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Calculable corrections to brane black hole decay. II. Greybody factors for spin 1Õ2 and 1
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The production of black holes in extra-dimensional brane-world theories can lead to detectable signals via
the Hawking evaporation of the black hole to brane-localized standard model modes. We calculate, as a
function of partial wave number and number of toroidally compactified extra dimensions, the leading correc-
tion to the energy spectrum of such Hawking radiation~the greybody factors! for decay into spin-1/2 fermions
and spin-1 gauge fields localized on the standard model brane. We derive the associated improved differential
emission rates for both types of fields. We provide both simple expressions for the leading behavior of the
greybody factors in the low-energy limitvr H!1 and numerical evaluation of our full analytic expressions for
the emission rates, valid forvr H;1. The full analytic expressions demonstrate that both the greybody factors
and emission rates are enhanced as the number of extra dimensions increases.
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I. INTRODUCTION

One of the most spectacular consequences of brane-w
theories@1,2,3# with a low fundamental gravitational sca
M* *1 TeV ~for some works on the structure of these the
ries, on their cosmological implications and experimen
signatures, see@4#! is the modification of the properties o
small black holes@5# that, in principle, allows them to be
copiously produced at the CERN Large Hadron Collid
~LHC! and in other high-energy processes@6,7,8,9,10,11,12#.
In a collider setting, the dominant signal for such black h
production arises from the Hawking evaporation products
the black hole, in particular the characteristic spectrum
such radiation. In a previous paper@13#, we considered the
leading semiclassical corrections to the spectrum of Hawk
radiation for a higher-dimensional black hole evaporating
scalar modes. We considered both a scalar field localize
the brane and the situation in which it could propagate in
full (4 1n)-dimensional bulk and computed the correspon
ing greybody factors as functions of energyv, angular mo-
mentum j, and number of~flat! extra dimensions,n. The
scalar case is both a useful testing place of the methods
in such a computation and potentially relevant for Higgs,
other scalar, boson production from black holes formed
collisions at the LHC or other high-energy colliders. How
ever, from a practical point of view the most important cas
to consider are those of the production of standard mo
~SM! fermions or SM gauge bosons, to which we turn in th
paper.

In both cases the fields that need to be considered
brane localized. For fermions this is because of the ch
nature of the SM fermions, since a fermion propagat
in the bulk is necessarily nonchiral from the 4D persp
0556-2821/2003/67~10!/104019~11!/$20.00 67 1040
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tive.1 It is possible to consider SM gauge fields propagat
in the higher-dimensional bulk or a subspace thereof@15#.
However, the already existing collider constraints bound
size of such gauge extra dimensions toRgauge

21 *3 TeV, while
in the best possible case where only the graviton propag
in the extra dimensions, the limits on the new fundamen
higher-dimensional Planck scale are of orderM* *1.2 TeV
@16#. On the other hand, the validity of the semiclassic
description of black holes requires that their horizon rad
r H be large compared to the higher-dimensional Plan
lengthr H@1/M* , which given the just cited bounds, as we
as the limits on the maximum mass of black hole that can
produced at the LHC, implies thatr H must be somewha
large compared toRgauge, too. In this case the gauge field
can also be considered as effectively brane localized,
‘‘brane’’ in question having some nontrivial substructure.
leading order this substructure does not change the greyb
factors we compute for the spin-1 case.

Note that the properties of a black hole, in particular
Schwarzschild radiusr H and production cross section, diffe
from the 4D result provided thatr H is smaller than the size
of at least some of the extra dimensions,r H,R. If the brane
tension does not strongly perturb the (41n)-dimensional

1The right handed~RHD! neutrino can propagate in the bulk, lea
ing to an alternate, nonseesaw explanation of the lightness of
observed neutrino states@14#. Thus in principle it is possible to
consider the Hawking decay of a black hole to these bulk neut
states. However, from the perspective of the brane observer
leads only to a missing energy signal which is not distinguisha
from the many other sources of missing energy in brane-world th
ries. Therefore we do not consider this possibility in the pres
work.
©2003 The American Physical Society19-1
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black hole solution and the extra dimensional space is
proximately flat on the scaler H , then the black hole is wel
described as an angularly symmetric (41n)-dimensional
black hole centered on the brane, but extending out into thn
extra dimensions, leading to the expression@5,17#

r H5
1

M*
S M

M*
D 1/~n11!S 8G„~n13!/2…

~n12!p~n11!/2D 1/~n11!

~1!

for the Schwarzschild radius. Here we follow these co
monly made assumptions, which have the consequenc
limiting our discussion to the Hawking decay of black hol
in the context of Arkani-Hamed-Dimopoulos-Dvali-lik
theories @1#. In particular, black holes in theories of th
Randall-Sundrum~RS! type @3# require a more involved
treatment~for a recent paper considering the decay of
black holes see@18#!.

After such black holes are produced, they decay by
emission of Hawking radiation, and it is expected that th
will decay mostly to particles on our brane@19#. The spec-
trum of radiation, with a temperatureTBH5(11n)/(4pr H)
~in G5kB5c5\51 units), is given by the Hawking for
mula @20#

dE~v!

dt
5(

j ,b
s j ,b~v!

v

exp~v/TBH!71

dn13k

~2p!n13 , ~2!

wherej labels the total angular momentum quantum numb
b labels any other quantum numbers of the emitted parti
as well as the particle type, and in the phase-space inte
uku5v for a massless particle. Heres~v!, known as the
‘‘greybody factor,’’ is an energy-dependent function arisi
from the backscattering of part of the outgoing radiati
back into the black hole by the nontrivial metric in the regi
exterior to the black hole horizon~for early works on the
emission spectra of 4D black holes, see@21#!.

In this paper we calculate the greybody factors and em
sion rates for spin-1/2 and spin-1 particles localized to
SM brane in the presence of a nonrotating black hole of
type described above. It is expected that such a nonrota
black hole is a good approximation to the exact solution a
the initial ‘‘balding’’ and ‘‘spin-down’’ phases@7#. As dis-
cussed for the scalar case in our first paper@13#, the grey-
body factor is computed using its equality with the abso
tion cross section for the appropriate type of particle incid
on the background metric that describes the brane black h
The equality of greybody factors to absorption cross secti
implies that the greybody factors do not invalidate the th
mal nature of the black hole.

Finally, it is important to recall that the semiclassical c
culation of Hawking emission is only reliable when the e
ergy of the emitted particle is small compared to the bla
hole mass,v!M , since only in this case is it correct t
neglect the back reaction of the metric during the emiss
process. This in turn requires that the Hawking tempera
obey the relationTBH!M , which is equivalent to demandin
that the black hole massM@M* . Inevitably, this condition
breaks down during the final stages of the decay process
10401
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for those black holes of initial mass larger thanM* most of
the evaporation process is within the semiclassical regim

In Sec. II of this paper, we present the general equa
for the radial part of the wave function of fields with spin 1
and 1, as well as a discussion of the metric used in calcu
ing the greybody factors. We proceed to solve this equa
at the asymptotic regimes of the near-horizon and far-fi
zones, for an arbitrary number of extra dimensions and
gular momentum number, and we match them in an interm
diate zone in order to construct a complete, smooth solu
over the whole radial regime.

In Sec. III, the greybody factors for fermionic and gau
fields are computed. Our full analytic results are contained
Eqs. ~35!–~38!, ~40!, ~46!, and ~49!. Although analytically
complicated, these full results are necessary for the accu
determination of the Hawking emission spectrum from bra
black holes~see Sec. IV!. We expect they will be of use to
those searching for black holes at current and future collid
or in ultrahigh-energy cosmic-ray collisions. However, f
ease of comparison with previous studies of greybody fac
we derive simplified expressions for the leading correctio
to the spectrum of the Hawking radiation valid forvr H!1.
These expressions are presented in Eq.~47! for spin 1/2 and
Eq. ~55! for spin 1, for arbitraryj andn. Their values forn
52, 4, 6 extra dimensions and for the first three, and th
most important, angular momentum modes~with j 5 1

2 , 3
2,

5
2

for spin 1/2 andj 51, 2, 3 for spin 1! are tabulated in Tables
I and II, respectively.

In Sec. IV, we proceed to calculate the full greybody fa
tors and emission rates for spin-1/2 and spin-1 fields b
numerical evaluation of our full analytic results of Secs.
and III ~valid beyond the simplified limitvr H!1). A similar
analysis for spin-0 fields, based on the results derived
@13#, is also included in this section. The results are p
sented in Figs. 1, 2, and 3. Our conclusions are summar
in Sec. V.

II. GENERAL EQUATION FOR SPIN-1 Õ2 AND -1 FIELDS
AND ITS SOLUTION

The purpose of this paper is to calculate the greybo
factors for the emission of fermion and gauge fields in
background of the metric on their four-dimensional bra
induced from a (41n)-dimensional Schwarzschild-like
black hole centered on the brane. The starting point of
analysis will be the general equation for the propagation
fields with spins51/2 and 1 in an arbitrary four-dimensiona
spherically symmetric background. Using the Newma
Penrose formalism@22# ~see@23# for a compact review!, this
general field equation may be written as

¹AA8c
AB1¯B2s2150. ~3!

Following the analysis of Cvetic and Larsen@23#, it is pos-
sible to derive from this general equation a set of 2s differ-
ential equations for the components of the wave function
the spin-s field. Specifically, assuming a general, spherica
symmetric background of the form
9-2
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CALCULABLE CORRECTIONS TO . . . . II. . . . PHYSICAL REVIEW D67, 104019 ~2003!
ds252
D

S
dt21

S

D
dr21S2~du21sin2 u dw2! ~4!

and using a factorized ansatz for each component of
wave function of the field of the form

ck2s5D2k/2~2S!k/22sRk2s~r !Sk2s~V!, ~5!

the set of coupled differential equations separates into
sets of decoupled equations for the radial and angular p
of the wave function. In the above expression,k50,...,2s
labels the helicity of the components andSk2s(V)
5eimwdkm

( j ) (u), wherej andm are the total angular momen
tum number and its projection on a fixed axis, respectiv
anddkm

( j ) stand for the rotation matrices. Focusing on the
dial part of the wave function, the form of the correspondi
equation turns out to depend on the helicity of the com
nent. For example, for the upper componentcs (k52s), it
takes the form@23#

Ds
d

dr FD12s
dRs

dr G1H S2v22 isvS] rD

D
12isv] rS2L

1DS s2
1

2D F] r S ] rS

S D1S s2
1

2D S ] rS

S D 2

1~12s!
] rS

S

] rD

D G J Rs50. ~6!

In the above,L[ j ( j 11)2s(s21). As we will shortly see,
solving the above equation for the upper component of
field only is sufficient to lead to the determination of th
absorption cross section and, thus, the greybody factor.

In the presence of additional spacelike dimensions,
higher-dimensional spherically symmetric generalizations
the four-dimensional Schwarzschild solution have a line e
ment given by

ds252h~r !dt21h~r !21dr21r 2dV21n
2 , ~7!

where

h~r !512S r H

r D n11

. ~8!

The angular part of the above higher-dimensional metric t
sor is

dV21n
2 5dun11

2 1sin2 un11$dun
21sin2 un@¯1sin2 u2~du1

2

1sin2 u1dw2!¯#%, ~9!

with 0,w,2p and 0,u i,p, for i 51,...,n11. It is easy to
check that, at distancesr @R, whereR is the size of the extra
compact dimensions, the above metric tensor reduces to
usual four-dimensional Schwarzschild solution.

Under the assumption that the standard model fields, b
fermions and gauge bosons, are restricted to live on a f
dimensional brane, they propagate in a gravitational ba
ground which is given by the induced 4D metric on the bra
10401
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following from the higher-dimensional black hole bac
ground~7!. This follows if we setu i5p/2, for i>2. Specifi-
cally, it takes the form

ds252h~r !dt21h~r !21dr21r 2dV2
2. ~10!

Comparing Eqs.~4! and ~10!, we may easily see that th
general metric functions appearing in Eq.~4! are now given
by S5r 2 and D5hr2. Substituting in the general, radia
differential equation~6!, we obtain the following simplified
equation:

~hr2!s
d

dr F ~hr2!12s
dRs

dr G1H v2r 2

h
12isvr

2
isvr

h
~n11!~12h!2L

2~2s21!~s21!~n11!~12h!J Rs50. ~11!

In the above, we have used the relation

dh

dr
5

~n11!

r
~12h!, ~12!

which follows from the definition, Eq.~8!. In this paper, we
are going to study the cases of fermion (s51/2) and gauge-
boson fields (s51). For those fields, the last term appeari
inside the curly brackets in Eq.~11! vanishes independentl
of the number of projected extra dimensions and, therefor
will be ignored in the following analysis.

In order to compute the greybody factor for the Hawki
radiation in the gravitational background described in E
~10!, through the emission of fermion and gauge-bos
fields, we need to solve Eq.~11! for the radial part of the
emitted field in the region outside the horizon of the bla
hole and all the way to infinity. Because of the complexity
the differential equation, the exact solution appears imp
sible to derive. As in@24,13# ~see also@25# for related works!
we are going to follow an approximation method that is su
able for low energiesvr H!1. The method involves solving
Eq. ~11! first in the vicinity of the black hole, then at infinite
distance from it, and, finally, matching the two asympto
solutions in an intermediate regime. This method will help
derive the form of the absorption coefficient in the equivale
scattering problem of an incoming wave propagating in
background~10!, in terms of which the absorption cross se
tion, and thus the greybody factor of the emitted radiation
defined.

As we will shortly see, different components of the em
ted field carry different parts of the particle wave functio
For an emitted field with spinsÞ0, it is only the upper,cs ,
and lower,c2s , components that are the radiative ones. T
upper component will turn out to correspond mainly to t
incoming wave while the lower component correspon
mainly to the reflected wave. Moreover, the equation for
lower component is the charge conjugate of the one for
upper component: therefore, solving for any one of th
provides the solution for the other one. Here, we will co
9-3
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P. KANTI AND J. MARCH-RUSSELL PHYSICAL REVIEW D67, 104019 ~2003!
centrate on the incoming wave and compute the absorp
coefficient by comparing the incoming flux at the asympto
regimes of the horizon and infinity. Matching the two sol
tions in the intermediate regime, however, is still necess
We impose the following normalizations for the incomin
mode of a field, with spins,

Rs
~h!5As

~h!h2 ibBHv/4p, ~13!

at the horizon of the black hole, wherebBH51/TBH , and

Rs
~`!5As

~`!~2vr !2s21e2 ivr , ~14!

at infinity. In the forthcoming sections, and for the soluti
of the general, radial equation~11!, we closely follow the
analysis presented in Ref.@13# for the case of the emission o
scalar fields.

A. Solving the general equation in the near-horizon zone

In the vicinity of the black hole, Eq.~11! can be solved by
making a change of variable,r→h. Using Eqs.~8! and~12!,
we may write the general-spin field equation in the form

h~12h!
d2R

dh2 1F ~12s!~12h!2
~n12s!

~n11!
hG dR

dh

1F ~vr H!2

~n11!2h~12h!
1

2isvr H2L

~n11!2~12h!
2

isvr H

~n11!hGR
50, ~15!

where, for simplicity of the notation, the subscripts has been
dropped from R. By using the redefinitionR(h)5ha(1
2h)bF(h), the above equation takes the form of a hyp
geometric equation

h~12h!
d2F

dh2 1@c2~11a1b!h#
dF

dh
2abF50, ~16!

with

a5a1b1
s1n~12s!

~n11!
, b5a1b, c512s12a.

~17!

The power coefficientsa andb, in turn, are found by solving
second-order algebraic equations, leading to the results

a15s1
ivr H

n11
, a252

ivr H

n11
, ~18!

and

b65
1

2~n11!
@122s6A~112 j !224v2r H

2 28isvr H#,

~19!

respectively. The general solution of the hypergeome
equation~16! is
10401
n
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RNH~h!5A2ha~12h!bF~a,b,c;h!

1A1h2a~12h!bF~a2c11,b2c11,22c;h!,

~20!

whereA6 are arbitrary constants. Expanding the above
lution in the limit r→r H ~equivalently,h→0) we obtain the
asymptotic behavior

RNH.A2ha1A1h2a

5A2hs exp~ ivr H
n12y!1A1h2s exp~2 ivr H

n12y!

~21!

for a5a1 and

RNH.A2 exp~2 ivr H
n12y!1A1 exp~ ivr H

n12y! ~22!

for a5a2 . In the above, we have used the ‘‘tortoise’’ coo
dinatey defined as

y5
ln h~r !

r H
n11~n11!

. ~23!

The choicea5a1 leads to a solution with an outgoing wav
of zero amplitude at the horizon and an incoming wave w
infinite amplitude. This is an irregular solution which mu
be discarded. On the other hand, the choice ofa5a2 leads
to regular incoming and outgoing waves with amplitu
unity at the horizon. The boundary condition that only i
coming modes are to be found in the region outside the
rizon of a black hole forces us also to setA150. After these
choices are made, the solution near the horizon has exa
the normalization of the fields described in Eq.~13!, since
a252 ivbBH/4p, thus determining the asymptotic norma
ization constant to beAs

(h)5A2 . Turning to theb coeffi-
cient, the criterion for the convergence of the hypergeome
function F(a,b,c;h),

Re~c2a2b!

52S 6
1

n11
A~112 j !224v2r H

2 28isvr HD.0, ~24!

clearly demands that we chooseb5b2 .
We finally need to shift the hypergeometric function t

wards large values ofr. This may be done by using a stan
dard linear transformation formula@26#, in the following
way:
9-4



RNH~h!5A2ha ~12h!b

G~12s12a!GS 22b1
122s

n11 D
F~a,b,a1b2c11;12h!1~12h!2b1~122s!/~n11!
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F
G~a2b112s!GS a2b1

122s

n11 D

3

G~12s12a!GS 2b2
122s

n11 D
G~a1b!GS a1b1

s1n~12s!

n11 DF~c2a,c2b,c2a2b11;12h!G . ~25!

We can now ‘‘stretch’’ the above expression towards the intermediate regime, by expanding in the limitr→`, or h→1, and
take

RNH~h!.A2S r H

r D 2~ j 1s! G~12s12a!GS 22b1
122s

n11 D
G~a2b112s!GS a2b1

122s

n11 D 1A2S r H

r D j 2s11 G~12s12a!GS 2b2
122s

n11 D
G~a1b!GS a1b1

s1n~12s!

n11 D . ~26!
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Note that, in order to simplify the procedure of the ‘‘matc
ing,’’ the low-energy limit has been taken in the express
of theb coefficient in the power ofr. No expansion has bee
made, up to this point, in the arguments of theG functions.

B. Solving the general equation in the far-field zone

We now need to find the far-field zone solution befo
being able to match the two asymptotics in the intermed
regime. Going back to the general equation~11! and in the
limit r→` or h→1, we obtain

d2R

dr2 1
2~12s!

r

dR

dr
1S v21

2isv

r
2

L

r 2DR50. ~27!

In order to solve the above equation, we setR

5e2 ivr r j 1sR̃(r ). By also making a change of variablez
52ivr , the above equation adopts the form of a conflu
hypergeometric equation

z
d2R̃

dz2 1~b2z!
dR̃

dz
2aR̃50, ~28!

with a5 j 2s11 andb52 j 12 and the general solution

R̃~z!5B1M ~a,b,z!1B2U~a,b,z!, ~29!

whereM andU are the Kummer functions andB6 are arbi-
trary coefficients. We may therefore write the complete so
tion for the radial function at infinity as

RFF~r !5e2 ivr r j 1s@B1M ~ j 2s11,2j 12,2ivr !

1B2U~ j 2s11,2j 12,2ivr !#. ~30!
10401
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We first need to expand the above expression for la
values ofr. This expansion will help us make sure that t
emitted fields have the far-field normalization given in E
~14! and will enable us to compute the incoming flux
infinity. In the limit r→`, we find

RFF~r !5
e2 ivr r 2s21

~2iv! j 2s11 FB21
B1eip~ j 2s11!G~2 j 12!

G~ j 1s11! G
1

eivrB1G~2 j 12!

G~ j 2s11!~2iv! j 1s11r
1¯ . ~31!

The first part of the above expression gives the incom
wave at infinity and, thus, by comparison with Eq.~14!, de-
fines the coefficientAs

(`) . The second part gives the outgo
ing wave. This outgoing part is suppressed as it should
We remind the reader that the above solution correspo
only to the upper component of the emitted field~either to
c1/2 or to c1) which in turn corresponds to the incomin
wave. The charge conjugate of the above solution gives
lower component~the other radiative component! of the
emitted field, which will have a dominant outgoing wave a
a suppressed incoming one.

We may now stretch the far-field solution~30! towards
small values ofr. In the limit vr !1, we therefore obtain

RFF~r !5B1r j 1s1
B2

r j 2s11

G~2 j 11!

G~ j 2s11!~2iv!2 j 11 .

~32!

Matching the two solutions~26! and~32! in the intermediate
regime, we obtain the relations
9-5
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A2
j 1s

G~12s12a!GS 22b1
122s

n11 D
, ~33!
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r H G~a2b112s!GS a2b1
122s

n11 D

B25

A2r H
j 2s11~2iv!2 j 11G~12s12a!GS 2b2

122s

n11 DG~ j 2s11!

G~a1b!GS a1b1
s1n~12s!

n11 DG~2 j 11!

. ~34!
ts
le
ga

W
ac
d

dy
lds
-
n

With the determination of the above arbitrary coefficien
we have now completed the determination of the comp
solution for both fermions and gauge-boson fields propa
ing in the background of a projected (41n)-dimensional
Schwarzschild black hole on a four-dimensional brane.
now proceed to the calculation of the greybody factor in e
case for an arbitrary number of extra compact spacelike
mensions.

III. GREYBODY FACTORS FOR THE EMISSION OF
FERMIONIC AND GAUGE FIELDS

As we will shortly see, the expression of the greybo
factors for Hawking radiation for fermions and gauge fie
involves the quantityuA(h)/A(`)u2 determined by the two nor
malization coefficients appearing in the asymptotic solutio
~13! and~14!. By using the relations~33!, ~34!, this takes the
form
c-
t
k
li

ey
se

e
, a
e

ld
w

g

10401
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A~h!

A~`! 5
A2~2v! j 1seip~ j 2s11!/2

FB21
B1eip~ j 2s11!G~2 j 12!

G~ j 1s11! G
5

~2vr H! j 1se2 ip~ j 2s11!/2

G~12s12a!@C~vr H!2 j 111D#
, ~35!

where the coefficientsC andD stand for

C5

22 j 11eip~s21/2!GS 2b2
122s

n11 DG~ j 2s11!

G~a1b!GS a1b1
s1n~12s!

n11 DG~2 j 11!

, ~36!

D5

G~2 j 12!GS 22b1
122s

n11 D
G~a2b112s!GS a2b1

122s

n11 DG~ j 1s11!

.

~37!

The measure squared of the ratioA(h)/A(`) can then be writ-
ten as
UA~h!

A~`!U2

5
~2vr H!2~ j 1s!

uG~12s12a!u2@CC* ~vr H!4 j 121~vr H!2 j 11~CD* 1C* D !1DD* #
. ~38!
the
ss
t ap-
are

lid
al

ur-
The derivation of a final explicit result for the greybody fa
tors or emission rates from the above expression requires
evaluation ofG functions for complex arguments. This tas
is a tedious procedure with the result being highly comp
cated and unilluminating. Accurate evaluations of the gr
body factors and associated emission rates do require u
the above expressions, and so in Sec. IV, we present num
cal results for the final expression of the greybody factors
a function ofvr H , by using the exact value of the abov
ratio. However,for comparison with previous studiesand as
in the case of the analysis for the emission of scalar fie
@13#, a simplified expression may be derived in the lo
energy limitvr H!1. Expanding theG functions in this limit,
we may express the denominator of the fraction appearin
he

-
-
of
ri-
s

s
-

in

Eq. ~38! in a power series in (vr H), keeping only the leading
term. The result of the expansion depends strongly on
spin of the emitted particle: therefore, we will now discu
separately the results for each case. We emphasize tha
plications in which accurate values of the emissions rate
required shouldnot use these simplified expressions va
only for vr H!1, but rather should use the full semiclassic
results derived above@together with Eqs.~40!, ~46!, and
~49!# as in the evaluation presented in Sec. IV.

A. Spin-1Õ2 fields

Following Ref. @23#, we define the incoming flux of a
fermionic field as the radial component of the conserved c
9-6
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rent, Jm5&sAB
m cAc̄B, integrated over a two-dimensiona

sphere. This may be finally written as

1

2p

dN

dt
5uR1/2u22uR21/2u2 ~39!

in terms of the measure squared of the upper and lower c
ponents of the fermionic field. Taking the ratio of the val
of this quantity at the horizon with respect to its value
infinity, we obtain the absorption probability for the scatte
ing of an incoming wave traveling from spatial infinity to
wards the horizon of the projected black hole. It can be s
ply expressed as

uAs51/2u25UA~h!

A~`!U2

~40!

if we take into account the fact that the upper compon
contributes little to the infalling flux both at infinity and a
the horizon.

Setting s51/2 and expanding theC and D coefficients,
defined in Eqs.~36!, ~37!, in the limit vr H!1, we obtain

CC* 5
22~4 j 12!/~n11!

G~ j 11!2 1O~vr H!2, ~41!

CD* 1C* D5
22 j 11

p
1O~vr H!2, ~42!

DD* 5
24 j2~4 j 12!/~n11!

p2 G~ j 11!21O~vr H!2.

~43!

Taking into account the fact that the smallest physically
lowed value of the total angular momentumj is the value of
the spin,s51/2, we easily conclude that the dominant te
in the denominator of Eq.~38!, in the low-energy limit, is
given by the first term in the expansion ofDD* . Moreover,
we have

1

uG~1/212a!u2
5

cosh~2ãp!

p
.

1

p
1

2p~vr H!2

~n11!2 1O~vr H!3,

~44!

where ã is the imaginary part ofa. Putting everything to-
gether, we obtain

uAs51/2u2.
2p~vr H!2 j 1122~4 j 12!/~n11!

22 jG~ j 11!2 1O~vr H!2.

~45!

The absorption probability leads to the absorption cr
sectionsabs(v) via

sabs
~s!~v!5

p~2 j 11!

v2 uAsu2 ~46!

for any spins and angular momentum partial wave numbej.
Thus, for the fermion case, the final absorption cross sec
is, in leading order in (vr H),
10401
-

t
-

-

t

l-

s

n

sabs
~1/2!~v!5

2p2r H
2 ~2 j 11!~vr H!2 j 2122~4 j 12!/~n11!

22 jG~ j 11!2 .

~47!

This is the primary analytic result valid forvr H!1 for the
case of spin-1/2 fermions.

As is obvious from the above formula, the absorpti
cross section has a strong dependence on the total an
momentum numberj of the emitted field as it affects both th
power of the dominant (vr H) term and the multiplicative
coefficient in front. On the other hand, as in the case of
emission of brane-localized scalar fields studied in@13#, no
dependence of the power of (vr H) on the number of extra
dimensions emerges for a brane-localized fermionic fie
Nevertheless, the multiplicative coefficient in front depen
on the number of extra dimensions.

In order to be able to draw concrete conclusions about
dependence ofsabs

(1/2) on j andn, the values of the absorptio
cross section forn52, 4, and 6, andj 5 1

2 , 3
2, and5

2 have been
computed and displayed in Table I. By looking at the entr
of this table forj 5 1

2 and for everyn, we see that the absorp
tion cross section becomes proportional to the area of
horizon of the black hole times a numerical coefficient and
independent of the energy of the emitted particle. As the to
angular momentum numberj increases, the absorption cro
section rapidly decreases as it gets suppressed by extra
ers ofvr H and its numerical coefficient also gets smaller.
instead we fixj and vary the number of extra dimension
then we see that the absorption cross section gets enha
as the number of the projected extra dimensions increa
The behavior, therefore, of the leading term in the express
of the greybody factor, in the low-energy regime, for t
emission of brane fermionic fields is similar to the one f
the emission of brane scalar fields@13#.

TABLE I. Absorption cross section for a brane-localized ferm
onic field.

n52 j 51/2 sabs
(1/2).25/3pr H

2 1¯

j 53/2 sabs
~1/2!.

24/3

9
pr H

2 ~vr H!21¯

j 55/2 sabs
~1/2!.

p

150
r H

2 ~vr H!41¯

n54 j 51/2 sabs
(1/2).21/54pr H

2 1¯

j 53/2 sabs
~1/2!.

4p

9
22/5r H

2 ~vr H!21¯

j 55/2 sabs
~1/2!.

23/5

75
pr H

2 ~vr H!41¯

n56 j 51/2 sabs
(1/2).23/74pr H

2 1¯

j 53/2 sabs
~1/2!.

4

9
26/7pr H

2 ~vr H!21¯

j 55/2 sabs
~1/2!.

2

75
22/7pr H

2 ~vr H!41¯
9-7
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B. Spin-1 fields

We now move to the case of gauge fields. In this case
conserved current may be defined: however, the incom
flux can be expressed as the integral of the flow of ene
Tmn52sAA8

m sBB8
n cABc̄A8B8, through a two-dimensiona

sphere@23#. Then we obtain the expression

1

2p

dN

dt
5

1

2Sv
~ uR1u22uR21u2!, ~48!

where the redshift of the local energy of photons has b
taken into account. The absorption probability is given ag
by the ratio of the value of the above quantity at the horiz
with respect to its value at infinity, and it is found to be

uAs51u25
1

~2vr H!2 UA~h!

A~`!U2

. ~49!

Going back to Eq.~38! and settings51, we expand theC
andD coefficients in the limitvr H!1. Thus we obtain

CC* 5

24 j 12GS 2
2 j 11

n11 D 2

G~ j !2

GS 2
j

n11D 2

GS 2
j 11

n11D 2

G~2 j 11!2

1O~vr H!2,

~50!

CD* 5
2 i22 j 11

p~n11!

sinS p j

n11D sinS p~ j 11!

n11 D
sinS p~2 j 11!

n11 D 1O~vr H!,

~51!

DD* 5

GS 2 j 11

n11 D 2

G~2 j 12!2

GS j

n11D 2

GS j 11

n11D 2

G~ j 12!2

1O~vr H!2.

~52!

The first term in the expansion ofDD* gives again the
dominant term in the denominator of Eq.~38! in the low-
energy limit. Also, we have

1

G~2a!G~22a!
5

2ã sinh~2ãp!

p
.

4~vr H!2

~n11!2 1O~vr H!4.

~53!

By using the above results, the absorption probability may
written as

uAs51u2.
4~vr H!2~2vr H!2 j

~n11!2

GS j

n11D 2

GS j 11

n11D 2

G~ j 12!2

GS 2 j 11

n11 D 2

G~2 j 12!2

1O~vr H!2, ~54!
10401
o
g
y,

n
n
n

e

leading to the following absorption cross section, for t
gauge field case, in leading order invr H :

sabs
~1!~v!54pr H

2 ~2vr H!2 j
~2 j 11!

~n11!2

3S GS j

n11DGS j 11

n11DG~ j 12!

GS 2 j 11

n11 DG~2 j 12!
D 2

. ~55!

This is our primary analytic result valid forvr H!1 for the
case of gauge fields.

As in the case of scalar and fermionic fields, the abso
tion cross section for brane-localized gauge fields depe
nontrivially on the angular momentum numberj and the
number of extra dimensions,n. The power of the dominan
(vr H) term depends only onj, but the numerical coefficien
in front depends strongly on both parameters. The value
the above quantity forn52, 4, and 6 andj 51, 2, and 3 are
given in Table II.

Unlike the case of scalar and fermionic field emission,
absorption cross section for the emission of gauge fields
pends on the energy of the emitted particle even in the c
of the lowest partial wave withj 51. This follows from the
different dependence of the dominant (vr H) term on the
angular momentum number. Any further increase in
value of j leads to the appearance of a suppression facto
powers of (vr H), while the increase in the number of ext
dimensions strongly enhances the absorption cross sect

TABLE II. Absorption cross section for a brane-localized gau
field.

n52 j 51 sabs
~1!.

64

81
p3r H

2 ~vr H!21¯

j 52 sabs
~1!.

p

5
r H

2 ~vr H!41¯

j 53 sabs
~1!.

4p

1575
r H

2 ~vr H!61¯

n54 j 51 sabs
~1!.

4

75
22/5GS 1

10D
2

GS 2

5D 2

r H
2 ~vr H!21¯

j 52 sabs
~1!.

4p

125
GS 2

5D 2

GS 3

5D 2

r H
2 ~vr H!41¯

j 53 sabs
~1!.

64p

39375

G~3/5!2G~4/5!2

G~7/5!2 r H
2 ~vr H!61¯

n56 j 51 sabs
~1!.

16p

147

G~1/7!2G~2/7!2

G~3/7!2 r H
2 ~vr H!21¯

j 52 sabs
~1!.

26/7

245
GS 3

14D
2

GS 2

7D 2

r H
2 ~vr H!41¯

j 53 sabs
~1!.

64

77175

p3

sin2~4p/7!
r H

2 ~vr H!61¯
9-8



CALCULABLE CORRECTIONS TO . . . . II. . . . PHYSICAL REVIEW D67, 104019 ~2003!
FIG. 1. Greybody factorssabs(v) for the emission of~a! fermions and~b! gauge brane-localized fields, as a function ofvr H , for n
50, 2, 4, and 6.
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IV. EVALUATION OF RESULTS

In this section, we proceed to calculate the correspond
emission rates for spin-1/2 and -1 fields in the background
the projected four-dimensional black hole given in Eq.~10!.
In this section we will not use the simplified expressio
valid only for vr H!1, but rather the full analytic expres
sions, Eqs.~36!–~38!.

For the relevant four-dimensional process of the emiss
of brane-localized fields, Eq.~2! takes the form

dE~v!

dt
5(

j
s j~v!

v3

exp~v/TBH!71

dv

2p2 . ~56!

Thus, for the evaluation of the emission rates, we need
expressions of the greybody factors summed over the a
lar momentum numberj. A simple numerical analysis show
that, by summing over the first three partial waves, we ob
the dependence of the greybody factors on the param
vr H to high accuracy, with all higher partial waves addi
an almost zero contribution to the final result. The numeri
evaluation gives us the ability to use the exact value of
ratio ~38! instead of the simplified leading-order correctio
presented in Eqs.~47! and ~55!, which are valid only for
vr H!1. Such a numerical analysis will reveal how fast t
low-energy approximation breaks down as the expansion
rametervr H increases. Figures 1~a! and 1~b! depict the grey-
body factors for fermions and gauge fields, respectively
units of pr H

2 , as functions ofvr H . The first three partial
10401
g
f

n

e
u-

in
ter

l
e

a-

n

waves have been summed in each case, and the depen
for n50, 2, 4, and 6 is shown. We observe that, for sm
enough values ofvr H , we reproduce, as expected, the b
havior given by the leading-order corrections and accord
to which the greybody factors are enhanced as the numbe
extra dimensions projected on our brane increases. T
agreement holds for both species of fields up to the va
vr H.0.4. As vr H increases further, it is the lower
dimensional models that seem to give the largest greyb
factors. However, our calculation is limited to a WKB-lik
semiclassical approximation and only an exact numer
analysis of the original master equation, Eq.~11!, can deter-
mine sabs(v) in the intermediate and high-energy regim
vr H*1. Let us finally note that our analysis correctly repr
duces the behavior of the greybody factors in the case on
50 @21,27#, with sabs

(1/2)(v) adopting a nonvanishing
asymptotic value at very low energies andsabs

(1)(v) going to
zero. The same behavior is observed in the cases witn
Þ0.

Figures 2~a! and 2~b! display the behavior of the differen
tial emission rate per time unit and energy interv
d2E/dt dv versus the parametervr H , for fermions and
gauge fields, as follows by combining Eq.~56! with the exact
expression of the greybody factor in each case and the d
nition of the temperature of the projected four-dimensio
black hole,TH5(n11)/4pr H . The emission rates are sub
stantially enhanced as the number of extra dimensions
creases. The increase is larger for gauge fields which lead
FIG. 2. Differential emission
rate d2E/dt dv for ~a! fermions
and~b! gauge fields, as a function
of vr H , for n50, 1, 2, 4, and 6.
9-9
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FIG. 3. ~a! Greybody factor
for the emission of brane-
localized scalar fields forn50, 1,
and 6; ~b! the corresponding dif-
ferential emission rate forn50, 1,
2, 4, and 6.
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the result that the emission rates for the two species bec
comparable, for large values ofn. On the other hand, for low
values ofn, the emission rate for a fermion is considerab
larger compared than that for a gauge field, with the diff
ence reaching an order of magnitude in the limiting case
n50.

It is useful to perform a similar numerical analysis for t
case of scalar fields being emitted by the same fo
dimensional black hole, a case studied in Ref.@13#. By fol-
lowing a similar analytical approach, the leading-order c
rection in the expression of the greybody factor in that c
was also derived. According to those results, the leading
rection for the first, and thus dominant, partial wave w
independent of the number of extra dimensions. Any diff
ence in the value of the greybody factor was to come fr
the higher partial waves whose coefficient indeed increa
with increasingn. As vr H increases, however, the next-t
leading-order corrections for each partial wave~for example,
the terms being denoted by ellipses in Tables I and II, a
similarly in Table II in @13#! can dominate the contributio
coming from the higher partial waves. In the case of ferm
ons and gauge fields, we showed that this does not hap
until the valuevr H.0.4. For scalar fields, it turns out tha
this value is much smaller. Figure 3~a! depicts the greybody
factor for the emission of brane-localized scalar fields,
using the exact value of the ratio of the two coefficientsB1

andB2 , given in Eq.~46! of Ref. @13#. We immediately see
that, for extremely small values ofvr H , the greybody fac-
tors, for various values ofn, converge to the same asymptot
value, in agreement with our simplified expression. Ho
ever, very soon, the next-to-leading-order corrections do
nate and cause the greybody factor to decrease asn in-
creases. The emission rate for scalar fields is neverthe
enhanced as the number of extra dimensions increases.
is caused by the decrease in the denominator of Eq.~56!, due
to the dependence of the temperatureTBH on n, that over-
comes the decrease of the greybody factor. As in the cas
fermion and gauge fields, the increase amounts to order
magnitude compared to the limiting case ofn50.

V. CONCLUSIONS

In an earlier paper@13#, we studied the problem of th
decay of a higher-dimensional Schwarzschild-like black h
10401
e

-
f

r-

-
e
r-
s
-

ed

d

-
en

y

-
i-

ss
his

of
of

e

through the emission of either higher-dimensional bulk,
brane-localized, scalar modes. In this paper, we extended
computation of the greybody factors that appear in
Hawking decay process to the spin-1/2 and spin-1 bra
localized cases of greatest phenomenological interest. S
the angular momentum of the black hole has been igno
our calculations are relevant to the post-balding and sp
down phases of the life of a black hole produced at a hi
energy collider or by ultrahigh-energy cosmic-ray intera
tions. The semiclassical approximation methods emplo
allow us to calculate the greybody factors and the cor
sponding emission rates for a general numbern of flat extra
dimensions of the Arkani-Hamed, Dimopoulos, and Dv
type. ~It is important to bear in mind that black holes
highly curved bulk spacetimes—for example, Randa
Sundrum 5D theories—require a somewhat modified tre
ment from the one presented here.! The primary analytic
results of our calculation for the greybody factors, for ar
trary j andn, are presented in Eqs.~35!–~38! and~40!, ~46!,
and ~49!. Simplified expressions are provided in Eqs.~47!
and ~55! for spin 1/2 and spin 1, respectively. In both cas
there is an increase in the greybody factor asn is increased at
fixed j. As the subsequent numerical analysis revealed,
behavior survives up to intermediate values of the energy
the emitted particle and contributes to a considerably
hanced emission rate for both fermions and gauge boson
similar analysis for the emission of scalar fields also led to
enhancement of the emission rate asn increases despite th
fact that the greybody factor, rapidly deviating from the b
havior dictated by the leading-order correction in the lo
energy approximation, is suppressed. We expect that ou
sults will be of use in a detailed study of the signatures
possible black hole production events.

Note added. While writing this paper, the related work o
Ref. @28# appeared which also considers the greybody fac
for black holes in brane-world theories.
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