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Calculable corrections to brane black hole decay. Il. Greybody factors for spin 2 and 1
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The production of black holes in extra-dimensional brane-world theories can lead to detectable signals via
the Hawking evaporation of the black hole to brane-localized standard model modes. We calculate, as a
function of partial wave number and number of toroidally compactified extra dimensions, the leading correc-
tion to the energy spectrum of such Hawking radiatfithve greybody factojsfor decay into spin-1/2 fermions
and spin-1 gauge fields localized on the standard model brane. We derive the associated improved differential
emission rates for both types of fields. We provide both simple expressions for the leading behavior of the
greybody factors in the low-energy limiir y<<1 and numerical evaluation of our full analytic expressions for
the emission rates, valid fasry~ 1. The full analytic expressions demonstrate that both the greybody factors
and emission rates are enhanced as the number of extra dimensions increases.

DOI: 10.1103/PhysRevD.67.104019 PACS nunider04.70.Dy, 04.50+h, 11.10.Kk

[. INTRODUCTION tive.l It is possible to consider SM gauge fields propagating
in the higher-dimensional bulk or a subspace thefd®i.
However, the already existing collider constraints bound the
size of such gauge extra dimensionsR@{Jgez3 TeV, while

in the best possible case where only the graviton propagates

One of the most spectacular consequences of brane-wor
theories[1,2,3 with a low fundamental gravitational scale
M, =1 TeV (for some works on the structure of these theo-. ; . e
ries, on their cosmological implications and experimentalm the extra dimensions, the limits on the new fundamental

signatures, sef4]) is the modification of the properties of higher-dimensional Planck scale are of ortMa;zl.? TeV.
small black holeg5] that, in principle, allows them to be [16]. On the other hand, the validity of the semiclassical
copiously produced at t,he CERN L:arge Hadron Colliderdescription of black holes requires that their horizon radius
(LHC) and in other high-energy proces$6s7,8,9,10,11,1p ry be large compa.red j[O the higher-dimensional Planck
In a collider setting, the dominant signal for such black holeleng;hrlﬁéll'vl* ’hWh'Ch given the Justfct|)t|edkbﬁulndsr; as wellb
production arises from the Hawking evaporation products oftS the limits on the maximum mass of black no e that can be
the black hole, in particular the characteristic spectrum ofroduced at the LHC, implies that, must be somewhat
such radiation. In a previous papi3], we considered the ar9€ compared @Ry, ge t00. In this case the gauge fields
leading semiclassical corrections to the spectrum of Hawkinga" lSo be considered as effectively brane localized, the
radiation for a higher-dimensional black hole evaporating to Prane” in question having some nontrivial substructure. To
scalar modes. We considered both a scalar field localized t§2ding order this substructure does not change the greybody
the brane and the situation in which it could propagate in thd2Ctors we compute for the spin-1 case.

full (4 +n)-dimensional bulk and computed the correspond-S EIOte tha;,ltg'e [(eropertieg of ‘Z black hole, in pa}rticu(;gf; its
ing greybody factors as functions of energy angular mo- chwarzschild radiusy and production cross section, difter

mentumj, and number offflat) extra dimensionsn. The from the 4D result provided that, is smaller than the size

scalar case is both a useful testing place of the methods us (fjat. least some of the extra dimensiong=R. lf the b.rane
) . X . ension does not strongly perturb the4)-dimensional
in such a computation and potentially relevant for Higgs, or

other scalar, boson production from black holes formed in—_

collisions at the L.HC or' other 'hlgh-energy (?O||Id€l’S. How- The right handedRHD) neutrino can propagate in the bulk, lead-
ever, frqm a practical point of view the_ most important Case%ng to an alternate, nonseesaw explanation of the lightness of the
to consider are those of the production of standard modelyserved neutrino statda4]. Thus in principle it is possible to
(SM) fermions or SM gauge bosons, to which we turn in thisconsider the Hawking decay of a black hole to these bulk neutrino
paper. states. However, from the perspective of the brane observer this

In both cases the fields that need to be considered afgads only to a missing energy signal which is not distinguishable
brane localized. For fermions this is because of the chirafrom the many other sources of missing energy in brane-world theo-
nature of the SM fermions, since a fermion propagatingies. Therefore we do not consider this possibility in the present
in the bulk is necessarily nonchiral from the 4D perspec-work.
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black hole solution and the extra dimensional space is apfor those black holes of initial mass larger thisi. most of
proximately flat on the scale,, then the black hole is well the evaporation process is within the semiclassical regime.

described as an angularly symmetric {4)-dimensional In Sec. Il of this paper, we present the general equation
black hole centered on the brane, but extending out intmi the for the radial part of the wave function of fields with spin 1/2
extra dimensions, leading to the expresdibri7) and 1, as well as a discussion of the metric used in calculat-

ing the greybody factors. We proceed to solve this equation
at the asymptotic regimes of the near-horizon and far-field
(1)  zones, for an arbitrary number of extra dimensions and an-
gular momentum number, and we match them in an interme-
diate zone in order to construct a complete, smooth solution
for the Schwarzschild radius. Here we follow these com-gyer the whole radial regime.
monly made assumptions, which have the consequence of |n Sec. IlI, the greybody factors for fermionic and gauge
limiting our discussion to the Hawking decay of black holesfie|ds are computed. Our full analytic results are contained in
in the context of Arkani-Hamed-Dimopoulos-Dvali-like Egs. (35—(39), (40), (46), and (49). Although analytically
theories[1]. In particular, black holes in theories of the complicated, these full results are necessary for the accurate
Randall-Sundrum(RS) type [3] require a more involved determination of the Hawking emission spectrum from brane
treatment(for a recent paper considering the decay of RSpjack holes(see Sec. Iy, We expect they will be of use to
black holes se¢l8]). those searching for black holes at current and future colliders
After such black holes are produced, they decay by theyr in ultrahigh-energy cosmic-ray collisions. However, for
emission of Hawking radiation, and it is expected that theyease of comparison with previous studies of greybody factors
will decay mostly to particles on our braf&9]. The spec- e derive simplified expressions for the leading corrections
trum of radiation, with a temperatufBsy=(1+n)/(47ry)  to the spectrum of the Hawking radiation valid fer,<1.
(in G=kg=c=#A=1units), is given by the Hawking for- These expressions are presented in(&@d) for spin 1/2 and

1 ( M )l/(n+1)

AVIRIVE

8I'((n+3)/2) | Mn+d)
(n+2)7"7 D2

mula[20] Eq. (55) for spin 1, for arbitraryj andn. Their values fom
i3 =2, 4, 6 extra dimensions and for the first three, and thus
dE(w) ® d""k most important, angular momentum modesth j=3, 3, 3

dt _,-2:1 7j.p() expw/Tgy) F1 (27)" 73" @ for spin 1/2 and =1, 2, 3 for spin 1 are tabulated in Tables

I and Il, respectively.
wherej labels the total angular momentum quantum number, In Sec. IV, we proceed to calculate the full greybody fac-
b labels any other quantum numbers of the emitted particlefors and emission rates for spin-1/2 and spin-1 fields by a
as well as the particle type, and in the phase-space integrBlmerical evaluation of our full analytic results of Secs. II
|k| =w for a massless partide_ Her@(w), known as the and Il (Valld beyond the Slmpllfled ||m|t0rH<1) A similar
“greybody factor,” is an energy-dependent function arising anaIySiS for Spin-O ﬁ6|ds, based on the results derived in
from the backscattering of part of the outgoing radiation[13], is also included in this section. The results are pre-
back into the black hole by the nontrivial metric in the regionsented in Figs. 1, 2, and 3. Our conclusions are summarized
exterior to the black hole horizoffor early works on the in Sec. V.
emission spectra of 4D black holes, $24]).

In this paper we calculate the greybody factors and emis-
sion rates for spin-1/2 and spin-1 particles localized to the
SM brane in the presence of a nonrotating black hole of the
type described above. It is expected that such a nonrotating The purpose of this paper is to calculate the greybody
black hole is a good approximation to the exact solution aftefactors for the emission of fermion and gauge fields in the
the initial “balding” and “spin-down” phaseq7]. As dis-  background of the metric on their four-dimensional brane
cussed for the scalar case in our first paf#8], the grey- induced from a (4 n)-dimensional Schwarzschild-like
body factor is computed using its equality with the absorp-black hole centered on the brane. The starting point of our
tion cross section for the appropriate type of particle incidentinalysis will be the general equation for the propagation of
on the background metric that describes the brane black holgelds with spins=1/2 and 1 in an arbitrary four-dimensional
The equality of greybody factors to absorption cross sectionspherically symmetric background. Using the Newman-
implies that the greybody factors do not invalidate the therPenrose formalisrfi22] (see[23] for a compact reviey this
mal nature of the black hole. general field equation may be written as

Finally, it is important to recall that the semiclassical cal-
culation of Hawking emission is only reliable when the en-
ergy of the emitted particle is small compared to the black
hole mass,w<M, since only in this case is it correct to
neglect the back reaction of the metric during the emissiorFollowing the analysis of Cvetic and Larsg?3], it is pos-
process. This in turn requires that the Hawking temperatureible to derive from this general equation a set efdiffer-
obey the relatiom gy<<M, which is equivalent to demanding ential equations for the components of the wave function of
that the black hole madd > M, . Inevitably, this condition the spins field. Specifically, assuming a general, spherically
breaks down during the final stages of the decay process, baymmetric background of the form

Il. GENERAL EQUATION FOR SPIN-1 /2 AND -1 FIELDS
AND ITS SOLUTION

Vapr B Bas-1=0, 3)
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A S o o n ) following from the higher-dimensional black hole back-
ds*=— gdt +ydro+24(de +si? 6de®) (4 ground(7). This follows if we setd, = 7/2, for i =2. Specifi-
cally, it takes the form
and using a factorized ansatz for each component of the _ 2 142 22
wave function of the field of the form ds’=—h(r)dt*+h(r)"'dr*+r dQ23. (10
_A-K2 K2—s Comparing Egs(4) and (10), we may easily see that the
Y-s=AH(22) Ric-o(N)Se-s(€2), ®) general metric functions appearing in E4) are now given
— 2 — 2 Hr— H H
the set of coupled differential equations separates into tw8Y >=r" and A=hr?. Substituting in the general, radial
sets of decoupled equations for the radial and angular parfdfferential equation(6), we obtain the following simplified

of the wave function. In the above expressidr0,...,25  eduation:

labels the helicity of the components an§, ¢({2) d dR w?r?
=e'm‘/’d(k'r21(0), wherej andm are the total angular momen- (hr2)s—[(hr2)1—s S}+{—+2i5wr
tum number and its projection on a fixed axis, respectively, dr dr h
andd{) stand for the rotation matrices. Focusing on the ra- iswr
dial part of the wave function, the form of the corresponding — (Nt L(A-h)—-A
equation turns out to depend on the helicity of the compo-
nent. For example, for the upper component(k=2s), it
takes the forn{23] —(2s=1)(s=1)(n+ 1)(1—h)] Rs=0. (11
Asﬂ AlSdRS} +[22‘”2_'S“’2‘9rA +2iswd, 3 — A In the above, we have used the relation
dr dr A
dh (n+1)
1) (a@) ( 1)(&2)2 -7 @-h, (12)
+Als 5 d; S +|s 5=

which follows from the definition, Eq8). In this paper, we
+(1-s) E ﬂ“ -0 6) are going to study the cases of fermia1/2) and gauge-
> A S boson fields §=1). For those fields, the last term appearing
inside the curly brackets in Eq11l) vanishes independently
In the above A=j(j+1)—s(s—1). As we will shortly see, of the number of projected extra dimensions and, therefore, it
solving the above equation for the upper component of theyill be ignored in the following analysis.
field Only is sufficient to lead to the determination of the In order to compute the greybody factor for the Hawkmg
absorption cross section and, thus, the greybody factor.  radiation in the gravitational background described in Eq.
In the presence of additional spacelike dimensions, the10), through the emission of fermion and gauge-boson

higher-dimensional spherically symmetric generalizations ofijelds, we need to solve Eq11) for the radial part of the
the four-dimensional Schwarzschild solution have a line elegmitted field in the region outside the horizon of the black

ment given by hole and all the way to infinity. Because of the complexity of
B ) 142t P2 the differential equation, the exact solution appears impos-
ds’=—h(r)dt*+h(r)~*dr+r?dQ3. (7)  sible to derive. As if24,13 (see als§25] for related works
where we are going to follow an approximation method that is suit-

able for low energiesr<<1. The method involves solving
n+1 Eq. (12) first in the vicinity of the black hole, then at infinite
) (8) distance from it, and, finally, matching the two asymptotic
solutions in an intermediate regime. This method will help us
The angular part of the above higher-dimensional metric ten(—jenve Fhe form of the absqrption coefficient in the e.qui\{alent
sor is scattering proble_m of an incoming wave propagating in the
background10), in terms of which the absorption cross sec-
dQ§+n=d0ﬁ+l+sin2 0n+1{d0ﬁ+sin2 O,[ -+ sir? Gz(dﬂf ggghggd thus the greybody factor of the emitted radiation is
+sir? 6,de?)- -1}, 9 As we will shortly see, different components of the emit-
ted field carry different parts of the particle wave function.
with 0< <27 and 0< 6,<r, fori=1,..n+ 1. Itiseasyto For an emitted field with spis#0, it is only the upperys,
check that, at distances>R, whereR is the size of the extra and lower,y_g, components that are the radiative ones. The
compact dimensions, the above metric tensor reduces to thgpper component will turn out to correspond mainly to the
usual four-dimensional Schwarzschild solution. incoming wave while the lower component corresponds
Under the assumption that the standard model fields, botainly to the reflected wave. Moreover, the equation for the
fermions and gauge bosons, are restricted to live on a foutewer component is the charge conjugate of the one for the
dimensional brane, they propagate in a gravitational backdpper component: therefore, solving for any one of them
ground which is given by the induced 4D metric on the braneprovides the solution for the other one. Here, we will con-

My
r

hU)zl—(

104019-3



P. KANTI AND J. MARCH-RUSSELL PHYSICAL REVIEW D67, 104019 (2003

centrate on the incoming wave and compute the absorptionr,,(h)=A_h%1—h)#F(a,b,c;h)

coefficient by comparing the incoming flux at the asymptotic

regimes of the horizon and infinity. Matching the two solu- +A,h™%(1-h)’F(a—c+1b—c+1,2-c;h),

tions in the intermediate regime, however, is still necessary. (20)

We impose the following normalizations for the incoming

mode of a field, with spirs,
whereA.. are arbitrary constants. Expanding the above so-

Rgh):A(Sh)h_iﬁBH“’Mﬂ" (13 lution in the limitr —r (equivalently,h—0) we obtain the

asymptotic behavior

at the horizon of the black hole, whepy,,=1/Tgy, and

R =A) (2wr)? teier, (14) Ryy=A_h*+A h~ @
at infinity. In the forthcoming sections, and for the solution =A_hexplior ?y)+ A h Sexp —iwr]"?y)
of the general, radial equatiofil), we closely follow the (21)
analysis presented in Réf.3] for the case of the emission of

scalar fields.
for a=a, and
A. Solving the general equation in the near-horizon zone
In the vicinity of the black hole, Eq11) can be solved by C nao S,
making a change of variable—h. Using Eqs(8) and(12), Ruw=A_ exp—iwry y)+A, expliory 7y) (22
we may write the general-spin field equation in the form

d’R (n+2s) |dR for a=a_ . In the above, we have used the “tortoise” coor-
h(1=h) gz T 1=-s)(1-h)- (n+1) '|[dh dinatey defined as
(wry)? 2iswry—A iswry
M+ 1)%h(1-h) " (n+DZA1-h) (n+D)h Inh(r)
y= ) (23
=0, (15 H

where, for simplicity of the notation, the subscriitas been . ] ) )
dropped fromR. By using the redefinitonR(h)=h%(1  The choicex=«, leads to a solution with an outgoing wave
—h)#E(h), the above equation takes the form of a hyper-Of zero amplitude at the horizon and an incoming wave with

geometric equation infinite amplitude. This is an irregular solution which must
be discarded. On the other hand, the choicerefa_ leads
d’F dF to regular incoming and outgoing waves with amplitude

h(1=h) gz Fle—(1+a+b)h] =—abF=0, (16  unity at the horizon. The boundary condition that only in-
coming modes are to be found in the region outside the ho-

with rizon of a black hole forces us also to et =0. After these
choices are made, the solution near the horizon has exactly
s+n(l-s) the normalization of the fields described in E{3), since
a=at+p+ Tt b=a+p, c=1-s+2a. a_=—iwPpyldm, thus determining the asymptotic normal-

(17) ization constant to be‘\gh)=A,. Turning to theB coeffi-
cient, the criterion for the convergence of the hypergeometric
The power coefficienta and 3, in turn, are found by solving functionF(a,b,c;h),
second-order algebraic equations, leading to the results

__ Jory _lory Re(c—a—b)
XTSTOTD T T hr (18) L
_ V2 __ 2.2 _ i
and = i—n+1\/(1+21) 40’y —8iswry | >0, (24)
B =;[1—25+J(1+2')Z—4 2r2 —8iswry]
*72(n+1) - ] @ TH @l clearly demands that we chooge=3_ .

(19 We finally need to shift the hypergeometric function to-
wards large values af. This may be done by using a stan-
respectively. The general solution of the hypergeometricddard linear transformation formulp26], in the following
equation(16) is way:
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n+1
1-2s

F(l—s+2a)T(—2,3+

Rua(h)=A_h?| (1—h)# F(a,b,a+b—c+1;1—h)+(1—h) #t1-29/(n+1)

I'a—pB+ 1—S)F< a— B+

n+1
r(l—s+2a)r(2,e— n_+1
X sTn(1=s) F(c—a,c—b,c—a—b+1;1-h) |. (25
F(a-i—,B)l" a+,6’+T)

We can now “stretch” the above expression towards the intermediate regime, by expanding in thre-timjtor h— 1, and
take

1- 1-2s
F| 0+ F(l—s+2a)F(—2,8+ n+1) RPEEE! F(l—s+2a)F<ZB— ]
RNH(h):A(T) 1-2s +A(T) s+n(l-s)|" 26
F(a—ﬁ-i—l—S)F(a—,B-i— n+1) F(a+B)F(a+B+T)

Note that, in order to simplify the procedure of the “match-  We first need to expand the above expression for large

ing,” the low-energy limit has been taken in the expressionvalues ofr. This expansion will help us make sure that the

of the B coefficient in the power of. No expansion has been emitted fields have the far-field normalization given in Eq.

made, up to this point, in the arguments of théunctions.  (14) and will enable us to compute the incoming flux at
infinity. In the limit r — o, we find

B. Solving the general equation in the far-field zone

We now need to find the far-field zone solution before e—iorp2s-1 B, e ™1 stIT (2] +2)
being able to match the two asymptotics in the intermediate R (r)= — —s71| B+ hi i
regime. Going back to the general equatidd) and in the (2iw) P(j+s+1)
limit r—o or h—1, we obtain "B, T(2j+2)

T st Do) T

+eee (31
d’R 2(1-s)dR

T T ar

, 2isw A
+ o' ———3|R=0. (27)

The first part of the above expression gives the incoming
wave at infinity and, thus, by comparison with Ed@4), de-
fines the coefficienAl"). The second part gives the outgo-
ing wave. This outgoing part is suppressed as it should be.
e remind the reader that the above solution corresponds
only to the upper component of the emitted fi¢kdther to
. - i1y Or to 1) which in turn corresponds to the incoming
zd—R+(b—z) d_R_ aR=0 29) wave. The charge conjugate of the above solution gives the
dz dz ' lower component(the other radiative componegnof the
emitted field, which will have a dominant outgoing wave and
with a=j—s+1 andb=2j+2 and the general soluton & suppressed incoming one.
We may now stretch the far-field solutid@0) towards
small values of. In the limit wr <1, we therefore obtain

In order to solve the above equation, we sB&
=e '“Tri*SR(r). By also making a change of variabte
=2iwr, the above equation adopts the form of a confluen
hypergeometric equation

R(z)=B,M(a,b,2)+B_U(a,b,z), (29
whereM andU are the Kummer functions ari8l.. are arbi- i+s B_ rzj+1)
trary coefficients. We may therefore write the complete solu-  Ree(r)=B.r/">+ =S IT(j—s+1)(2iw) T T
tion for the radial function at infinity as (32

Re(r)=e """ B, M(j—s+1,2+ 2,2 wr) . . . . .
Matching the two solution§6) and(32) in the intermediate

+B_U(j—s+1,2j+2,2wr)]. (30)  regime, we obtain the relations
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r(1—s+2a)r(—23+

A_ n+1
(a—B+1-9)'| a— B+ ]
, . -2s
A_rl St 2iw)3 T (1—s+2a)T| 28— 1/ (—s+1)
B-= r r s+n(l—s) [(2i+1 (34
(et Pl a+p+——7—|1(2j+1)
|
With the determination of the above arbitrary coefficients, A A_(2w)itsgimli=st 2
we h.ave now comple_ted the determination of the complete A B,e ™0 ST U1 (2] +2)
solution for both fermions and gauge-boson fields propagat- _ T(+s+1)
ing in the background of a projected {)-dimensional _ J o
Schwarzschild black hole on a four-dimensional brane. We B (2wry) TS imi=stD2
now proceed to the calculation of the greybody factor in each "I (1-s+2a)[Clery)@*T+D]’ (39
case for an arbitrary number of extra compact spacelike di- .
mensions. where the coefficient€ andD stand for
. . 1-2s
2j+14im(s—1/2) _ P —
. 297 % 1"(2,8 ] I'(j—s+1) o
B s+n(1-s) . (36
I1l. GREYBODY FACTORS FOR THE EMISSION OF I'a+pB)T| a+pB+ ———|T'(2j+1)
FERMIONIC AND GAUGE FIELDS n+1
F(2j+2)F(—2,3+ n_+1
As we will shortly see, the expression of the greybody D= — .
factors for Hawking radiation for fermions and gauge fields I(a—pB+ 1—s)F( a— B+ S T(j+s+1)
involves the quantityA(M/A(*)|2 determined by the two nor- n+1 3
malization coefficients appearing in the asymptotic solutions (37)
(13) and(14). By using the relation§33), (34), this takes the  The measure squared of the ra&i6"/A*) can then be writ-
form ten as
|
A<h)‘2 (20r ) 2019
A T T(1—s+2a)[5[CC* (o) 2+ (wry) 2 L (CD* +C*D)+DD* |’ (38

The derivation of a final explicit result for the greybody fac- Eq.(38) in a power series indr ), keeping only the leading
tors or emission rates from the above expression requires therm. The result of the expansion depends strongly on the
evaluation ofl” functions for complex arguments. This task spin of the emitted particle: therefore, we will now discuss

is a tedious procedure with the result being highly compli-separately the results for each case. We emphasize that ap-
cated and unilluminating. Accurate evaluations of the greyyplications in which accurate values of the emissions rate are
body factors and associated emission rates do require use @quired shouldnot use these simplified expressions valid
the above expressions, and so in Sec. IV, we present numeinly for wr <1, but rather should use the full semiclassical
cal results for the final expression of the greybody factors, agesults derived abovétogether with Eqs.(40), (46), and

a function ofwry, by using the exact value of the above (49)] as in the evaluation presented in Sec. IV.
ratio. Howeverfor comparison with previous studiesmd as

in the case of the analysis for the emission of scalar fields A. Spin-1/2 field

[13], a simplified expression may be derived in the low- - Spin-4= Tields

energy limitwr 4<1. Expanding thé" functions in this limit, Following Ref.[23], we define the incoming flux of a
we may express the denominator of the fraction appearing ifermionic field as the radial component of the conserved cur-
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rent ‘]/L:‘/jgﬁs,/,AZB integrated over a two-dimensional TABLE |. Absorption cross section for a brane-localized fermi-
sphere. This may be finally written as onic field.

1 dN ) n=2 j=1/2 o A= 25r2 +-
27 dt =|Ryd*~[R-114 (39 _ 2% i
1=3/2 Tlbe =5~ 9 mr(ory) +

in terms of the measure squared of the upper and lower com- _ .
ponents of the fermionic field. Taking the ratio of the value j=5/2 a;t’f)~ﬁrH(er)4+---
of this quantity at the horizon with respect to its value at

P . . -~ — P — (l/2 1/5,
infinity, we obtain the absorption probability for the scatter- n=4 =172 Ohbs =21 Al +-
ing of an incoming wave traveling from spatial infinity to- j=3/2 pET el am 2252 (wr )2+ - -
wards the horizon of the projected black hole. It can be sim- abs = g H
ply expressed as _ 2305
(h) 2 J=5/2 a-.(’:lJl:)/SZ): 75 TrrH(er)4
A _ F— 1/2 3/7
|As=1dl®= A (40 n=6 j=1/2 =24 712+
; 4
j=3/2 a'gtlsz)2§26/77rr,2_|(er)2+~-

if we take into account the fact that the upper component
contributes little to the infalling flux both at infinity and at
the horizon. j=5/2 Tabe = _22/77”a(“’rH)4+' a
Settings=1/2 and expanding th€ and D coefficients,
defined in Eqs(36), (37), in the limit wry<<1, we obtain

2~ (4j+2)/(n+1)

CC*Zw+O(wa)2, (41 L 2w 3(2) + 1) (wryy)? -2~ 4i+2/n+1)
abs( ) 221r(j+1)2
22j+1 (47)
CD*+C*D= +0(wrp)?, (42
24ipWi+2)ln+1) This is the primary analytic result valid fasr4y<<1 for the
DD*= e a— +1)%+O(wry)?. case of spin-1/2 fermions.
(43) As is obvious from the above formula, the absorption

cross section has a strong dependence on the total angular
Taking into account the fact that the smallest physically al-nomentum numbejrof the emitted field as it affects both the
lowed value of the total angular momentyris the value of  power of the dominantdry) term and the multiplicative
the spin,s=1/2, we easily conclude that the dominant termcoefficient in front. On the other hand, as in the case of the
in the denominator of Eg38), in the low-energy limit, is  emission of brane-localized scalar fields studied], no
given by the first term in the expansion oD*. Moreover, dependence of the power Od‘U(H) on the number of extra
we have dimensions emerges for a brane-localized fermionic field.
~ Nevertheless, the multiplicative coefficient in front depends
1 _ costzam) 1 M O(wr,)?,  ©On the number of extra dimensions.
IT(1/2+2a)]? T 7 (n+1)? He In order to be able to draw concrete conclusions about the
(44 dependence a#? onj andn, the values of the absorption
cross section fon=2, 4, and 6, andl= 3, %, and3 have been
computed and displayed in Table I. By Iookmg at the entries
of this table forj =% and for everyn, we see that the absorp-
27 (wry)? ti2-(@it2/n+1) tion cross section becomes proportional to the area of the
|As= 1/ “= 22T (] +1)2 +0(wry)?. horizon of the black hole times a numerical coefficient and is
J (45) independent of the energy of the emitted particle. As the total
angular momentum numbgiincreases, the absorption cross
The absorption probability leads to the absorption crossection rapidly decreases as it gets suppressed by extra pow-
sectionopd w) via ers of wry and its numerical coefficient also gets smaller. If
instead we fixj and vary the number of extra dimensions,
then we see that the absorption cross section gets enhanced
as the number of the projected extra dimensions increases.
The behavior, therefore, of the leading term in the expression
for any spins and angular momentum partial wave numper of the greybody factor, in the low-energy regime, for the
Thus, for the fermion case, the final absorption cross sectioemission of brane fermionic fields is similar to the one for
is, in leading order in §ry), the emission of brane scalar fielpE3].

where@ is the imaginary part ofv. Putting everything to-
gether, we obtain

( 2]

oo w)= lAslz (46)
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B. Spin-1 fields
We now move to the case of gauge fields. In this case, ngeld'

PHYSICAL REVIEW D67, 104019 (2003

TABLE II. Absorption cross section for a brane-localized gauge

conserved current may be defined: however, the incoming

flux can be expressed as the integral of the flow of energy,n=2 j=1 oa}))s~%w3r2(er)2+~-~
TH'=20%, ohe ¢ B¢”'®', through a two-dimensional 81
sphere[23]. Then we obtain the expression j=2 0-(ajt-))s~ —r2(wr) i+
1 dN 1 4
= 2_ 2 = T 6,
5 dt ~ 354 R IR, (48) =3 ol seerfer )t
. 4 1\2 2
where the redshift of the local energy of photons has beenn=4  j=1 4D~ 7522’5F(10) 1“(5) ra(ory)?+--
taken into account. The absorption probability is given again ) )
by the ratio of the value of the above quantity at the horizon =2 oW~ 4_7TF(2) F(E) r2( a, ...
4 . L L abs n(wry)®+
with respect to its value at infinity, and it is found to be 125 5
, 64w T(3/52I(4/5)2
=3 1) 2 6
A= 1 |A? 49) : ®s=39375  r(7/m7 AT
ST (20ry) 2| A - - 167 T(1/7)21(2/7)2
n=6 j=1 Uét)s~mWfH(er)2+"'
Going back to Eq(38) and settings=1, we expand th€ 267 (312 (22
andD coefficients in the limitwry<1. Thus we obtain =2 oM~ ﬂsr(ﬂ) F(?) r2(wr )4+
. 2j+1\2 64 3
aj+21| _ N2 ) oV~ 2 64...
2 F( v ) j=3 a5 77a7BsiRAnry) AT
CC*: J 2 J+1 2 +O((,()rH)2,
— _ H 2
F( n+1 F( n+1) Fj+1)
(50 leading to the following absorption cross section, for the
7 a(j+1) gauge field case, in leading orderdiry:
g2+ SN T SN =g
* =
D si”(—W(zj E N ol )= A (20r D)
n+1 (n+1)
o F—j r j+1I‘ +2 i
2i+1 n+1 n+1 (J )
X ) r(2j+2)? o (59
D*_ J 1 . +O(er)2. r "] F(Zj"rZ)
R e H 2
1) nr1) 1U+2)
is is our primary analytic result valid faor ;<1 for the
(52 Thisii i Iyti It valid f 1 for th

The first term in the expansion dD* gives again the

dominant term in the denominator of E(8) in the low-
energy limit. Also, we have

1 _ 2asinh(2am)
Ir2a)l(—2a) o

4(wry)?
(;‘152 +O(ory),

(53

i
By using the above results, the absorption probability may bg

written as
F—j 2F —j+1 2I" 2)2
A= 4(wry)?(Rwry)?  n+1 nv1) LU*2)
ssH (n+1)? o[2i+1 ZF o402
n+1 (2j+2)
+O(wry)?, (54)

case of gauge fields.

As in the case of scalar and fermionic fields, the absorp-
tion cross section for brane-localized gauge fields depends
nontrivially on the angular momentum numbgrand the
number of extra dimensions, The power of the dominant
(wry) term depends only opy but the numerical coefficient
in front depends strongly on both parameters. The values of
the above quantity fon=2, 4, and 6 ang=1, 2, and 3 are
iven in Table II.

Unlike the case of scalar and fermionic field emission, the
absorption cross section for the emission of gauge fields de-
pends on the energy of the emitted particle even in the case
of the lowest partial wave witli=1. This follows from the
different dependence of the dominanbry) term on the
angular momentum number. Any further increase in the
value ofj leads to the appearance of a suppression factor of
powers of @ry), while the increase in the number of extra
dimensions strongly enhances the absorption cross section.
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FIG. 1. Greybody factorsr,,{ w) for the emission ofa) fermions and(b) gauge brane-localized fields, as a functionast,, for n
=0, 2, 4, and 6.

IV. EVALUATION OF RESULTS waves have been summed in each case, and the dependence
or n=0, 2, 4, and 6 is shown. We observe that, for small
emission rates for spin-1/2 and -1 fields in the background of"0udh values obry, we reproduce, as expected, the be-

the projected four-dimensional black hole given in Etp). havio_r given by the leading-order corrections and according
In this section we will not use the simplified expressionst® Which the greybody factors are enhanced as the number of

valid only for wr<1, but rather the full analytic expres- extra dimensions projected on our brane increases. This

In this section, we proceed to calculate the correspondin

sions, Eqs(36)—(39). agreement holds for both species of fields up to the value
For the relevant four-dimensional process of the emissio?’#=0-4. AS wry increases further, it is the lower-
of brane-localized fields, Eq2) takes the form dimensional models that seem to give the largest greybody
factors. However, our calculation is limited to a WKB-like
dE(w) w® do semiclassical approximation and only an exact numerical
T:; oj(w) exp(o/Tgy) 1 272" (56) analysis of the original master equation, Etjl), can deter-

mine o4 d ) in the intermediate and high-energy regime

Thus, for the evaluation of the emission rates, we need thern=1. Let us finally note that our analysis correctly repro-
expressions of the greybody factors summed over the ang@Lces the behavior of the greybody factors in the case of
lar momentum numbsi A simple numerical analysis shows =0 [21,27, with o{;?(w) adopting a nonvanishing
that, by summing over the first three partial waves, we obtairasymptotic value at very low energies anf})(w) going to

the dependence of the greybody factors on the parameteero. The same behavior is observed in the cases with
wry to high accuracy, with all higher partial waves adding # 0.

an almost zero contribution to the final result. The numerical Figures 2a) and 2b) display the behavior of the differen-
evaluation gives us the ability to use the exact value of theial emission rate per time unit and energy interval
ratio (38) instead of the simplified leading-order correctionsd?E/dt dw versus the parametenr,, for fermions and
presented in Egqs47) and (55), which are valid only for gauge fields, as follows by combining E&6) with the exact
wry<<1. Such a numerical analysis will reveal how fast theexpression of the greybody factor in each case and the defi-
low-energy approximation breaks down as the expansion paaition of the temperature of the projected four-dimensional
rameterwr  increases. Figuregd) and Xb) depict the grey-  black hole, Ty=(n+ 1)/4xr . The emission rates are sub-
body factors for fermions and gauge fields, respectively, irstantially enhanced as the number of extra dimensions in-
units of wrﬁ, as functions ofwry . The first three partial creases. The increase is larger for gauge fields which leads to

2 p(1/2) | _ 2p)
d‘E [THI] d‘E [’I" 1]

H

dt dw dt dw

FIG. 2. Differential emission
rate d°E/dt dw for (a) fermions
and (b) gauge fields, as a function
of wry, forn=0, 1, 2, 4, and 6.

107°

0 0.1 0.2 0.3 0.4 0.5 0.6
(a) WTH (b)
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FIG. 3. (a) Greybody factor
for the emission of brane-
localized scalar fields fon=0, 1,
and 6; (b) the corresponding dif-
ferential emission rate far=0, 1,
2,4, and 6.

0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
(a) wry (b) Wry

the result that the emission rates for the two species becontbrough the emission of either higher-dimensional bulk, or
comparable, for large values nf On the other hand, for low brane-localized, scalar modes. In this paper, we extended the
values ofn, the emission rate for a fermion is considerably computation of the greybody factors that appear in the
larger compared than that for a gauge field, with the differ-Hawking decay process to the spin-1/2 and spin-1 brane-
ence reaching an order of magnitude in the limiting case ofocalized cases of greatest phenomenological interest. Since
n=0. o . ) the angular momentum of the black hole has been ignored,
Itis useful to perform a similar numerical analysis for the oy calculations are relevant to the post-balding and spin-
case of scalar fields being emitted by the same fouryown phases of the life of a black hole produced at a high-
dimensional black hole, a case studied in R&8]. By fol-  gnergy collider or by ultrahigh-energy cosmic-ray interac-
lowing a similar analytical approach, the leading-order cor+ons “The semiclassical approximation methods employed
. . . Qllow us to calculate the greybody factors and the corre-
was also derived. According to those results, the leading Cors',ponding emission rates for a general numbef flat extra
rection for the first, and thus dominant, partial wave was . . : . .
. . : .. _dimensions of the Arkani-Hamed, Dimopoulos, and Dvali
independent of the number of extra dimensions. Any dlffer-t (It is i tant to b . ind that black holes i
ence in the value of the greybody factor was to come fro ype. (It 1S important 1o bear in min at black nholes in

the higher partial waves whose coefficient indeed increase jghly curved bu[k spacet!mes—for example, .Randall-
with increasingn. As wr, increases, however, the next-to- Sundrum 5D theories—require a somewhat modified treat-

leading-order corrections for each partial wafa example, Ment from the one presented hgreThe primary analytic -
the terms being denoted by ellipses in Tables | and I, andjesul'_[s of our calculation fo_r the greybody factors, for arbi-
similarly in Table 11 in[13]) can dominate the contribution traryj andn, are presented in Eq&35—(38) and(40), (46),
coming from the higher partial waves. In the case of fermi-and (49). Simplified expressions are provided in E¢47)

ons and gauge fields, we showed that this does not happéd (55 for spin 1/2 and spin 1, respectively. In both cases
until the valuewr=0.4. For scalar fields, it turns out that there is an increase in the greybody factonasincreased at
this value is much smaller. Figuréa depicts the greybody fixed j. As the subsequent numerical analysis revealed, this
factor for the emission of brane-localized scalar fields, bybehavior survives up to intermediate values of the energy of
using the exact value of the ratio of the two coefficieBts  the emitted particle and contributes to a considerably en-
andB_, given in Eq.(46) of Ref.[13]. We immediately see hanced emission rate for both fermions and gauge bosons. A
that, for extremely small values @fr,,, the greybody fac- similar analysis for the emission of scalar fields also led to an
tors, for various values aof, converge to the same asymptotic enhancement of the emission rateragcreases despite the
value, in agreement with our simplified expression. How-fact that the greybody factor, rapidly deviating from the be-
ever, very soon, the next-to-leading-order corrections domihavior dictated by the leading-order correction in the low-
nate and cause the greybody factor to decrease &5  energy approximation, is suppressed. We expect that our re-

enhanced as the number of extra dimensions increases. Tkﬂ%ssible black hole production events.

is caused by the decrease in the denominator of ), due Note addedWhile writing this paper, the related work of
to the dﬁp%ndence of fthhe tempgre:jt[l‘r%ﬂi on r"A\ that r?ver- ef.[28] appeared which also considers the greybody factors
comgst € decrease o the greybody actor. As In the case oI 1y holes in brane-world theories.
fermion and gauge fields, the increase amounts to orders o
magnitude compared to the limiting casersf 0.
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