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All static spherically symmetric perfect-fluid solutions of Einstein’s equations
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An algorithm based on the choice of a single monotone function~subject to boundary conditions! is pre-
sented which generates all regular static spherically symmetric perfect-fluid solutions of Einstein’s equations.
For physically relevant solutions the generating functions must be restricted by nontrivial integral-differential
inequalities. Nonetheless, the algorithm is demonstrated here by the construction of an infinite number of
previously unknown physically interesting exact solutions.
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Exact solutions of Einstein’s field equations provide
route to the physical understanding~and discovery! of rela-
tivistic phenomena, a convenient basis from which pertur
tion methods can proceed, and a check on numerical
proximations. Here we look at static spherically symmet
perfect-fluid solutions. Unfortunately, even for this simp
type, very few solutions are in fact known, and of these f
pass even elementary tests of physical relevance@1#. In this
paper, an algorithm based on the choice of a single mono
function ~subject to boundary conditions! is presented which
generates all regular static spherically symmetric perfe
fluid solutions of Einstein’s equations. We are interested o
in physically relevant solutions here, and so the algorit
must be supplemented by physical considerations@2#. These
additional conditions limit the generating functions allow
by way of nontrivial integral-differential inequalities. Th
details of how to choose physically relevant generating fu
tions ~beyond trial and error! are, at present, not known
Nonetheless, the robustness of the algorithm is demonstr
here by the construction of an infinite number of previou
unknown physically interesting exact solutions.

To set the notation, consider a spherically symme
spacetimeM @3#

dsM
2 5dsS

2 1R2dV2, ~1!

where dV2 is the metric of a unit sphere@du2

1sin2(u)df2# and R5R(x1,x2) where the coordinates o
the Lorentzian two-spaceS are labeled asx1 and x2. Con-
sider a flow~a congruence of unit timelike vectorsua) tan-
gent to an open region ofS and writena as the normal toua

in the tangent space ofS. Both ua and na are uniquely
determined. We suppose that Eq.~1! is generated by a fluid
subject to the conditionGa

buanb50 whereGa
b is the Ein-

stein tensor~see@4#!. Let G[Ga
a , G1[Ga

buaub , andG2
[Ga

bnanb . In the static case it follows that the flow is shea
free and that

G1G153G2 ~2!

is a necessary and sufficient condition for Eq.~1! to represent
a perfect fluid@5#.
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First considerM in ‘‘curvature’’ coordinates:

dsM
2 5

dr2

122m~r !/r
1r 2dV22e2F(r )dt2. ~3!

Writing out Eq. ~2! @6#, we obtain an expression involvin
F(r ) and m(r ) with derivatives to order 2 inF(r ) and to
order 1 inm(r ). Viewing Eq.~2! as a differential equation in
F(r ), given m(r ), we obtain a Riccati equation in the firs
derivative ofF(r ). However, viewing Eq.~2! as a differen-
tial equation inm(r ), givenF(r ), we obtain a linear equa
tion of first order@7#. As a consequence, we have the follow
ing algorithm for constructing all possible spherical
symmetric perfect-fluid solutions of Einstein’s equations.

Given F(r ) ~sufficiently smooth and subject to bounda
conditions explained below!

m~r !5

E b~r !expS E a~r !dr Ddr1C

expS E a~r !dr D , ~4!

where

a~r ![
2r 2@F9~r !1F8~r !2#23rF8~r !23

r @rF8~r !11#
~5!

and

b~r ![
r $r @F9~r !1F8~r !2#2F8~r !%

rF8~r !11
~6!

where the prime indicatesd/dr and C is a constant. The
generating function associated with any known solution is
course immediately obvious following the algorithm.

Interior boundary conditions onF(r ) are set by the re-
quirement that all invariants polynomial in the Riemann te
sor are finite at the origin. In this case there are but th
independent invariants@8# and these are expressed here
terms of the physical variables; the energy density

r5
G1

8p
5

m8~r !

4pr 2
>0 ~7!
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and the isotropic pressure

p5
G2

8p
5

rF8~r !@r 22m~r !#2m~r !

4pr 3
>0. ~8!

Note that the inequalities in Eq.~7! and~8! are to be viewed
as imposed restrictions onF(r ). At the center of symmetry
(r 50), the regularity of the Ricci invariants requires th
r(0) andp(0) be finite. The regularity of the Weyl invarian
requires that m(r ) is C3 at r 50 with m(0)5m(0)8
5m(0)950 and m(0)-58pr(0) @9#. In summary, for a
static spherically symmetric perfect fluid, finiter(0) and
p(0) guarantee the regularity of all Riemann invariants at
center of symmetry.F(0) is a finite constant~set by the
scale oft) and it follows from Eq.~8! that F8(0)50 and
F9(0)5(4p/3)@3p(0)1r(0)#.0. Since r>0 and con-
tinuous and sincep(0).0 and finite, it follows from Eq.~2!
that r .2m(r ) @10#. With r .2m(r ) for r .0 it also follows
from Eq. ~8! for p(r ).0 thatF8(r )5” 0 for r .0. As a re-
sult, the source functionF(r ) must be a monotone increa
ing function with a regular minimum atr 50. Exterior
boundary conditions onF(r ) exist only for isolated spheres
and these conditions are set by junction conditions@11#. The
necessary and sufficient condition thatM have a regular
boundary surface with a Schwarzschild vacuum exterio
r 5R.0 is given byp(r 5R)50. Settingm(r 5R)[M it
follows thatF8(r 5R)5M /R(R22M ).

Each source functionF(r ) that is a monotone increasin
function with a regular minimum atr 50 necessarily gives
via Eq. ~4!, a static spherically symmetric perfect-fluid sol
tion of Einstein’s equations that is regular atr 50. Exact
solutions, in the present context, can be viewed as those
which Eq.~4! can be evaluated without recourse to nume
cal methods. The number of source functionsF(r ) for which
Eq. ~4! can be evaluated exactly is infinite. It should
noted, however, that the generation of an exact solution d
not necessarily mean that the equationp(r 5R)50 can be
solved exactly. The algorithm presented here is now dem
strated by the construction of an infinite number of pre
ously unknown but physically interesting exact solutions
Einstein’s equations.

Let

F~r !5
1

2
N lnS 11

r 2

a D , ~9!

where N is an integer>1 and a is a constant.0. The
function ~9! is monotone increasing with a regular minimu
at r 50. With the source function~9!, Eq. ~4! can be evalu-
ated exactly for anyN. Whereas Eq.~9! generates a ‘‘class’
of solutions, the metric@in particularm(r )] looks quite dis-
tinct, and the physical properties are quite distinct, for e
value ofN. Previously, only forN51, . . . ,5were solutions
known, having been arrived at by various methods, and
solution which is the first term in the Taylor expansion of E
~9! @12#. @These solutions, withN51, . . . ,5, infact consti-
tute half of all the previously known physically interestin
solutions~of this type! in curvature coordinates.# For N>5
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the solutions are acceptable on physical grounds and e
exhibit a monotonically decreasing subluminal adiaba
sound speed@13#.

It is, perhaps, worth noting here that the foregoing disc
sion in curvature coordinates can be transformed dire
into Bondi radiation coordinates@14#.

Now consider the ‘‘isotropic coordinates’’

dsM
2 5e2B(r )~dr21r 2dV2!2e2[C(r )2B(r )]dt2. ~10!

Unlike curvature coordinates, the isotropic form~10! does
not offer an immediate invariant physical interpretation
the functionsC(r ) and B(r ) @15#. However, as we now
show, the coordinates offer a simplified algorithm for co
structing perfect fluid solutions. Writing out Eq.~2! we now
obtain an expression involvingC(r ) andB(r ) with deriva-
tives to order 2 inC(r ) and to order 1 inB(r ). Viewing Eq.
~2! as a differential equation inC(r ), givenB(r ), we again
obtain a Riccati equation in the first derivative ofC(r ).
However, viewing Eq.~2! as a differential equation inB(r ),
given C(r ), we obtain an equation solvable simply b
quadrature. As a consequence, we have the following sim
fied algorithm for constructing all possible spherically sym
metric perfect fluid solutions of Einstein’s equations in is
tropic coordinates.

GivenC(r ) ~sufficiently smooth and subject to bounda
conditions explained below!

B~r !5C~r !1E c~r !dr1C, ~11!

where

c~r ![
e

A2
A@C8~r !#22C9~r !1C8~r !/r ~12!

with e561, the prime indicatingd/dr, and C a constant.
Recently, Rahman and Visser@16# also presented an algo
rithm for constructing spherically symmetric perfect-fluid s
lutions in isotropic coordinates. The source functionC(r )
used here is related to the source functionz(r ) used by Rah-
man and Visser as follows:

C~r !52E rz~r !

12z~r !r 2
dr. ~13!

The two algorithms differ fundamentally in the sense th
only one integration is used in the present procedure as
posed to two distinct integrations used in the Rahman-Vis
procedure. The Rahman-Visser procedure was motivated
the requirement that the metric be manifestly realab initio.
The reality of the integral~11! is discussed below.

Interior boundary conditions onC(r ) are set exactly as in
the case of curvature coordinates. We now have the en
density and pressure in the form

r5
G1

8p
5

21

8pe2B(r ) S 2B9~r !1
4B8~r !

r
1@B8~r !#2D>0

~14!
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and

p5
G2

8p
5

21

8pe2B(r ) S 2B8~r !C8~r !1@B8~r !#222
C8~r !

r D
>0. ~15!

C(0) is a finite constant~set by the scale oft) and it follows
from Eq. ~15! that C8(0)50 and from Eq.~11! that B8(0)
50. With p(r )>0 it follows that the source functionC(r )
must be a monotone increasing function with a regular m
mum atr 50 andC9(0)54pe2B(0)p(0). Exterior boundary
conditions onC(r ) are set as in curvature coordinates. T
regularity of r(0) requiresB8(0)50 and with r(r )>0 it
follows that B(r ) must be a monotone decreasing functi
with a regular maximum at r 50 and B9(0)5
24pe2B(0)r(0). Thelimits 22/r ,B8(r ),0 guarantee the
positivity of the effective gravitational mass. To examine t
reality of the metric, consider the functionF(r )[@C8(r )#2

2C9(r )1C8(r )/r . Now F(0)50, F8(0)50, andF9(0)
.0, so F(r ) has a local minimum atr 50. Now suppose
that F(r )50 for r .0. Then condition~2! requires B8
5C8 so we have already passed through a region witr
,0 before the reality of the metric breaks down~in agree-
ment with known theorems@10#!.

In parallel to the algorithm in curvature coordinates, ea
source functionC(r ) that is a smooth monotone increasin
function with a regular minimum atr 50 necessarily gives
via Eq. ~11!, a static spherically symmetric perfect-fluid s
lution of Einstein’s equations that is regular atr 50. Exact
solutions are again those for which Eq.~11! can be evaluated
without recourse to numerical methods. Physical consid
ations must guide the choice ofC(r ). In isotropic coordi-
nates the ratios of invariants and differential invariants c
be obtained directly from the source functionC(r ) via dif-
ferentiation. You do not needB(r ) and in particular you do
not need to integrate. For example, the functionsp(r )/r(r )
and p8(r )/r8(r ) follow directly without integration. Of
course, neitherp(r ) nor r(r ) follows without integration. In
curvature coordinates you cannot get these ratios with
integration, starting from the source functionF(r ).

To demonstrate the algorithm in isotropic coordinates,
un

he

a
e,
ed

di
c-
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C~r !5a ln
f ~r !

g~r !
, ~16!

wherea is a constant.0. Of course it is not difficult to find
functionsf (r ) andg(r ) so that Eq.~16! is monotone increas
ing with a regular minimum atr 50. Nor indeed is it difficult
to find such functions for whichB(r ) can be evaluated ex
actly. For example, letg(r )5(d1er 2)z and f (r )5dz1gr 2

with d, e, g, and z constants such thatd.0 and d12zg
.ze. This class of solutions includes a number of know
solutions including the Schwarzschild interior solution a
the Rahman-Visser general quadratic ansatz. Any solutio
isotropic coordinates can be immediately recovered and g
eralized following the algorithm presented@17#.

An algorithm based on the choice of a single monoto
function ~subject to boundary conditions! has been presente
which generates all regular static spherically symme
perfect-fluid solutions of Einstein’s equations. In all cases
choice of generating function must be guided by physi
considerations. These additional conditions limit the gene
ing functions allowed by way of nontrivial integral
differential inequalities. The details of how to choose phy
cally relevant generating functions~beyond trial and error!
are, at present, not known. Moreover, the resultant equa
of state is a by-product of the algorithm and cannot be sea
priori . Despite these reservations, the algorithm has b
demonstrated by the construction of an infinite number
previously unknown physically interesting exact solutio
@18#. It is a curious fact of history that over half a centu
ago Wyman@19# pointed out that the algorithm presente
here was possible and yet, despite the voluminous litera
on the subject@1#, the algorithm appears not to have be
followed up.

This work was supported by a grant from the Natu
Sciences and Engineering Research Council of Canada.
tions of this work were made possible by use ofGRTENSORII

@20#. It is a pleasure to thank Gyula Fodor, Jim Lattime
Nicholas Neary, Don Page and Matt Visser for comme
and Jorge Pullin for pointing out the paper by Bergeret al.
@7#.
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@1# See M. S. R. Delgaty and K. Lake, Comput. Phys. Comm
115, 395 ~1998!.

@2# The conditions used in@1# were ~i! isotropy of the pressure
~otherwise any metric is a ‘‘solution’’!, ~ii ! regularity at the
origin, ~iii ! positivity of the pressure and energy density at t
origin, ~iv! vanishing of the pressure at a finite boundary,~v!

monotone decrease of the energy density to the boundary,
~vi! subluminal adiabatic sound speed. In addition to thes
monotone decrease in the subluminal adiabatic sound spe
desirable.

@3# We use geometrical units throughout. The ‘‘curvature coor
nates’’ used in Eq.~3! have the advantage that the metric fun
tions have a clear invariant physical interpretation~but see also
.

nd
a
is

-

@14# below!. The functionm(r ) is the effective gravitational
mass. See W. C. Hernandez and C. W. Misner, Astrophys
143, 452 ~1965!; E. Poisson and W. Israel, Phys. Rev. D41,
1796 ~1990!; T. Zannias,ibid. 41, 3252 ~1990!; S. Hayward,
ibid. 53, 1938 ~1996!. WhereasF(r ) is ~in the weak field
limit ! the ‘‘Newtonian’’ potential,re2F(r ) is the effective po-
tential for null geodesics@see, for example, M. Ishak, L. Cha
mandy, N. Neary, and K. Lake, Phys. Rev. D64, 024005
~2001!#.

@4# K. Lake, gr-qc/0209063.
@5# One can take the view that the Tolman-Oppenheimer-Volk

equation is a consequence of the invariant statement~2!.
@6# Explicitly, condition ~2! in the static case in curvature coord
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nates reduces to the Walker pressure isotropy conditionGr
r

5Gu
u @see A. G. Walker, Q. J. Math.6, 81 ~1935!#, which is

F d2

dr2
F~r!1S d

dr
F~r!D2Gr2@r22m~r!#2rS d

dr
F~r!DFS d

dr
m~r!Dr1r

23m~r!G13m~r!2S d

dr
m~r!Dr50.

@7# The problem has also been reduced to a linear equation of
order by A. S. Berger, R. Hojman, and J. Santamarina, J. M
Phys.28, 2949~1987!. Recently G. Fodor~gr-qc/0011040! has
reduced the problem to an algebraic one with integration
quired only for one metric function but not the physical va
ablesr andp.

@8# D. Pollney, N. Pelavas, P. Musgrave, and K. Lake, Comp
Phys. Commun.115, 381 ~1998!.

@9# It follows from Eqs.~2! and ~3! that the necessary and suffi
cient condition for conformal flatness forr .0 is given by
m(r )5cr3, which gives, uniquely, the Schwarzschild interi
solution. See also H. A. Buchdahl, Am. J. Phys.39, 158
~1971!.

@10# See T. W. Baumgarte and A. D. Rendall, Class. Quantum G
10, 327~1993!; M. Mars, M. MercèMartı́n-Prats, and J. M. M.
Senovilla, Phys. Lett. A218, 147 ~1996!.

@11# See, for example, P. Musgrave and K. Lake, Class. Quan
Grav. 13, 1885~1996!. At an interior boundary surfacep, but
not r, must be continuous. Discontinuities inr are associated
with phase transitions, which we do not consider here. Fo
discussion of interior phase transitions see, for example
Lindblom, Phys. Rev. D58, 024008~1998!.

@12# In terms of the classification given in@1# the solutions are
Tolman IV for N51, Heint IIa for N53, Durg IV for N
54, and Durg V5D-F for N55. If F(r ) is taken to be the
first term in the Taylor expansion of Eq.~9!, the solution is
known as Kuch2 III. The caseN52 gives m(r )5Cr 3/(3r 2

1a)2/3 which is usually dismissed under the erroneous
sumption thatC50.

@13# N. Neary, J. Lattimer, and K. Lake~in preparation!.
@14# These were first discussed~in the spherically symmetric case!
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by H. Bondi, Proc. R. Soc. LondonA281, 39 ~1964! and are a
generalization of the well known Eddington-Finkelstein coo
dinates for the Schwarzschild vacuum. The algorithm p
sented is equally at home in curvature and radiation coo
nates. Writing

dv5dt6
e2F(r)

A122m~r !/r
dr

@1 for advanced~ingoing! v and2 for retarded~outgoing! v]
it follows that Eq.~3! takes the form

ds2562
eF(r)

A122m~r !/r
dvdr1r 2dV22e2F(r )dv2.

The form of condition~2! ~given above in@6#! remains un-
changed, as do the functional forms and physical meaning
F, m, r, andp.

@15# We proceed here in isotropic coordinatesab initio without co-
ordinate transformations. Nowre2B(r )2C(r ) is the effective po-
tential for null geodesics and the effective gravitational mas
given by m(r )52B8(r )@B8(r )r 12#eB(r )r 2/2 where the
prime indicatesd/dr.

@16# S. Rahman and M. Visser, Class. Quantum Grav.19, 935
~2002!.

@17# In the terminology of@1#, as regards physically interesting so
lutions, the P-S2 solution follows from the stated form
C(r ). Similarly, the choicesg(r )5cosh(b1gr 2) and f (r )
5sinh(b1gr 2) with b andg positive constants immediatel
gives Gold III.

@18# It is also of interest to note that seven of the eleven previou
known solutions of this type are special cases resulting fr
the two generating functions considered here.

@19# M. Wyman, Phys. Rev.75, 1930~1949!.
@20# This is a package which runs withinMAPLE. It is entirely dis-

tinct from packages distributed withMAPLE and must be ob-
tained independently. TheGRTENSORII software and documen
tation is distributed freely on the World Wide Web from th
address http://grtensor.org
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