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Fluctuating brane in a dilatonic bulk
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We consider a cosmological brane moving in a static five-dimensional bulk spacetime endowed with a scalar
field whose potential is exponential. After studying various cosmological behaviors for the homogeneous
background, we investigate the fluctuations of the brane that leave spacetime unaffected. A single mode
embodies these fluctuations and obeys a wave equation which we study for bouncing and ever-expanding
branes.
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I. INTRODUCTION spaces spanned by time and the extra dimension. We use
statichere in a generalized sense, where the orbits associated
In the past few years, a lot of effort has been devoted tovith a Killing vector can be not only timelike but also space-
the investigation of the braneworld picture, whereby our aclike.
cessible universe is a three-dimensional submanifold, or We first assume that the brane is perfectly homogeneous
three-brane, embedded in a higher-dimensional manifold. and study the corresponding background cosmologies asso-
The Cosm()'ogica' Consequences Of th|s idea are Of pa'(?|ated W|th the motion Of the brane n SUCh StatIC.bulk Space-
ticular interest since new effects can be anticipated in thdimes. We thus generalize the results of Chamblin and Reall
very early universe where the physical conditions are very3], restricted to the case of a domain wall, to any equation of
different from those of the present universe. Although manystate for the brane matter.
scenarios exist in the literature, most models of brane cos- We then allow the brane to fluctuate but we impose that
mo'ogy fOCUS, like the present Work, On%”_gra\/itaﬂng these fluctuations are such thﬁhle bulk Spacetime is left
brane universe embedded infige-dimensionabulk Space- Unperturbed In Other WOI’dS, we |nVest|gate Only the ﬂuctua'
time, so that the brane world sheet is of codimension one anton mode, which one can call thetrinsic mode that is not
subject to the standard junction conditions for a thin wall incoupled to the gravitational radiation, i.e. to the bulk pertur-
general relativity. As usually assumed, we will takeza ~ bations. We show that this mode obeys a wave equation,
symmetric bulk, which means that the two sides of the bran&hich can be written in a familiar form. We analyze the
are mirror symmetric with respect to the brane. evolution of the brane fluctuation depending on the various
The simplest models of brane cosmologee[1] for a background cosmologies. 'In some sense, our approach is
recent review assume an empty bulk with a cosmological feminiscent of former studigsl 7,18 (see alsd19] for re-
constant. The lattefwith a negative signis necessary in Ccent developmentf perturbed test branes where the brane
order to recover a standard cosmological evolution at latéléformation is described by a scalar field obeying a Kiein-
times and in particular to account, via nucleosynthesis, fofSordon equation. In our case the self-gravity is included by
the abundances of light elements. In the early universe, howadjusting adequately the matter perturbations on the brane. A
ever, the evolution deviates from standard cosmology. ~ Similar analysis has also been carried ouf20] within the
Although very useful for some specific features of branecontext of mirage cosmology where the gravitational back
cosmology, an empty bulk might be too naive for a realistic’®action is neglected. _ _
description of the early universe. For example, in the five- The plan of our paper is the following. In the next section,
dimensional version of M theory, a scalar field, correspondWe present the framework and consider some background
ing to the volume of the Calabi-Yau compactification mani-homogeneous solutions. In the third section, we derive the
fold, is present in the five-dimensional bulR]. It is thus ~ €quation of motion for the brane fluctuations. In Sec. IV, we
relevant to investigate brane cosmology with a bulk scala”nalyze this wave equation for the background cosmologies
field [3—15], which might be also useful, in the case of two- discussed in Sec. Il. Finally, we conclude in the last section.
brane models, to stabilize the radiflb].
In the present work, we consider a five-dimensional Il. THE BACKGROUND CONFIGURATION
model where the bulk contains a scalar field with an expo- v onsider five-dimensionatatic spacetimes with the
nenhal_potentlal and a three-brane with a Cosmolog_lcal Persual cosmological symmetriéomogeneity and isotropy
fect_flmd conforn"_lally couple_d, via the bL_”k scalar field, to along the three ordinary spatial dimensions. The metric can
the induced metric. We restrict our attention to very specmoDe written in the form
bulk spacetimes with the usual cosmological symmetries, i.e.
homogeneity and isotropy along the three ordinary spatial ds?=g,gdx*dx®=—A(r)2dt?+B(r)2dr?+R(r)%d3?,
dimensions, that are alsiatic in the two-dimensional sub- (1)
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where d3? is the metric for maximally symmetric three- 6a?
dimensional spaces. For simplicity, we will consider only the ds’=—h(R)dT?+
flat case. With our parametrizatigth) of the metric, we im- h(R)
plicitly assume that the Killing vecto#/dt is timelike and ith
thus that the spacetime is static in the strictest sense. AY—V
though the calculations below are given explicitly in this Vy/6
context, it is not difficult to show that the end results will still h(R)=—+—5—
hold if the coordinateé becomes spacelike, i.e. A andB? 1-(3a%4)
are negative.

We assume that the bulk contains a scalar fig{d) with
a potentialV(¢). The five-dimensional action for tHaulk is

dR2+ R2dx?, (10)

R2— CR3%*~2, (11)

where( is an arbitrary constant, and the scalar field configu-
ration

given by an expression of the form é=—3aIn(R). (12)
1 1 1 . Lo . . .
| a5y Al A _ Note that, in the limita=0, the scalar field vanishes while
S Kzf d*xv-g 2R 26 $Ind V(d))} @ its potential reduces to an effective cosmological constant
and one recovers the well-known SEhydS five-

where we have chosen the normalization so that the Scalﬂimensiona| metric. The metn(j_o) can be expressed in a
field is dimensionless and the potential scales like a squargightly different form, as i3], namely.

mass.

The bulk Einstein's equations, derived from this action, dr?
read ds?=—U(r)dt?+ G +R3(r)dx?, (13
1 .
Gap=pddpd— s §3c¢(9c¢’+v(¢) 3) after the change of coordinate
r= Rl+3a2 (14)

or in terms of the Ricci scalar
and a trivial redefinition of time.

2
Rap=daPpdpdp~+ §gabv(¢)- (4) ]
B. Moving brane
Explicitly, they take the form Let us now consider the presence of a three-brane moving
in the static bulk background). Although we are interested,
A" A'B’ +3Af R 2 B2y 5 in this section, only in the motion of the homogeneous brane,

we already present the general formalism, followirag],
which we will use later for the study of brane fluctuations.

% ’2 =Y =y We define the trajectory of the brane in terms of its bulk
R” R'? A'R" B'R 2 . " ; .
—+ 2—2 R ————— - YAV (6) coordinatesX”*(x*) given as functions of the four parameters
R R AR BR 3 x* which can be interpreted as internal coordinates of the
brane world sheet. One can then define four independent

A AB AR 3

A" R A'B’ B'R 2 vectors
_ T R2\y_ 412
AT3R aB BR3PV 7Y @) o
. o . . eh=—0 (15)
where a prime denotes a derivative with respeat. t8imi- L) G

larly the bulk scalar field obeys the Klein-Gordon equation
which are tangent to the brane. The induced metric on the
FAYS ® brane is simply given by
= 8

A" R B’

!

¢_ﬁ'

h,u,V:gABe;A/,eg ’ (16)

These equations can be solved for specific poter¥igls), — \poreas the extrinsic curvature tensor is given by
in particular for exponential potentials as summarized below.

A_B
.. . K,uV: e,u,evVAnB 1 (17)
A. Explicit solutions

In the case of a scalar field potential of the form wheren” is the unit vector normal to the brane, defineg
to a sign ambiguity by the conditions
V($)=Voe**?, (9)
gasn®nf=1, n,e}=0. (18
there exists a simple class of static solutipd21]. The full
set of static solutions is given [14], but we will restrict our It is also useful to express,,, in terms of only partial de-
study to the class of solutions described by the metric rivatives, which reads
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1 and
K,,=5[0as(€hd,nB+€0d,nB)+elePnPapgal.
2 " o o 1d K?
19 Ea(A\/1+B2'r2):—€(2p+3P). (30
Let us now apply this formalism to the homogeneous brane,
which can be parametrized by Using the first junction conditio29), the second expression
o (30) can be reexpressed explicitly as a conservationlike equa-
T=T(7), r=r(7n), X=X, (200 tion for the energy density:
where we take for the parametetthe proper time, i.e. such R
that p+ §(2+3W+f(l’))p=0, (3D

h,,=—1. (21 _ )
whereR=R’r and
The induced metric is thus
ds?=—d72+R¥(r(7)d3?, (22 1 d

f(l’)zﬁa

R

B (32

which shows that the geometry inside the brane is FLRW

(Friedmann-Lemane-Robertson-Walkgmwith the scale fac-  Using Einstein’s equation&)—(7), this functionf(r) can be
tor given by the radial coordinate of the brane. The cos- reexpressed in terms of the scalar field as

mological evolution within the brane is thus induced by the

motion of the brane in the static background. With the pa- 1, 2
rametrization(20), the four independent tangent vectors de- f=1+z¢ R (33
fined in Eq.(15) take the specific form
e’j=(T,'r,0,0,Q, eiA:(O,O,ﬁiA), 23 and the conservation equation takes the form of
vative wi i dp R 1 ..R
where a dot stands for a derivative with rgspecb-twhﬂe _P+3_(p+ P)=—Zpd’—. (34)
the components of the normal vector are given by dr R 3 R
n,=(ABr,—BV1+B%r2,0,0,0. (24 As we will see in the next subsection, the use of the junction

) o condition for the scalar will enable us to reexpress once more
Finally, the components of the extrinsic curvature tensor argyjs conservation equation in another form.

given by

\/m C. Junction condition for the scalar field
Kij=——p —RR&, (25 In addition to the junction conditions for the metric, we
must also ensure that the junction condition for the bulk
1 d _ scalar field is also satisfied. The latter depends on the specific
KTT:Ea(A\/1+ B2r?). (26) coupling betweeny and the brane matter. In order to be

more explicit, we now introduce the action for the brane
AssumingZ, symmetry about the brane, the junction condi-

tions for the metric read Sbrane:f d*XLin[ @i D], (35
brane
2
Kuv=" ?( Suv— §Sh/“’) ' (27) where we assume the metﬁg,, to be conformally related to
the induced metrid i.e.

. Mmoo
whereS,,, is the energy-momentum tensor of brane matter

andS=S, ,h*" its trace. Because the brane is homogeneous h,,=e*@h,,. (36)
and isotropicS,, is necessarily of the perfect fluid form, i.e.
) Variation of the total actiots= Sk + Syrane With respect to
S, =Diag(~p,P,P,P), (28) 4 yields the equation of motion for the scalar field, which is
the Klein-Gordon equatiof8) with the addition of a distri-
butional source term since the scalar field is coupled to the

é)rane viaﬁ,w. More specifically, the variation of the brane
action with respect to the scalar field yields

where the energy densigy and the pressure are functions
of time only. Substituting the above expressig2%) and
(26) for the components of the extrinsic curvature tensor, on
finds the following two relations:

1+B%2 R «? 5Sbfa”e: oLm ., 2£()
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where we have used the fact that the brane action depends arnere we have introduced the notation

the scalar field only via the metric,,. Since the variation 5
of the action with respect to the metric is proportional to the p= K 0. (44)
energy-momentum tensor, the above expression depends 6

only on the trace of the energy-momentum tensor. An alter-

native way to deal with the distributional source term in theFor a=0, Eq.(43) reduces to the well-known brane Fried-
Klein-Gordon equation is to reinterpret it as a boundary conmann equation with the characterisié term on the right
dition for the scalar field, or rather a junction condition at thehand side.

brane location which takes the form As for the scalar field junction conditio@0), the radial
dependence of given in Eq.(12) imposes the following
[nfapd]=K2E"(p—3P), (38 constraint between the equation of state ratiand a:

where ¢'=dé/d¢ and one recognizes the trace of the a
energy-momentum tensor for a scalar field. Taking into ac- 3w—1=——. (45)
count theZ, symmetry and the explicit form for the normal

vector(24), one ends up with the condition If we now assume thaw is constant, this constraint implies

2 B that the coupling is linear, i.€(®) = &, ¢, in which case the
¢,:K_ £ () (—p+3P) (39) conservation equatiof4l) can be explicitly integrated to
2 1+ B2r2 ’ yield
. o2
where all terms are evaluated at the brane location. More- p=pR73MFLTD, (46)

over, using the first junction conditiof29), this relation can

be reduced to wherep, is a constant. One can then substitute this relation

into the Friedmann equatioi@3) to obtain

R’ .
¢'=3¢'(¢) m(3w—1). (40) R%2+V(R)=0, (47)
This junction condition for the scalar field can be substitutedVith the potential
in the (non)conservation equatio(81) which then reads V(R)=—a,RP1+ a,RP2+ a,RPs, (48)
p+3H(p+p)=(1-3w)¢ po. (4D \where the coefficients are given explicitly by
This relates the energy loss, from the point of view of the V6
brane, to the transverse momentum density, from the point of a;=p>>0, a,=-— %, az=—-C, (49
view of the bulk. In fact, this nonstandard cosmological con- 1-(3a%/4)
servation equation can also be rewritten in the standard form
and the powers by
& aRG+P)=0 (42~ Pim7476wo6a% pp=276a%, po=—2-3a”
d (50)

if one introduces the energy densify and pressure® Equation(47) is analogous to the total energyhich van-
~ ~ . . ishes hergof a particle moving in a one-dimensional poten-
=Wwp, as well as the scale factay defined with respectto 4, V(R). The case of a brane domain wall=—1, was

the metriCﬁMV, which in other contexts would be referred to ana|yzed ”{3] In this casep;=p, and the potentia' is the

as theJordan frame sum of only two terms. Here, however, we have obtained the
equation of motion valid for any equation of state of the form
D. Brane cosmological evolution P=wp, with w constant. In order to simplify the potential,

let us consider the situatioms=—C=0. It is not difficult,
from the analysis of the two terms left in the potenW{R),

to see that the potential has«distinct shapes, depending on
the sign ofa, and the value o&?. To classify the various
cases, it is convenient to introduce the paramptdefined,
for w#—1, by

In order to work with an explicit example, we turn again
to the dilatonic bulk solutions given in Eq&l0)—(12) and
try to implement a moving brane in these backgrounds.

Taking the square of the junction conditi¢29), one im-
mediately obtains the generalized Friedmann equation,

2_K4 5 h(R)

~36"" e 6a’=2+p(1+w) (51)

so that the powerp,; andp, simply read
_AZ_’_ V+/6R*Gozz_’_CR*473az (43)
~P T 1-(3a%4) ' p1=—(6+p)(1+w), p,=—p(1+w). (52
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a, >0 a, <0 a; >0 a, <0
1
FIG. 1. V(R) whenp<—6. FIG. 3. V(R) whenp>0.
The various cases are then: Substituting in the definition of the induced met(i5), and
p<—6 (which impliesw<—2/3 and G<p,<p,) (see Deing careful to evaluate tHanchangeglbulk metricg,g at
Fig. 1); the perturbedbrane location, one finds

—6<p<0 (which impliesp;<0<p,) (see Fig. 2

p>0 (which impliesp;<p,<0) (see Fig. 3.
In the three cases correspondingatp<0, the evolution of
the scale factor is monotonous because the potential is P
ways negative, whereas fap>0, the potential vanishes at a

h,,=h,,+2{K,,. (55)

sing this expression, one can easily make the connection
&fith the Bardeen potentials measuring the gauge invariant

) . metric perturbations induced by the fluctuations of the brane
nonzero valueR. which represents the maximum value Of hosition. In the longitudinal gauge, the perturbed metric
the scale factor during the cosmological evolution. In the o4

latter three subcases, cosmological expansion is thus fol-

lowed by a collapse. This situatiay>0 can be seen to be ds?=—(1-2¥)dt?+R%(1+2®) 5,;dxdx, (56)

equivalent to the supergravity models with a bulk scalar field

and an exponential superpotenfiél. It is also worth notic- and by comparing with E¢(55), one finds that

ing that whena,<0 the functionh(R) parametrizing the

metric becomes negative. In that case the coordiRabe- V=—/K' = 1 K! 5
=t ; o (K7, ¢K; (57)

comes timelike whereasbhecomes spacelike and the Killing 3

vector corresponding to translations tofs then spacelike.

The brane normal vector is then given by=(A%Br,
— VB2+B*2,0,0,0) which is a real quantity as soonrass

which gives, after using the background junction conditions
(27),

2

large enough. The rest of the analysis remains unchanged. Ve K 243 (58)
IIl. BRANE FLUCTUATIONS and
In this section, we turn to the analysis of theane fluc- 2
tuations allowed when the bulk geometry is left unperturbed d=— Fpg_ (59

The fluctuations of the brane will be described by perturbing
the embedding of the brane in the bulk spacetime, i.e. b

writing ¥he metric perturbations are thus directly proportional to the

brane fluctuatiory. We will return later to the evolution of

the Bardeen potentials. The rest of this section is devoted to
XA(xH*) = XP+ {nh, (53)  the derivation of the equation of motion that governs the

evolution of the brane fluctuation. We first consider the per-

N _ turbed junction conditions for the metric and then those for
where the bar stands for the homogeneous quantities defingge scalar field.
in the previous section. The four tangent vectors defined in
Eq. (15 are then given by A. Perturbed junction conditions for the metric

As a first step, let us evaluate the perturbed normal vector,

eﬁzgﬁ+ 5eﬁ:?;+ d,(Lnh). (54)  which can always be decomposed as
2 >0 a2 <0 onh= ant+ prel). (60)
‘ / The coefficientse and 8# can be determined by perturbing

the two equations in Eq18). They are given by
1 .
a=— EgnAancachB (61)
FIG. 2. V(R) when—6<p<0. and
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- 7 e —_ — 7 T 2
hMVBV: - gnAEEnCanAB_ gABnAa,u( gnB)' (62) 5K;;_ _ K?( 58;;_ %Séff> ) (72)
Substituting the expressiols4) and(60) in the perturbation
of the extrinsic curvature tens@t7), one obtains the expres- Inserting Eqs(68)—(70), this gives explicitly
sion ’
2

1 - — — K
5K/LV:§[2§nCanABej€,u€E)+ngB(ée(A,uav)nB oK.= 6 (20p+30P), (73
+e(#ay)6n5)+(5eA_B nc+ e’ 0en® K2
6Kf=—7R(l+W)p(9iv, (74)
eBon® )ﬁCGAB+§e 5e8nCnPicipgas].
(63) K1 .
6K} =-5 —5p5} + 577} (75
The expression with an upper index and a lower index is also 3
useful and can be obtained from the above expression b_'Y
using the relation he second equatiof66) determines, oncé¢ is known, the
velocity potentialv, except when the equation of statews
5K = h""b‘K zgilwiw, (64) =—1, in which case one gets the constraint
where the indices foK?" are raised by using the inverse - "
et =— =-1). 7
metric h?7. ¢ R re (w ) (76)

The explicit evaluation of the components of the per-
turbed brane extrinsic curvature tensor, for the mettlc ~ This implies that the perturbation reads
then yields

e , {=R(r)C(K) (77)
SKT_ (Br+B'r?) 14 B2 A’ A'B’
=4 1+B2r2 (BT )A252+ ABS up to a global translation of the brane. The functiG(k)
will be determined later.
A'B’. A" A Finally, Eq. (75 can be decomposed into a trace and a
ZEF - E+2—r g, (65 traceless part, giving respectively
. R. o 1+B7Z AR 14BA?
=§'i—ﬁr§i, (66) Erg—i_ —R'B B3R -r AR -R BZRZ
. 2.2 2
P L Gy +B%? AR +R”%) _ L A=k (78)
IR B°R AR
L1+BZ 1B | and
. . K .
—| = zA 5'-)=—5 L 79
In the longitudinal gauge, which we shall use, the compo- Rz(g" 324077 0m (79
nents of the perturbed brane energy momentum tensor read
The last equation simply gives
0S;=—dp, (68)
2 ¢
=R(1+wW)pdv, (69 Sm= 22 (80)
68' 5P5‘ + 577 (70
and shows that the anisotropic stress is intrinsically related to
where the brane fluctuation.
i i 1 k ; ; - :
omj=8m;— 55]- omy (71 B. Perturbed junction condition for the scalar field

The next step in order to establish the equations of motion
is the (traceless anisotropic stress tensor, and the perturbedor the brane fluctuations is to write down the perturbed
junction conditions for the metric, which follow from Eg. junction condition for the scalar field. The first order pertur-
(27), are given by bation of Eq.(38) yields
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[Sn"dadp+ N nPipdgd]=— k?E' 8S— k*SE"(NPIpdh) (. intrinsic brane fluctuations in the general case. Initially, we
81) started from a system of five equations, Eq@S), (74), (82),
(80) and(798), all obtained from the junction conditions, ei-
Taking into accounZ, symmetry and using the background ther of the metric or of the scalar field. These five equations
junction condition(39), its derivative along the trajectory, contain one dynamical equation, which has been expressed
and the other junction conditiof29), one finds, after some above in terms of the quantit§ (or ) and four constraints

algebra, that Eg(81) takes the form which yield respectively the energy densiy, the pressure
oP, the four-velocity potentiab and the anisotropic stress

.. |~ RF om. In contrast with the standard cosmological context
(3w—1) ﬁr§+ p E_ where one can choose beforehand the relation betw&en

and 6p, and the anisotropic stress, they are here completely

R'([B" [A” B'\. RW determined by the constraints once a solutionfas given.
“Rl% KJF B rz) g] +3p2—/.—§ This is necessary to get a configuration where the brane is
B R™ r fluctuating while the background is unaffected. Intuitively,
2 this means that the gravitational effect due to the geometrical
= _(1_30'2)) Sp (82 fluctuations of the brane must be exactly compensated the
6 distribution of matter in the brane, so that the net gravita-

tional effect due to the presence of the brane is completely
cancelled in the bulk.

s In the rest of the paper, we will specialize our study to
2:_p_ (83 specific solutions, which will simplify the expression of the

P op effective mass.

where we have introduced

c

Combining Egs(82), (78) and(73), one sees that the matter
perturbation can be eliminated to give a differential equation

that depends only og. It has the form of a wave equation |n this section we will focus on the dilatonic backgrounds

IV. PERTURBATIONS IN DILATONIC BACKGROUNDS

and reads described earlier, corresponding to exact solutions for an ex-
) ponential potential. Using the previous general result about

. R. A¢ A" A'B’ AR, the mass term\ 2 in the wave equation, we can now spe-

fr@H3W gl mt | 1~ s CTIWRRT cialize these results to the dilatonic backgrounds. We will

concentrate on the case where the background equation of

R B'R’ RR state parametew is constant. Substituting the solutighO)
+(2+3w)p? —(2+3w)— ﬁﬂt E_ 1(:¢=0. in the expressiori87), one finds that the square mass reads
(84) , R 2Vo a2 p-6a2
M= 4 (1+W) m(5+3w 6« )R

Introducing the function/ defined by
= R(1+3W)/2§ (85) —3(7+9w+ 661’2);)2}

and using the conformal time defined bydr=Rd», one

_ 2_ —4-3a?
can rewrite the wave equation in the simple form +3(1-w)(3a”~1+3w)CR ] (88)

d2
ﬁﬂkzmﬂ)zp:o, (8  Where
., 1+B?%?(R'\2
where the effective mass is given by p’= 5 (E) . (89
B
, o 1+3w[R 1+3wR? _ _
M =R*| — > §+ 5 o2 Notice that forw=—1 only theC dependent term remains.
R Using the decompositiofi= C(k)R we find that
AII AIB/ A/R/-
- — 2 k?+ M?2)C(k)=0 90
+AB2 e (2+3w) =1 ( )C(K) (90

which leads toC(k) =0 and therefore the absence of brane
. (87) fluctuations forw=—1.
In the following we will concentrate on thé=0 case.
Introducing the parameter defined in Eq(51), the squared
We have thus obtained the wave equation governing thenass is now given by

+(2+3w)p? RR'_BR 3(1+w)
w — w
P R/Z BR/
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= 4 L4
\‘\\ ’ R i 7
l \~,’ " ;i
L 1 §

91

3
M?=2(1+w)7[—ay(9+ p)RP1+a,(3— p)RP?]

-
-
—

V 3— 9+
(14w 0 (3—p) s (9+p)
2(3012_4) Rp(1+W) R(6+p)(1+w)

FIG. 4. M2 in a bouncing universe. In the left pictur@<
with —6), the top line corresponds m< —9, the middle line represents
—9<p< -6 and the bottom line displays the critical valpe=
3(3(12_4)A2 —6. The right picture shows1 2 for p>—6 : the top line corre-
o= 2—\/0/31' (92) sponds to—6<p<0, the second line from top tp=0, the third
line stands for 8 p<<3 whereas the bottom line stands for 3.

We will now treat separately the cases of positive or negative

a,, i.e. of 8, which correspond to very different behaviors. singularity leading to an instability of the brane to fluctua-
tions, i.e. the brane tends to be ripped to shreds by the pres-

ence of the singularity.

A. Bouncing branes . .
In the cases-9<p< —6, the square mass is negative for

Let us concentrate first on the case small values oR, reaches a minimum and then increases up
to positive values with increasing. However, values oR
- 2Vol3 2.0 (93  greater thand™G™+1) are irrelevant since the background
27 3,2-2 Y ' evolution bounces when reaching this maximum value. The

position of the minimum is given by
where y has the dimension of mass.

The motion can be conveniently analyzed by defining (6+p)(9+p)
=R®W*1) The equation of motiori47) yields Y= H53—p) 6<9, (97)
dy y~V2P22 b o (94) whereas the scale factor corresponding\t?=0 is given
6(1+w)\Vo—y by
Let us definen as (9+Dp)
-6 3-p)
n= T (95)

For —6<p<3, the square mass starts from negative values
and becomes positive after the critical valygwhich is less
than & only for p<—3. In other words, for casgs>— 3,
the region corresponding to positive square mass is irrel-
)=i67(1+W)J577+ 70, evant.
We can recover this qualitative analysis by studying the
(96) solutions of the wave equatidi®6), which, in terms of the
é/ariabley, reads

The scale factor is then given by the implicit relation

1+n
y 1 y
1+nf(1+n,§,2+n,5

F being the hypergeometric function. Of course the scal
factor is only determined after inverting these equations. The

motion is bounded from above by~ 6. For a brane whose ﬂ(é— )+ d_‘ﬂ ne = 29 422
scale factor increases initially, it reaches a maximal value dy? y dy 2 y v
corresponding tos before bouncing back and being irre-
deemingly attracted by the singularity locatedRat 0. It is _ y(4n+1)+5(4n+5) " (99)
interesting to notice that fop<-—6 the singularity is 16y°
reached at infinite conformal time while fpr> — 6 it takes a
finite amount of conformal time to the brane in order to reachyith
the singularity.
Let us now analyze the square mass driving the brane K2
fluctuations. We have plotted the different cases in Fig. 4. ~k2=ﬁ. (100
There is a qualitative change of behavior for the square mass 36y"(1+w)

whenp>—6. Below the critical valugp= — 6 the mass van-

ishes at the singularity wheR vanishes. This leads to an The variabley evolves between @y< 4.

oscillatory behavior of the brane fluctuation. Above that The asymptotical behavior of the perturbation near the
threshold the squared mass becomes infinitely negative at tlngularityy=0 depends om:
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Cly_1/4+62yn+5/4| n>_1’

k2 1 k? 1
~ i —__ = = 101
¥ Clcos< 5 16Iny +Czsm< 5 16In y), n 1, (101

Cicogy" 14+ @)+ Cosin(y" 1+ ), n<-—1.

Notice that forp<—6 the brane oscillates for an infinite havior at early times for ever expanding branes is exactly the
amount of conformal time before reaching the singularity.same as that found in the case of bouncing braf8=e Fig.
For p>—6, the brane stops oscillating and hits the singular6.)

ity in a finite amount of conformal time. Fop=—6 the For largeR, conversely, the dominating term 2. For
brane oscillates only for small length scales corresponding tthe background, this leads to a power-law behavior of the
k>4./5. scale factor, explicitly given by

The Bardeen potentials, given in Eq58) and (59), are

. o . 2/p(1+w)
also worth investigating. They are proportional, p
9eing. They ate prop R(m)=|5(1+w)yy , (106
T=(2+3w)D, (102
and related to the brane fluctuation according to which, in terms of the cosmic time, translates into
DocRO+HPI2LEW) (103 R( 7)o 72/(PAFW+2), (107

One thus notices the critical valye=—9, above which the As soon agp<0, one gets an accelerated expansion, similar
Bardeen potentials are enhanced, for an expanding universg, the standard four-dimensional power-law inflation, which
with respect toy. One can compute numerically the evolu- can be obtained from a scalar field with an exponential po-
tion of the perturbation, the Bardeen potential and the scaleential. Forp>0, one gets a decelerated power-law expan-
factor as a function of the conformal tintsee Fig. 5. sion. It is instructive to compare the power-law expansion for
the brane with the standard expansion law, which is given by
B. Ever expanding branes

2/3(1+w)
We now turn to the case R(7)er ' (1089
Substituting the expressiofi06) in the squared mass, one
2Vol3 220 (104  finds
a= =- .
> 304
. . . 3(3—p) 1
Using once more the variable we can rewrite the back- M2=— ——5— —. (109
ground evolution equation as p Y
d
y _<1/2>+(p/12)=i7d77. (105)

6(1+w)\y+|d|

Sincep,>p4, the asymptotic behavior at early times, i.e.
at smallR, is dominated, both for the background and for the
perturbations, by th&kP: term (since p,>p,), which does
not depend on the sign af,. Therefore, the asymptotic be-

N\

p>3

I
)
i
I
T
!
[}
1

FIG. 6. M2 in an inflationary universe. The picture<—6
depicts three different casgs< —9 (bumpy curve, —9<p<-6

FIG. 5. Perturbatiorismall oscillating curve in the left figure, (fast-decreasing cury@ndp= —6 (slow-decreasing curyeln the
slowest growing curve in the right pictyreBardeen potentidlarge  second picture, where 6<p< —3, the decreasing lines illustrate
oscillations in the left picture and rapidly growing curve in the right —6<p<0, the slow-increasing line stands fpr=0 and the fast-
picture and scale factofdecreasing curvesluring the contracting increasing line stands for<Op=<3. The third picture represenfs
phase of a bouncing universe, as functions of the conformal time.>3.
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Note that, in the case of power-law inflation, one can

derive a second-order differential equation of the fdB6)

for a canonical variable which is a linear combination of the m3
scalar field perturbation and of thiecalay metric perturba- -

tion. For a power-lana~t9, one would find

q(29g-1) 1

M2 =— . 110
eff (q_l)z ;2 ( )

It is easy to check that our expression f&? does not

PHYSICAL REVIEW D 67, 104022 (2003

n

FIG. 7. Left picture: Perturbation as a function lof;. For p
<0, the perturbation always diverges near the singularity. Right
picture: perturbationlcurve with a minimuny Bardeen potential

coincide with theM 2, deduced from power-law inflation, (decreasing curyeand scale factofincreasing curvefor p>0.

for the same evolution of the background. With power-law

inflation, the spectrum for the Bardeen poterigals given
by

P~k a1, (111

which tends to a scale-invariant spectrum for large pogver

In our case, we obtain that the fluctuations are

y=\=nlaHP(—kn)+a,HP(—kn)] (112
where
_p-6
V= 2—p (113)

If one assumes thaf is given in the asymptotic pasi
— —o as the usual vacuum solution in inflation, i.e.

ence of anisotropic stress on the brane. For a fixed equation
of state for the matter content on the brane, for instance cold
dark matter, we find that the two Bardeen potentials are pro-
portional. As such this implies that a single gauge invariant

observabled characterizes the brane fluctuations.

The presence of a scalar field in the bulk and its coupling
to matter living on the brane leads to possible violations of
the equivalence principle. This puts constraints on the pa-
rameters of the model, requiring that the coupling constant
&' is small enough, and should also imply that the brane is
far enough from bulk singularitig3,24]. We have left this
conspicuous issue for further work.

Our approach differs from the projective appro@é}b] in
as much as we have not considered the perturbed Einstein
equations on the brane. This allows us to free ourselves from

the thorny problem of the projected Weyl tensor on the
brane.

We have focused on the motion and fluctuations of branes
in a particular class of dilatonic backgrounds. These back-
then this means that,=0 and the behavior on long wave- grounds correspond to an exponential potential and an expo-
lengths is given by nential coupling of the bulk scalar field to the brane. The
motion of the brane is either of the bouncing type or the
ever-expanding form. In the bouncing case we find that the
brane cannot escape towards infinity, it is bound to a singu-
larity which is either null or timelike. In the timelike case,
i.e. when it appears at a finite distance in conformal coordi-
nates, the fluctuations of the brane are unbounded implying
that the brane is ripped by the strong gravity around the

Contrary to the four dimensional inflationary case, the specsingularity. In the null case, i.e. when the singularity is at
trum of the Bardeen potentiaj is not constant outside thé:onformal |nf|n|ty, the fluctuations oscillate in a bounded
horizon. Moreover the spectrum is red and far from beingManner while converging to the singularity. The bouncing
scale-invariant. Hence, despite an inflationary phase on thgase is equivalent to the behavior of a brane in a supergravity
brane, the intrinsic fluctuations of a brane in a dilatonic backPackground. As we only consider intrinsic fluctuations of the

ground are not a candidate for the generation of primordiaPrane in an unperturbed bulk, this corresponds to a situation
fluctuations.(See Fig. 7. where supersymmetry is preserved by the bulk while broken

by the brane motion. Therefore the bouncing brane fluctua-
tions correspond to fluctuations of a non-BPS brane embed-
ded in a supergravity background.

We have investigated the fluctuations of a moving brane In the ever-expanding scenario, we can distinguish two
in a dilatonic background. These fluctuations are representgubssibilities. The brane can escape to infinity with a scale
by a scalar mode on the brane corresponding to ripples alonfgctor which is either expanding in a decelerating manner or
the normal direction to the brane. As the brane fluctuates, iiccelerating, i.e. corresponding to an inflationary era of the
induces metric fluctuations, in particular we have found thapower law type. In the decelerating case, the brane eventu-
the induced metric appears naturally in the longitudinalally oscillates forever. In the inflationary case, the brane is
gauge with two unequal Bardeen potentidisand . The  such that any fluctuation of a giving length scales oscillates
fact that these potentials are not equal springs from the presmtil it freezes in while passing through the horizon. Of

1
P~ We—"“?, Kl 7|>1, (114

(//,\,(_ 77)1/27 VKTV~ R(3/2)(l+w)kf v’ k| ,’]|<1 (115)

Using the relation betweei and the Bardeen potential, one
thus finds that the spectrum fdr is given by

P g~ RIOTPHILHWI(L W) —2v (116

V. CONCLUSION
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course this scenario is reminiscent of four-dimensional inflaan interesting observation as it leads to a new twist in the
tion modelled with a scalar field. Here the features of infla-building of inflationary models. One might hope that alter-
tion, i.e. the relationship between the power spectrum andative scenarios to four-dimensional inflation may emerge
the scale factor, differ from the four dimensional case. This ifrom five dimensional brane models and their fluctuations.
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