—i0(t—t")Tr{p[ O(x,1),0(x" ,t") ]} tained from the correlator on the plane by the conformal

(4 mappind w=(1/27)Inz, w=(1/27)InZ wherew and z are
complex coordinates on the cylinder and the plane, respec-

is the retarded propagator. : g ; . : .
For the particular case of an instantaneous perturbation %V&Iy' The 2-point function on the cylinder is then given by

the form
one finds (,n_/l)Zh(,n,/I_)ZE
) = dw . e /| w1201 i /|_ o ry12h? (8)
5<O(X,t)>:elkxj7 Ee"‘”tDR(w,k). (6) [sinh(ar/l)(w—w") =" [sinn(7/1)(w—w")]

In the following, it will be useful to recall the Lehmann where f,h) are the conformal weights @.
representation of the retarded propagator Suppose now that the temperature is finite while thelsize
is taken to infinity; thenl,I=8(1*=u), where u is the
chemical potential andv= o +i7. After analytic continua-
tion 7=it, we havew=o—t andw= o +t. We then obtain
the real time correlation function
where the spectral functiop(w,k) is the Fourier transform
of the commutatop(x,t;x’,t")=([O(x,t),O(x",t")]).

From general arguments, we know tHaf(w k) is an INote that in two-dimensional CFT the left and right sectors are
analytic function in the upper halb plane. If the energy independent. In particular, they can be defined on cylinders with
levels of the system are discrete and the ensemble sum codlifferent radii.

» do' p(o’,k)

.
2T w—w' +ie

DR(w,k)= (7)
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D.(t,0)=(O(tFie,0)O(0,0))
_ (77'-|_R)2h(77'-|_|_)ZF
" [sinhaTr(o—txie) ]2 [sinhaT (o+tFie)]?"

©)

. Thus, we find the poles
where Tg=1/1 and T =1/l are the effective right and left

temperatures. Clearly, the correlation function decays expo- 2

4ar
w= |m|+T(n+h),

nentially for large time t; for example, D.(t,0) L
~e 27Tt “whenT =Tg=T.

For{h,h} e N, the Fourier transform of the commutgtor, w=— 2_7T|m| _ 4_7T(n+ h), (15)
p=(D,—D_), can be evaluated by the method of residues L L
leading to . . .

with me Z andne N. The spectral function for higher val-
2 ues ofh takes a form similar to Eq(14), with additional
p(w,K)=|T| h+i P- )F h+i P+ ) ’ (10) prefactors designed such that the pole structure is given by
27TR 27T, Eq. (15).

The considerations so far are quite general, and rely only
wherep. = 3(wFk). From Eq.(10), we see thap(w,k) has  ©n the conformal properties of the operators driving the per-
an infinite set of simple poles on either side of the real lineturbation. The behavior of the correlation functio{® and
The poles of the Green’s functid®(w,k) are then obtained (12) in the two limiting cases is thus universal, and in agree-

by restricting this set to the lower half plane. These are giverinent with general expectations. However, the behavior in the
by [11] intermediate regime, when bothandT are finite, cannot be

derived entirely from conformal symmetry. In order to un-
derstand this regime, we first consider the 2-point function of

w=Kk=4miT (n+h), free fermions on the toru@1]. This takes the form

= —Kk—A4q7i w| L L
w=—k—4mTg(n+h), neN. (11) Gy(g‘iﬁ)ﬁwf)‘l(O i/—g)
On the other hand, if the size is kept finite and the (W) (0)),= L wl L\’ (16
inverse temperatur@=T"! is taken to infinity ther =L. 6,0 'E 01 B 'E

The direction of the imaginary axis can be chosen indhe
direction,w=r+io. The analytic continuation to real time wherew=r+io and v characterizes the boundary condi-
now results inw=i(t+ o) andw=i(t—o). Thus, we find tions for ¢s(w). For finite temperature boundary conditions,

that Eq.(8) leads to the real time correlation function we haverv=3,4. Using the properties of functions, it is
then easy to see that E¢L6) is invariant under shiftsv
D.(t,0)=(O(t¥i€,0)0(0,0)) —wtpandwowril. - _
B The real time correlation function is obtained from Eq.
(aliL)2(+h) (16) by the substitutiow=i(t+ o). The resulting real time
2h o correlator is thus a periodic function bwith periodL. Zeros

of the theta functiond,(w/g|iL/B) are located af21] w

=mp+inL, wherem,n are integers. Therefore, for real
(12) time t, the correlation functioril6) is a sequence of singular

peaks located att (- ¢)=nL. In the limit L/B8—«, the cor-

. 7T . . ﬂ- .
S|nE(tI|e+ o) smE(tIle—cr)

. . L elation function (16) approaches(9) [actually the left-
This clearly shows the expected oscillatory behavior in rea[noving part of(9) (vvit)h hF=)p1/2] whic(h)e>[<ponen¥ally decays
time. In the following, we specialize to the subset of opera-,

) ) with time. In the opposite limit, wheh/8—0, it approaches
tors with h=he N/2. To isolate the pole structure of the the oscillating function(12). This is in agreement with our
retarded Green’s function, we again consider the Fouriefiscyssion using Cardy’s arguments. It is important to ob-
transform of the commutator serve that the exponential decay of the function in the limit
of largeL is consistent with periodicity of the real time cor-
o L _— relation function(16) with periodL. In order to see this, we
plw,k)= f_mdtfo do "™ (D.~D_), (13  note that the correction to the leading behavior is governed
by e~ /et 9)/E Thus, the limit of large. is meaningful
__only for times much smaller than For sucht, the exponen-
with k=(27/L)m. We first consider the case with=h tially decaying function is a good description of the correla-
=1/2. Thenp takes the simple form tion function. However, foit approachingL the correction
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terms become important, and the time periodicity of the cor- z—e>™hllz ye?mhlly, (19
relation function(16) is restored.
In both cases, the boundary of the three-dimensional space is
IV. STRONG COUPLING REGIME a torus with period$é and 3. In particular, the two configu-
rations(thermal AdS and the BTZ black hglare T-dual to

At strong coupling, conformal symmetry is not enough toeach other, and are obtained by the interchange of the coor-
determine the linear response at finite volume. We are thergtinatesr«s o on the torus.

fore unable to obtain exact results in the general case. How- The correlation function of the dual operators then con-
ever, progress can be made in some special cases. Here, y¥hs the sum of two contributiorfd4] as

consider the supersymmetric conformal field theory dual to

string theory on Ad& This theory describes the low energy (O(W,W)O(W' W' )} orus

excitations of a large number of D1- and D5-brapgg,15.

It can be interpreted as a gas of strings that wind around a =e {0 O')grzt+e (O O )pgs, (20
circle of lengthL with target spac&“. The individual strings

can be simply or multiply wound such that the total winding Where

number isk=c/6, wherec>1 is the central charge. The

parametek plays the role olN in the usual terminology of Sarp= —km—,
largeN CFT dual to AdS gravity. In order to obtain informa- B

tion about the correlation functions in the strong coupling ) )
regime of this theory, we can appeal to the AdS/CFT corredre the Euclidean actions of the BTZ black hole and thermal

spondence. According to this duality, each supergravity perf\dss, respectively{15]. We see that these contributions are
turbation® , i, of massm and spins propagating on Ad$ dual to each other under interchangeffandL. Using the
has a corresponding operat6yy,y, in the dual conformal AdS/CFT correspondence, the correlation functions on the
field theory. This operator is characterized by conformaltorus were computed if24,25 for the case of a scalar field
weights (,h), with h+h=A, h—h=s, and A is deter- (h=h). For the BTZ background, the result takes the form

mined in terms of the mass of the field. The CFT correlatord24]

are then determined in terms of the corresponding bulk _

Green’s functions. In addition, there is a correspondence be- (O(W,w)O(0,0))gr7
tween (quasjnormal modes in the gravitational background

SAdS: - k7T (21)

E!

and the poles of the retarded Green’s functions in the con- -3 1 (22)
formal field theory{8]. nez . |mT Ao fm — ah
According to the original prescriptidi], each AdS space sin E(V‘H nL)| sin E(WJF nL)

which asymptotically approaches the given two-dimensional
manifold should contribute to the calculation, and one thusyherew=o+i7. Note that Eq.(22) takes the form of the
has to sum over all such spaces. In the case of interest, thgrip expressiori8) summed over images to make it doubly
two-manifold is a torus £, o), whereg andL are the respec- periodic. On the supergravity side, the justification to sum
tive periods. There is a$L(2,Z) family of AdS; spaces over images comes simply from the fact that the correlator
which approach the torus asymptoticall$5,22. For the solves a Green’s function equation. From the CFT point of
purpose of understanding the Hawking-Page phase transfiew, this result is non-trivial. Indeed, for a generic CFT,
tion, it suffices to consider the BTZ black hole and thermalsumming over images does not produce the correct finite
AdS space, corresponding to anti—de Sitter space filled witiyolume correlator. For example, the free field correl#id
thermal radiation. Both spaces can be represef8Has a does not have this form.
quotient of three-dimensional hyperbolic sp&t& with line Expression(20) is the result for the correlation function in
element the strong coupling regime. Although each term in the sum
(20) is not modular invariant, the sum over the f8IL(2,2)
1 — family does have this propertyl5,22. Depending on the
dszz)z(dzderdyz), y>0. (17 ratio L/B, one of the two terms in Eq20) dominateg15].
For high temperaturel( g is large the BTZ is dominating,

The BTZ black hole(for simplicity we consider only the While at low temperaturel(/ 8 is smal) the thermal AdS is
non-rotating BTZ black holehas inverse temperaturg  dominant. The transition between the two regimes occurs at
=2x/r, , wherer is the horizon radius. Alsg~e?™/#  B=L. In terms of the gravitational physics, this corresponds
andy~e?™8 wherew=g+ir. Thus, the orbifold identi- to the Hawking-Page phase transitif26]. This is a sharp

fication is given by transition in the limitk=c, which is the case when the
supergravity description is valid. In this limit, the BTZ black
z—e’"hz, ye?mby, (18 hole is the sole contribution fdr> g, while thermal AdS is
the only term which contributes fdr<g.
For the thermal AdS at the same temperatgre, we have The two terms in Eq(20) have drastically different be-
z~e?™/L andy~e?"7t, wherew=7+io. In this case, the havior as functions of real time. After the analytic continua-
identification is tion 7=it, the BTZ contribution(22) produces the correlator
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(O(t,0)0(0,0))g77 (O(t,0)O0(0,0)) pgs
1 1
= 2 2h 2h = 2 2h 2h s
neZ neZ

o an o o
sinhE(a—HnL) sinhE(H—chrnL) sin E(t+a+i,8n) sin E(t—a+i,8n)

(23 (24

which is periodic int with periodL. Clearly, it represents a
which exponentially decays with time. Furthermore, in theperiodic sequence of singular peakstato=nL. In the
limit L/B—o, only then=0 term in Eq.(23) contributes, limit of infinite B/L, only then=0 term contributes and Eq.
and we thus recover the universal behavi@r (24) approaches the expressig2). The Hawking-Page

It is clear that the Fourier transform of the spectral func-transition is thus a transition between oscillatory behavior at
tion for Eq.(23) is again given by Eq(10), with k restricted  low temperature and exponentially decaying behavior at high
to the discrete values ¢2L)m. Thus, the poles obR are temperature. From the CFT point of view, this behavior is
given by Eq.(11) with k=(2=7/L)m. At first sight, this ap-  explained by the fact that in the low temperature phase the
pears to be in contradiction with the general behavior disgeneric configuration is given by simply wound strings so
cussed in Sec. Il. Indeed, for finite volume we expect a disthat the effective volume is finite and consequently the en-
crete energy spectrum and consequently that the polBof ergy spectrum is discrete in agreement with general argu-
should lie on the real axis. The resolution of this puzzle liesment.
in the peculiar properties of the CFT under considerdtidn Forhe 3N, the Fourier transform of the spectral function
ForL/B>1, the typical configuration consists of a relatively for the finite temperature AdS Green’s functit#¥) is again
small number of multiply wound strings so that the effectivegiven by Eq.(14), with simple poles given by Eq15). On
volume relevant for the energy gap Isg=kL—». Of the AdS side, the set of frequencid$) is identical to the set
course, this explanation immediately raises another puzzle: bf normalizable modef27]: these modes are regular at the
the effective volume of the theory is infinite, how come thatorigin of AdS; and are normalizable at infinity. As a result,
the correlation function is periodic ior with periodL. The the oscillating behavior of the bulk perturbation is mirrored
reason for this lies in the fact that the operatdrdoes not by the oscillating behavior of the linear responsel.2w], the
distinguish between simply wound and multiply wound normalizable modes were obtained for a scalar freth.
strings. Consequently) still sees a finite volume. However, as shown ifi28], higher spins equations of mo-

For h#h, which corresponds to fields of non-zero spin intion in AdS; can be reduced to that of massive scalar fields
AdS;, the finite temperature Green'’s functions have not beeifior any s. We thus expect that the correspondence between
worked out in the literature. However, it was shown[ ] normalizable modes and the poles Df(w,k) in the low
that there is a 1-1 correspondence between the poles of themperature phase is, in fact, valid for asyh—h.
retarded finite temperature Green’s function and the quasi-

normal modes for fields of spiezh—h.in the BTZ back- V. DISCUSSION

ground. Quasi-normal modes are solutions to the wave equa-

tions which are purely ingoing at the horizon and subject to As pointed out in[16—-19, the energy spectrum for a

the boundary condition that the current vanishes at inffnity. System with finite entropgis discrete, with level spacing of

Only a discrete set of modes satisfying these boundary corthe ordere™S. As a consequence, the system will necessarily

ditions is possible, and the frequencies are showflijto  show Poincareecurrence. These recurrences will occur on a

be identical with Eq(11). In [11], the correspondence was time scale of the order~eS. Indeed, as we saw in Sec. I,

shown forL/B=c. However, the above discussion showsfor a system with discrete spectrum, the retarded propagator

that this is in fact valid forL/8>1. Indeed, one finds that has simple poles on the real axis. Therefore, the linear re-
the bulk perturbation decays via these quasinormal modes isponse will exhibit oscillatory behavior. In general, however,
precisely the same way as the linear response of the confothis oscillatory behavior will be quite complicated. Typically,
mal field theory given by Eq6). one expects the correlation function for a system with finite
The question then arises as to the behaviorlLigB<<1. entropy to be a quasiperiodic function, with incommensurate

On the gravity side, Eq(20) implies that the thermal AdS frequencies. Poincarecurrence ensures that the evolution is

Green’s function gives the relevant contribution to the realunitary with no loss of information. This is exactly the be-

time correlation function. The result for the thermal AdS ishavior seen in the free fermion correlation functidr®): at

obtained from Eq.(22) under the interchange<« o and finite L it is oscillating with periodL.

B+ L. Hence, we havg25] Based on these remarks, it is important to understand the
behavior observed in the strongly coupled CFT. In the strict
k=0 limit, the sole contribution to the correlator is given by

2Originally, the quasinormal modes were required to satisfy Di-the BTZ black hole. The decay of this correlator is due to the
richlet conditions at asymptotic infinifyL0]. However, as shown in  fact that the effective volume 4=KL is infinite, and thus

[11], this leads to problems fon=<1 which can be resolved by the spectrum is continuous. This explains why we found

requiring the vanishing of the current. complex poles corresponding to quasinormal modes of the
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black hole. However, for finitk the correlator must ulti- We should also stress that the conformal field theory dual
mately exhibit Poincareecurrence. to supergravity on Ad$is very special. For a generic CFT,

In the present paper, we considered the inclusion of theve do not expect a phase transition even at strong coupling.
contribution from thermal AdS. We found that this gives alt would be interesting, therefore, to find more examples of
periodic contribution, whose frequencies are the same as theteracting CFT’s in various dimensions, where explicit non-
normal modes of AdS. While the addition of this contribution perturbative results can be obtained. In this respect, the du-
does prevent the decay of the correlator at late tifid$ it  ality between theO(N) sigma model in three-dimensions
is not sufficient to produce the Poincaezurrences at finite and fields of even spin in AdSmight be of interes{29].

k. One could consider the inclusion of the remaining mem-Note also that while the explicit computation of finite tem-
bers of theSL(2,Z) family of solutions with torus boundary. perature Green’s functions in Ad$ d>3, is generally not
These contributions are necessary in order to ensure modulpossible, the guasinormal modes can nevertheless be ob-
invariance. However, they will be parametrically of the sametained numericallyf10]. In this way, one can obtain quanti-
order as the thermal AdS contribution. The total correlatottative, non-perturbative, information about thermal Green’s
will still include the decaying BTZ part with complex fre- functions also in higher dimensions. Fabr 3, the high tem-
guencies. It seems that in order to see the discreteness of therature phase is an AdS-Schwarzschild black hole whereas
energy spectrum on the CFT side, one will need to includehermal AdS is dominant at low temperature. This Hawking-
finite k corrections to the correlator. In this way we expectPage transition is then related to linear response theory in the
that thek=o (BTZ) contribution will be dressed by B/ dual CFT via quasinormal and normal modes in the two
corrections, so that the correlator at finktavill no longer be  backgrounds.

a decaying function of time. One can see how this may hap-

pen by recalling the case of free fermions. The correlation ACKNOWLEDGMENTS
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