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Gauge problem in the gravitational self-force: Harmonic gauge approach
in the Schwarzschild background

Norichika Sago
Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
and Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Hiroyuki Nakano and Misao Sasaki
Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
(Received 26 August 2002; published 22 May 2003

The metric perturbation induced by a particle in the Schwarzschild background is usually calculated in the
Regge-WheeletRW) gauge, whereas the gravitational self-force is known to be given by the tail part of the
metric perturbation in the harmonic gauge. Thus, to identify the gravitational self-force correctly in a specified
gauge, it is necessary to find out a gauge transformation that connects these two gauges. This is called the
gauge problem. As a direct approach to solve the gauge problem, we formulate a method to calculate the metric
perturbation in the harmonic gauge on the Schwarzschild background. We apply the Fourier-harmonic expan-
sion to the metric perturbation and reduce the problem to the gauge transformation of the Fourier-harmonic
coefficients(radial function$ from the RW gauge to the harmonic gauge. We derive a set of decoupled radial
equations for the gauge transformation. These equations are found to have a simple second-order form for the
odd parity part and the forms of spé+ 0 and 1 Teukolsky equations for the even parity part. As a by-product,
we correct typographical errors in Zerilli's paper and present a set of corrected equations in Appendix A.
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[. INTRODUCTION tion breaks down. For example, in the case of an extremely
eccentric orbit or an orbit close to the innermost stable cir-
A compact object of solar-mass size orbiting a supermaseular orbit, the orbital evolution will not be adiabatic because
sive black hole is one of the promising candidates for thethe stability of the orbit is strongly affected by an infinitesi-
source of gravitational waves. Since the internal structure omally small reaction force. Furthermore, in the Kerr back-
such a compact object may be neglected in this situation, wground, there is an additional constant of motion, known as
may adopt the black hole perturbation approach with thehe Carter constant. Intuitively, it describes the total orbital
compact object being regarded as a point particle. In th@ngular momentum, but unlike the case of spherical symme-
black hole perturbation approach, we consider the metridry, it has nothing to do with the Killing vector field of the
perturbation induced by a point particle of mas®rbiting a  Kerr geometry. The lack of its relation to the Killing vector
black hole of mas$1, whereu<M. At the lowest-order in makes it impossible to evaluate the time change of the Carter
the mass ratio /M), the motion of the particle follows a constant from the gravitational waves emitted to infinity and
geodesic of the background spacetime. In the next ordetp event horizon, even in the case when the adiabatic ap-
however, the particle moves no longer along a geodesic gbroximation is valid. Thus it is in any case necessary to
the background because of its interaction with the self-fieldderive the self-force of a particle explicitly.
Although this deviation from a background geodesic is The gravitational self-forc&* is formally given as
small for u/M <1 at each instant of time, after a large lapse
of time, it accumulates to become non-negligible. For ex- d?z* dz# dz¥
ample, a circular orbit will not remain circular but becomes a — Iy =
spiral-in orbit and the orbit eventually plunges into the black

hole. o - .
If the time scale of the orbital evolution due to the self- where{z%(7)} represents the orbit with being the proper
time measured in the background geometry &rjd is the

force is sufficiently long compared to the characteristic or- : ;
bital time, we may adopt the so-called adiabatic approximaQOnnecuon of the background. The self-force arises from the

tion in which the orbit is assumed to be instantaneouslyMetric perturbatiorn,,, induced by the particle:

geodesic with the constants of motion changing very slowly -

with time. In the Schwarzschild background case, we may 9uv=9urt Ny,

assume the orbit to lie on the equatorial plane and the geo-

desic motion is determined by the energy arithe and itis expressed as

z-component gf angular momentum of the particle. In this

case, the time variation of the energy and angular momentum

can be determined from the energy and angular momentum

emitted to infinity and absorbed into the black hole horizon

by using the conservation law. + E he )uyuﬁ
However, there are cases when the adiabatic approxima- 497" ap ’

a2 edr dr
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where P #=5 P+u,uf, Haﬁz hap—30ash and u® Barack and Loust¢13]. But they also pointed out that the
=dz¥dr. RW gauge is singular in the sense that the resulting self-force

The metric perturbation diverges at the location of theWil sti]l ha_ve a direction—dependent limit for general orbits.
particle and so does the self-force. Thus the above formalhe situation becomes worse in the Kerr background where
expression is in fact meaningless. Fortunately, however, it 1€ only known gauge in which the metric perturbation can
known that the metric perturbation in the vicinity of the orbit P& evaluated is the radiation gauge, but the metric pertur-
can be divided into two parts under the harmonic gauge coration becomes ill-defined in the neighborhood of the par-
dition; the direct part which has support only on the pastt'de’ ie., the Einstein equations are not satisfied thipd
light-cone emanating from the field poixt and the tail part In this paper, as a direct approach to the gauge problem,
which has support inside the past light-cone, and the physicaY® consider a formalism to calculate the metric pertl_eratlon
self-force is given by the tail part of the metric perturbationi the harmonic gauge. We focus on the Schwarzschild back-
which is regular as we let the field point coincide with a 9round. Instead of directly solving the metric perturbation in
point on the orbitx*“—z*(7) [1,2). It must be noted that the the harmonic gauge, we consider the metric perturba‘gon in
direct part can be evaluated by local analysis, i.e., only witfhe® RW gauge first, and then transform it to the one in the
the knowledge of local geometrical quantities. Therefore thd1armonic gauge. Namely, we derive a set of equations for

physical self-force can be calculated as gauge functions that transform the metric perturbation in the
RW gauge to the one in the harmonic gauge.
lim F [h®(x)]= lim (F[h(x)]—F[h%(x)]). The paper is organized as follows. In Sec. Il, we formu-
x—2(7) x—2(7) late the gauge transformation from the RW gauge to the har-

monic gauge. First we decompose the gauge transformation

Furthermore, it has been revealed recently by Detweiler anfenerators into th_e_ Four_|er-harmon|cs components. T_hen the
Whiting [3] that the above division of the metric can be 9enerators are divided into three parts; the odd parity part
slightly modified so that the new direct part, called Syart, and the even parity part which is further divided into scglar
satisfies the same Einstein equations as the full metric peAnd divergence free parts. By the above procedure, we find a
turbation does, and the new tail part, called Ripart, satis- Set of decoupled equations for the gauge functions. In Sec.
fies the source-free Einstein equations, and thatRhgart !II, we summarize our formulatl_on and d|scuss_rema|n|ng
gives the identical, regular self-force as the tail part doesiSSues. In Appendix A, we recapitulate the equations for the
The important point is that th& part can be still evaluated Regge-Wheeler-Zerilli formalisntfor £=2) by correcting
locally near the orbit without knowing the global solution. tyPographical errors in Zerilli's pap¢6]. The field equations
Another important point is that, when the metric perturbationfor the £=0, 1 modes are separately presented in Appendix
is expanded in spherical harmonics, the self-force consist8:
only of the modest =2, because th& part satisfies the
source-free Einstein equations. In practice, however, due to ll. FORMULATION
unavoidable errors in the evaluation of tBéor R) part, the
contributions of thef =0, 1 modes may not be neglected.
When we perform this subtraction, we must evaluate th
full self-force and the direct part under the same gauge cong,,, dx“dx”= —f(r)dt?+ f(r) ~*dr2+r?(d6?+sir?6d $?),
dition. But the direct part is, by definition, defined only in the
harmonic gauge. On the other hand, the full metric perturba- f(r)=1— ﬂ 2.1)
tion is directly obtainable only by the Regge-Wheeler-Zerilli r
or Teukolsky formalism{4—7]. Therefore one must find a ]
gauge transformation that brings both the full metric pertur\We express the gauge transformation from the RW gauge to
bation and the direct part of the metric perturbation to thoséhe harmonic gauge as
in the same gauge. This is called tgeugt_e problen[lS]. Xt X=X+ R, 2.2
For the direct part, methods to obtain it under the har-
monic gauge condition were proposgg11]. However, it hRW_pH —hPW_ ¢ &, 2.3
seems extremely difficult to solve the metric perturbation a proer el "
under the harmonic gauge because the metric componenighere the suffix RW stands for the RW gauge and H for the
couple to each other in a complicated way. This is one of thénarmonic gauge.
reasons why the gauge problem is difficult to solve. Substituting Eq(2.3) into the harmonic gauge condition
Recently, Barack and Ofil2] gave a useful insight into  hH :»=0, we obtain the equations fa*:
the gauge problem. They proposed an intermediate gaug
approach in which only the direct part of the metric in the £ _RWy _RWy
harmonic gauge is subtracted from the full metric perturba- R L
tion in the Regge-WheelgiRW) gauge. They then argued
that the gauge-dependence of the self-force is unimportangsing the static and spherical symmetry of the background,
when averaged over a sufficiently long lapse of time. Usingve perform the Fourier-harmonic expansion of the above
this approach, the gravitational self-force for an orbit plung-equation and consider the equations for the expansion coef-
ing into a Schwarzschild black hole was calculated byficients for&* and hff‘ﬁ’. We use the tensor harmonics intro-

We consider a metric perturbatidm,, in the Schwarz-
eschild background:

1
RW
L 2.4
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duced by Zerilli[6] which are recapitulated in Appendix A.
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whereR{®¥(r) is the Regge-Wheeler gauge invariant vari-

Then according to the property under the parity transformaable, D, (r) is the Fourier-harmonic coefficient of the

tion (0,¢)— (7m— 6,9+ ), we divide &* into the odd and
even parity parts,

(2.9

&= géiodd)_k g'(ueven)’

and the even part is further decomposed into the scalar and

divergence-free parts,

géléven): é;M+ gﬁ/) ’ (26)
whereé(,.,=0.

A. Odd part (£€=2)

stress-energy tensor, and the differential operdtas de-
fined as

d? d w?  (+1)
(odd)— . ’ _ _
L f(r)dr2+f (r)dr+ G "
1 w?>  (L+1)
far? \f) 2 )’

(2.10

wherer* =r+2M log(r/2M —1) and’'=d/dr. The form of
the differential operatoc is slightly different from the radial

Firﬂ,lwe consider the odd part which has the odd parityyart of the scalar d’Alembertian, but E@.9) may be solved
(—1)""" under the parity transformation. The gauge transty the standard Green function method. The homogeneous
formation generators and the metric perturbation are given ip|utions to construct the Green function can be obtained by

the Fourier-harmonic expanded form as

€= f dw 2, e A (T)

x( 0,05 3Y (m( 6,),5IN 03 ,4Y (6, ¢>)J ,

Siné
2.7)
J20(6+1)
699 [ oS S o g ()i,

) VHE=1)(€£+2)
1N (1) G+ 5

X N2eme (1) dempn | (2.8

where ¢{%),,, ,Crmyy .demy, are tensor harmonics with odd
parity [6]. By substituting Eqs(2.7) and(2.8) into Eq.(2.4),

we obtain the equation fok ;p,,(r):

8mirB{% (r)

applying the method developed by Maebal.[14]. Here we
note that the retarded causal boundary condition should be
imposed for the Green function.

B. Even scalar part (£=2)

Next we consider the even scalar par&éfwhich has the
even parity 1) and is expressed by a gradient of a scalar
function &. It is expressed as

1. .
gELS): f;,u, ng dw% Fgemw(r)eilth(m(G,d))-
2.11)

The gauge equation fog is derived from &,
=J®, which, because of the vanishing of the background

Ricci tensor, gives

gr.,=J0), (2.12
where the source terdf® is determined from the equation
JOm =, (2.13

The Fourier-harmonic expanded form of the above equation
is derived as follows. First, we take the divergence of the
metric perturbation under the RW gauge;

8771 wr 2F (1)

16i 7r?
LN 1, (1) = 2R 1) - ~
’ V20 (€+1)(€—1)(£+2)
XD mo(r), 2.9
|
: ) 2f(r
e [ a0 oo |- 2w,
m r

et R  Jter (-2

8B me(r)

Yem(0,0)(&),

d
8wrzaF(mw(r)

Yem(0,P)(€),

E RW _ wRwW
+ r(H2€mw(r) Kfmw(r))_l_ \/€(€+1)/2

87r?

_|_
VE(L+1)(£—1)(£+2)/2

Ffmw(r)(e3)p, )

Ve +1)(€—1)(£+2)/2

(2.19
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where @),=(-1,0,0,0), €),=(0,10,0) and &),

=(0, Oﬂngm,a(bY(m) Then we take the divergence of the §(V)=J dw% et

above once more to obtain

Ry = dez e (6, ¢)[——/3( IH (o1

AlRu(1)
+87| =~ F(DAmU(N —\26(,

(2.15
whereﬁgmw(r) is the trace of the metric perturbation given
by

1 Hotme (1) = Home( )
o) =5 =K, ().

(2.19

The d’Alembertian ofJ®® is expanded as

_ 1
I, = f dw2, &Y in(0,8) L TG, (1),
(2.17)

where3(® is the Fourier-harmonic coefficient df% and
£ is the radial part of the scalar d’Alembertian,
d? d w?  C+1) f(r)
()= — ' —
LO=M0 S+ g+ 5~z r

1 w? €(+1) 2M -
G G
Hence Eq(2.13 becomes
A1)

£‘S’3%?%w<r>=—£<S>Flgmw<r>+8wr( 0

—f(r)Agmw<r>—ﬁG%). (2.19

Once the source term is obtained, we obtain from Eg.

(2.12 the equation fo,,(r) as

PHYSICAL REVIEW D67, 104017 (2003

1
Motmu(N)Yem( 6, d)(€)

1
+ Flemw(r)Yé’m( gv(ﬁ)(er),u.

1 —ior
T 2D | i Moemo(N)+ (1 Myem,(1)
X(€3) (2.2

To solve the gauge transformation equati@m) for this

part, we introduce an auxiliary fiel,,,:=£0),— £ . Then
we have
(v) (V) = yRW;v_ 1(s)
Fli'=—d0, JW=pfr_36 (229

where we have again used the fact that the background Ricci
tensor vanishes. Note that the Fourier-harmonic expansion of
FRW Y is given by Eq(2.14). The above equation is the Max-
WeII equation, so it can be solved by using the Teukolsky
formalism [7] for the electromagnetic field s&=*1).

Namely, we introduce the following variables:
¢2: F/.LVm* MnV’

(2.23

where * denotes the complex conjugate, ahdn*, m* are
the Kinnersley null tetrad defined by

| X 10, w2 1000
f(r) =T 2

1001

ho=F . 1*m",

m#

(2.29

\/_r 5in GJ

The variablesp, and ¢, satisfy thes=+1 Teukolsky equa-
tion,

£ = — 47727, (2.25

where W, = ¢, and ¥ _,=r2¢,, and £ ™" is the Teukol-
sky differential operator defined as

2

LT 1, (1) =350, (). 220  £{W=—

Note that this equation as well as E@®.19 are just the

radial part of the scalar d’Alembertian, or equivalently the

spins=0 Teukolsky equation, and hence can be also solved

by the Green function method. The detail analysis of the :
. . : 1 2is cosé

homogeneous solutions which satisfy the 0 Teukolsky + — (9(2254- _

equation is discussed [14]. sinFo sinfo

i)
f(r) +2s T —r |

+(r2f(r)) o[ (r 2f(r))s+1a]+ (,(smea,,)

d,—s(scofo—1). (2.26

i v)
C. Even vector part (¢=2) The source term3, which are calculated frord,”, are

Since the even vector pajf, satisfies the divergence free 1 W1 io 3
condition, £ #=0, this part has two degrees of freedom. —4mTy= Jar dpt Smg% (3171 =1 0 — T
Therefore¢(;, is expressed in terms of two independent ra- w
dial functions, X[J, m#], (2.27
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1 .
—AnT =13 — —| dp— <=4 |[IVn"]
J2r\ 77 sing%?

f(r)( iw
R AT

The solution of this Teukolsky equation is also analyzed in
[14].

Once we obtainp, and ¢,, the two radial functions for
the gauge transformation are calculated from E223
which reads

(2.28

[J(V)m*u]}

PHYSICAL REVIEW D 67, 104017 (2003

where (Y,m(6,¢) are the spin-weighted spherical harmon-
ics. Performing the Fourier and spin-weighted spherical har-
monic expansion fokhy and ¢,

¢o=f dw;n Dorm(1)e LY n(6,4),  (2.3D)

¢2:f dw;ﬂ azemw(r)eiiwt—lYfm( 01¢)1
(2.32

we obtain the equations

- 2 -
boeme(r) + md’zemw(r)

_ o —1Yem(6,9) [ff(ﬂl)
¢O de;ﬂ € \/mrf(r) r (MOme(r)
. V2[(€+1)[[€(€+1)  w?r
f : = )M0€mw(r)
- (f)Mumw(r))—lw f(r) MO(mw(r) rf(r) r ()
o d
S O M) +f(r>—[_f(r) Motma(r) S (239
~ 2 -
+%(rf(r)M1€mw(r))] | (2.29 ¢05mw(f)—m¢zemw(r)
Yo (0.0) [ €(0+1) 2(€+2) | €(€+1)f(r) "
— —ipt_—1 €m 7y _ = f 1emw
¢2 fdw;n € Zmr[ r (Moimw(r) r (r) r
_ d?
+f<r>Mlemw<r>>+iw[Tf’)rMoemwm 0GR (OMaem (1)
d d|—-iw . dfr
+a(ff(r)|\/|umw(f))}+f(f)a(wl\/|oemw(f) +'wf(r)m(m|v|oemw(f))l- (2.34
d We can eliminateM ¢, (r) from Egs.(2.33 and(2.34)
- a(rf(r)Mlmw(r))} ' 2.39 to obtain a decoupledlgquation M orme(r),
LM (r)=—L f(r)zd—z?ia (r)+f(r)(2+2f(r)+f’(r)+i EES (r)
0fmw \/m dr2 0fmw w dr Potmo

IO == D+ +iwr@+21(r)

r2

2 2+ 2f(r) C\da
X Bouma(1)+ 2H(1) —haema(1) +2| = —f’(r)—lw)wzemw(r)
L (r)+(€—1r)2(€+2)+3|wr$2€mm(r)1’ (235
o (2~ . ) - (d o 1 |-
—m 41| 2T 10mo(1) + (O Tyemo(r) | = TN ([0 +T(r)) a+m+m oemo(r)

o)

_ d 1)
+2(|w—f’(r))(a— m"' F) ¢2emw(r)}.
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where T, (r) is the Fourier-harmonic coefficient of the E. Odd part of £=1 mode
source term in the Teukolsky equati¢®.29. Interestingly, For the odd part of thé =1 mode, we can give the gauge

Eq. (2.36 has the same form as tlee=0 Teukolsky equa- transformation generator as the following form:
tion. Once we obtaiM o, (r) by solving the above equa-

tion, M 1me(r) is derived from LSy [ _Ai:;:a ’r)a¢Y1m( 0,4) AEH
_ir2 w
M -
wemol )= e D) ()( Tin X(t,r)sineangm(ﬂ,tﬁ)]- (2.42
1 )~ d i
+W boema(1) +2| 5 N

From Eq.(2.38, the gauge transformation equation is now

i [d given by
¢2(mw(r) (dr Moeme(r)
Moemw(r)) 1 # 9 J .
r , (237) _f(_r)ﬁ—i—ﬁ(f(r)& _r_A (t r)
which also follows from Eqgs(2.33 and (2.34). B him (L) 1+f(r) K21
—f(r) ar (t,r).
D. £=0 mode (2.43

The above formalism cannot be applied to the0, 1
modes because some vector and tensor harmonics vanish.
(For exampled; ,, andf,, vanish for¢ = 1.) Furthermore we
cannot use the Regge-Wheeler and Zerilli equation to evalu- For the even part of thé=1 mode, the gauge transfor-
ate the metric perturbations for these modes. So we have i@ation generator can be divided into the scalar and vector
deal with these modes separately. As shown in Appendix Bparts as the case for the=2 modes:
we may introduce the Zerilli gauge in which we can evaluate
the metric perturbation. Then we consider the gauge trans-
formation from the Zerilli gauge to the harmonic gauge for (2.49
the €=0,1 modes.

F. Even part of {=1 mode

gSl),ZHH;M: O,

gﬁfven) ,Z—> H — §’Z; H + gﬁ;l), Z—H

g =hZ v xti=xé+g4_y, (for €=0,1 modes where ¢ and g1 can be expressed in the Fourier-
(2.38 harmonic expanded form:

At first, we consider th& =0 mode. Thef =0 mode of

the gauge transformation generator is given as the following: gZ—H— f dwz _gzﬂH Ne Y, (8.4), (2.45
lmw im ) ) .

LM =0 - MG (L) Yoo ), MEH(t,1) Yol ©2),0,0}.

(2.39
Substituting this into Eq(2.38, we can obtain the gauge gyei= J-dwE e 't Mgfng(r)Ylm(a,@(Q)M
transformation equations as
1
“nmMZ—H
52Mg~>H(t’r) 2 0—,M§~>H + r Mllmm(r)Ylm(evd’)(er),L
+- =0, (2.40
or? rooor L[—ior o
f(l‘) Olrmu(r)
. a2M§HH+2 JmMi " 20(1) 171
™ A +ar(rf(r>M%;nT,(r>)](e3>,L (2.48

1 (r)
_ ©)_
_47Tl’(f(r)2Aoo Ao )+2f(r) H2(t,r)

By making some changes to EqR.13 and (2.16), the

gauge transformation equations may be derived by using the

2-3rf'(r) HZ(tr) (2.41) formalism for the even parity part of th&=2 modes. That
2rf(r) 22 ' is, we apply the following replacements to the source term:

104017-6
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ﬁ";‘g’:uﬁfww:f dm% e ot (2.47)
2f(r) _ i _ - .
XH—TH% ()= 5 (Hgn (N —Hin 1(r>>—8mrB§?3,,,<r>}Ylm<e,qs)(eoﬂ
r2 di1 Z4=1 Z,t=1
=5 gr | pzHom (N =Hzp () | +87TB (1) | Yim( 0, #) (&),
1 . _
+ E(Hézn‘i1(r>—H§:fH<r>)}<e3>M}, (2.48
1. 1., ., HELt—pzi=t
Heme— TRl == (2.49
[
Ill. SUMMARY AND DISCUSSION functions in a closed, practically tractable form is left for

future study.

) In this paper, to solve the gauge problem of the gravita- Another approach to the gauge problem is to consider the
tional self-force, we have considered the gauge transformas-e”_force in a gauge different from the harmonic gauge,

tion from the Regge-Wheeler gauge to the harmonic gauggimilar to (but very different in principle fromthe interme-
ar]d have presented a formallsm to obtqm the .|nf|n|te3|maaiate gauge approach proposed by Barack and12ii Here
displacement vector of this transformatioff;. First, we  tne recent result by Detweiler and Whitifig] becomes cru-
have performed the Fourier-harmonic expansioréfand  cijal. Their observation that th@part and theR part play the
divided it into the odd and even parity parts. The odd partdentical roles as the direct part and the tail part, respectively,
has only one degree of freedom and it turns out that theind that theS part satisfies the same inhomogeneous Einstein
gauge transformation can be found by solving a singleequations as the full metric perturbation enables us to define
second-order differential equation for the radial function. Asthe S part and theR part of the metric perturbation unam-
for the even parity part, we have further divided it into scalarbiguously in an arbitrary gauge as long as the gauge condi-
and vector parts where the scalar part is given by the gradieition is consistent with the Einstein equations. For example,
of a scalar function and the vector part is divergence-freegiven theS part of the metric perturbation in the harmonic
The scalar part has by definition only one degree of freedonjauge, one can perform the gauge transformation of it to the
and we have found that it can be obtained by solving twoRW gauge and the resulting metric perturbation which satis-
second-order differential equations consecutively. These twfes the Einstein equations can be identified asSipart of -
equations are found to be identical to tee0 Teukolsky the metric perturbation |_n_the RW gauge. Th_en, after solvmg
equation. The vector part has two degrees of freedom, anidl® Regge-Wheeler-Zerilli equations to obtain the full metric
the gauge transformation equations give equations that ar%ertgrbanon, Itis strmghtforward to derive thepart O.f the
coupled in a complicated way. However, by introducing twotmhgtgglf?fegﬁlé;b;ﬁ'?hne'%we E\L{vg?rlj?ﬁiss?.r;rgre]n%a:ki::li?nno:]oo:ess
auxiliary variables which satisfy the= = 1 Teukolsky equa- 16] gaug prog
tions, we have succeeded in deriving a decoupled secon&— X

) . : Finally, we comment on the self-force in the case of the
order equation for one of the gauge functions with the SOUrCk oy background. In the Schwarzschild case, it was possible
term given by the auxiliary variables. Interestingly,

. this to use the Regge-Wheeler-Zerilli formalism to obtain the

second-order equation has the same form assth® Teu-  megric perturbation in the RW gauge. However, in the Kerr

kolsky equation. The other gauge function is then simplycase there is no known gauge in which the full metric per-

given by applying a differential operator to the first. turbation can be calculated. The Chrzanowski methid
Since all the equations to be solved have the form anal(based on the Teukolsky formalism can give the metric per-

gous to or equal to the Regge-Wheeler equation, we cafurbation in the(ingoing or outgoing radiation gauge, but

derive analytic expressions for their homogeneous solutionsnly outside the range of radial coordinates the orbit resides

by using the Mano-Suzuki-Takasugi methdd}] and con-  in. One possible way to circumvent this difficulty is to con-

struct the Green function from these homogeneous solutionsider first the regularization of the Weyl scally. Given an

So we conclude that the gauge transformation can be solveatbit, ¥, can be calculated by the Teukolsky formalism, and

by using the Green function method, and we can construahe Spart of it, '3, can be calculated from tH&part of the

the metric perturbation in the harmonic gauge. In practicemetric perturbation in the harmonic gau VH

however, it may not be easy to solve for the gauge transfor-

mation since it involves products of Green functions with s & o sH

double integrals. Derivation of the gauge transformation W=V, lhy ], (3.1
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where ¥, is the operator to derive the Weyl scalar from a  We consi_der the linearized Einstein equations for the per-
given metric perturbation. Then th@ part of ¥, can be turbed metric,
derived by subtracting th8 part from the Weyl scalar, ~
9ur=9ur TN,
VE=W,— V3. (3.2 _ . o

whereg,,, is the background metric. Then the Einstein tensor
Now W satisfies the homogeneous Teukolsky equationand the stress-energy tensor up to the linear order can be
Hence using the Chrzanowski method, we may construct thexpanded as
R part of the metric perturbation in the radiation gauge and

derive the self-force. Since this procedure involves many de- G,[9,,1=G,.[9,,1+8G,,[h,,]+0(h?), (A1)
rivative operations, the metric perturbatitr})' has to be B
evaluated with a sufficiently high accuracy which may be Tu=T,,+6T,,, (A2)
practically a difficult task, if not impossible. The feasibility ,
of this method should surely be investigated. wheref,=h,,“ and
1 1
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a 1 A A 1
+R (/.th)a_ Eguv(f)\' _h;)\’ )_Eh,uVR

1 »
+50uNapR. (A3)

APPENDIX A: THE FIELD EQUATION ON THE _ lh Gagf, R heB— Eh. .
REGGE-WHEELER GAUGE 2 wrie D) Danpy 2 Y
In this appendix, we recapitulate the equations for the 1 : :

Regge-Wheeler-Zerilli formalism. In doing so, we correct _ng(fk'x_h:k'x)ZSWéTW' (A4)
some minor errors in Zerilli's papd6]. Here an equation
number given asZ:1) denotes the equatiofi) in Zerilli's We apply the above to the case of the Schwarzschild
paper for comparison, and a lajelRTD] to an equation background, and expand,, [(Z:D2a and (Z:D2b)] and
means it is corrected. oT,, in tensor harmonics,

_ 1 i
h=2 | F(DHoem(tNaR =i V2H1em(t)aln+ £ Haem(tam— £V2€0E+1)hG(6rbEG

+§Jze<e+1)h&?m<t,r>bem+ \/§€<e+1)(6—1><e+2)em<t,r)fem+ ﬁKma,r)—e(%l)eem(t,r) Jem
2¢(€+1 iV2¢(€+1 20€+1)(€—1)(£+2
_#hwm(tar)c(e?r)fk#hlfm(tvr)cfm"'\/ ( ! )2(r2 )( ! )h2€m(tar)d€m [CRTD],
(A5)

where we usér? andh{®  for the even part coefficients
instead oh{T) andh{T respectively, in Zerilli's paper, and
©)-0) © the coefficientG!®), instead of Zerilli's notatiorG,, for the

+QmCim™t QemCemt Demdemt GimGem™t Femfeml, energy-momentum tensor, aa), a,m, . .. are the ten ten-

(A6)  sor harmonicgZ:A2a-j) defined as

oT= % [A%?%a%%%— A%]r.%a%")l'l' A(ma€m+ B((?%b%?%'*' Bfmbfm
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Yim O 0 O
o 0 0 0 O .
0 0 0O
0 Yum 0 O
Sym 0 0 O
W= j
am=(N2| o o o ol (A8)
0 0 0O
0 0 0O
0 Yy 0 O
a(m_ 0 0 0 0 ) (Ag)
0 0 0 O
0 ()Y im (3dd)Yem
by @=ir[2€(€+1)]? 0 0 0 (A10)
tm Sym 0 0 0 ’
Sym 0 0 0
0 0 0 0
0 0 (dd0)Y¢m (IIP)Yem
_ + -1/2
bem=r[2¢(£+1)] 0 Sym 0 0 : (A11)
0 Sym 0 0
0 0 (1/sin0)(dldd)Y¢m —SiNO(IIOY ¢
O=r[2¢(¢+1)]7? 0 0 0 0 Al2
Cem =r[2€(€+1)] Sym 0 0 0 (A12)
Sym 0 0 0
0 0 0 0
0 0 (1/sin0)(dldd)Y¢m —SiNO(IIOY ¢m
— + -1/2
Com=1r[2¢(€+1)] 0 Sym 0 0 , (A13)
0 Sym 0 0
0 0 0 0
dem=ir?[20(€+1)(€—1)(¢+2)] 22 09 ° ° Al4
=120 DEDEEDT 6 6 (1sing)X,,,  sin oW,y (A14)
0 0 Sym sSinfX,m
00 O 0
00 O 0
—(r2
=Nl o oy o | (A15)
0 0 0 sifdYn
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0
0
fom=Tr2[20(£+1)(£—1)(€+2)] Y2 0
0
Here the angular functions,,, andW,, are given by
J [ d

Xom= 2{9¢ =5~ CotO | Yem, (A17)

W= ” tea L7 Y A18

m=| 752 €O 5~ Gipg ag2) - (A18)

PHYSICAL REVIEW D67, 104017 (2003

0 0 0

0 0 0 [CRTD] (Al6)
0 Wf’m Xém .

0 Sym —sirfoW,,

where the following notation for the particle orbit is used.

#=z"1)={T(7),R(7),0(7),®(7)}, (A20)
dT(7)
y=" (A21)

For a point particle moving along a geodesic, the stressThis stress-energy tensor is expressed in terms of the tensor

energy tensor takes the form

o[

dz* dz

8 x—z(m) 5

harmonics as given in Table [corresponding tdZ:Table
l11)]. Here it is noted that the sign errors@}%) andQ,, are
corrected.

Substituting Egs(A5) and (A6) into Eq. (A4), we obtain
the field equations for each harmonic mode. For the odd part

_dztdz" 5(r— (t))a(z)(ﬂ Q). which has the odd parity{1)‘**, in the RW gauge in
“HY7at dt r? which h,=0, the following three equation&Z:C6a-9 are
(A19) derived:
|
#hy  9°h; 2 dhy [AM €(L+1)|  ho 8 r2
__ - = _ - (0)
o2 dtar r oot | g2 r r—2m 1/g(g+1)/2r—2M [CRTD, (A22)
#hy *hg 2 9hg (£—1)(£+2)(r—2M 8mi(r—2M
1 o 20h (Z1(EH2)(r-2M) _ Bmir—2M) o 23)
o2 dtar 1t rs Ve(+1)12
d [( ZM)h } ro ohy 8rir? a24)
o r)H or=2M gt Jrer -+ ™

where Zerilli’'s sign errors of the source terms are corrected.
For the even part which has the even parityl)‘, we have seven equatiof&:C7a-g in the RW gauge in whicHnge)

=h{®=G=0.

L 2M\2°K 1 L 2M 5M|oK 1(  2M 20H, 1 L M _— C(€+1) . M oK
_T ? F _T _TW_F r 19_I’_r_2 _T( 27 )_ 2I’2 _T( 2 )
=—87AL), (A25)

oK 1 M €(€+1)
T K—H.)— _ - A (1)
at[ +—(K=Hy) r(r—2M)K} - H 4\27iAl), (A26)
r\26°K r-M oK 2 oH, 1aH0+ 1 oK €(€+1) Ko —BA
r—2M/) g2 r(r—=2M)dr r—2M 4t 1 or r(r—2M)( 2= K) 2r(r—2M)( 0)= =8 Aim,
(A27)
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TABLE |. Stress-energy tensor in terms of tensor harmonics.

Description Dependence of “driving term” onandt Tensor harmonic
dr\? -
Even Aem(r:t)zlﬂ’(a) (r=2M) 28 = R() Yn(£2(1)) am(6,0)
0 2M\? ©
Even A= | 1= ——| 7280 =R Im( (1)) an(6,)
Even Afp=12 nmd—Rr*a(r—R(t))v*m(mt)) afin(0,¢)
Even BO=[1¢(¢+1)] ¥4 ;w(l—ﬂ) “15(r— R(1)d Y%, (Q())/dt bi( 6. &)
Even B{m=[%€(€+1)]‘1’2,uy(r—2M)‘1Z—|?5(r—R(t))dY}fm(Q(t))/dt bem(6, ®)
2M 1 aYi,dO  aYE,dd
Odd 2%:[%€(€+1>]1’2m(1—) 80RO 55 5 g SN Wéﬁ} cin(6. ¢)
N Y*
Odd Qun= T+ DT Ay (1~ 2M) 260~ RO)| s 2 sin %"% cn(0.9)
1 1 de\z  [do\] 1
Odd Dem=—[ (¢ +1)(€—1)(€+2)] Y4 uys(r —R(t)) E 5t ~siPOl | (5 Xl )] dem( 6, b)

dd d W* )
—sin® —- at el (D]

2 2
Even Fam=[30(£+1)((—1)(£+2)] 12 y(S(r—R(t))( dqt) (2? X}fm[ﬂ(t)]-i-l (L(?) —sir?@(%) }\qu‘n‘[(}(t)]) fem(6, )

2 2

de do
Even Gg?n \/— R(t))[( +sin2®(a YEL(Q(D) Im( 0, )
i[(1—2—M)H }—E(H +K)—i5(°> (A28)
ar r) et R Jeter e ™

aH1+(1 2M)a(H )+2MH +1(1 M)(H iy BT 2M) A29)
ot ror e ° R o ™
r 02K+ 2M\’K 2 M\ oK r a2H2+2a2H1 2M\ #°H,
r—2M g2 r g2 e\ ) ar r—2M g2 “ator 1] g2
200=M) gH; 1/  M\dH, r+M dgHy €(€+1) ©
+m7‘r( ‘7)7‘ o o T gz (HomH2)=8\27GE, (A30)
Ho—H 8mr2F
0 2 m (A31)

2 Jl+nU—-1t+2)2’

where we have corrected the sign errors of the source terms in Zerilli's paper as the odd parity part.
We now consider the Fourier transform of the above field equations. The Fourier coefficients are defined, for example, as

+oo )
hO(’mw(r):f dthom(t,r)e'". (A32)
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Then we derive the Regge-Wheeler-Zerilli equations and

AT (r—2M)— @?r*+M(r—3M)
construct the metric perturbation under the RW gauge condHo¢me= K

Neme

tion.
odd)

For the odd part, a new radial functi®{%%(r) is intro-

duced, in terms of which the two radial functiohg,, and

h1/me fOr the metric perturbation are expressed as

r2

hl(’mw: r—2M

R(odd)

{mo

(A33)

i d
Noeme= o d?(rR%jg))

87r(r—2M)

1 72D ¢me - (A34)
0| 5 €+ 1)(€=1)(¢+2)

(r—=2M)(Ar+3M)

+M()\+1)—w2r3H 5 CRTD
Tor(Nr+3M) | Hme™ Bime [ ],

(A39)

1 —1/2
Hoeme=Hoeme, — 1672 Ee(e+1)(€— 1)(€+2)

XFime [CRTD], (A40)
where we have introduced the symhofor
1
)\zz(f—l)(€+2), (A41)

The new radial function satisfies the Regge-Wheeler equaand the local source termi&Z:17), (Z:20) and(Z:21)] by

tion (Z:11),

dzRfmw(Odd)

Gz Tt VARG

8 i r—2m
2

[%ue+1xe—1xe+2)

Ld[( 2™
5 1—7 D¢me

X

+(r—ZM)[(€—1)(€+2)]1’2Qemw) [CRTD],

(A35)
wherer* =r +2M log(r/2M — 1) and
2M\ [ €(€+1) 6M
V%°dd><r>=(1—7) (—2)—r—3 . (A36)
r

For the even part, a new radial functi®}®*"\r) is in-
troduced, in terms of which the four radial functiof@s13—
16) are expressed as

AN +1)r24+3\Mr +6M?2 r—2M dR{Een

_ R(even) Mo

(me r2(Ar+3M) me r dr
r(r—2M)- i(r—2M)26 CRTD
Ar+am Camet ri ) Caeme [ERTEL
(A37)

oo Ar2—3\Mr—3M? (ovem_; R{oven

Lemo™ 19 (F2M)(Ar +3M) (e T dr

ird ~ or (r=2M) CRTD
FarramCume T gy Ceeme  [CRTDL
(A38)

- 8mr?(r—2M) 1 -1z
tmo= " 1AM | Aeme T S+ Bimg
a2 M0 A A42
TATN M o Al (Ad2)
- 8m (1) 1. 1
lemw:EAé’mw—'—FBfmw_lSﬂ-r §€(€+1)(€—1)
—1/2
X(+2)|  Feme [CRTD], (A43)
1 —-1/2
_ swrz[ie(“l) ir
Cotme=—— B{O - B
Zme e r—2M Moy M~ fme
Lomir l€€ 1)(€—1)(£+2 -
o |z CEHDE-1)(+2)
XFime [CRTDI. (A44)

We note that the above radial functions for the metric pertur-
bation have the local source terms which havedtanction
behavior at the particle location. The new radial function
obeys the wave equation,

dzRemw(even)

dr*z _{_[wz_vgeven)(r)]R(even): S(mwa

{mow

(A45)

where

2M
r

V(€even)(r): ( 1— —
2N2(N+1)r34+6N°Mr2+ 18\M?r + 18M°3
X r3(ar+3M)? ’
(A46)
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and the source term is
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2. Odd part of €=1 mode
For the odd part of th& =1 mode, the metric perturba-

2 2
Sime=—I r—2m i{ (r—2m) ( ol -'31emw tion and the gauge transformation generator are given, re-
r dr r()\r+3M) r—2Mm spective|y, as
~ (r—2M)2
T Cotmo | | T T A2 h{os?= (mgml(t NeQ+hi e, (B5)
AMA+1)r2+3\Mr+6M?_
X[ 2 Catm _ — Agm(t,1)
oINS 10,0 I6Y 1m0, ) A1
Ar2—3\Mr—3M2_ m sin¢
+i oM Cileme |- (A47)
X (t,r)sin@d Y 1m(6,0) ;. (B6)
The above equatiofA45) is called the Zerilli equation. The
Zerilli equation can be transformed to the Regge-Wheeler
equation by the Chandrasekhar transformafiof]. So we '1€ré We can choosaiyy(t,r) so thathg '(t,r)=0. Then
may focus only on the Regge-Wheeler equation if desiredtn€ field equations become
The Regge-Wheeler homogeneous solutions are discussed in
detail by Manoet al.[14]. Using their method, one can con- 2pz (-1 8rr3 )
struct the retarded Green function to solve the inhomoge- Jtor [r him "1=— 0 Qim: (B7)
neous Regge-Wheeler equation. Then the metric perturbation
in the RW gauge is obtained from Eq#&33) and (A34) for
the odd part and from Eq$A37)—(A40) for the even part. hin .
e =—87irf(r)Qim. (B8)

APPENDIX B: THE FIELD EQUATION FOR THE
NONRADIATIVE MODES

The above formalism is applicable only to tHe=2
modes. Therefore we have to deal with ttve 0,1 (nonradi-
ative) modes separately. In this appendix, the field equation
for these modes are givefiThis problem is considered for
the point particle case in Appendix G of Zerilli's padéi.)

1. €=0 mode
First, we consider thé =0 mode. Thef =0 mode of the

metric perturbation and the gauge transformation generators

are given, respectively, as

hoo=f(r)Ho(t,r)aly— V2iH (t,r)aly) +

< )
X Hy(t,r)agot V2K (t,r) oo, (B1)

5#6202{_ MO(t:r)YOO(‘Q’)!Ml(tvr)YOO(Q)io!O}'
(B2)

We can chooséMy(t,r), My(t,r) so thatHq(t,r)=K(t,r)

3. Even part of =1 mode

For the even part of thé=1 mode, the metric perturba-
tion and the gauge transformation generator may be given in
the following form:

Y, a®—2iH e nal

2i
L= 0
—hgn (bR

h{&ven=f(r)Hom Lit,r)

H Lt ) aym—

1
RG)

(B9)

2 _ -
+ R T Db V2K ) G,

glevemi=1_ %} [~ MR Yam MR ET) Ve,

M5 H (1) Y 1m. M g,r:’nl(t’ 1)y 1m}-
(B10)

Choosing a gauge in whicth{: = (t,r)=h{ " (t,r)

=0. We call this gauge the Zerilli gauge. In this gauge, the= Kfn:l(t,r)=0, the field equations for the even part of the

field equations are given as follows:

JHE(t) 1 ©

o +rf(r)H2(t’r) o )2Aoo- (B3)
JHE(t,r) .
T‘FmHz(t,r)—_SWero, (B4)

where the superscript Z stands for the Zerilli gauge.

£=1 mode are

JHEm (L) -1 8mr?
= AQ)
rf(r) o +2H5, “(tr)= f(r) ims
(B11)
Z,€=1
HZ=Y(t ) +r = =4\27ir2Ad  (B12
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aH” 1 Hze 1 HE = t,r) 3r—rf(r) (9HZ€ Y(t,r)
_ Z( 1 Z,4=1 2 :
rf(r) — = —2r ——— —Hgpn (L) +HER () r f(r) &rz 2 ar
=—8mr?f(r) A, (B13)

2y2,¢=1
HZ€ 1(t r)_2r2(9|-|1’m—(t’r)

HZ: =1t r) ator
——[f(r)H” l(t,r)]+— —87irB %),
A _r@HT) HETD 2 PHEL D
(B14) 0) F T 11 R
Z€ 1 Z( 1
(t,r) H (t,r)
2rf(r —2r Hze 1
A ) ar 3'[ +r(1+2f(r)) ’ o (t’r)+H§,}f1=l(t,r)
+(@A-3F(r)HGE M) (B15)

=-8\27r?G{). (B17)
+(L+f(N)HZL(t,r)=167r%f(r)By,, (B16)
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