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Gauge problem in the gravitational self-force: Harmonic gauge approach
in the Schwarzschild background
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The metric perturbation induced by a particle in the Schwarzschild background is usually calculated in the
Regge-Wheeler~RW! gauge, whereas the gravitational self-force is known to be given by the tail part of the
metric perturbation in the harmonic gauge. Thus, to identify the gravitational self-force correctly in a specified
gauge, it is necessary to find out a gauge transformation that connects these two gauges. This is called the
gauge problem. As a direct approach to solve the gauge problem, we formulate a method to calculate the metric
perturbation in the harmonic gauge on the Schwarzschild background. We apply the Fourier-harmonic expan-
sion to the metric perturbation and reduce the problem to the gauge transformation of the Fourier-harmonic
coefficients~radial functions! from the RW gauge to the harmonic gauge. We derive a set of decoupled radial
equations for the gauge transformation. These equations are found to have a simple second-order form for the
odd parity part and the forms of spins50 and 1 Teukolsky equations for the even parity part. As a by-product,
we correct typographical errors in Zerilli’s paper and present a set of corrected equations in Appendix A.

DOI: 10.1103/PhysRevD.67.104017 PACS number~s!: 04.25.Nx, 04.70.Bw
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I. INTRODUCTION

A compact object of solar-mass size orbiting a superm
sive black hole is one of the promising candidates for
source of gravitational waves. Since the internal structure
such a compact object may be neglected in this situation
may adopt the black hole perturbation approach with
compact object being regarded as a point particle. In
black hole perturbation approach, we consider the me
perturbation induced by a point particle of massm orbiting a
black hole of massM, wherem!M . At the lowest-order in
the mass ratio (m/M ), the motion of the particle follows a
geodesic of the background spacetime. In the next or
however, the particle moves no longer along a geodesi
the background because of its interaction with the self-fie

Although this deviation from a background geodesic
small form/M!1 at each instant of time, after a large lap
of time, it accumulates to become non-negligible. For
ample, a circular orbit will not remain circular but become
spiral-in orbit and the orbit eventually plunges into the bla
hole.

If the time scale of the orbital evolution due to the se
force is sufficiently long compared to the characteristic
bital time, we may adopt the so-called adiabatic approxim
tion in which the orbit is assumed to be instantaneou
geodesic with the constants of motion changing very slo
with time. In the Schwarzschild background case, we m
assume the orbit to lie on the equatorial plane and the g
desic motion is determined by the energy and~the
z-component of! angular momentum of the particle. In th
case, the time variation of the energy and angular momen
can be determined from the energy and angular momen
emitted to infinity and absorbed into the black hole horiz
by using the conservation law.

However, there are cases when the adiabatic approx
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tion breaks down. For example, in the case of an extrem
eccentric orbit or an orbit close to the innermost stable
cular orbit, the orbital evolution will not be adiabatic becau
the stability of the orbit is strongly affected by an infinites
mally small reaction force. Furthermore, in the Kerr bac
ground, there is an additional constant of motion, known
the Carter constant. Intuitively, it describes the total orb
angular momentum, but unlike the case of spherical sym
try, it has nothing to do with the Killing vector field of the
Kerr geometry. The lack of its relation to the Killing vecto
makes it impossible to evaluate the time change of the Ca
constant from the gravitational waves emitted to infinity a
to event horizon, even in the case when the adiabatic
proximation is valid. Thus it is in any case necessary
derive the self-force of a particle explicitly.

The gravitational self-forceFm is formally given as

d2za

dt2
1Gmn

a dzm

dt

dzn

dt
5Fa,

where$za(t)% represents the orbit witht being the proper
time measured in the background geometry andGmn

a is the
connection of the background. The self-force arises from
metric perturbationhmn induced by the particle:

g̃mn5gmn1hmn ,

and it is expressed as

Fa@h#52Pb
aS h̄bg;d2

1

2
gbgh̄e

e;d2
1

2
h̄gd;b

1
1

4
ggdh̄e

e;bDugud,
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where Pa
b5da

b1uaub, h̄ab5hab2 1
2 gabh and ua

5dza/dt.
The metric perturbation diverges at the location of t

particle and so does the self-force. Thus the above for
expression is in fact meaningless. Fortunately, however,
known that the metric perturbation in the vicinity of the orb
can be divided into two parts under the harmonic gauge c
dition; the direct part which has support only on the p
light-cone emanating from the field pointxm and the tail part
which has support inside the past light-cone, and the phys
self-force is given by the tail part of the metric perturbati
which is regular as we let the field point coincide with
point on the orbit;xm→zm(t) @1,2#. It must be noted that the
direct part can be evaluated by local analysis, i.e., only w
the knowledge of local geometrical quantities. Therefore
physical self-force can be calculated as

lim
x→z(t)

Fa@htail~x!#5 lim
x→z(t)

~Fa@h~x!#2Fa@hdir~x!# !.

Furthermore, it has been revealed recently by Detweiler
Whiting @3# that the above division of the metric can b
slightly modified so that the new direct part, called theSpart,
satisfies the same Einstein equations as the full metric
turbation does, and the new tail part, called theR part, satis-
fies the source-free Einstein equations, and that theR part
gives the identical, regular self-force as the tail part do
The important point is that theS part can be still evaluated
locally near the orbit without knowing the global solutio
Another important point is that, when the metric perturbat
is expanded in spherical harmonics, the self-force cons
only of the modes,>2, because theR part satisfies the
source-free Einstein equations. In practice, however, du
unavoidable errors in the evaluation of theS ~or R) part, the
contributions of the,50, 1 modes may not be neglected

When we perform this subtraction, we must evaluate
full self-force and the direct part under the same gauge c
dition. But the direct part is, by definition, defined only in th
harmonic gauge. On the other hand, the full metric pertur
tion is directly obtainable only by the Regge-Wheeler-Zer
or Teukolsky formalism@4–7#. Therefore one must find a
gauge transformation that brings both the full metric pert
bation and the direct part of the metric perturbation to th
in the same gauge. This is called thegauge problem@18#.

For the direct part, methods to obtain it under the h
monic gauge condition were proposed@8–11#. However, it
seems extremely difficult to solve the metric perturbat
under the harmonic gauge because the metric compon
couple to each other in a complicated way. This is one of
reasons why the gauge problem is difficult to solve.

Recently, Barack and Ori@12# gave a useful insight into
the gauge problem. They proposed an intermediate ga
approach in which only the direct part of the metric in t
harmonic gauge is subtracted from the full metric pertur
tion in the Regge-Wheeler~RW! gauge. They then argue
that the gauge-dependence of the self-force is unimpor
when averaged over a sufficiently long lapse of time. Us
this approach, the gravitational self-force for an orbit plun
ing into a Schwarzschild black hole was calculated
10401
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Barack and Lousto@13#. But they also pointed out that th
RW gauge is singular in the sense that the resulting self-fo
will still have a direction-dependent limit for general orbit
The situation becomes worse in the Kerr background wh
the only known gauge in which the metric perturbation c
be evaluated is the radiation gauge@4#, but the metric pertur-
bation becomes ill-defined in the neighborhood of the p
ticle, i.e., the Einstein equations are not satisfied there@12#.

In this paper, as a direct approach to the gauge probl
we consider a formalism to calculate the metric perturbat
in the harmonic gauge. We focus on the Schwarzschild ba
ground. Instead of directly solving the metric perturbation
the harmonic gauge, we consider the metric perturbation
the RW gauge first, and then transform it to the one in
harmonic gauge. Namely, we derive a set of equations
gauge functions that transform the metric perturbation in
RW gauge to the one in the harmonic gauge.

The paper is organized as follows. In Sec. II, we form
late the gauge transformation from the RW gauge to the h
monic gauge. First we decompose the gauge transforma
generators into the Fourier-harmonics components. Then
generators are divided into three parts; the odd parity p
and the even parity part which is further divided into sca
and divergence free parts. By the above procedure, we fi
set of decoupled equations for the gauge functions. In S
III, we summarize our formulation and discuss remaini
issues. In Appendix A, we recapitulate the equations for
Regge-Wheeler-Zerilli formalism~for ,>2) by correcting
typographical errors in Zerilli’s paper@6#. The field equations
for the ,50, 1 modes are separately presented in Appen
B.

II. FORMULATION

We consider a metric perturbationhmn in the Schwarz-
schild background:

gmndxmdxn52 f ~r !dt21 f ~r !21dr21r 2~du21sin2udf2!,

f ~r !512
2M

r
. ~2.1!

We express the gauge transformation from the RW gaug
the harmonic gauge as

xRW
m →xH

m5xRW
m 1jm, ~2.2!

hmn
RW→hmn

H 5hmn
RW2jm;n2jn;m , ~2.3!

where the suffix RW stands for the RW gauge and H for
harmonic gauge.

Substituting Eq.~2.3! into the harmonic gauge conditio
h̄mn

H ;n50, we obtain the equations forjm:

jm
;n

;n5h̄m
RWn

;n5hm
RWn

;n2
1

2
h;m

RW. ~2.4!

Using the static and spherical symmetry of the backgrou
we perform the Fourier-harmonic expansion of the abo
equation and consider the equations for the expansion c
ficients forjm andhmn

RW. We use the tensor harmonics intro
7-2
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duced by Zerilli@6# which are recapitulated in Appendix A
Then according to the property under the parity transform
tion (u,f)→(p2u,f1p), we dividejm into the odd and
even parity parts,

jm5j (odd)
m 1j (even)

m , ~2.5!

and the even part is further decomposed into the scalar
divergence-free parts,

j (even)
m 5j ;m1j (v)

m , ~2.6!

wherej (v);m
m 50.

A. Odd part „øÐ2…

First, we consider the odd part which has the odd pa
(21),11 under the parity transformation. The gauge tra
formation generators and the metric perturbation are give
the Fourier-harmonic expanded form as

jm
(odd)5E dv(

,m
e2 ivtL,mv~r !

3H 0,0,
21

sinu
]fY,m~u,f!,sinu]uY,m~u,f!J ,

~2.7!

hmn
(odd)5E dv(

,m

A2,~,11!

r
e2 ivtF2h0,mv~r !c,mmn

(0)

1 ih1,mv~r !c,mmn1
A~,21!~,12!

2r

3h2,mv~r !d,mmnG , ~2.8!

where c,mmn
(0) ,c,mmn ,d,mmn are tensor harmonics with od

parity @6#. By substituting Eqs.~2.7! and~2.8! into Eq.~2.4!,
we obtain the equation forL,mv(r ):

L (odd)L,mv~r !52R,mv
(odd)~r !2

16ipr 2

A2,~,11!~,21!~,12!

3D,mv~r !, ~2.9!
10401
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whereR,mv
(odd)(r ) is the Regge-Wheeler gauge invariant va

able, D,mv(r ) is the Fourier-harmonic coefficient of th
stress-energy tensor, and the differential operatorL is de-
fined as

L (odd)[ f ~r !
d2

dr2
1 f 8~r !

d

dr
1S v2

f ~r !
2

,~,11!

r 2 D
5

1

f ~r !

d2

dr* 2
1S v2

f ~r !
2

,~,11!

r 2 D ,

~2.10!

wherer * 5r 12M log(r/2M21) and 85d/dr. The form of
the differential operatorL is slightly different from the radial
part of the scalar d’Alembertian, but Eq.~2.9! may be solved
by the standard Green function method. The homogene
solutions to construct the Green function can be obtained
applying the method developed by Manoet al. @14#. Here we
note that the retarded causal boundary condition should
imposed for the Green function.

B. Even scalar part „øÐ2…

Next we consider the even scalar part ofjm which has the
even parity (21), and is expressed by a gradient of a sca
function j. It is expressed as

jm
(s)5j ;m , j5E dv(

,m

1

r
j̃,mv~r !e2 ivtY,m~u,f!.

~2.11!

The gauge equation forjm
(s) is derived from jm;n

(s) ;n

5J;m
(s) , which, because of the vanishing of the backgrou

Ricci tensor, gives

j ;n
;n5J(s), ~2.12!

where the source termJ(s) is determined from the equation

J(s);m
;m5h̄RW;mn

mn . ~2.13!

The Fourier-harmonic expanded form of the above equa
is derived as follows. First, we take the divergence of
metric perturbation under the RW gauge;
h̄mn
RW;n5E dv(

,m
e2 ivtH F2

2 f ~r !

r
H1,mv

RW ~r !2
8p irB ,mv

(0) ~r !

A,~,11!/2
2

8p ivr 2F,mv~r !

A,~,11!~,21!~,12!/2
GY,m~u,f!~et!m

1F 2

r
~H2,mv

RW ~r !2K,mv
RW ~r !!1

8prB,mv~r !

A,~,11!/2
2

8pr 2
d

dr
F,mv~r !

A,~,11!~,21!~,12!/2
GY,m~u,f!~er !m

1
8pr 2

A,~,11!~,21!~,12!/2
F,mv~r !~e3!mJ , ~2.14!
7-3
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where (et)m5(21,0,0,0), (er)m5(0,1,0,0) and (e3)m
5(0,0,]uY,m ,]fY,m). Then we take the divergence of th
above once more to obtain

h̄mn
RW;mn5E dv(

,m
e2 ivtY,m~u,f!F2

1

r
L (s)H̃,mv~r !

18pS A,mv
(0) ~r !

f ~r !
2 f ~r !A,mv~r !2A2G,mv

(s) D G
~2.15!

whereH̃,mv(r ) is the trace of the metric perturbation give
by

1

r
H̃,mv~r !5

H0,mv
RW ~r !2H2,mv

RW ~r !

2
2K,mv

RW ~r !.

~2.16!

The d’Alembertian ofJ(s) is expanded as

J(s);m
;m5E dv(

,m
e2 ivtY,m~u,f!

1

r
L (s)J̃,mv

(s) ~r !,

~2.17!

where 1
r J̃,mv

(s) is the Fourier-harmonic coefficient ofJ(s) and
L (s) is the radial part of the scalar d’Alembertian,

L (s)[ f ~r !
d2

dr2
1 f 8~r !

d

dr
1S v2

f ~r !
2

,~,11!

r 2
2

f 8~r !

r D
5

1

f ~r !

d2

dr* 2
1S v2

f ~r !
2

,~,11!

r 2
2

2M

r 3 D . ~2.18!

Hence Eq.~2.13! becomes

L (s)J̃,mv
(s) ~r !52L (s)H̃,mv~r !18pr S A,mv

(0) ~r !

f ~r !

2 f ~r !A,mv~r !2A2G,mv
(s) D . ~2.19!

Once the source term is obtained, we obtain from
~2.12! the equation forj̃,mv(r ) as

L (s)j̃,mv~r !5 J̃,mv
(s) ~r !. ~2.20!

Note that this equation as well as Eq.~2.19! are just the
radial part of the scalar d’Alembertian, or equivalently t
spin s50 Teukolsky equation, and hence can be also sol
by the Green function method. The detail analysis of
homogeneous solutions which satisfy thes50 Teukolsky
equation is discussed in@14#.

C. Even vector part „øÐ2…

Since the even vector partj (v)
m satisfies the divergence fre

condition, jm
(v) ;m50, this part has two degrees of freedo

Thereforej (v)
m is expressed in terms of two independent

dial functions,
10401
.

d
e

.

-

jm
(v)5E dv(

,m
e2 ivtF1

r
M0,mv~r !Y,m~u,f!~et!m

1
1

r
M1,mv~r !Y,m~u,f!~er !m

1
1

,~,11! H 2 ivr

f ~r !
M0,mv~r !1] r„r f ~r !M1,mv~r !…J

3~e3!mG . ~2.21!

To solve the gauge transformation equation~2.4! for this
part, we introduce an auxiliary fieldFmnªjn;m

(v) 2jm;n
(v) . Then

we have

Fmn
;n52Jm

(v) , Jm
(v)[h̄mn

RW;n2J;m
(s) , ~2.22!

where we have again used the fact that the background R
tensor vanishes. Note that the Fourier-harmonic expansio
h̄mn

RW;n is given by Eq.~2.14!. The above equation is the Max
well equation, so it can be solved by using the Teukols
formalism @7# for the electromagnetic field (s561).
Namely, we introduce the following variables:

f05Fmnl mmn, f25Fmnm* mnn, ~2.23!

where * denotes the complex conjugate, andl m, nm, mm are
the Kinnersley null tetrad defined by

l m5H 1

f ~r !
,1,0,0J , nm5H 1

2
,2

f ~r !

2
,0,0J ,

mm5
1

A2r
H 0,0,1,

i

sinuJ . ~2.24!

The variablesf0 andf2 satisfy thes561 Teukolsky equa-
tion,

L s
(Teuk)Cs524pr 2Ts , ~2.25!

whereC15f0 andC215r 2f2, andL s
(Teuk) is the Teukol-

sky differential operator defined as

L s
(Teuk)

ª2
r 2

f ~r !
] t

212sS M

f ~r !
2r D ] t

1~r 2f ~r !!2s] r@~r 2f ~r !!s11] r #1
1

sinu
]u~sinu]u!

1
1

sin2u
]f

2 1
2is cosu

sin2u
]f2s~s cot2u21!. ~2.26!

The source termsTs , which are calculated fromJm
(v) , are

24pT15
1

A2r
S ]u1

i

sinu
]fD @Jm

(v)l m#2S ] r2
iv

f ~r !
1

3

r D
3@Jm

(v)mm#, ~2.27!
7-4
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24pT215r 2H 2
1

A2r
S ]u2

i

sinu
]fD @Jm

(v)nm#

2
f ~r !

2 S ] r1
iv

f ~r !
1

3

r D @Jm
(v)m* m#J . ~2.28!

The solution of this Teukolsky equation is also analyzed
@14#.

Once we obtainf0 and f2, the two radial functions for
the gauge transformation are calculated from Eq.~2.23!
which reads

f05E dv(
,m

e2 ivt
2 1Y,m~u,f!

A2,~,11!r f ~r !
F,~,11!

r
„M0,mv~r !

2 f ~r !M1,mv~r !…2 ivH 2 ivr

f ~r !
M0,mv~r !

1
d

dr
„r f ~r !M1,mv~r !…J 1 f ~r !

d

dr H 2 ivr

f ~r !
M0,mv~r !

1
d

dr
„r f ~r !M1,mv~r !…J G , ~2.29!

f25E dv(
,m

e2 ivt 21Y,m~u,f!

2A2,~,11!r
F2

,~,11!

r
„M0,mv~r !

1 f ~r !M1,mv~r !…1 ivH 2 ivr

f ~r !
M0,mv~r !

1
d

dr
„r f ~r !M1,mv~r !…J 1 f ~r !

d

dr H 2 ivr

f ~r !
M0,mv~r !

1
d

dr
„r f ~r !M1,mv~r !…J G , ~2.30!
10401
n

where sY,m(u,f) are the spin-weighted spherical harmo
ics. Performing the Fourier and spin-weighted spherical h
monic expansion forf0 andf2,

f05E dv(
,m

f̃0,mv~r !e2 ivt
1Y,m~u,f!, ~2.31!

f25E dv(
,m

f̃2,mv~r !e2 ivt
21Y,m~u,f!,

~2.32!

we obtain the equations

f̃0,mv~r !1
2

f ~r !
f̃2,mv~r !

52
A2/,~,11!

r f ~r ! F S ,~,11!

r
2

v2r

f ~r ! D M0,mv~r !

2 iv
d

dr
„r f ~r !M1,mv~r !…G , ~2.33!

f̃0,mv~r !2
2

f ~r !
f̃2,mv~r !

5
A2/,~,11!

r f ~r ! F,~,11! f ~r !

r
M1,mv~r !

2 f ~r !
d2

dr2
„r f ~r !M1,mv~r !…

1 iv f ~r !
d

dr S r

f ~r !
M0,mv~r ! D G . ~2.34!

We can eliminateM1,mv(r ) from Eqs.~2.33! and ~2.34!
to obtain a decoupled equation forM0,mv(r ),
L (s)M0,mv~r !52
r 2

A2,~,11!
F f ~r !2

d2

dr2
f̃0,mv~r !1 f ~r !S 212 f ~r !

r
1 f 8~r !1 iv D d

dr
f̃0,mv~r !

1
r f 8~r !2~,21!~,12! f ~r !1 ivr „112 f ~r !…

r 2

3f̃0,mv~r !12 f ~r !
d2

dr2
f̃2,mv~r !12S 212 f ~r !

r
2 f 8~r !2 iv D d

dr
f̃2,mv~r !

22
r f 8~r !1~,21!~,12!13ivr

r 2
f̃2,mv~r !G , ~2.35!

5
r 2

A2,~,11!
F4pS 2

r 2T̃21,mv~r !1 f ~r !T̃1,mv~r ! D2 f ~r !~ iv1 f 8~r !!S d

dr
1

iv

f ~r !
1

1

r f ~r ! D f̃0,mv~r !

12~ iv2 f 8~r !!S d

dr
2

iv

f ~r !
1

1

r D f̃2,mv~r !G , ~2.36!
7-5
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where T̃s,mv(r ) is the Fourier-harmonic coefficient of th
source term in the Teukolsky equation~2.25!. Interestingly,
Eq. ~2.36! has the same form as thes50 Teukolsky equa-
tion. Once we obtainM0,mv(r ) by solving the above equa
tion, M1,mv(r ) is derived from

M1,mv~r !5
2 ir 2

vA2,~,11!
F f ~r !S d

dr
1

iv

f ~r !

1
1

r f ~r ! D f̃0,mv~r !12S d

dr
2

iv

f ~r !

1
1

r D f̃2,mv~r !G2
i

v S d

dr
M0,mv~r !

2
M0,mv~r !

r D , ~2.37!

which also follows from Eqs.~2.33! and ~2.34!.

D. øÄ0 mode

The above formalism cannot be applied to the,50, 1
modes because some vector and tensor harmonics va
~For example,d1m andf1m vanish for,51.! Furthermore we
cannot use the Regge-Wheeler and Zerilli equation to ev
ate the metric perturbations for these modes. So we hav
deal with these modes separately. As shown in Appendix
we may introduce the Zerilli gauge in which we can evalu
the metric perturbation. Then we consider the gauge tra
formation from the Zerilli gauge to the harmonic gauge
the ,50,1 modes.

jm
Z→H;n

;n5h̄mn
Z ;n, xH

m5xZ
m1jZ→H

m ~for ,50,1 modes!.
~2.38!

At first, we consider the,50 mode. The,50 mode of
the gauge transformation generator is given as the follow

jm
Z→H,,505$2M0

Z→H~ t,r !Y00~V!,M1
Z→H~ t,r !Y00~V!,0,0%.

~2.39!

Substituting this into Eq.~2.38!, we can obtain the gaug
transformation equations as

]2M0
Z→H~ t,r !

]r 2
1

2

r

]M0
Z→H

]r
50, ~2.40!

f ~r !
]2M1

Z→H

]r 2
1

2

r

]M1
Z→H

]r
2

2 f ~r !

r 2
M1

Z→H

54pr S 1

f ~r !2
A00

(0)2A00D 1
f 8~r !

2 f ~r !
H0

Z~ t,r !

1
223r f 8~r !

2r f ~r !
H2

Z~ t,r !. ~2.41!
10401
ish.

u-
to
,

e
s-
r
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E. Odd part of øÄ1 mode

For the odd part of the,51 mode, we can give the gaug
transformation generator as the following form:

jm
(odd),Z→H5(

m
H 0,0,

2L1m
Z→H~ t,r !

sinu
]fY1m~u,f!,L1m

Z→H

3~ t,r !sinu]uY1m~u,f!J . ~2.42!

From Eq.~2.38!, the gauge transformation equation is no
given by

F2
1

f ~r !

]2

]t2
1

]

]r S f ~r !
]

]r D2
2

r 2GL1m
Z→H~ t,r !

5 f ~r !
]h1,m

Z,,51~ t,r !

]r
1

11 f ~r !

r
h1,m

Z,,51~ t,r !.

~2.43!

F. Even part of øÄ1 mode

For the even part of the,51 mode, the gauge transfo
mation generator can be divided into the scalar and ve
parts as the case for the,>2 modes:

jm
(even),Z→H5j ;m

Z→H1jm
(v), Z→H , jm

(v),Z→H;m50,
~2.44!

wherejZ→H and jm
(v), Z→H can be expressed in the Fourie

harmonic expanded form:

jZ→H5E dv(
m

1

r
j̃ 1mv

Z→H~r !e2 ivtY1m~u,f!, ~2.45!

jm
(v),Z→H5E dv(

m
e2 ivtF1

r
M01mv

Z→H~r !Y1m~u,f!~et!m

1
1

r
M11mv

Z→H~r !Y1m~u,f!~er !m

1
1

2 H 2 ivr

f ~r !
M01mv

Z→H~r !

1] r„r f ~r !M11mv
Z→H~r !…J ~e3!mG . ~2.46!

By making some changes to Eqs.~2.13! and ~2.16!, the
gauge transformation equations may be derived by using
formalism for the even parity part of the,>2 modes. That
is, we apply the following replacements to the source ter
7-6
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h̄mn
RW;n→h̄mn

Z ;n5E dv(
m

e2 ivt ~2.47!

3H F2
2 f ~r !

r
H1,m

Z,,51~r !2
iv

2
„H0,m

Z,,51~r !2H2,m
Z,,51~r !…28p irB 1mv

(0) ~r !GY1m~u,f!~et!m

1F2
r 2

2

d

dr S 1

r 2„H0,m
Z,,51~r !2H2,m

Z,,51~r !…D18prB1mv~r !GY1m~u,f!~er !m

1F1

2
„H0,m

Z,,51~r !2H2,m
Z,,51~r !…G~e3!mJ , ~2.48!

1

r
H̃,mv→ 1

r
H̃1mv

Z,,515
H0,m

Z,,512H2,m
Z,,51

2
. ~2.49!
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III. SUMMARY AND DISCUSSION

In this paper, to solve the gauge problem of the grav
tional self-force, we have considered the gauge transfor
tion from the Regge-Wheeler gauge to the harmonic ga
and have presented a formalism to obtain the infinitesi
displacement vector of this transformation,jm. First, we
have performed the Fourier-harmonic expansion ofjm and
divided it into the odd and even parity parts. The odd p
has only one degree of freedom and it turns out that
gauge transformation can be found by solving a sin
second-order differential equation for the radial function.
for the even parity part, we have further divided it into sca
and vector parts where the scalar part is given by the grad
of a scalar function and the vector part is divergence-fr
The scalar part has by definition only one degree of freed
and we have found that it can be obtained by solving t
second-order differential equations consecutively. These
equations are found to be identical to thes50 Teukolsky
equation. The vector part has two degrees of freedom,
the gauge transformation equations give equations that
coupled in a complicated way. However, by introducing tw
auxiliary variables which satisfy thes561 Teukolsky equa-
tions, we have succeeded in deriving a decoupled sec
order equation for one of the gauge functions with the sou
term given by the auxiliary variables. Interestingly, th
second-order equation has the same form as thes50 Teu-
kolsky equation. The other gauge function is then sim
given by applying a differential operator to the first.

Since all the equations to be solved have the form an
gous to or equal to the Regge-Wheeler equation, we
derive analytic expressions for their homogeneous solut
by using the Mano-Suzuki-Takasugi method@14# and con-
struct the Green function from these homogeneous soluti
So we conclude that the gauge transformation can be so
by using the Green function method, and we can const
the metric perturbation in the harmonic gauge. In pract
however, it may not be easy to solve for the gauge trans
mation since it involves products of Green functions w
double integrals. Derivation of the gauge transformat
10401
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functions in a closed, practically tractable form is left f
future study.

Another approach to the gauge problem is to consider
self-force in a gauge different from the harmonic gaug
similar to ~but very different in principle from! the interme-
diate gauge approach proposed by Barack and Ori@12#. Here
the recent result by Detweiler and Whiting@3# becomes cru-
cial. Their observation that theSpart and theR part play the
identical roles as the direct part and the tail part, respectiv
and that theSpart satisfies the same inhomogeneous Eins
equations as the full metric perturbation enables us to de
the S part and theR part of the metric perturbation unam
biguously in an arbitrary gauge as long as the gauge co
tion is consistent with the Einstein equations. For examp
given theS part of the metric perturbation in the harmon
gauge, one can perform the gauge transformation of it to
RW gauge and the resulting metric perturbation which sa
fies the Einstein equations can be identified as theS part of
the metric perturbation in the RW gauge. Then, after solv
the Regge-Wheeler-Zerilli equations to obtain the full met
perturbation, it is straightforward to derive theR part of the
metric perturbation in the RW gauge@15#. The calculation of
the self-force in the RW gauge in this manner is in progr
@16#.

Finally, we comment on the self-force in the case of t
Kerr background. In the Schwarzschild case, it was poss
to use the Regge-Wheeler-Zerilli formalism to obtain t
metric perturbation in the RW gauge. However, in the K
case, there is no known gauge in which the full metric p
turbation can be calculated. The Chrzanowski method@4#
based on the Teukolsky formalism can give the metric p
turbation in the~ingoing or outgoing! radiation gauge, but
only outside the range of radial coordinates the orbit resi
in. One possible way to circumvent this difficulty is to co
sider first the regularization of the Weyl scalarC4. Given an
orbit, C4 can be calculated by the Teukolsky formalism, a
theSpart of it, C4

S , can be calculated from theSpart of the
metric perturbation in the harmonic gauge,hmn

S,H ,

C4
S5Ĉ4@hmn

S,H#, ~3.1!
7-7
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whereĈ4 is the operator to derive the Weyl scalar from
given metric perturbation. Then theR part of C4 can be
derived by subtracting theS part from the Weyl scalar,

C4
R5C42C4

S. ~3.2!

Now C4
R satisfies the homogeneous Teukolsky equati

Hence using the Chrzanowski method, we may construct
R part of the metric perturbation in the radiation gauge a
derive the self-force. Since this procedure involves many
rivative operations, the metric perturbationhmn

S,H has to be
evaluated with a sufficiently high accuracy which may
practically a difficult task, if not impossible. The feasibilit
of this method should surely be investigated.
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APPENDIX A: THE FIELD EQUATION ON THE
REGGE-WHEELER GAUGE

In this appendix, we recapitulate the equations for
Regge-Wheeler-Zerilli formalism. In doing so, we corre
some minor errors in Zerilli’s paper@6#. Here an equation
number given as~Z:1! denotes the equation~1! in Zerilli’s
paper for comparison, and a label@CRTD# to an equation
means it is corrected.
10401
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d
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We consider the linearized Einstein equations for the p
turbed metric,

g̃mn5gmn1hmn ,

wheregmn is the background metric. Then the Einstein tens
and the stress-energy tensor up to the linear order can
expanded as

Gmn@ g̃mn#5Gmn@gmn#1dGmn@hmn#1O~h2!, ~A1!

T̃mn5Tmn1dTmn , ~A2!

where f m5hma
;a and

dGmn@hmn#52
1

2
hmn;a

;a1 f (m;n)2Rambnhab2
1

2
h;m;n

1Ra
(mhn)a2

1

2
gmn~ f l

;l2h;l
;l!2

1

2
hmnR

1
1

2
gmnhabRab. ~A3!

When the background is Ricci flat,Rmn
(b)50, the above equa

tion is rewritten as

2
1

2
hmn;a

;a1 f (m;n)2Rambnhab2
1

2
h;m;n

2
1

2
gmn~ f l

;l2h;l
;l!58pdTmn . ~A4!

We apply the above to the case of the Schwarzsc
background, and expandhmn @~Z:D2a! and ~Z:D2b!# and
dTmn in tensor harmonics,
h5(
,m

F f ~r !H0,m~ t,r !a,m
(0)2 iA2H1,m~ t,r !a,m

(1)1
1

f ~r !
H2,m~ t,r !a,m2

i

r
A2,~,11!h0,m

(e) ~ t,r !b,m
(0)

1
1

r
A2,~,11!h1,m

(e) ~ t,r !b,m1A1

2
,~,11!~,21!~,12!G,m~ t,r !f,m1S A2K,m~ t,r !2

,~,11!

A2
G,m~ t,r !D g,m

2
A2,~,11!

r
h0,m~ t,r !c,m

(0)1
iA2,~,11!

r
h1,m~ t,r !c,m1

A2,~,11!~,21!~,12!

2r 2
h2,m~ t,r !d,mG @CRTD#,

~A5!
dT5(
,m

@A,m
(0)a,m

(0)1A,m
(1)a,m

(1)1A,ma,m1B,m
(0)b,m

(0)1B,mb,m

1Q,m
(0)c,m

(0)1Q,mc,m1D,md,m1G,m
(s)g,m1F,mf,m#,

~A6!
where we useh0,m
(e) and h1,m

(e) for the even part coefficients
instead ofh0,m

(m) andh0,m
(m) , respectively, in Zerilli’s paper, and

the coefficientG,m
(s) instead of Zerilli’s notationG,m for the

energy-momentum tensor, anda,m
(0) , a,m , . . . are the ten ten-

sor harmonics~Z:A2a-j! defined as
7-8



a,m
(0)5

Y,m 0 0 0

0 0 0 0
, ~A7!
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S 0 0 0 0

0 0 0 0

D
a,m

(1)5~ i /A2!S 0 Y,m 0 0

Sym 0 0 0

0 0 0 0

0 0 0 0

D , ~A8!

a,m5S 0 0 0 0

0 Y,m 0 0

0 0 0 0

0 0 0 0

D , ~A9!

b,m
(0)5 ir @2,~,11!#21/2S 0 0 ~]/]u!Y,m ~]/]f!Y,m

0 0 0 0

Sym 0 0 0

Sym 0 0 0

D , ~A10!

b,m5r @2,~,11!#21/2S 0 0 0 0

0 0 ~]/]u!Y,m ~]/]f!Y,m

0 Sym 0 0

0 Sym 0 0

D , ~A11!

c,m
(0)5r @2,~,11!#21/2S 0 0 ~1/sinu!~]/]f!Y,m 2sinu~]/]u!Y,m

0 0 0 0

Sym 0 0 0

Sym 0 0 0

D , ~A12!

c,m5 ir @2,~,11!#21/2S 0 0 0 0

0 0 ~1/sinu!~]/]f!Y,m 2sinu~]/]u!Y,m

0 Sym 0 0

0 Sym 0 0

D , ~A13!

d,m5 ir 2@2,~,11!~,21!~,12!#21/2S 0 0 0 0

0 0 0 0

0 0 2~1/sinu!X,m sinuW,m

0 0 Sym sinuX,m

D , ~A14!

g,m5~r 2/A2!S 0 0 0 0

0 0 0 0

0 0 Y,m 0

0 0 0 sin2uY,m

D , ~A15!
104017-9
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f,m5r 2@2,~,11!~,21!~,12!#21/2S 0 0 0 0

0 0 0 0

0 0 W,m X,m

0 0 Sym 2sin2uW,m

D @CRTD#. ~A16!
s

.

nsor

part
Here the angular functionsX,m andW,m are given by

X,m52
]

]fS ]

]u
2cotu DY,m , ~A17!

W,m5S ]2

]u22cotu
]

]u
2

1

sin2u

]2

]f2DY,m . ~A18!

For a point particle moving along a geodesic, the stre
energy tensor takes the form

Tmn5mE
2`

1`

d (4)~x2z~t!!
dzm

dt

dzn

dt
dt

5mg
dzm

dt

dzn

dt

d~r 2R~ t !!

r 2 d (2)
„V2V~ t !…,

~A19!
10401
s-

where the following notation for the particle orbit is used

zm5zm~t!5$T~t!,R~t!,Q~t!,F~t!%, ~A20!

g5
dT~t!

dt
. ~A21!

This stress-energy tensor is expressed in terms of the te
harmonics as given in Table I@corresponding to~Z:Table
III !#. Here it is noted that the sign errors inQ,m

(0) andQ,m are
corrected.

Substituting Eqs.~A5! and~A6! into Eq. ~A4!, we obtain
the field equations for each harmonic mode. For the odd
which has the odd parity (21),11, in the RW gauge in
which h250, the following three equations~Z:C6a-c! are
derived:
]2h0

]r 2
2

]2h1

]t]r
2

2

r

]h1

]t
1F4M

r 2
2

,~,11!

r G h0

r 22M
5

8p

A,~,11!/2

r 2

r 22M
Q,m

(0) @CRTD#, ~A22!

]2h1

]t2
2

]2h0

]t]r
1

2

r

]h0

]t
1

~,21!~,12!~r 22M !

r 3
h152

8p i ~r 22M !

A,~,11!/2
Q,m , ~A23!

]

]r F S 12
2M

r Dh1G2
r

r 22M

]h0

]t
52

8p ir 2

A,~,11!~,21!~,12!/2
D,m , ~A24!

where Zerilli’s sign errors of the source terms are corrected.
For the even part which has the even parity (21),, we have seven equations~Z:C7a-g! in the RW gauge in whichh0

(e)

5h1
(e)5G50.

S 12
2M

r D 2 ]2K

]r 2
1

1

r S 12
2M

r D S 32
5M

r D ]K

]r
2

1

r S 12
2M

r D 2]H2

]r
2

1

r 2 S 12
2M

r D ~H22K !2
,~,11!

2r 2 S 12
2M

r D ~H21K !

528pA,m
(0) , ~A25!

]

]t F]K

]r
1

1

r
~K2H2!2

M

r ~r 22M !
KG2

,~,11!

2r 2
H1524A2p iA,m

(1) , ~A26!

S r

r 22M D 2 ]2K

]t2
2

r 2M

r ~r 22M !

]K

]r
2

2

r 22M

]H1

]t
1

1

r

]H0

]r
1

1

r ~r 22M !
~H22K !1

,~,11!

2r ~r 22M !
~K2H0!528pA,m ,

~A27!
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]

]r F S 12
2M

r DH1G2
]

]t
~H21K !5

8p ir

A,~,11!/2
B,m

(0) , ~A28!

2
]H1

]t
1S 12

2M

r D ]

]r
~H02K !1

2M

r 2
H01

1

r S 12
M

r D ~H22H0!5
8p~r 22M !

A,~,11!/2
B,m , ~A29!

2
r

r 22M

]2K

]t2
1S 12

2M

r D ]2K

]r 2
1

2

r S 12
M

r D ]K

]r
2

r

r 22M

]2H2

]t2
12

]2H1

]t]r
2S 12

2M

r D ]2H0

]r 2

1
2~r 2M !

r ~r 22M !

]H1

]t
2

1

r S 12
M

r D ]H2

]r
2

r 1M

r 2

]H0

]r
1

,~,11!

2r 2
~H02H2!58A2pG,m

(s) , ~A30!

H02H2

2
5

8pr 2F,m

A,~,11!~,21!~,12!/2
, ~A31!

where we have corrected the sign errors of the source terms in Zerilli’s paper as the odd parity part.
We now consider the Fourier transform of the above field equations. The Fourier coefficients are defined, for exa

h0,mv~r !5E
2`

1`

dth0,m~ t,r !eivt. ~A32!

TABLE I. Stress-energy tensor in terms of tensor harmonics.

Description Dependence of ‘‘driving term’’ onr and t Tensor harmonic

Even A,m~r,t!5mgSdR

dt D
2

~r22M!22d„r 2R~ t !…Y,m* ~V~ t !! a,m(u,f)

Even A,m
(0)5mgS12

2M

r D2

r22d„r 2R~ t !…Y,m* ~V~ t !! a,m
(0)(u,f)

Even A,m
(1)5A2img

dR

dt
r 22d„r 2R~ t !…Y,m* „V~ t !… a,m

(1)(u,f)

Even B,m
(0)5@

1
2,~,11!#21/2imgS 12

2M

r D r 21d„r 2R~ t !…dY,m* „V~ t !…/dt b,m
(0)(u,f)

Even B,m5@
1
2,~,11!#21/2mg~r 22M !21

dR

dt
d„r 2R~ t !…dY,m* „V~ t !…/dt b,m(u,f)

Odd Q,m
(0)52@

1
2,~,11!#21/2mgS 12

2M

r D r 21d„r 2R~ t !…F 1

sinQ

]Y,m*

]F

dQ

dt
2sinQ

]Y,m*

]Q

dF

dt G c,m
(0)(u,f)

Odd Q,m52@
1
2,~,11!#21/2img

dR

dt
~r 22M !21d„r 2R~ t !…F 1

sinQ

]Y,m*

]F

dQ

dt
2sinQ

]Y,m*

]Q

dF

dt G c,m(u,f)

Odd D,m52@
1
2,~,11!~,21!~,12!#21/2imgd„r 2R~ t !…S 1

2F S dQ

dt D 2

2sin2QSdF

dt D
2G 1

sinQ
X,m* @V~t!#

2sinQ
dF

dt

dQ

dt
W,m* @V~t!#D

d,m(u,f)

Even F,m5@
1
2,~,11!~,21!~,12!#21/2mgd„r 2R~ t !…S dF

dt

dQ

dt
X,m* @V~ t !#1

1

2F S dQ

dt D 2

2sin2QSdF

dt D
2GW,m* @V~t!#D f,m(u,f)

Even G,m
(s) 5

mg

A2
d„r 2R~ t !…F S dQ

dt D 2

1sin2QSdF

dt D
2GY,m* ~V~t!! g,m(u,f)
104017-11
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Then we derive the Regge-Wheeler-Zerilli equations a
construct the metric perturbation under the RW gauge co
tion.

For the odd part, a new radial functionR,mv
(odd)(r ) is intro-

duced, in terms of which the two radial functionsh0,mv and
h1,mv for the metric perturbation are expressed as

h1,mv5
r 2

r 22M
R,mv

(odd) , ~A33!

h0,mv5
i

v

d

dr*
~rR,mv

(odd)!

2
8pr ~r 22M !

vF1

2
,~,11!~,21!~,12!G1/2D,mv . ~A34!

The new radial function satisfies the Regge-Wheeler eq
tion ~Z:11!,

d2R,mv
(odd)

dr* 2
1@v22V,

(odd)~r !#R,mv
(odd)

5
8p i

F1

2
l ~,11!~,21!~,12!G1/2

r 22M

r 2

3S 2r 2
d

dr F S 12
2M

r DD,mvG
1~r 22M !@~,21!~,12!#1/2Q,mvD @CRTD#,

~A35!

wherer * 5r 12M log(r/2M21) and

V,
(odd)~r !5S 12

2M

r D S ,~,11!

r 2
2

6M

r 3 D . ~A36!

For the even part, a new radial functionR,mv
(even)(r ) is in-

troduced, in terms of which the four radial functions~Z:13–
16! are expressed as

K,mv5
l~l11!r 213lMr 16M2

r 2~lr 13M !
R,mv

(even)1
r 22M

r

dR,mv
(even)

dr

2
r ~r 22M !

lr 13M
C̃1,mv1

i ~r 22M !2

r ~lr 13M !
C̃2,mv @CRTD#,

~A37!

H1,mv52 iv
lr 223lMr 23M2

~r 22M !~lr 13M !
R,mv

(even)2 ivr
dR,mv

(even)

dr

1
ivr 3

lr 13M
C̃1,mv1

vr ~r 22M !

lr 13M
C̃2,mv @CRTD#,

~A38!
10401
d
i-

a-

H0,mv5
lr ~r 22M !2v2r 41M ~r 23M !

~r 22M !~lr 13M !
K,mv

1
M ~l11!2v2r 3

ivr ~lr 13M !
H1,mv1B̃,mv @CRTD#,

~A39!

H2,mv5H0,mv216pr 2F1

2
,~,11!~,21!~,12!G21/2

3F,mv @CRTD#, ~A40!

where we have introduced the symboll for

l5
1

2
~,21!~,12!, ~A41!

and the local source terms@~Z:17!, ~Z:20! and ~Z:21!# by

B̃,mv5
8pr 2~r 22M !

lr 13M H A,mv1F1

2
,~,11!G21/2

B,mvJ
24pA 2

lr 13M

Mr

v
A,mv

(1) , ~A42!

C̃1,mv5
8p

A2v
A,mv

(1) 1
1

r
B̃,mv216pr F1

2
,~,11!~,21!

3~,12!G21/2

F,mv @CRTD#, ~A43!

C̃2,mv52
8pr 2

iv

F1

2
,~,11!G21/2

r 22M
B,mv

(0) 2
ir

r 22M
B̃,mv

1
16p ir 3

r 22M F1

2
,~,11!~,21!~,12!G21/2

3F,mv @CRTD#. ~A44!

We note that the above radial functions for the metric pert
bation have the local source terms which have thed-function
behavior at the particle location. The new radial functi
obeys the wave equation,

d2R,mv
(even)

dr* 2
1@v22V,

(even)~r !#R,mv
(even)5S,mv ,

~A45!

where

V,
(even)~r !5S 12

2M

r D
3

2l2~l11!r 316l2Mr 2118lM2r 118M3

r 3~lr 13M !2 ,

~A46!
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and the source term is

S,mv52 i
r 22M

r

d

drF ~r 22M !2

r ~lr 13M ! S ir 2

r 22M
C̃1,mv

1C̃2,mvD G1 i
~r 22M !2

r ~lr 13M !2

3Fl~l11!r 213lMr 16M2

r 2 C̃2,mv

1 i
lr 223lMr 23M2

r 22M
C̃1,mvG . ~A47!

The above equation~A45! is called the Zerilli equation. The
Zerilli equation can be transformed to the Regge-Whee
equation by the Chandrasekhar transformation@17#. So we
may focus only on the Regge-Wheeler equation if desir
The Regge-Wheeler homogeneous solutions are discuss
detail by Manoet al. @14#. Using their method, one can con
struct the retarded Green function to solve the inhomo
neous Regge-Wheeler equation. Then the metric perturba
in the RW gauge is obtained from Eqs.~A33! and~A34! for
the odd part and from Eqs.~A37!–~A40! for the even part.

APPENDIX B: THE FIELD EQUATION FOR THE
NONRADIATIVE MODES

The above formalism is applicable only to the,>2
modes. Therefore we have to deal with the,50,1 ~nonradi-
ative! modes separately. In this appendix, the field equa
for these modes are given.~This problem is considered fo
the point particle case in Appendix G of Zerilli’s paper@6#.!

1. øÄ0 mode

First, we consider the,50 mode. The,50 mode of the
metric perturbation and the gauge transformation genera
are given, respectively, as

h005 f ~r !H0~ t,r !a00
(0)2A2iH 1~ t,r !a00

(1)1
1

f ~r !

3H2~ t,r !a001A2K~ t,r !g00, ~B1!

j
m

,505$2M0~ t,r !Y00~V!,M1~ t,r !Y00~V!,0,0%.
~B2!

We can chooseM0(t,r ), M1(t,r ) so thatH1(t,r )5K(t,r )
50. We call this gauge the Zerilli gauge. In this gauge,
field equations are given as follows:

]H2
Z~ t,r !

]r
1

1

r f ~r !
H2

Z~ t,r !5
8pr

f ~r !2
A00

(0) , ~B3!

]H0
Z~ t,r !

]r
1

1

r f ~r !
H2

Z~ t,r !528prA00, ~B4!

where the superscript Z stands for the Zerilli gauge.
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2. Odd part of øÄ1 mode

For the odd part of the,51 mode, the metric perturba
tion and the gauge transformation generator are given,
spectively, as

h1m
(odd)5

2i

r
„ih0,m

,51~ t,r !c1m
(0)1h1,m

,51~ t,r !c1m…, ~B5!

jm
(odd),,515(

m
H 0,0,

2L1m~ t,r !

sinu
]fY1m~u,f!,L1m

3~ t,r !sinu]uY1m~u,f!J . ~B6!

Here we can chooseL1m(t,r ) so thath0,m
,51(t,r )50. Then

the field equations become

]2

]t]r
@r 2h1,m

Z,,51#52
8pr 3

f ~r !
Q1m

(0) , ~B7!

]2h1,m
Z,,51

]t2
528p ir f ~r !Q1m . ~B8!

3. Even part of øÄ1 mode

For the even part of the,51 mode, the metric perturba
tion and the gauge transformation generator may be give
the following form:

h1m
(even)5 f ~r !H0,m

,51~ t,r !a1m
(0)2A2iH 1,m

,51~ t,r !a1m
(1)

1
1

f ~r !
H2,m

,51~ t,r !a1m2
2i

r
h0,m

(e),,51~ t,r !b1m
(0)

1
2

r
h0,m

(e),,51~ t,r !b1m1A2Km
,51~ t,r !g1m , ~B9!

jm
(even),,515(

m
$2M0,m

,51~ t,r !Y1m ,M1,m
,51~ t,r !Y1m ,

3M2,m
,51~ t,r !]uY1m ,M2,m

,51~ t,r !]fY1m%.

~B10!

Choosing a gauge in whichh0,m
(e),,51(t,r )5h1,m

(e),,51(t,r )
5Km

,51(t,r )50, the field equations for the even part of th
,51 mode are

r f ~r !
]H2,m

Z,,51~ t,r !

]r
12H2,m

Z,,51~ t,r !5
8pr 2

f ~r !
A1m

(0) ,

~B11!

H1,m
Z,,51~ t,r !1r

]H2,m
Z,,51

]t
54A2p ir 2A1m

(1) , ~B12!
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r f ~r !
]H0,m

Z,,51

]r
22r

]H1,m
Z,,51

]t
2H0,m

Z,,51~ t,r !1H2,m
Z,,51~ t,r !

528pr 2f ~r !A1m , ~B13!

2
]

]r
@ f ~r !H1,m

Z,,51~ t,r !#1
]H2,m

Z,,51~ t,r !

]t
528p irB 1m

(0) ,

~B14!

2r f ~r !
]H0,m

Z,,51~ t,r !

]r
22r

]H1,m
Z,,51~ t,r !

]t

1„123 f ~r !…H0,m
Z,,51~ t,r ! ~B15!

1„11 f ~r !…H2,m
Z,,51~ t,r !516pr 2f ~r !B1m , ~B16!
s.

10401
r 2f ~r !
]2H0,m

Z,,51~ t,r !

]r 2
1

3r 2r f ~r !

2

]H0,m
Z,,51~ t,r !

]r

2H0,m
Z,,51~ t,r !22r 2

]2H1,m
Z,,51~ t,r !

]t]r

2
r „11 f ~r !…

f ~r !

]H1,m
Z,,51~ t,r !

]t
1

r 2

f ~r !

]2H2,m
Z,,51~ t,r !

]t2

1
r „11 f ~r !…

2

]H2,m
Z,,51~ t,r !

]r
1H2,m

Z,,51~ t,r !

528A2pr 2G1m
(s) . ~B17!
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