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All static spherically symmetric perfect-fluid solutions of Einstein’s equations
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An algorithm based on the choice of a single monotone fundsoibject to boundary conditionss pre-
sented which generates all regular static spherically symmetric perfect-fluid solutions of Einstein’s equations.
For physically relevant solutions the generating functions must be restricted by nontrivial integral-differential
inequalities. Nonetheless, the algorithm is demonstrated here by the construction of an infinite number of
previously unknown physically interesting exact solutions.
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Exact solutions of Einstein’s field equations provide a First considerM in “curvature” coordinates:
route to the physical understanditgnd discovery of rela-
tivistic phenomena, a convenient basis from which perturba-
tion methods can proceed, and a check on numerical ap-
proximations. Here we look at static spherically symmetric
perfect-fluid solutions. Unfortunately, even for this simple Writing out Eq.(2) [6], we obtain an expression involving
type, very few solutions are in fact known, and of these fewd (r) and m(r) with derivatives to order 2 ib(r) and to
pass even elementary tests of physical relevafteln this  order 1 inm(r). Viewing Eq.(2) as a differential equation in
paper, an algorithm based on the choice of a single monoton®(r), givenm(r), we obtain a Riccati equation in the first
function (subject to boundary conditiong presented which derivative ofd®(r). However, viewing Eq(2) as a differen-
generates all regular static spherically symmetric perfecttial equation inm(r), given®(r), we obtain a linear equa-
fluid solutions of Einstein’s equations. We are interested onlytion of first order{ 7]. As a consequence, we have the follow-
in physically relevant solutions here, and so the algorithming algorithm for constructing all possible spherically
must be supplemented by physical considerat|@sThese  symmetric perfect-fluid solutions of Einstein’s equations.

additional conditions limit the generating functions allowed  Given ®(r) (sufficiently smooth and subject to boundary
by way of nontrivial integral-differential inequalities. The conditions explained below

details of how to choose physically relevant generating func-

tions (beyond trial and errgrare, at present, not known.

Nonetheless, the robustness of the algorithm is demonstrated f b(r)exp{ f a(r)dr)dr+C

here by the construction of an infinite number of previously m(r) = , 4
exp( j a(r)dr)

2
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unknown physically interesting exact solutions.

To set the notation, consider a spherically symmetric
spacetimeM [3] where

— 2 2

dsj,=ds; + R0, @ 2r2[®"(r)+ ' (r)2]—-3rd'(r)—3
where dQ? is the metric of a unit sphere[d6? amn r[rd’(r)+1]
+sir?(9)d¢?] and R=R(x},x?) where the coordinates on
the Lorentzian two-spac® are labeled ag® andx?. Con- and
sider a flow(a congruence of unit timelike vectots’) tan-
gent to an open region & and writen® as the normal t@® r{r[®"(r)+®'(r)?]—d'(r)}
in the tangent space &&. Both u® and n® are uniquely b(r)= -
determined. We suppose that Ef) is generated by a fluid ref(r)+1
subject to the conditiolG4u“n,=0 whereG# is the Ein-
stein tensor(see[4]). Let G=GY,, GlEGﬁu“uB, and G2
EG'ffn“n,;. In the static case it follows that the flow is shear-
free and that

®)

(6

where the prime indicated/dr and C is a constant. The
generating function associated with any known solution is of
course immediately obvious following the algorithm.

Interior boundary conditions o®(r) are set by the re-
quirement that all invariants polynomial in the Riemann ten-
sor are finite at the origin. In this case there are but three
independent invariantt8] and these are expressed here in
terms of the physical variables; the energy density

G+G1=3G2 (2
is a necessary and sufficient condition for EL).to represent
a perfect fluid[5].

Gl_m (r)20 @)
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and the isotropic pressure the solutions are acceptable on physical grounds and even
exhibit a monotonically decreasing subluminal adiabatic
G2 r®'(r)[r—2m(r)]—m(r) sound spee13].
=8.- e =0. (8) It is, perhaps, worth noting here that the foregoing discus-
an

sion in curvature coordinates can be transformed directly
into Bondi radiation coordinatgd4].

Note that the inequalities in E¢7) and(8) are to be viewed Now consider the “isotropic coordinates”

as imposed restrictions oh(r). At the center of symmetry

(r=0), the regularity of the Ricci invariants requires that dSZM:eZB(r)(dr2+erQZ)_e2[‘If(r)fB(r)1dt2' (10)
p(0) andp(0) be finite. The regularity of the Weyl invariant
requires thatm(r) is C* at r=0 with m(0)=m(0)’ Unlike curvature coordinates, the isotropic fot0) does

=m(0)"=0 and m(0)”=8mp(0) [9]. In summary, for a not offer an immediate invariant physical interpretation of
static spherically symmetric perfect fluid, finifg(0) and the functionsW(r) and B(r) [15]. However, as we now
p(0) guarantee the regularity of all Riemann invariants at theshow, the coordinates offer a simplified algorithm for con-
center of symmetry®(0) is a finite constantset by the  structing perfect fluid solutions. Writing out E(®2) we now
scale oft) and it follows from Eq.(8) that ®'(0)=0 and obtain an expression involving (r) andB(r) with deriva-
®"(0)=(47/3)[3p(0)+ p(0)]>0. Since p=0 and con- tivesto order 2 in¥(r) and to order 1 irB(r). Viewing Eq.
tinuous and sinc@(0)>0 and finite, it follows from Eq(2)  (2) as a differential equation i (r), givenB(r), we again
thatr>2m(r) [10]. With r>2m(r) for r>0 it also follows obtain a Riccati equation in the first derivative Wf(r).
from Eq. (8) for p(r)>0 that®’'(r)+#0 forr>0. As a re- However, viewing Eq(2) as a differential equation iB(r),
sult, the source functio®(r) must be a monotone increas- given ¥(r), we obtain an equation solvable simply by
ing function with a regular minimum at=0. Exterior —quadrature. As a consequence, we have the following simpli-
boundary conditions o (r) exist only for isolated spheres, fied algorithm for constructing all possible spherically sym-
and these conditions are set by junction conditiiid. The  metric perfect fluid solutions of Einstein’s equations in iso-
necessary and sufficient condition that have a regular tropic coordinates.
boundary surface with a Schwarzschild vacuum exterior at Given¥ (r) (sufficiently smooth and subject to boundary
r=R>0 is given byp(r=R)=0. Settingm(r=R)=M it  conditions explained below
follows that®’(r =R)=M/R(R—2M).

Each source functio®(r) that is a monotone increasing B(r):q,(er c(rydr+¢, (12)
function with a regular minimum at=0 necessarily gives,
via Eq. (4), a static spherically symmetric perfect-fluid solu-
tion of Einstein’s equations that is regular et 0. Exact
solutions, in the present context, can be viewed as those for E
which Eq.(4) can be evaluated without recourse to numeri- c(r)=—=[¥'(r)]°=¥"(r)+¥'(r)/r (12
cal methods. The number of source functidn@) for which \/5
Eq. (4) can be evaluated exactly is infinite. It should be . o
noted, however, that the generation of an exact solution dogdith €==1, the prime indicatingl/dr, andC a constant.
not necessarily mean that the equatipii=R)=0 can be Recently, Rahman and Visspt6] also presented an algo-
solved exactly. The algorithm presented here is now demorithm for constructing spherically symmetric perfect-fluid so-
strated by the construction of an infinite number of previ-'utions in isotropic coordinates. The source functignr)
ously unknown but physically interesting exact solutions ofuSed here is related to the source funciz¢n) used by Rah-
Einstein’s equations. man and Visser as follows:

Let

where

rz(r)
r2 ‘I’(I’)ZZJ r(r)rzdr (13)

(D(r)z%NIn 1+; , 9

The two algorithms differ fundamentally in the sense that

where N is an integer=1 and a is a constant>0. The only one integr_at@on i_s used _in the present procedure as op-
function (9) is monotone increasing with a regular minimum posed to two distinct integrations used in the Rahma}n-V|sser
atr=0. With the source functiof9), Eq. (4) can be evalu- procedur_e. The Rahman—\ﬁssc_ar procedu_re was mqtlyated by
ated exactly for anN. Whereas Eq(9) generates a “class” the requirement that the metric t_)e manifestly relalinitio.

of solutions, the metrigin particularm(r)] looks quite dis- '€ reality of the integrafll) is discussed below. _
tinct, and the physical properties are quite distinct, for each Nterior boundary conditions o (r) are set exactly as in
value ofN. Previously, only foN=1, . . . ,5were solutions the case of curvature.coordlnates. We now have the energy
known, having been arrived at by various methods, and ond€nsity and pressure in the form

solution which is the first term in the Taylor expansion of Eq.

(9) [12]. [These solutions, witiN=1, . .. ,5,_infact_ consti-. _ E: -1 2B"(r) + 4B'(r) +[B'(1)]2|=0
tute half of all the previously known physically interesting 87 gme?B(n r
solutions(of this type in curvature coordinatesFor N=5 (14
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and f(r)
V(ry=aln—m, (16
G2 -1 o o 9(r)
P= 87~ gre0) —B(NY(N+[B'(N]"~2——
me wheree is a constant-0. Of course it is not difficult to find
=0. (15) functionsf(r) andg(r) so that Eq(16) is monotone increas-
ing with a regular minimum at=0. Nor indeed is it difficult
¥ (0) is a finite constanfset by the scale df) and it follows  to find such functions for whiclB(r) can be evaluated ex-
from Eq. (15) that ¥'(0)=0 and from Eq.(11) thatB’(0)  actly. For example, leg)(r) = (5+ er?)¢ andf(r)= 6+ yr?
=0. With p(r)=0 it follows that the source functio (r) with &, € v, and ¢ constants such thag>0 and 6 ¢y
must be a monotone increasing function with a regular mini=>e. This class of solutions includes a number of known
mum atr =0 and¥”(0)=4me?5(®)p(0). Exterior boundary solutions including the Schwarzschild interior solution and
conditions on¥(r) are set as in curvature coordinates. Thethe Rahman-Visser general quadratic ansatz. Any solution in
regularity of p(0) requiresB’(0)=0 and withp(r)=0 it  isotropic coordinates can be immediately recovered and gen-
follows thatB(r) must be a monotone decreasing functioneralized following the algorithm presentgti7].
with a regular maximum atr=0 and B"(0)= An algorithm based on the choice of a single monotone
— 476?895 (0). Thelimits —2/r<B'(r)<0 guarantee the function (subject to boundary conditionbas been presented
positivity of the effective gravitational mass. To examine thewhich generates all regular static spherically symmetric
reality of the metric, consider the functidh(r)=[W¥'(r)]>  perfect-fluid solutions of Einstein’s equations. In all cases the
—W"(r)+W¥'(r)/r. Now F(0)=0, F’(0)=0, andF”(0)  choice of generating function must be guided by physical
>0, soF(r) has a local minimum at=0. Now suppose considerations. These additional conditions limit the generat-
that F(r)=0 for r>0. Then condition(2) requiresB’  ing functions allowed by way of nontrivial integral-
=¥’ so we have already passed through a region with differential inequalities. The details of how to choose physi-
<0 before the reality of the metric breaks dowin agree- ~ cally relevant generating functiortseyond trial and error
ment with known theoremgl0]). are, at present, not known. Moreover, the resultant equation
In parallel to the algorithm in curvature coordinates, eactf state is a by-product of the algorithm and cannot beaset
source function¥ (r) that is a smooth monotone increasing Priori. Despite these reservations, the algorithm has been
function with a regular minimum at=0 necessarily gives, demonstrated by the construction of an infinite number of
via Eq. (11), a static spherically symmetric perfect-fluid so- Previously unknown physically interesting exact solutions
lution of Einstein’s equations that is regularrat 0. Exact [18]. It is a curious fact of history that over half a century
solutions are again those for which E1) can be evaluated 290 Wyman[19] pointed out that the algorithm presented
without recourse to numerical methods. Physical considefiere was possible and yet, despite the voluminous literature
ations must guide the choice &f(r). In isotropic coordi- On the subjecf1], the algorittm appears not to have been
nates the ratios of invariants and differential invariants carfollowed up.
be obtained directly from the source functign(r) via dif-
ferentiation. You do not neeB(r) and in particular you do This work was supported by a grant from the Natural
not need to integrate. For example, the functipiis)/p(r) Sciences and Engineering Research Council of Canada. Por-
and p’'(r)/p’(r) follow directly without integration. Of tions of this work were made possible by uSeGRTENSORII
course, neithep(r) nor p(r) follows without integration. In  [20]. It is a pleasure to thank Gyula Fodor, Jim Lattimer,
curvature coordinates you cannot get these ratios withoullicholas Neary, Don Page and Matt Visser for comments
integration, starting from the source functidr(r). and Jorge Pullin for pointing out the paper by Bergeal.
To demonstrate the algorithm in isotropic coordinates, let7].
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