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Fluctuating brane in a dilatonic bulk
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We consider a cosmological brane moving in a static five-dimensional bulk spacetime endowed with a scalar
field whose potential is exponential. After studying various cosmological behaviors for the homogeneous
background, we investigate the fluctuations of the brane that leave spacetime unaffected. A single mode
embodies these fluctuations and obeys a wave equation which we study for bouncing and ever-expanding
branes.
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I. INTRODUCTION

In the past few years, a lot of effort has been devoted
the investigation of the braneworld picture, whereby our
cessible universe is a three-dimensional submanifold,
three-brane, embedded in a higher-dimensional manifold

The cosmological consequences of this idea are of
ticular interest since new effects can be anticipated in
very early universe where the physical conditions are v
different from those of the present universe. Although ma
scenarios exist in the literature, most models of brane c
mology focus, like the present work, on aself-gravitating
brane universe embedded in afive-dimensionalbulk space-
time, so that the brane world sheet is of codimension one
subject to the standard junction conditions for a thin wall
general relativity. As usually assumed, we will take aZ2
symmetric bulk, which means that the two sides of the br
are mirror symmetric with respect to the brane.

The simplest models of brane cosmology~see@1# for a
recent review! assume an empty bulk with a cosmologic
constant. The latter~with a negative sign! is necessary in
order to recover a standard cosmological evolution at
times and in particular to account, via nucleosynthesis,
the abundances of light elements. In the early universe, h
ever, the evolution deviates from standard cosmology.

Although very useful for some specific features of bra
cosmology, an empty bulk might be too naive for a realis
description of the early universe. For example, in the fi
dimensional version of M theory, a scalar field, correspo
ing to the volume of the Calabi-Yau compactification ma
fold, is present in the five-dimensional bulk@2#. It is thus
relevant to investigate brane cosmology with a bulk sca
field @3–15#, which might be also useful, in the case of tw
brane models, to stabilize the radion@16#.

In the present work, we consider a five-dimension
model where the bulk contains a scalar field with an ex
nential potential and a three-brane with a cosmological p
fect fluid conformally coupled, via the bulk scalar field,
the induced metric. We restrict our attention to very spec
bulk spacetimes with the usual cosmological symmetries,
homogeneity and isotropy along the three ordinary spa
dimensions, that are alsostatic in the two-dimensional sub
0556-2821/2003/67~10!/104022~11!/$20.00 67 1040
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spaces spanned by time and the extra dimension. We
statichere in a generalized sense, where the orbits assoc
with a Killing vector can be not only timelike but also spac
like.

We first assume that the brane is perfectly homogene
and study the corresponding background cosmologies a
ciated with the motion of the brane in such static bulk spa
times. We thus generalize the results of Chamblin and R
@3#, restricted to the case of a domain wall, to any equation
state for the brane matter.

We then allow the brane to fluctuate but we impose t
these fluctuations are such thatthe bulk spacetime is lef
unperturbed. In other words, we investigate only the fluctu
tion mode, which one can call theintrinsic mode, that is not
coupled to the gravitational radiation, i.e. to the bulk pert
bations. We show that this mode obeys a wave equat
which can be written in a familiar form. We analyze th
evolution of the brane fluctuation depending on the vario
background cosmologies. In some sense, our approac
reminiscent of former studies@17,18# ~see also@19# for re-
cent developments! of perturbed test branes where the bra
deformation is described by a scalar field obeying a Kle
Gordon equation. In our case the self-gravity is included
adjusting adequately the matter perturbations on the bran
similar analysis has also been carried out in@20# within the
context of mirage cosmology where the gravitational ba
reaction is neglected.

The plan of our paper is the following. In the next sectio
we present the framework and consider some backgro
homogeneous solutions. In the third section, we derive
equation of motion for the brane fluctuations. In Sec. IV, w
analyze this wave equation for the background cosmolog
discussed in Sec. II. Finally, we conclude in the last secti

II. THE BACKGROUND CONFIGURATION

We consider five-dimensionalstatic spacetimes with the
usual cosmological symmetries~homogeneity and isotropy!
along the three ordinary spatial dimensions. The metric
be written in the form

ds25gABdxAdxB52A~r !2dt21B~r !2dr21R~r !2dS2,
~1!
©2003 The American Physical Society22-1
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where dS2 is the metric for maximally symmetric three
dimensional spaces. For simplicity, we will consider only t
flat case. With our parametrization~1! of the metric, we im-
plicitly assume that the Killing vector]/]t is timelike and
thus that the spacetime is static in the strictest sense.
though the calculations below are given explicitly in th
context, it is not difficult to show that the end results will st
hold if the coordinatet becomes spacelike, i.e. ifA2 andB2

are negative.
We assume that the bulk contains a scalar fieldf(r ) with

a potentialV(f). The five-dimensional action for thebulk is
given by an expression of the form

S5
1

k2E d5xA2gF1

2
R2

1

2
]Af]Af2V~f!G , ~2!

where we have chosen the normalization so that the sc
field is dimensionless and the potential scales like a squ
mass.

The bulk Einstein’s equations, derived from this actio
read

GAB5]Af]Bf2gABS 1

2
]Cf]Cf1V~f! D ~3!

or in terms of the Ricci scalar

Rab5]af]bf1
2

3
gabV~f!. ~4!

Explicitly, they take the form

A9

A
2

A8B8

AB
13

A8R8

AR
52

2

3
B2V ~5!

R9

R
12

R82

R2
1

A8R8

AR
2

B8R8

BR
52

2

3
B2V ~6!

A9

A
13

R9

R
2

A8B8

AB
23

B8R8

BR
52

2

3
B2V2f82 ~7!

where a prime denotes a derivative with respect tor. Simi-
larly the bulk scalar field obeys the Klein-Gordon equatio

f91S A8

A
13

R8

R
2

B8

B3D f85
]V

]f
. ~8!

These equations can be solved for specific potentialsV(f),
in particular for exponential potentials as summarized bel

A. Explicit solutions

In the case of a scalar field potential of the form

V~f!5V0e2af, ~9!

there exists a simple class of static solutions@3,21#. The full
set of static solutions is given in@14#, but we will restrict our
study to the class of solutions described by the metric
10402
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ds252h~R!dT21
R6a2

h~R!
dR21R2dxW2, ~10!

with

h~R!52
V0/6

12~3a2/4!
R22CR3a222, ~11!

whereC is an arbitrary constant, and the scalar field config
ration

f523a ln~R!. ~12!

Note that, in the limita50, the scalar field vanishes whil
its potential reduces to an effective cosmological const
and one recovers the well-known Sch-~A!dS five-
dimensional metric. The metric~10! can be expressed in
slightly different form, as in@3#, namely.

ds252U~r !dt21
dr2

U~r !
1R2~r !dS2, ~13!

after the change of coordinate

r 5R113a2
~14!

and a trivial redefinition of time.

B. Moving brane

Let us now consider the presence of a three-brane mo
in the static bulk background~1!. Although we are interested
in this section, only in the motion of the homogeneous bra
we already present the general formalism, following@22#,
which we will use later for the study of brane fluctuations

We define the trajectory of the brane in terms of its bu
coordinatesXA(xm) given as functions of the four paramete
xm which can be interpreted as internal coordinates of
brane world sheet. One can then define four independ
vectors

em
A5

]XA

]xm , ~15!

which are tangent to the brane. The induced metric on
brane is simply given by

hmn5gABem
Aen

B , ~16!

whereas the extrinsic curvature tensor is given by

Kmn5em
Aen

B¹AnB , ~17!

wherenA is the unit vector normal to the brane, defined~up
to a sign ambiguity! by the conditions

gABnAnB51, nAem
A50. ~18!

It is also useful to expressKmn in terms of only partial de-
rivatives, which reads
2-2
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Kmn5
1

2
@gAB~em

A]nnB1en
A]mnB!1em

Aen
BnD]DgAB#.

~19!

Let us now apply this formalism to the homogeneous bra
which can be parametrized by

T5T~t!, r 5r ~t!, Xi5xi , ~20!

where we take for the parametert the proper time, i.e. such
that

htt521. ~21!

The induced metric is thus

ds252dt21R2
„r ~t!…dS2, ~22!

which shows that the geometry inside the brane is FLR
~Friedmann-Lemaıˆtre-Robertson-Walker! with the scale fac-
tor given by the radial coordinateR of the brane. The cos
mological evolution within the brane is thus induced by t
motion of the brane in the static background. With the p
rametrization~20!, the four independent tangent vectors d
fined in Eq.~15! take the specific form

et
A5~ Ṫ, ṙ ,0,0,0!, ei

A5~0,0,d i
A!, ~23!

where a dot stands for a derivative with respect tot while
the components of the normal vector are given by

nA5~ABṙ,2BA11B2ṙ 2,0,0,0!. ~24!

Finally, the components of the extrinsic curvature tensor
given by

Ki j 52
A11B2ṙ 2

B
RR8d i j , ~25!

Ktt5
1

AB

d

dr
~AA11B2ṙ 2!. ~26!

AssumingZ2 symmetry about the brane, the junction con
tions for the metric read

Kmn52
k2

2 S Smn2
1

3
ShmnD , ~27!

whereSmn is the energy-momentum tensor of brane ma
andS[Smnhmn its trace. Because the brane is homogene
and isotropic,Smn is necessarily of the perfect fluid form, i.e

Sn
m5Diag~2r,P,P,P!, ~28!

where the energy densityr and the pressureP are functions
of time only. Substituting the above expressions~25! and
~26! for the components of the extrinsic curvature tensor, o
finds the following two relations:

A11B2ṙ 2

B

R8

R
5

k2

6
r, ~29!
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AB

d

dr
~AA11B2ṙ 2!52

k2

6
~2r13P!. ~30!

Using the first junction condition~29!, the second expressio
~30! can be reexpressed explicitly as a conservationlike eq
tion for the energy densityr:

ṙ1
Ṙ

R
~213w1 f ~r !!r50, ~31!

whereṘ[R8 ṙ and

f ~r !5
1

AB

d

dr S AB
R

R8
D . ~32!

Using Einstein’s equations~5!–~7!, this functionf (r ) can be
reexpressed in terms of the scalar field as

f ~r !511
1

3
f82S R

R8
D 2

~33!

and the conservation equation takes the form of

dr

dt
13

Ṙ

R
~r1P!52

1

3
rḟ2

R

Ṙ
. ~34!

As we will see in the next subsection, the use of the junct
condition for the scalar will enable us to reexpress once m
this conservation equation in another form.

C. Junction condition for the scalar field

In addition to the junction conditions for the metric, w
must also ensure that the junction condition for the b
scalar field is also satisfied. The latter depends on the spe
coupling betweenf and the brane matter. In order to b
more explicit, we now introduce the action for the brane

Sbrane5E
brane

d4xLm@wm ;h̃mn#, ~35!

where we assume the metrich̃mn to be conformally related to
the induced metrichmn , i.e.

h̃mn5e2j(f)hmn . ~36!

Variation of the total actionS5Sbulk1Sbrane with respect to
f yields the equation of motion for the scalar field, which
the Klein-Gordon equation~8! with the addition of a distri-
butional source term since the scalar field is coupled to
brane viah̃mn . More specifically, the variation of the bran
action with respect to the scalar field yields

dSbrane

df
5

dLm

dh̃mn

j8~f!e2j(f)hmn , ~37!
2-3
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where we have used the fact that the brane action depend
the scalar field only via the metrich̃mn . Since the variation
of the action with respect to the metric is proportional to t
energy-momentum tensor, the above expression dep
only on the trace of the energy-momentum tensor. An al
native way to deal with the distributional source term in t
Klein-Gordon equation is to reinterpret it as a boundary c
dition for the scalar field, or rather a junction condition at t
brane location which takes the form

@nA]Af#5k2j8~r23P!, ~38!

where j8[dj/df and one recognizes the trace of t
energy-momentum tensor for a scalar field. Taking into
count theZ2 symmetry and the explicit form for the norma
vector ~24!, one ends up with the condition

f85
k2

2

B

A11B2ṙ 2
j8~f!~2r13P!, ~39!

where all terms are evaluated at the brane location. Mo
over, using the first junction condition~29!, this relation can
be reduced to

f853j8~f!
R8

R
~3w21!. ~40!

This junction condition for the scalar field can be substitu
in the ~non!conservation equation~31! which then reads

ṙ13H~r1p!5~123w!j8rḟ. ~41!

This relates the energy loss, from the point of view of t
brane, to the transverse momentum density, from the poin
view of the bulk. In fact, this nonstandard cosmological co
servation equation can also be rewritten in the standard f

dr̃

d t̃
13H̃~ r̃1 p̃!50 ~42!

if one introduces the energy densityr̃ and pressureP̃
5wr̃, as well as the scale factorã, defined with respect to
the metrich̃mn , which in other contexts would be referred
as theJordan frame.

D. Brane cosmological evolution

In order to work with an explicit example, we turn aga
to the dilatonic bulk solutions given in Eqs.~10!–~12! and
try to implement a moving brane in these backgrounds.

Taking the square of the junction condition~29!, one im-
mediately obtains the generalized Friedmann equation,

H25
k4

36
r22

h~R!

R2(113a2)

5 r̂21
V0/6

12~3a2/4!
R26a2

1CR2423a2
, ~43!
10402
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where we have introduced the notation

r̂[
k2

6
r. ~44!

For a50, Eq. ~43! reduces to the well-known brane Fried
mann equation with the characteristicr2 term on the right
hand side.

As for the scalar field junction condition~40!, the radial
dependence off given in Eq. ~12! imposes the following
constraint between the equation of state ratiow anda:

3w2152
a

j8
. ~45!

If we now assume thatw is constant, this constraint implie
that the coupling is linear, i.e.j(f)5j1f, in which case the
conservation equation~41! can be explicitly integrated to
yield

r5r1R23(w111a2), ~46!

wherer1 is a constant. One can then substitute this relat
into the Friedmann equation~43! to obtain

Ṙ21V~R!50, ~47!

with the potential

V~R![2a1Rp11a2Rp21a3Rp3, ~48!

where the coefficients are given explicitly by

a15 r̂1
2.0, a252

V0/6

12~3a2/4!
, a352C, ~49!

and the powers by

p152426w26a2, p25226a2, p352223a2.

~50!

Equation~47! is analogous to the total energy~which van-
ishes here! of a particle moving in a one-dimensional pote
tial V(R). The case of a brane domain wall,w521, was
analyzed in@3#. In this case,p15p2 and the potential is the
sum of only two terms. Here, however, we have obtained
equation of motion valid for any equation of state of the fo
P5wr, with w constant. In order to simplify the potentia
let us consider the situationa352C50. It is not difficult,
from the analysis of the two terms left in the potentialV(R),
to see that the potential hassix distinct shapes, depending o
the sign ofa2 and the value ofa2. To classify the various
cases, it is convenient to introduce the parameterp defined,
for wÞ21, by

6a2521p~11w! ~51!

so that the powersp1 andp2 simply read

p152~61p!~11w!, p252p~11w!. ~52!
2-4
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The various cases are then:
p,26 ~which implies w,22/3 and 0,p1,p2) ~see

Fig. 1!;
26,p,0 ~which impliesp1,0,p2) ~see Fig. 2!;
p.0 ~which impliesp1,p2,0) ~see Fig. 3!.

In the three cases corresponding toa2,0, the evolution of
the scale factor is monotonous because the potential is
ways negative, whereas fora2.0, the potential vanishes at
nonzero valueRc which represents the maximum value
the scale factor during the cosmological evolution. In t
latter three subcases, cosmological expansion is thus
lowed by a collapse. This situationa2.0 can be seen to b
equivalent to the supergravity models with a bulk scalar fi
and an exponential superpotential@6#. It is also worth notic-
ing that whena2,0 the functionh(R) parametrizing the
metric becomes negative. In that case the coordinateR be-
comes timelike whereast becomes spacelike and the Killin
vector corresponding to translations oft is then spacelike.
The brane normal vector is then given byna5(AA2B2ṙ ,

2AB21B4ṙ 2,0,0,0) which is a real quantity as soon asṙ 2 is
large enough. The rest of the analysis remains unchange

III. BRANE FLUCTUATIONS

In this section, we turn to the analysis of thebrane fluc-
tuations allowed when the bulk geometry is left unperturb.
The fluctuations of the brane will be described by perturb
the embedding of the brane in the bulk spacetime, i.e.
writing

XA~xm!5X̄A1zn̄A, ~53!

where the bar stands for the homogeneous quantities de
in the previous section. The four tangent vectors defined
Eq. ~15! are then given by

em
A5ēm

A1dem
A5ēm

A1]m~zn̄A!. ~54!

FIG. 2. V(R) when26,p,0.

FIG. 1. V(R) whenp,26.
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Substituting in the definition of the induced metric~16!, and
being careful to evaluate the~unchanged! bulk metricgAB at
the perturbedbrane location, one finds

hmn5h̄mn12zK̄mn . ~55!

Using this expression, one can easily make the connec
with the Bardeen potentials measuring the gauge invar
metric perturbations induced by the fluctuations of the bra
position. In the longitudinal gauge, the perturbed met
reads

ds252~122C!dt21R2~112F!d i j dxidxj , ~56!

and by comparing with Eq.~55!, one finds that

C52zK̄t
t , F5

1

3
zK̄ i

i ~57!

which gives, after using the background junction conditio
~27!,

C52
k2

6
~213w!rz ~58!

and

F52
k2

6
rz. ~59!

The metric perturbations are thus directly proportional to
brane fluctuationz. We will return later to the evolution of
the Bardeen potentials. The rest of this section is devote
the derivation of the equation of motion that governs t
evolution of the brane fluctuation. We first consider the p
turbed junction conditions for the metric and then those
the scalar field.

A. Perturbed junction conditions for the metric

As a first step, let us evaluate the perturbed normal vec
which can always be decomposed as

dnA5an̄A1bmēm
A . ~60!

The coefficientsa andbm can be determined by perturbin
the two equations in Eq.~18!. They are given by

a52
1

2
zn̄An̄Bn̄C]CḡAB ~61!

and

FIG. 3. V(R) whenp.0.
2-5
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h̄mnbn52zn̄Aēm
Bn̄C]CḡAB2ḡABn̄A]m~zn̄B!. ~62!

Substituting the expressions~54! and~60! in the perturbation
of the extrinsic curvature tensor~17!, one obtains the expres
sion

dKmn5
1

2
@2zn̄C]CḡABē(m

A ēn)
B 12ḡAB~de(m

A ]n)n̄
B

1ē(m
A ]n)dnB!1~dem

Aēn
Bn̄C1ēm

Aden
Bn̄C

1ēm
Aēn

BdnC!]CḡAB1zēm
Aēn

Bn̄Cn̄D]C]DḡAB#.

~63!

The expression with an upper index and a lower index is a
useful and can be obtained from the above expression
using the relation

dKm
n 5h̄nsdKsm22zK̄msK̄sn, ~64!

where the indices forK̄sn are raised by using the invers
metric h̄rs.

The explicit evaluation of the components of the p
turbed brane extrinsic curvature tensor, for the metric~1!,
then yields

dKt
t5 z̈2F ~Br̈1B8 ṙ 2!2

11B2ṙ 2
1~11B2ṙ 2!

A82

A2B2
1

A8B8

AB3

12
A8B8

AB
ṙ 22

A9

AB2
12

A8

A
r̈ Gz, ~65!

dKi
t5 ż ,i2

R8

R
ṙ z ,i , ~66!

dK j
i 5FR8

R
ṙ ż1S 2R8B8

11B2ṙ 2

B3R
2 ṙ 2

A8R8

AR

2R82
11B2ṙ 2

B2R2 1R9
11B2ṙ 2

B2R
D zGd j

i 2
z , j

,i

R2
. ~67!

In the longitudinal gauge, which we shall use, the com
nents of the perturbed brane energy momentum tensor r

dSt
t52dr, ~68!

dSi
t5R~11w!r] iv, ~69!

dSj
i 5dPd j

i 1dp j
i , ~70!

where

dp j
i 5dp , j

,i 2
1

3
d j

i dp ,k
,k ~71!

is the ~traceless! anisotropic stress tensor, and the perturb
junction conditions for the metric, which follow from Eq
~27!, are given by
10402
o
by
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-
d

d

dKn
m52

k2

2 S dSn
m2

dS

3
dn

mD . ~72!

Inserting Eqs.~68!–~70!, this gives explicitly

dKt
t5

k2

6
~2dr13dP!, ~73!

dKi
t52

k2

2
R~11w!r] iv, ~74!

dK j
i 52

k2

2 S 1

3
drd j

i 1dp j
i D . ~75!

The second equation~66! determines, oncez is known, the
velocity potentialv, except when the equation of state isw
521, in which case one gets the constraint

ż5
R8

R
ṙ z ~w521!. ~76!

This implies that the perturbation reads

z5R~t!C~k! ~77!

up to a global translation of the brane. The functionC(k)
will be determined later.

Finally, Eq. ~75! can be decomposed into a trace and
traceless part, giving respectively

R8

R
ṙ ż1S 2R8B8

11B2ṙ 2

B3R
2 ṙ 2

A8R8

AR
2R82

11B2ṙ 2

B2R2

1R9
11B2ṙ 2

B2R
D z2

1

3R2 Dz52
k2

6
dr ~78!

and

1

R2 S z , j
,i 2

1

3
Dzd j

i D5
k2

2
dp j

i . ~79!

The last equation simply gives

dp5
2

k2

z

R2
~80!

and shows that the anisotropic stress is intrinsically relate
the brane fluctuation.

B. Perturbed junction condition for the scalar field

The next step in order to establish the equations of mo
for the brane fluctuations is to write down the perturb
junction condition for the scalar field. The first order pertu
bation of Eq.~38! yields
2-6
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@dnA]Af1znAnB]A]Bf#52k2j8dS2k2Sj9~nA]Af!z.

~81!

Taking into accountZ2 symmetry and using the backgroun
junction condition~39!, its derivative along the trajectory
and the other junction condition~29!, one finds, after some
algebra, that Eq.~81! takes the form

~3w21!H R8

R
ṙ ż1F r̂2S RR9

R82
21D

2
R8

R S B8

B3
1S A8

A
1

B8

B D ṙ 2D GzJ 13r̂2
R

R8

ẇ

ṙ
z

5
k2

6
~123cp

2!dr ~82!

where we have introduced

cp
25

dp

dr
. ~83!

Combining Eqs.~82!, ~78! and~73!, one sees that the matte
perturbation can be eliminated to give a differential equat
that depends only onz. It has the form of a wave equatio
and reads

z̈1~213w!
Ṙ

R
ż2

Dz

R21H A9

AB2
2

A8B8

AB3
2~213w!

A8R8

AR
ṙ 2

1~213w!r̂2F2~213w!2
B8R8

BR
1

RR9

R82
21G J z50.

~84!

Introducing the functionc defined by

c5R(113w)/2z ~85!

and using the conformal timeh defined bydt5Rdh, one
can rewrite the wave equation in the simple form

d2c

dh2 1~k21M 2!c50, ~86!

where the effective mass is given by

M 25R2F2
113w

2 S R̈

R
1

113w

2

Ṙ2

R2D
1

A9

AB2
2

A8B8

AB3
2~213w!

A8R8

AR
ṙ 2

1~213w!r̂2S RR9

R82
2

B8R

BR8
23~11w!D G . ~87!

We have thus obtained the wave equation governing
10402
n

e

intrinsic brane fluctuations in the general case. Initially,
started from a system of five equations, Eqs.~73!, ~74!, ~82!,
~80! and ~78!, all obtained from the junction conditions, e
ther of the metric or of the scalar field. These five equatio
contain one dynamical equation, which has been expres
above in terms of the quantityz ~or c) and four constraints
which yield respectively the energy densitydr, the pressure
dP, the four-velocity potentialv and the anisotropic stres
dp. In contrast with the standard cosmological conte
where one can choose beforehand the relation betweendP
anddr, and the anisotropic stress, they are here comple
determined by the constraints once a solution forz is given.
This is necessary to get a configuration where the bran
fluctuating while the background is unaffected. Intuitive
this means that the gravitational effect due to the geometr
fluctuations of the brane must be exactly compensated
distribution of matter in the brane, so that the net gravi
tional effect due to the presence of the brane is comple
cancelled in the bulk.

In the rest of the paper, we will specialize our study
specific solutions, which will simplify the expression of th
effective mass.

IV. PERTURBATIONS IN DILATONIC BACKGROUNDS

In this section we will focus on the dilatonic backgroun
described earlier, corresponding to exact solutions for an
ponential potential. Using the previous general result ab
the mass termM 2 in the wave equation, we can now sp
cialize these results to the dilatonic backgrounds. We w
concentrate on the case where the background equatio
state parameterw is constant. Substituting the solution~10!
in the expression~87!, one finds that the square mass rea

M 25
R2

4 H ~11w!F 2V0

3a224
~513w26a2!R26a2

23~719w16a2!r̂2G
13~12w!~3a22113w!CR2423a2J ~88!

where

r̂25
11B2ṙ 2

B2 S R8

R D 2

. ~89!

Notice that forw521 only theC dependent term remains
Using the decompositionz5C(k)R we find that

~k21M 2!C~k!50 ~90!

which leads toC(k)50 and therefore the absence of bra
fluctuations forw521.

In the following we will concentrate on theC50 case.
Introducing the parameterp defined in Eq.~51!, the squared
mass is now given by
2-7
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M 25
3

4
~11w!2@2a1~91p!Rp11a2~32p!Rp2#

5~11w!2
V0

2~3a224!
F ~32p!

Rp(11w)
2d

~91p!

R(61p)(11w)G ,

~91!

with

d5
3~3a224!

2V0
r̂1

2 . ~92!

We will now treat separately the cases of positive or nega
a2, i.e. of d, which correspond to very different behaviors

A. Bouncing branes

Let us concentrate first on the case

a2[
2V0/3

3a224
5g2.0, ~93!

whereg has the dimension of mass.
The motion can be conveniently analyzed by definingy

5R6(w11). The equation of motion~47! yields

dy

6~11w!Ad2y
y21/21p/1256gdh. ~94!

Let us definen as

n5
p26

12
. ~95!

The scale factor is then given by the implicit relation

y11n

11n
FS 11n,

1

2
,21n,

y

d D566g~11w!Adh1h0 ,

~96!

F being the hypergeometric function. Of course the sc
factor is only determined after inverting these equations. T
motion is bounded from above byy5d. For a brane whose
scale factor increases initially, it reaches a maximal va
corresponding tod before bouncing back and being irre
deemingly attracted by the singularity located atR50. It is
interesting to notice that forp<26 the singularity is
reached at infinite conformal time while forp.26 it takes a
finite amount of conformal time to the brane in order to rea
the singularity.

Let us now analyze the square mass driving the br
fluctuations. We have plotted the different cases in Fig
There is a qualitative change of behavior for the square m
whenp.26. Below the critical valuep526 the mass van-
ishes at the singularity whenR vanishes. This leads to a
oscillatory behavior of the brane fluctuation. Above th
threshold the squared mass becomes infinitely negative a
10402
e

le
e

e

h
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ss

t
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singularity leading to an instability of the brane to fluctu
tions, i.e. the brane tends to be ripped to shreds by the p
ence of the singularity.

In the cases29,p,26, the square mass is negative f
small values ofR, reaches a minimum and then increases
to positive values with increasingR. However, values ofR
greater thand1/„6(w11)… are irrelevant since the backgroun
evolution bounces when reaching this maximum value. T
position of the minimum is given by

ym5
~61p!~91p!

p~32p!
d,d, ~97!

whereas the scale factor corresponding toM 250 is given
by

y05
~91p!

~32p!
d. ~98!

For 26,p,3, the square mass starts from negative val
and becomes positive after the critical valuey0 which is less
than d only for p,23. In other words, for casesp.23,
the region corresponding to positive square mass is ir
evant.

We can recover this qualitative analysis by studying
solutions of the wave equation~86!, which, in terms of the
variabley, reads

d2c

dy2 ~d2y!1
dc

dy S n2
1

2
2

nd

y D1y2nk̃2c

5
y~4n11!1d~4n15!

16y2 c ~99!

with

k̃ 25
k2

36g2~11w!2 . ~100!

The variabley evolves between 0,y,d.
The asymptotical behavior of the perturbation near

singularityy50 depends onn:

FIG. 4. M 2 in a bouncing universe. In the left picture (p<
26), the top line corresponds top<29, the middle line represent
29,p,26 and the bottom line displays the critical valuep5
26. The right picture showsM 2 for p.26 : the top line corre-
sponds to26,p,0, the second line from top top50, the third
line stands for 0,p,3 whereas the bottom line stands forp>3.
2-8



c;

C 1y21/41C 2yn15/4, n.21,

C1cosSAk̃2

2
1

ln yD 1C2sinSAk̃2

2
1

ln yD , n521, ~101!
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Notice that forp,26 the brane oscillates for an infinit
amount of conformal time before reaching the singular
For p.26, the brane stops oscillating and hits the singu
ity in a finite amount of conformal time. Forp526 the
brane oscillates only for small length scales correspondin
k̃.4Ad.

The Bardeen potentials, given in Eqs.~58! and ~59!, are
also worth investigating. They are proportional,

C5~213w!F, ~102!

and related to the brane fluctuation according to

F}R(91p)/2(11w)c. ~103!

One thus notices the critical valuep529, above which the
Bardeen potentials are enhanced, for an expanding univ
with respect toc. One can compute numerically the evol
tion of the perturbation, the Bardeen potential and the sc
factor as a function of the conformal time~see Fig. 5!.

B. Ever expanding branes

We now turn to the case

a2[
2V0/3

3a224
52g2,0. ~104!

Using once more they variable we can rewrite the back
ground evolution equation as

dy

6~11w!Ay1udu
y2~1/2!1~p/12!56gdh. ~105!

Sincep2.p1, the asymptotic behavior at early times, i.
at smallR, is dominated, both for the background and for t
perturbations, by theRp1 term ~since p2.p1), which does
not depend on the sign ofa2. Therefore, the asymptotic be

FIG. 5. Perturbation~small oscillating curve in the left figure
slowest growing curve in the right picture!, Bardeen potential~large
oscillations in the left picture and rapidly growing curve in the rig
picture! and scale factor~decreasing curves! during the contracting
phase of a bouncing universe, as functions of the conformal tim
10402
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havior at early times for ever expanding branes is exactly
same as that found in the case of bouncing branes.~See Fig.
6.!

For largeR, conversely, the dominating term isRp2. For
the background, this leads to a power-law behavior of
scale factor, explicitly given by

R~h!.Fp

2
~11w!ghG2/p(11w)

, ~106!

which, in terms of the cosmic time, translates into

R~t!}t2/„p(11w)12…. ~107!

As soon asp,0, one gets an accelerated expansion, sim
to the standard four-dimensional power-law inflation, whi
can be obtained from a scalar field with an exponential
tential. Forp.0, one gets a decelerated power-law expa
sion. It is instructive to compare the power-law expansion
the brane with the standard expansion law, which is given

R~t!}t2/3(11w). ~108!

Substituting the expression~106! in the squared mass, on
finds

M 252
3~32p!

p2

1

h2 . ~109!

.

FIG. 6. M 2 in an inflationary universe. The picturep<26
depicts three different cases:p,29 ~bumpy curve!, 29<p,26
~fast-decreasing curve! andp526 ~slow-decreasing curve!. In the
second picture, where26,p<23, the decreasing lines illustrat
26,p,0, the slow-increasing line stands forp50 and the fast-
increasing line stands for 0,p<3. The third picture representsp
.3.
2-9
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Note that, in the case of power-law inflation, one c
derive a second-order differential equation of the form~86!
for a canonical variable which is a linear combination of t
scalar field perturbation and of the~scalar! metric perturba-
tion. For a power-lawa;tq, one would find

M e f f
2 52

q~2q21!

~q21!2

1

h2 . ~110!

It is easy to check that our expression forM 2 does not
coincide with theM e f f

2 deduced from power-law inflation
for the same evolution of the background. With power-la
inflation, the spectrum for the Bardeen potential~s! is given
by

P;k22/(q21), ~111!

which tends to a scale-invariant spectrum for large poweq.
In our case, we obtain that the fluctuations are

c5A2h@a1Hn
(1)~2kh!1a2Hn

(2)~2kh!# ~112!

where

n5
p26

2p
. ~113!

If one assumes thatc is given in the asymptotic pasth
→2` as the usual vacuum solution in inflation, i.e.

c;
1

Ak
e2 ikh, kuhu@1, ~114!

then this means thata250 and the behavior on long wave
lengths is given by

c;~2h!1/22nk2n;R(3/2)(11w)k2n, kuhu!1. ~115!

Using the relation betweenc and the Bardeen potential, on
thus finds that the spectrum forF is given by

P F;R[91p13(11w)2]/(11w)k22n. ~116!

Contrary to the four dimensional inflationary case, the sp
trum of the Bardeen potential is not constant outside
horizon. Moreover the spectrum is red and far from be
scale-invariant. Hence, despite an inflationary phase on
brane, the intrinsic fluctuations of a brane in a dilatonic ba
ground are not a candidate for the generation of primor
fluctuations.~See Fig. 7.!

V. CONCLUSION

We have investigated the fluctuations of a moving bra
in a dilatonic background. These fluctuations are represe
by a scalar mode on the brane corresponding to ripples a
the normal direction to the brane. As the brane fluctuate
induces metric fluctuations, in particular we have found t
the induced metric appears naturally in the longitudi
gauge with two unequal Bardeen potentialsF and C. The
fact that these potentials are not equal springs from the p
10402
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ence of anisotropic stress on the brane. For a fixed equa
of state for the matter content on the brane, for instance c
dark matter, we find that the two Bardeen potentials are p
portional. As such this implies that a single gauge invari
observableF characterizes the brane fluctuations.

The presence of a scalar field in the bulk and its coupl
to matter living on the brane leads to possible violations
the equivalence principle. This puts constraints on the
rameters of the model, requiring that the coupling const
j8 is small enough, and should also imply that the brane
far enough from bulk singularities@23,24#. We have left this
conspicuous issue for further work.

Our approach differs from the projective approach@4,5# in
as much as we have not considered the perturbed Eins
equations on the brane. This allows us to free ourselves f
the thorny problem of the projected Weyl tensor on t
brane.

We have focused on the motion and fluctuations of bra
in a particular class of dilatonic backgrounds. These ba
grounds correspond to an exponential potential and an e
nential coupling of the bulk scalar field to the brane. T
motion of the brane is either of the bouncing type or t
ever-expanding form. In the bouncing case we find that
brane cannot escape towards infinity, it is bound to a sin
larity which is either null or timelike. In the timelike case
i.e. when it appears at a finite distance in conformal coo
nates, the fluctuations of the brane are unbounded imply
that the brane is ripped by the strong gravity around
singularity. In the null case, i.e. when the singularity is
conformal infinity, the fluctuations oscillate in a bounde
manner while converging to the singularity. The bounci
case is equivalent to the behavior of a brane in a supergra
background. As we only consider intrinsic fluctuations of t
brane in an unperturbed bulk, this corresponds to a situa
where supersymmetry is preserved by the bulk while bro
by the brane motion. Therefore the bouncing brane fluct
tions correspond to fluctuations of a non-BPS brane emb
ded in a supergravity background.

In the ever-expanding scenario, we can distinguish t
possibilities. The brane can escape to infinity with a sc
factor which is either expanding in a decelerating manne
accelerating, i.e. corresponding to an inflationary era of
power law type. In the decelerating case, the brane eve
ally oscillates forever. In the inflationary case, the brane
such that any fluctuation of a giving length scales oscilla
until it freezes in while passing through the horizon. O

FIG. 7. Left picture: Perturbation as a function ofkh. For p
,0, the perturbation always diverges near the singularity. Ri
picture: perturbation~curve with a minimum!, Bardeen potential
~decreasing curve! and scale factor~increasing curve! for p.0.
2-10
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course this scenario is reminiscent of four-dimensional in
tion modelled with a scalar field. Here the features of infl
tion, i.e. the relationship between the power spectrum
the scale factor, differ from the four dimensional case. Thi
v

ys

ys

ig
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an interesting observation as it leads to a new twist in
building of inflationary models. One might hope that alte
native scenarios to four-dimensional inflation may eme
from five dimensional brane models and their fluctuation
ys.

ys.
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