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Relaxation in conformal field theory, Hawking-Page transition,
and quasinormal or normal modes
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We study the process of relaxation back to thermal equilibrium in (111)-dimensional conformal field
theory at finite temperature. When the size of the system is much larger than the inverse temperature, pertur-
bations decay exponentially with time. On the other hand, when the inverse temperature is large, the relaxation
is oscillatory with the characteristic period set by the size of the system. We then analyze the intermediate
regime in two specific models: namely, free fermions, and a strongly coupled largek conformal field theory
which is dual to string theory on (211)-dimensional anti–de Sitter spacetime. In the latter case, there is a
sharp transition between the two regimes in thek5` limit, which is a manifestation of the gravitational
Hawking-Page phase transition. In particular, we establish a direct connection between quasinormal and nor-
mal modes of the gravity system, and the decaying and oscillating behavior of the conformal field theory.
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I. INTRODUCTION

An important problem in finite temperature field theo
and statistical mechanics is to study the response of a sy
in thermal equilibrium to a generic perturbation. In partic
lar, one is typically interested in understanding the proces
relaxation back to thermal equilibrium. For small perturb
tions, this is well described by linear response theory, and
time evolution of the relaxation is determined by the retard
correlation function of the perturbation@1–3#. Generally, in
the presence of interactions this problem is addressed w
finite temperature perturbation theory. A special role
played by scale invariant theories, where the zero temp
ture 2-point functions are uniquely determined~up to a nor-
malization! by scale invariance. However, finite temperatu
introduces a new scale and consequently the conformal W
identities no longer determine the Green’s functions co
pletely. However, significant progress can be made if
conformal field theory~CFT! has a dual formulation in term
of gravity ~or string theory! on anti–de Sitter space~AdS!
spacetime. Indeed, the AdS/CFT@4–7# duality predicts that
the retarded CFT correlation functions are in 1-1 corresp
dence with Green’s functions on anti–de Sitter space w
appropriate boundary conditions@8–12#. Furthermore, the
poles of the retarded CFT correlators are given by the q
sinormal modes in AdS@8,11#. This correspondence wa
verified explicitly in the high temperature regime of the tw
dimensional CFT, dual to supergravity on AdS3 @11#. Other
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calculations of quasinormal modes in anti–de Sitter ba
grounds have appeared in@13#.

The purpose of the present paper is to analyze finite v
ume effects for a quantum conformal field theory living
one space-like dimension~closed to form a circle of length
L). In two limiting cases, when the dimensionless parame
LT is infinite or zero, conformal invariance completely d
termines the correlation function, independent of the det
of the theory in question. The behavior of the retarded c
relation functions in these two cases is qualitatively differe
In the first case, the perturbation decays exponentially w
characteristic time proportional to the inverse temperature
the second case, we have oscillatory behavior with a cha
teristic period determined byL. Our main purpose here is t
study the relaxation process in the intermediate regime w
LT changes from zero to infinity.

After describing the qualitative behavior based on gene
arguments, we analyze quantitatively the case of a n
interacting theory, and contrast its behavior with the stron
coupled largek CFT dual to supergravity on AdS3 ~see also
@14,15#!. ~The parameterk plays the role ofN in the usual
terminology of largeN CFT dual to AdS gravity.! In the
latter case, we have an explicit expression for the 2-po
function at finite temperature and finite volume. We can th
analyze the linear response of the CFT. In the limitk5`,
there is a sharp transition between a regime of exponen
decay and oscillation. This is a manifestation of the grav
tional Hawking-Page phase transition between the Ban˜ados-
Teitelboim-Zanelli ~BTZ! black hole and thermal AdS
Moreover, we then establish a direct connection between
behavior of the linear response and the behavior of the
responding bulk perturbations. In particular, we show t
the regime of exponential decay is governed by the quasi
mal modes of the BTZ black hole, while the regime of o

y
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cillation is governed by the normal modes of thermal Ad
Thus, the behavior of the bulk AdS perturbation is mirror
precisely by the behavior of the linear response of the C
Finally, we speculate on the expected behavior of
strongly coupled CFT at finite values ofk.

II. LINEAR RESPONSE THEORY

We consider a system initially in thermal equilibrium, an
apply a small perturbation. The main goal of linear respo
theory is to study the change in the expectation value o
operatorO(x,t) as a result of this perturbation. The tot
Hamiltonian of the system takes the formH8(t)5H
1Hext(t), where H is the unperturbed Hamiltonian, an
Hext(t) couples an external field to the system, with the
sumption thatHext50 for t,t0. The change in the ensemb
average ofO is given by

d^O~x,t !&5 i E
t0

t

dt8Tr$r̂@Hext~ t8!,O~x,t !#%, ~1!

wherer̂ is the unperturbed thermal density matrix. If we ta
the perturbation to be

Hext~ t !5E dxJ~x,t !O~x,t !, ~2!

whereJ(x,t) is the external source, then Eq.~1! takes the
form

d^O~x,t !&5E
2`

`

dt8E dx8 J~x8,t8!DR~x,t;x8,t8!, ~3!

where

DR~x,t;x8,t8!52 iu~ t2t8!Tr$r̂@O~x,t !,O~x8,t8!#%
~4!

is the retarded propagator.
For the particular case of an instantaneous perturbatio

the form

J~x,t !5d~ t !eikx, ~5!

one finds

d^O~x,t !&5eikxE
2`

` dv

2p
e2 ivtDR~v,k!. ~6!

In the following, it will be useful to recall the Lehman
representation of the retarded propagator

DR~v,k!5E
2`

` dv8

2p

r~v8,k!

v2v81 i e
, ~7!

where the spectral functionr(v,k) is the Fourier transform
of the commutatorr(x,t;x8,t8)5^@O(x,t),O(x8,t8)#&.

From general arguments, we know thatDR(v,k) is an
analytic function in the upper halfv plane. If the energy
levels of the system are discrete and the ensemble sum
10402
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verges, then we conclude thatDR(v,k) is a meromorphic
function of v in the lower half plane, with simple poles o
the real axis. Correspondingly, as can be seen from Eq.~6!,
the linear response will show oscillatory behavior. Indeed
shown in @16–19#, the energy spectrum for a system wi
finite entropy is discrete, and will in general exhibit the ph
nomenon of Poincare´ recurrence. If the energy levels ar
continuous, the properties ofDR(v,k) can be more compli-
cated. At zero temperature, the retarded Green’s function
generally have poles and cuts on the real axis, correspon
to stable states and multi-particle states, respectively. F
thermore, there can also be poles in the lower halfv-plane
corresponding to resonances. The distance of the poles
the real line then determines the decay time of such a re
nance. At finite temperature,DR(v,k) is a meromorphic
function in the lower half plane. Equation~6! then shows that
the characteristic times for the thermalization of an instan
neous perturbation is determined by the imaginary part of
poles of DR(v,k) in the complexv plane. For a generic
interacting theory, the location of these poles will depe
non-trivially on the coupling constants, and concrete res
are known only in specific limits, where perturbation theo
is applicable.

III. CONFORMAL FIELD THEORY

To see how these general results are realized
(111)-dimensional conformal field theory, we first calcula
the correlation functions on a torus with periodsL and b
5T21. The correlation function in real time,t, is then ob-
tained by the analytic continuationt5 i t , wheret is imagi-
nary time. When the size of one direction on the torus
taken to infinity, the torus becomes a cylinder. Using Card
result @20#, the correlation function on the cylinder is ob
tained from the correlator on the plane by the conform
mapping1 w5( l /2p)ln z, w̄5( l̄ /2p)ln z̄, wherew and z are
complex coordinates on the cylinder and the plane, resp
tively. The 2-point function on the cylinder is then given b
@20#

^O~w,w̄!O~w8,w̄8!&

5
~p/ l !2h~p/ l̄ !2h̄

@sinh~p/ l !~w2w8!#2h@sinh~p/ l̄ !~w̄2w̄8!#2h̄
, ~8!

where (h,h̄) are the conformal weights ofO.
Suppose now that the temperature is finite while the sizL

is taken to infinity; thenl , l̄ 5b(16m), where m is the
chemical potential andw5s1 i t. After analytic continua-
tion t5 i t , we havew5s2t andw̄5s1t. We then obtain
the real time correlation function

1Note that in two-dimensional CFT the left and right sectors
independent. In particular, they can be defined on cylinders w
different radii.
6-2
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D6~ t,s!5^O~ t7 i e,s!O~0,0!&

5
~pTR!2h~pTL!2h̄

@sinhpTR~s2t6 i e!#2h@sinhpTL~s1t7 i e!#2h̄
,

~9!

whereTR51/l and TL51/l̄ are the effective right and lef
temperatures. Clearly, the correlation function decays ex
nentially for large time t; for example, D6(t,0)
;e22pT(h1h̄)t, whenTL5TR5T.

For $h,h%P 1
2 N, the Fourier transform of the commutato

r5(D12D2), can be evaluated by the method of residu
leading to

r~v,k!}UGS h1 i
p2

2pTR
DGS h̄1 i

p1

2pTL
D U2

, ~10!

wherep65 1
2 (v7k). From Eq.~10!, we see thatr(v,k) has

an infinite set of simple poles on either side of the real li
The poles of the Green’s functionDR(v,k) are then obtained
by restricting this set to the lower half plane. These are gi
by @11#

v5k24p iTL~n1h̄!,

v52k24p iTR~n1h!, nPN. ~11!

On the other hand, if the sizeL is kept finite and the
inverse temperatureb5T21 is taken to infinity thenl 5L.
The direction of the imaginary axis can be chosen in thes
direction,w5t1 is. The analytic continuation to real tim
now results inw5 i (t1s) and w̄5 i (t2s). Thus, we find
that Eq.~8! leads to the real time correlation function

D6~ t,s!5^O~ t7 i e,s!O~0,0!&

5
~p/ iL !2(h1h̄)

Fsin
p

L
~ t7 i e1s!G2hFsin

p

L
~ t7 i e2s!G2h̄

.

~12!

This clearly shows the expected oscillatory behavior in r
time. In the following, we specialize to the subset of ope
tors with h5h̄PN/2. To isolate the pole structure of th
retarded Green’s function, we again consider the Fou
transform of the commutator

r~v,k!5E
2`

`

dtE
0

L

ds eivt2 iks~D12D2!, ~13!

with k5(2p/L)m. We first consider the case withh5h̄
51/2. Thenr takes the simple form
10402
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r~v,k!} (
nPZ

dS vL

4p
2

umu
2

2h2nD FuS vL

2p
2umu D

2uS 2
vL

2p
2umu D G . ~14!

Thus, we find the poles

v5
2p

L
umu1

4p

L
~n1h!,

v52
2p

L
umu2

4p

L
~n1h!, ~15!

with mPZ andnPN. The spectral function for higher val
ues of h takes a form similar to Eq.~14!, with additional
prefactors designed such that the pole structure is given
Eq. ~15!.

The considerations so far are quite general, and rely o
on the conformal properties of the operators driving the p
turbation. The behavior of the correlation functions~9! and
~12! in the two limiting cases is thus universal, and in agre
ment with general expectations. However, the behavior in
intermediate regime, when bothL andT are finite, cannot be
derived entirely from conformal symmetry. In order to u
derstand this regime, we first consider the 2-point function
free fermions on the torus@21#. This takes the form

^c~w!c~0!&n5

unS w

b U i L

b D ]wu1S 0U i L

b D
unS 0U i L

b D u1S w

b U i L

b D , ~16!

where w5t1 is and n characterizes the boundary cond
tions for c(w). For finite temperature boundary condition
we haven53,4. Using the properties ofu functions, it is
then easy to see that Eq.~16! is invariant under shiftsw
→w1b andw→w1 iL .

The real time correlation function is obtained from E
~16! by the substitutionw5 i (t1s). The resulting real time
correlator is thus a periodic function oft with periodL. Zeros
of the theta functionu1(w/bu iL /b) are located at@21# w
5mb1 inL, where m,n are integers. Therefore, for rea
time t, the correlation function~16! is a sequence of singula
peaks located at (t1s)5nL. In the limit L/b→`, the cor-
relation function ~16! approaches~9! @actually the left-
moving part of~9! with h51/2] which exponentially decays
with time. In the opposite limit, whenL/b→0, it approaches
the oscillating function~12!. This is in agreement with ou
discussion using Cardy’s arguments. It is important to o
serve that the exponential decay of the function in the lim
of largeL is consistent with periodicity of the real time co
relation function~16! with periodL. In order to see this, we
note that the correction to the leading behavior is gover
by e2pL/bep(t1s)/b. Thus, the limit of largeL is meaningful
only for times much smaller thanL. For sucht, the exponen-
tially decaying function is a good description of the corre
tion function. However, fort approachingL the correction
6-3
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terms become important, and the time periodicity of the c
relation function~16! is restored.

IV. STRONG COUPLING REGIME

At strong coupling, conformal symmetry is not enough
determine the linear response at finite volume. We are th
fore unable to obtain exact results in the general case. H
ever, progress can be made in some special cases. Her
consider the supersymmetric conformal field theory dua
string theory on AdS3. This theory describes the low energ
excitations of a large number of D1- and D5-branes@4,7,15#.
It can be interpreted as a gas of strings that wind aroun
circle of lengthL with target spaceT4. The individual strings
can be simply or multiply wound such that the total windi
number isk5c/6, wherec@1 is the central charge. Th
parameterk plays the role ofN in the usual terminology of
largeN CFT dual to AdS gravity. In order to obtain informa
tion about the correlation functions in the strong coupli
regime of this theory, we can appeal to the AdS/CFT cor
spondence. According to this duality, each supergravity p
turbationF (m,s) of massm and spins propagating on AdS3
has a corresponding operatorO(h,h̄) in the dual conformal
field theory. This operator is characterized by conform
weights (h,h̄), with h1h̄5D, h2h̄5s, and D is deter-
mined in terms of the mass of the field. The CFT correlat
are then determined in terms of the corresponding b
Green’s functions. In addition, there is a correspondence
tween~quasi!normal modes in the gravitational backgrou
and the poles of the retarded Green’s functions in the c
formal field theory@8#.

According to the original prescription@6#, each AdS space
which asymptotically approaches the given two-dimensio
manifold should contribute to the calculation, and one th
has to sum over all such spaces. In the case of interest
two-manifold is a torus (t,s), whereb andL are the respec
tive periods. There is anSL(2,Z) family of AdS3 spaces
which approach the torus asymptotically@15,22#. For the
purpose of understanding the Hawking-Page phase tra
tion, it suffices to consider the BTZ black hole and therm
AdS space, corresponding to anti–de Sitter space filled w
thermal radiation. Both spaces can be represented@23# as a
quotient of three-dimensional hyperbolic spaceH3, with line
element

ds25
1

y2
~dzdz̄1dy2!, y.0. ~17!

The BTZ black hole~for simplicity we consider only the
non-rotating BTZ black hole! has inverse temperatureb
52p/r 1 , wherer 1 is the horizon radius. Also,z;e2pw/b

and y;e2ps/b, wherew5s1 i t. Thus, the orbifold identi-
fication is given by

z→e2pL/bz, y→e2pL/by. ~18!

For the thermal AdS at the same temperatureb21, we have
z;e2pw/L andy;e2pt/L, wherew5t1 is. In this case, the
identification is
10402
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z→e2pb/Lz, y→e2pb/Ly. ~19!

In both cases, the boundary of the three-dimensional spa
a torus with periodsL andb. In particular, the two configu-
rations~thermal AdS and the BTZ black hole! are T-dual to
each other, and are obtained by the interchange of the c
dinatest↔s on the torus.

The correlation function of the dual operators then co
tains the sum of two contributions@14# as

^O~w,w̄!O~w8,w̄8!&Torus

5e2SBTZ^O O8&BTZ1e2SAdŜ O O8&AdS, ~20!

where

SBTZ52kp
L

b
, SAdS52kp

b

L
, ~21!

are the Euclidean actions of the BTZ black hole and therm
Ads3, respectively@15#. We see that these contributions a
dual to each other under interchange ofb andL. Using the
AdS/CFT correspondence, the correlation functions on
torus were computed in@24,25# for the case of a scalar field
(h5h̄). For the BTZ background, the result takes the fo
@24#

^O~w,w̄!O~0,0!&BTZ

5 (
nPZ

1

sinhFpb ~w1nL!G2h

sinhFpb ~w̄1nL!G2h , ~22!

wherew5s1 i t. Note that Eq.~22! takes the form of the
strip expression~8! summed over images to make it doub
periodic. On the supergravity side, the justification to su
over images comes simply from the fact that the correla
solves a Green’s function equation. From the CFT point
view, this result is non-trivial. Indeed, for a generic CF
summing over images does not produce the correct fi
volume correlator. For example, the free field correlator~16!
does not have this form.

Expression~20! is the result for the correlation function i
the strong coupling regime. Although each term in the s
~20! is not modular invariant, the sum over the fullSL(2,Z)
family does have this property@15,22#. Depending on the
ratio L/b, one of the two terms in Eq.~20! dominates@15#.
For high temperature (L/b is large! the BTZ is dominating,
while at low temperature (L/b is small! the thermal AdS is
dominant. The transition between the two regimes occur
b5L. In terms of the gravitational physics, this correspon
to the Hawking-Page phase transition@26#. This is a sharp
transition in the limit k5`, which is the case when th
supergravity description is valid. In this limit, the BTZ blac
hole is the sole contribution forL.b, while thermal AdS is
the only term which contributes forL,b.

The two terms in Eq.~20! have drastically different be
havior as functions of real time. After the analytic continu
tion t5 i t , the BTZ contribution~22! produces the correlato
6-4
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^O~ t,s!O~0,0!&BTZ

5 (
nPZ

1

Fsinh
p

b
~s2t1nL!G2hFsinh

p

b
~ t1s1nL!G2h ,

~23!

which exponentially decays with time. Furthermore, in t
limit L/b→`, only then50 term in Eq.~23! contributes,
and we thus recover the universal behavior~9!.

It is clear that the Fourier transform of the spectral fun
tion for Eq. ~23! is again given by Eq.~10!, with k restricted
to the discrete values (2p/L)m. Thus, the poles ofDR are
given by Eq.~11! with k5(2p/L)m. At first sight, this ap-
pears to be in contradiction with the general behavior d
cussed in Sec. II. Indeed, for finite volume we expect a d
crete energy spectrum and consequently that the poles oDR

should lie on the real axis. The resolution of this puzzle l
in the peculiar properties of the CFT under consideration@7#.
For L/b.1, the typical configuration consists of a relative
small number of multiply wound strings so that the effecti
volume relevant for the energy gap isLeff.kL→`. Of
course, this explanation immediately raises another puzzl
the effective volume of the theory is infinite, how come th
the correlation function is periodic ins with periodL. The
reason for this lies in the fact that the operatorO does not
distinguish between simply wound and multiply woun
strings. Consequently,O still sees a finite volume.

For hÞh̄, which corresponds to fields of non-zero spin
AdS3, the finite temperature Green’s functions have not b
worked out in the literature. However, it was shown in@11#
that there is a 1-1 correspondence between the poles o
retarded finite temperature Green’s function and the qu
normal modes for fields of spins5h2h̄ in the BTZ back-
ground. Quasi-normal modes are solutions to the wave e
tions which are purely ingoing at the horizon and subjec
the boundary condition that the current vanishes at infini2

Only a discrete set of modes satisfying these boundary c
ditions is possible, and the frequencies are shown in@11# to
be identical with Eq.~11!. In @11#, the correspondence wa
shown for L/b5`. However, the above discussion show
that this is in fact valid forL/b.1. Indeed, one finds tha
the bulk perturbation decays via these quasinormal mode
precisely the same way as the linear response of the con
mal field theory given by Eq.~6!.

The question then arises as to the behavior forL/b,1.
On the gravity side, Eq.~20! implies that the thermal AdS
Green’s function gives the relevant contribution to the r
time correlation function. The result for the thermal AdS
obtained from Eq.~22! under the interchanget↔s and
b↔L. Hence, we have@25#

2Originally, the quasinormal modes were required to satisfy
richlet conditions at asymptotic infinity@10#. However, as shown in
@11#, this leads to problems forh<1 which can be resolved by
requiring the vanishing of the current.
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^O~ t,s!O~0,0!&AdS

5 (
nPZ

1

Fsin
p

L
~ t1s1 ibn!G2hFsin

p

L
~ t2s1 ibn!G2h ,

~24!

which is periodic int with periodL. Clearly, it represents a
periodic sequence of singular peaks att6s5nL. In the
limit of infinite b/L, only then50 term contributes and Eq
~24! approaches the expression~12!. The Hawking-Page
transition is thus a transition between oscillatory behavio
low temperature and exponentially decaying behavior at h
temperature. From the CFT point of view, this behavior
explained by the fact that in the low temperature phase
generic configuration is given by simply wound strings
that the effective volume is finite and consequently the
ergy spectrum is discrete in agreement with general ar
ment.

For hP 1
2 N, the Fourier transform of the spectral functio

for the finite temperature AdS Green’s function~24! is again
given by Eq.~14!, with simple poles given by Eq.~15!. On
the AdS side, the set of frequencies~15! is identical to the set
of normalizable modes@27#: these modes are regular at th
origin of AdS3 and are normalizable at infinity. As a resu
the oscillating behavior of the bulk perturbation is mirror
by the oscillating behavior of the linear response. In@27#, the
normalizable modes were obtained for a scalar fieldh5h̄.
However, as shown in@28#, higher spins equations of mo-
tion in AdS3 can be reduced to that of massive scalar fie
for any s. We thus expect that the correspondence betw
normalizable modes and the poles ofDR(v,k) in the low
temperature phase is, in fact, valid for anys5h2h̄.

V. DISCUSSION

As pointed out in@16–19#, the energy spectrum for a
system with finite entropyS is discrete, with level spacing o
the ordere2S. As a consequence, the system will necessa
show Poincare´ recurrence. These recurrences will occur on
time scale of the ordert;eS. Indeed, as we saw in Sec. I
for a system with discrete spectrum, the retarded propag
has simple poles on the real axis. Therefore, the linear
sponse will exhibit oscillatory behavior. In general, howev
this oscillatory behavior will be quite complicated. Typicall
one expects the correlation function for a system with fin
entropy to be a quasiperiodic function, with incommensur
frequencies. Poincare´ recurrence ensures that the evolution
unitary with no loss of information. This is exactly the b
havior seen in the free fermion correlation function~16!: at
finite L it is oscillating with periodL.

Based on these remarks, it is important to understand
behavior observed in the strongly coupled CFT. In the st
k5` limit, the sole contribution to the correlator is given b
the BTZ black hole. The decay of this correlator is due to
fact that the effective volumeLeff.kL is infinite, and thus
the spectrum is continuous. This explains why we fou
complex poles corresponding to quasinormal modes of

-

6-5



th
a
t
n

m
.
u

m
to
-
f
d
c

a
io

gl

ta
fr
m
c-
ss
.

ual
,

ling.
of
n-
du-
s

-

ob-
i-
n’s

reas
g-
the

wo

.
ri,
eis-
s.
rd
.

nd
by

BIRMINGHAM, SACHS, AND SOLODUKHIN PHYSICAL REVIEW D67, 104026 ~2003!
black hole. However, for finitek the correlator must ulti-
mately exhibit Poincare´ recurrence.

In the present paper, we considered the inclusion of
contribution from thermal AdS. We found that this gives
periodic contribution, whose frequencies are the same as
normal modes of AdS. While the addition of this contributio
does prevent the decay of the correlator at late times@14#, it
is not sufficient to produce the Poincare´ recurrences at finite
k. One could consider the inclusion of the remaining me
bers of theSL(2,Z) family of solutions with torus boundary
These contributions are necessary in order to ensure mod
invariance. However, they will be parametrically of the sa
order as the thermal AdS contribution. The total correla
will still include the decaying BTZ part with complex fre
quencies. It seems that in order to see the discreteness o
energy spectrum on the CFT side, one will need to inclu
finite k corrections to the correlator. In this way we expe
that the k5` ~BTZ! contribution will be dressed by 1/k
corrections, so that the correlator at finitek will no longer be
a decaying function of time. One can see how this may h
pen by recalling the case of free fermions. The correlat
function ~16! is decaying whenL5` and is periodic at finite
L. A somewhat similar behavior is expected in the stron
coupled case. As a result, the Poncare´ recurrence time will
become finite and set byLeff . This problem certainly war-
rants further investigation. In effect, there is no fundamen
difference between the free and interacting case. The
system is periodic in time, while the interacting syste
should exhibit Poincare´ recurrences as a quasiperiodic fun
tion. In both cases, the evolution will be unitary with no lo
of information, as expected for a system in finite volume
-
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We should also stress that the conformal field theory d
to supergravity on AdS3 is very special. For a generic CFT
we do not expect a phase transition even at strong coup
It would be interesting, therefore, to find more examples
interacting CFT’s in various dimensions, where explicit no
perturbative results can be obtained. In this respect, the
ality between theO(N) sigma model in three-dimension
and fields of even spin in AdS4 might be of interest@29#.
Note also that while the explicit computation of finite tem
perature Green’s functions in AdSd , d.3, is generally not
possible, the quasinormal modes can nevertheless be
tained numerically@10#. In this way, one can obtain quant
tative, non-perturbative, information about thermal Gree
functions also in higher dimensions. Ford.3, the high tem-
perature phase is an AdS-Schwarzschild black hole whe
thermal AdS is dominant at low temperature. This Hawkin
Page transition is then related to linear response theory in
dual CFT via quasinormal and normal modes in the t
backgrounds.
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