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Brane-induced gravity in more than one extra dimension: Violation of equivalence
principle and ghost

S. L. Dubovsky and V. A. Rubakov
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We consider a brane-induced gravity model in more than one extra dimension, regularized by assuming that
the bulk gravity is soft in the ultraviolet. We study linear theory about a flat multidimensional space-time and
a flat brane. We first find that this model allows for the violation of equivalence between the gravitational and
inertial masses of brane matter. We then observe that the model has a scalar ghost field localized near the brane,
as well as a quasilocalized massive graviton. The pure tensor structure of four-dimensional gravity on the brane
at intermediate distances is due to the cancellation between the extra polarization of the massive graviton and
the ghost. This is completely analogous to the situation in the GRS model.
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I. INTRODUCTION AND SUMMARY

In view of the observation@1# that gravity may be local-
ized on a brane embedded in space with one extra dimen
of infinite size, it is of interest to study whether there ex
mechanisms of~quasi!localization of gravity in spaces with
more than one infinite extra dimension. One proposal of
sort has been put forward in Ref.@2#. The basic idea@3# is
that radiative effects due to matter residing on the brane m
induce new terms in the effective action of multidimension
gravity ~cf. Ref. @4#!, which concentrate on the brane an
dominate the gravitational interactions of brane matter. Th
the effective action has the form

Stot5Sbulk
e f f 1Sbrane. ~1!

Here the bulk term involves a (41N)-dimensional metric
gAB (N.1 is the number of extra dimensions! and at low
energy reduces to the (41N)-dimensional Einstein-Hilber
action1 with the fundamental scaleM* . The brane Einstein-
Hilbert term, on the other hand, involves an induced fo
dimensional metricgmn on the brane and has its own ma
scaleM Pl , which supposedly is determined by dynamics
the brane. It was argued in Ref.@5# that the two scales ma
be completely different, and, in particular, that the relatio

M* !M Pl ~2!

may hold.
For more than one extra dimension,N.1, the model ex-

hibits a potentially interesting UV-IR mixing. Naively, on
would expect that at large distances along the brane,
relevant terms inSbulk and Sbrane are the multidimensiona
and four-dimensional Einstein-Hilbert terms, respective
while the brane may be treated as ad function in transverse
directions. This is not the case, however, because of the
gularity of theN-dimensional propagator@6–8#. Hence, the

1Leaving aside the issue of the cosmological constant.
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behavior of the model at large distances along the brane
pends on how the singularity in transverse dimensions
resolved.

One way to resolve this singularity would be to smear
d function in the brane action. This proposal, however, s
fers from the strong coupling problem at unacceptably l
energies@6#. Hence, we will not consider this option an
longer.

Another proposal@7,8#, which is the subject of this paper,2

is that the bulk gravity is ‘‘soft’’ at distances shorter tha
M

*
21 . Under this assumption, matter on the brane exp

ences four-dimensional gravity at intermediate distan
@7,8#

1

M*
!r !r c[

M Pl

M
*
2

, ~3!

while the four-dimensional Newton law ceases to hold
both short and ultralarge distances. It is worth noting that t
multidimensional brane-induced gravity model, lineariz
about a flat background, leads to pure tensor@2# four-
dimensional gravity on the brane at intermediate distan
~3!, without an extra scalar inherent in the linearized bra
induced gravity in one extra dimension@3#.

These features make brane-induced gravity withN.1 po-
tentially interesting, in particular, from the viewpoint of th
cosmological constant problem@9#. The violation of the four-
dimensional Newton law at ultralarge distances, combin
with the absence of an extra scalar interaction on the bran
intermediate scales, is alarming, however, as the same p
erty was present in the model of Ref.@10# which has been
found to have a ghost@11,12#. Hence, brane-induced gravit
in more than one extra dimension is worth studying in so
detail.

In this paper we consider brane-induced gravity, line
ized about a flat multidimensional space and a flat bra
mostly at N.2; we discuss somewhat the special caseN

2Just for brevity, we will call this proposal ‘‘brane-induced gra
ity’’ in what follows.
©2003 The American Physical Society14-1
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52 toward the end. In Sec. II we neglect complications d
to the tensor structure and study a scalar counterpart of
model. We find that once the brane has finite thickness,
equivalence between the gravitational and inertial masse
generally violated for matter on the brane, even in a the
restricted to intermediate scales~3!. This is again alarming
since in other models3 violation of ‘‘charge universality’’~in
the gravitational context, the equivalence principle! is a sig-
nal of inconsistency@6#.

We then proceed in Sec. III to brane-induced gravity
self. We study the linearized field equations, assuming
that the bulk term has the tensor structure of general rela
ity. We begin with the study of low-mass states which a
localized or quasilocalized near the brane. We find in S
III A that one such state is a four-dimensional scalar; it
exactly localized on the brane and has negative~tachyonic!
mass squared. Another state is a massive four-dimensi
graviton.4 Both masses are of order

umtachyonu;umgrav i tonu;r c
21[

M
*
2

M Pl
.

In Sec. III B we proceed to show that the tachyon is actua
a ghost. This can be seen in two ways. One is to study
propagator of the full linearized theory near the tachyon p
and show that the residue has negative sign. Another wa
to evaluate the propagator from brane to brane, which
scribes the gravitational interaction of the matter on
brane. We find that the brane-to-brane propagator is a su
two terms, one of which has a pole atp25mgrav i ton

2 with
tensor structure appropriate for a massive graviton, while
other is a scalar ghost term~of overall negative sign! with a
pole atp25mtachyon

2 . This situation is completely analogou
to that in the model of Ref.@10#: at intermediate scales~3!,
the ghost term cancels out the extra@13# scalar part of the
massive graviton propagator, so that the brane-to-br
propagator at intermediate distances has a massless t
form.

We comment on the case of two extra dimensions,N
52, in Sec. III C. There are peculiarities, but the outcome
the same: the model has a tachyonic ghost.

In Sec. IV we generalize by allowing for the most gene
tensor structure of the linearized bulk equations@in fact,
there are only two terms consistent with (41N)-dimensional
general covariance#. We again study the caseN.2 and
evaluate the brane-to-brane propagator. We find that it a
has a ghost term, although the mass of the ghost is no lo
necessarily tachyonic.

Our overall conclusion is that the linearized bran
induced gravity as it stands has a ghost, if the numbe
extra dimensions is larger than 1. We interpret this prope

3Leaving aside models with extra light four-dimensional degr
of freedom.

4The graviton has finite, though very small, widthGgrav i ton

!mgrav i ton , i.e., it is, strictly speaking, quasilocalized.
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as an indication that this version of induced gravity can
emerge as a low-energy limit of any consistent microsco
theory.

It is worth noting that a low-energy action of the gene
form ~1! emerges in the string theory context@14#. Further-
more, the hierarchy~2! is also possible in the string theor
framework @14#. It would be of interest to understand ho
string theory resolves the UV-IR ambiguity inherent in t
case of more than one extra dimension.

II. SCALAR MODEL

We begin with a counterpart of the brane-induced grav
with metric perturbations mimicked by a single scalar fie
F. In what follows it will be convenient to consider a thic
brane, and take the limit of the delta function brane at
end of the calculations, if desired. It has been argued in R
@8# that the loops~and/or nonperturbative effects! involving
matter on the brane induce nonlocal terms in the effec
action, with the scale of nonlocality set by the brane thic
nessD. At the quadratic level, this effect is modeled by a
induced action of the following form@8#:

Sbrane
(2) 5

M Pl
2

2 E d4xdNydNy8 f 2~y!]mF~x,y! f 2~y8!

3]mF~x,y8!, ~4!

where f (y) is a smooth function localized near the brane
accounts for the thickness of the brane.N is the number of
extra dimensions; we concentrate on the caseN.2. Without
loss of generality,f is normalized to unity,

E dNy f2~y!51, ~5!

and is nonzero in a region of size of orderD. HereafterXA
5(xm ,ya) are coordinates in (41N) dimensions, m
50, . . . ,3, a54, . . . ,N13; the signature of the metric i
mostly negative.

Let the bulk theory have the effective actionSbulk
e f f @F#.

There are two more assumptions in the model@8#: ~i! The
mass scale enteringSbulk

e f f is M* which is much smaller than
M Pl ; ~ii ! the bulk theory is ‘‘soft’’ at length scales below
1/M* , which we understand as the assumption that
Green’s functions of the bulk theory rapidly vanish at hi
Euclidean momenta.

To consider linearized theory~weak sources!, let us ne-
glect the nonlinear terms in the bulk effective action. Th
the only relevant term inSbulk

e f f is quadratic inF, and has the
form

Sbulk
e f f,(2)52

1

2E dN14XF~X!F~! (41N)!! (41N)F~X!

whereF(! (41N))! (41N) is the exact inverse propagator o
the bulk theory. At low energies, the form factorF is a con-
stant of orderM

*
21N ~note that the fieldF is dimensionless!.

Let us denote the exact propagator of the bulk theory
D* (X2X8), so that

s

4-2
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D* ~P!5
1

P2F~2P2!
,

where P25p22py
2 , and p25pmpm. At momenta below

M* , the propagatorD* coincides with the free propagato

D* ~P!5
1

M
*
21N

1

P2
, uP2u!M

*
2 , ~6!

and, by the assumption of softness,D* (P) rapidly tends to
zero at large negative~Euclidean! P2, with characteristic
scaleM* .

A. Scalar propagator

Let the source on the brane be characterized by a sp
function g2(y), and be ad function in thex coordinates,
where, again without loss of generality,g is normalized to
unity,

E dNyg2~y!51. ~7!

It is convenient to work in the mixed representation, mom
tum in four dimensions and coordinates in extra dimensio
One has the following equation for the propagator from
brane to everywhere for a given shape of the source:

2F~! (41N)!! (41N)Gg~p,y8!

1M Pl
2 p2f 2~y!E dNy8 f 2~y8!Gg~p,y8!5g2~y!,

~8!

where! (41N)52p22]y
2 .

Dvali et al. @8# proceed under the assumption thatg2(y)
5 f 2(y) with corrections suppressed byM* /M Pl . Let us
drop this assumption, and see what happens.

Equation~8! has the following solution:

Gg~p,y!5Dg~p,y!2
M Pl

2 p2D f g~p!

11M Pl
2 p2D f f~p!

•D f~p,y!, ~9!

where for any functionu(y) one defines

Du~p,y!5E dNy8D* ~p,y2y8!u2~y8!, ~10!

and for two functionsu(y),v(y) one writes

Duv~p!5Dvu~p!5E dNydNy8D* ~p,y2y8!u2~y8!v2~y!.

~11!

Let us rewrite the expression~9! in the following suggestive
form:
10401
ad

-
s.
e

Gg~p,y!5
Dg~p,y!

11M Pl
2 p2D f f~p!

1
M Pl

2 p2@D f f~p!Dg~p,y!2D f g~p!D f~p,y!#

11M Pl
2 p2D f f~p!

.

~12!

Now, recall that

D* ~p,y2y8!5E dNpyD* ~p22py
2!eipy•(y2y8).

To evaluate the integral of the formDuv(p), we assume tha
the brane thicknessD is much smaller than 1/M* , and write
for small y andy8

D* ~p,y2y8!5D
*
(0)~p!1D

*
(2)~p!•~y2y8!21•••.

Clearly,

D
*
(0)~p!5E dNpyD* ~p22py

2!

and

D
*
(2)~p!52

1

2NE dNpypy
2D* ~p22py

2!. ~13!

We assume that the latter integrals are convergent at neg
~Euclidean! four-momenta,p2<0, because of softness of th
propagatorD* at short distances. On dimensional ground

D
*
(0)~ upu!M* !;

1

M
*
4

~14!

and

D
*
(2)~ upu!M* !;

1

M
*
2

. ~15!

To the first nontrivial order in brane thickness, one has@as-
suming thatu andv are normalized to unity; see Eqs.~5! and
~7!#

Duv~p!5D
*
(0)~p!1D

*
(2)~p!Duv

2 , ~16!

where

Duv
2 5E dNydNy8~y2y8!2u2~y!v2~y8!

explicitly depends on the shapes of the functionsu(y) and
v(y) and is generically of the order ofD2.

At low momenta, upu!M* , one can setD f f5const
;M

*
24 in the denominators in Eq.~12!. Then at intermediate

distances~3!, the virtuality p2 is large enough, and one ha
4-3
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Gg~p,y!5
Dg~p,y!

M Pl
2 p2D f f~p!

1
D f f~p!Dg~p,y!2D f g~p!D f~p,y!

D f f~p!
. ~17!

This propagator determines the field induced by a w
source of shapeg2(y) in transverse directions, in the theo
restricted to intermediate scales~3!.

B. Potential on the brane

The interaction between sources with spread functi
g2(y) and h2(y) is described by an effective four
dimensional propagator, which is the convolution
Gg(p,y) andh2(y). At intermediate values of the moment
M

*
2 @p2@r c

22 , one has from Eq.~17!

Ge f f,4d~p!5
Dgh~p!

M Pl
2 p2D f f~p!

1
Dgh~p!D f f~p!2D f g~p!D f h~p!

D f f~p!
. ~18!

Keeping terms of orderD2, one finds

Ge f f,4d~p!5
D

*
(0)~p!1D

*
(2)~p!~Dgh

2 2D f f
2 !

M Pl
2 p2D

*
(0)~p!

1D
*
(2)~p!

3~Dgh
2 1D f f

2 2D f g
2 2D f h

2 !. ~19!

Consider the first term. Because of the explicitp2 in the
denominator, one can replaceD

*
(0) andD

*
(2) by constants at

p!M* , i.e., at distances larger thanM
*
21 . This leads to a

four-dimensional Newton potential with nonuniversal gra
tational constant:

GNewton,e f f5
1

M Pl
2 F11

D
*
(2)~0!

D
*
(0)~0!

~Dgh
2 2D f f

2 !G .

According to Eqs.~14! and~15!, the nonuniversal correction
is of orderD2M

*
2 .

This is the main result of this section: the model allo
for ~weak! violation of the equivalence principle, since th
spread functionsg2(y) andh2(y) may have different shapes
depending on the type of matter residing on the brane.

The second term in Eq.~19! corresponds to a short-range
force. According to Eq.~13!, one has, in coordinate repre
sentation,

D
*
(2)~x!5

1

2N
]y

2D* ~x22y2!uy50 .

At relatively large distances,r @M
*
21 , the propagatorD* is

a free propagator in (41N) dimensions, up to a facto
1/M21N . This gives
*

10401
k

s

f

E dx0D
*
(2)~x!5

1

M
*
21Nuxu31N

, uxu@M
*
21 ,

up to a numerical constant of order 1. Hence, the correc
to Newton’s potential is

DV~r !5
1

M
*
21Nr 31N

~Dgh
2 1D f f

2 2D f g
2 2D f h

2 !.

This is a short-ranged potential, the ‘‘fifth force,’’ whic
again depends on the composition of matter~the functionsg2

and h2). It is worth noting that the latter nonuniversalit
exists also atN51 @7#, where the brane-induced gravity doe
not show any inconsistency.

III. TACHYONIC GHOST

Let us now consider the linearized brane-induced grav
and keep track of its tensor structure. In this section we
sume for simplicity that the tensor structure of the lineariz
equations in the bulk coincides with that in the lineariz
Einstein theory in (41N) dimensions. Then the linearize
field equation takes the following form:

F~! (41N)!GAB~x,y!1M Pl
2 f 2~y!E dy8 f 2~y8!GAB

(4)~x,y8!

5TAB~x,y!, ~20!

whereGAB5RAB2(1/2)gABR is the linearized Einstein ten
sor in (41N) dimensions, GaB

(4)50, and the four-
dimensional Einstein tensorGmn

(4) is constructed in terms o
four-dimensional components of the metric. The form fac
F has the same properties as above. The functionf 2(y) is
again the spread function for the induced term.

Let us impose the harmonic gauge

]AhB
A5

1

2
]BhA

A , ~21!

where hAB are perturbations about the Minkowski metr
hAB ; indices are raised and lowered by the Minkowski m
ric. Then one has

GAB52
1

2
! (41N)S hAB2

1

2
hABhD

DD , ~22!

while Gmn
(4) remains in its general form

Gmn
(4)5

1

2
@]m]lhn

l1]n]lhm
l 2! (4)hmn2]m]nhl

l

2hmn~]l]rhlr2! (4)hl
l!#. ~23!

Hereafter,! (4)5]m]m.

A. „Quasi…localized states: Tachyon and massive graviton

Let us consider the sourceless field equation, i.e., Eq.~20!
with TAB50, to see whether there exist modes which a
4-4
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~quasi!localized near the brane. The~ab! and (am) compo-
nents of this equation in the gauge~21! read

2
1

2
F~! (41N)!! (41N)S hab2

1

2
habhD

DD50,

2
1

2
F~! (41N)!! (41N)ham50.

These are the equations of the bulk theory for the co
sponding combinations of metrics, and they do not have
calized solutions. Hence,

hab5
1

2
habhC

C ~24!

and

ham50. ~25!

After taking the trace of Eq.~24!, one expresses the~ab!
components of the metric in terms of the trace of the fo
components,

hab52
1

N22
habhm

m ~26!

~at this point we specialize toN.2). Then the gauge condi
tion ~21! with B5m, together with Eq.~25!, give

]mhn
m52

1

N22
]nhl

l .

Making use of the above relations, one obtains for the
maining (mn) components of the field equations

2
1

2
F~! (41N)!! (41N)S hmn1

1

N22
hmnhl

lD
1

M Pl

2
f 2~y!•E dy8 f 2F2

N

N22
]m]nhl

l2! (4)hmn

1
N21

N22
hmn!

(4)hl
lG50. ~27!

The trace of this equation gives

2F~! (41N)!! (41N)hm
m1M̃ Pl

2 f 2~y!E dy8 f 2
•! (4)hm

m50,

~28!

where

M̃ Pl
2 5

2~N21!

N12
M Pl

2 . ~29!

The latter is a scalar equation, and we are interested in
solution localized near the brane. This solution is expres
in terms of the functionsD f(p,y) andD f f(p) introduced in
Eqs.~10! and~11!. In the mixed representation the solution
10401
-
-

-

-

its
d

hm
m~y!5c•D f~p25m

*
2 ,y!, ~30!

wherec is a normalization constant and the mass is de
mined by the ‘‘eigenvalue equation’’

m
*
2 5

1

M̃ Pl
2 D f f~m

*
2 !

. ~31!

Let us see that the mass squared,m
*
2 , is, in fact, negative

and real,

mtachyon
2 [m

*
2 ,0, ~32!

Im~m
*
2 !50, ~33!

so the mode we consider is a tachyon localized near
brane. We first note that

um* u;
M

*
2

M Pl
;r c

21 ,

which is small compared toM* . Now, one has

D f f~p2!52E dNpy

u f 2~py!u2

~2P2!F~2P2!
, ~34!

where P25p22py
2 , as before. Since one assumes that

form factorF rapidly grows at large negativeP2 ~the propa-
gator D* rapidly decays!, this integral is convergent in the
ulraviolet, and the integrand does not have singularities
p2,0 @a zero ofF(2P2) at negativeP2 would imply that
there is a tachyon in bulk theory#. For N.2 the integral is
infrared convergent even atp250, since foruP2u!M

*
2 the

form factorF is constant. For smallp2,0 the integral here
is a real positive constant, which is of orderM

*
24 on dimen-

sional grounds, soD f f(p252um
*
2 u) is a negative constant a

small um* u. One concludes that, as long as scales lower t
M* are concerned, there exists a single solution to Eq.~31!
which indeed obeys Eqs.~32!,~33!.

Finally, we have to show that the wave function~30! de-
cays asuyu→`. One writes

D f~p,y!5E dNpy

e2 ipy•yf 2~py!

P2F~2P2!
.

Large uyu corresponds to smallpy , so at largeuyu one has

D f~p25m
*
2 ,y!}2E dNpy

e2 ipy•yf 2~py!

py
21um

*
2 u

. ~35!

Recalling thatf 2(py50)5*dNy f2(y)51, one obtains that
the wave function~35! has the shape of theN-dimensional
Yukawa potential with~small! massum* u. Hence the wave
function indeed decays asuyu→`.

To obtain the complete tensor structure of the tachy
mode, one plugs the solution for the trace, Eq.~30!, back into
Eq. ~27!, and obtains, in the mixed representation,
4-5
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2F~! (41N)!! (41N)hmn

1M Pl
2 f 2~y!p2E dy8 f 2~y8!hmn~p,y8!

52c•M Pl
2 D f fp

2F N

N22

pmpn

p2

2
N~N21!

~N22!~N12!
hmnGD f~p,y!, ~36!

where p25m
*
2 for the mode we discuss. This inhomog

neous equation is readily solved. Theab components are
found from Eq. ~26!. In this way one finds the complet
expression for the~unnormalized! tachyon mode:

hmn
(m

*
)
5

1

3 S hmn2
N12

N21

pmpn

p2 D D f~y!,

hma
(m

*
)
50,

hab
(m

*
)
52

1

N21
habD f~y!, ~37!

wherep25m
*
2 ,0 andD f(y)5D f(p25m

*
2 ;y).

For completeness, let us consider~quasi!localized trace-
less modes, for whichhm

m50. For these modes, one obtai
from Eq. ~27! the following equation:

2F~! (41N)!! (41N)hmn

1M Pl
2 f 2~y!p2E dy8 f 2~y8!hmn~p,y8!50.

The solution to this equation is again of the form

hmn~y!5cmn•D f~p25m2,y!,

where thecmn are independent ofy, and the mass now obey

m252
1

M Pl
2 D f f~m2!

.

We are interested in solutions withumu!M* , which are rel-
evant at low energies. According to Eq.~34!, for such a
solution the real part ofm2 is positive, and is of orderr c

22 .
Now, for small positivep2, the functionD f f(p2) has an even
smaller imaginary part, which may be estimated as follo
The integrand in Eq.~34! is a smooth positive function a
py

2@p2, so this region does not contribute to the imagina
part. The imaginary part comes from the infrared region, a
is proportional to

E
0

e py
N21dpy

py
22p22 i0

.

The imaginary part of the latter integral is proportional to
10401
.

y
d

2 ipN22. ~38!

So, for N.2, the quasilocalized graviton has a small ma
mgrav i ton[m, where

Re~m!5
1

M PlAuD f f~0!u
;

M
*
2

M Pl
;r c

21 ,

and an even smaller width,

Ggrav i ton

m
;

mN22

M
*
N22

.

We conclude that in this model there is a massive fo
dimensional graviton with a tiny width. The violation o
Newton’s law at distances of orderr c is due to the graviton
mass, not width, in clear contrast to the five-dimension
case@3#.

B. Propagators at low energies: The tachyon is a ghost

One way to see that the tachyon is in fact a ghost is
calculate the full propagatorDAB,CD(p;y,y8) near p2

5m
*
2 , i.e., to extract its pole term. This is done in Append

A. The outcome is

DAB,CD
(pole) ~p;y,y8!52

3

M Pl
2 @D f f~m

*
2 !#2

•

hAB
(m

*
)
~y!hCD

(m
*

)
~y!

p22m
*
2

,

~39!

wherehAB
(m

*
)(y) is the~unnormalized! tachyon wave function

~37!. The overall negative sign here means that the tach
is indeed a ghost.

The structure of the pole term~39! is precisely what one
expects for the contribution of a mode localized near
brane. From Eq.~39! one deduces also that the properly no
malized tachyon-ghost mode is

hAB
normalized~y!5

A3

M PluD f f u
hAB

(m
*

) .

One observes from the latter formula and Eq.~37! that the
tachyonic ghost couples to matter on the brane at grav
tional strength.

It is perhaps more instructive to study the propagator w
both end points on the brane. More precisely, let us cons
the source on the brane with the only nonvanishing com
nentsTmn , which is distributed in the transverse directio
with the same5 spread functionf 2(y) as in Eq.~20!,

Tmn~x,y!5umn~x! f 2~y!, ~40!

where umn(x) is conserved in the four-dimensional sens
The point is to calculate the (mn) components of the metric

5The analysis of the general case of a source with spread func
g2 different from f 2 proceeds along the lines of Sec. II. This ana
sis is straightforward but not illuminating.
4-6
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due to this source. This is done in Appendix B, with t
result, in mixed representation,

hmn~p,y!5
2

M Pl
2

D f~p,y!

D f f~p! F 1

p22m2~p!
S umn2

1

3
hmnul

lD
2

1

6

1

p22m
*
2 ~p!

hmnul
lG1 longitudinal part

~41!

where

m2~p!52
1

M Pl
2 D f f~p!

, ~42!

m
*
2 ~p!5

1

M̃ Pl
2 D f f~p!

, ~43!

and the longitudinal part is proportional topmpn and van-
ishes when contracted with the conserved stress-energy@the
overall factor 2 in Eq.~41! is due to our definition ofM Pl ;
see Eq.~20!#. Now, the interaction between two sources
the form ~40! may be written in terms of the effective fou
dimensional propagatorDmn,lr

(4) (p), so that one has

umn8 ~p!Dmn,lr
(4) ~p!ulr~p!5umn8 ~p!E dNy f2~y!hmn~y,p!,

wherehmn is given by Eq.~41!. Hence, the effective brane
to-brane propagator is

Dmn,lr
(4) 5

2

M Pl
2 F 1

p22m2~p!
S 1

2
~hmlhnr1hmrhnl!

2
1

3
hmnhlrD2

1

6

1

p22m
*
2 ~p!

hmnhlrG
1 longitudinal part. ~44!

At low energies the ‘‘masses’’m2(p) and m
*
2 (p) are con-

stants @up to a tiny p-dependent imaginary part; see E
~38!#. Thus, at low energies the propagator~44! corresponds
to a massive graviton of massm ~note that the Van Dam–
Veltman–Zakharov property indeed holds! and a tachyonic
ghost with negativem

*
2 . This ghost cancels the contributio

of the extra graviton polarization at intermediate mome
M* @upu@(m,m* );r c

21 , so that at these scales the bran
to-brane propagator has the same structure as in general
tivity,

Dmn,lr
(4) 5

1

M Pl
2

1

p2
~hmlhnr1hmrhnl2hmnhlr!

1 longitudinal part.
10401
f

a
-
la-

This is precisely the same situation as in the model of R
@10#: the reason why the correct tensor structure emerge
the linearized theory at intermediate distances is the e
tence of a ghost field.

C. NÄ2

The caseN52 is somewhat special. Let us first consid
the tachyon mode. Equation~24! implies now

hm
m50, ~45!

while ha
a is arbitrary at this point. The four-dimensional trac

of the sourceless equation~20! then gives

2F~! (41N)!! (41N)ha
a1M̃ Pl

2 f 2~y!E dy8 f 2
•! (4)ha

a50.

This equation has the same structure as Eq.~28!, so there
again exists a tachyon. AtN52, it is the extra-dimensiona
metrichab and the traceless part ofhmn that do not vanish in
the tachyon mode@in the gauge~21!#.

Another point is that the integral~34! is logarithmic at
N52, so the estimate for the graviton and tachyon masse
now

Re~m2!;um
*
2 u;

M
*
4

M Pl
2

log
M Pl

M*
.

The imaginary part of the graviton mass is suppressed r
tive to its real part by a logarithm only,

Ggrav

umu
;

1

log~M Pl /M* !
.

Yet the graviton width is smaller than its mass.
The tachyon is a ghost atN52 as well. A simple way to

see this is to redo the calculation leading to the brane
brane propagator. One finds that the expression~44! remains
valid atN52, the property~45! being ensured by the appro
priate structure of the longitudinal terms. The negative s
of the last term on the right hand side of Eq.~44! tells us that
the tachyon is indeed a ghost.

So, in spite of peculiarities, the conclusion forN52 is the
same as forN.2: the model has a tachyonic ghost.

IV. GENERALIZED MODEL

In this section we drop the assumption that the ten
structure of the linearized bulk equations coincides with t
in the linearized Einstein theory and consider the most g
eral tensor structure compatible with th
(41N)-dimensional general covariance. The linearized fi
equation in the bulk theory has the following general form

D ABCDhCD50 ~46!

with some linear operatorDABCD . The symmetry of this
operator underA↔B, C↔D, and (AB)↔(CD) implies the
following structure ofDABCD :
4-7
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DABCD5a]A]B]C]D1b~]A]BhCD1hAB]C]D!

1c~]AhBC]D1]BhAC]D1]AhBD]C1]BhAD]C!

1dhABhCD1e~hAChBD1hADhBC!,

where a,b,c,d,e are as yet arbitrary functions of! (N14).
Now, gauge invariance implies

]AD BCD
A 50.

This leaves only two possible tensor structures that may
pear inDABCD , namely, the usual Einstein structure and t
product of two projectors,DABCD}PABPCD , where

PAB5! (41N)hAB2]A]B .

In the harmonic gauge~21! one has

PABPCDhCD[PAB5
1

2
~! (41N)hAB2]A]B!! (41N)hC

C .

Consequently, the generalization of Eq.~20! is

F~! (41N)!GAB~x,y!1G~! (41N)!PAB~x,y!

1M Pl
2 f 2~y!E dy8 f 2~y8!GAB

(4)~x,y8!5TAB~x,y!,

~47!

whereGAB is given by Eq.~22!, and a new form factorG is
assumed to have the same ultraviolet properties as the
factor F.

We will not repeat all the steps of the analysis of Sec.
To see the existence of the localized ghost and find its w
function in this general setup, it suffices to study the str
ture of the brane-to-brane propagator. We again consid
source of the form~40! and evaluate the (mn) components of
the metric induced by this source. The result is~see Appen-
dix C for calculational details!

hmn~p,y!5
2

M Pl
2 FD f~p,y!

D f f~p!

1

p22m2~p!
S umn2

1

3
hmnul

lD
2

D̃ f~p,y!

D̃ f f

1

6

1

p22m
*
2 ~p!

hmnul
lG

1 longitudinal part, ~48!

whereD̃ f andD̃ f f are defined in a similar way asD f andD f f

@see Eqs.~10!, ~11!# but with a new functionD̃* (p;y,y8)
substituted forD* (p;y,y8). The functionD̃* (p;y,y8) is a
solution of the following equation:

2O~! (41N)!•F~! (41N)!•! (41N)D̃* ~p;y,y8!5d~y2y8!,

where the operatorO(! (41N)) is

O~! (41N)!5
N211NH~! (41N)!•! (41N)

N122~N13!H~! (41N)!•! (41N)
10401
p-

rm

.
e
-
a

with

H~! (41N)!5
2G~! (41N)!

F~! (41N)!
.

The ‘‘mass’’ m2(p) entering Eq.~48! is the same as in Sec
III, while m

*
2 (p) is now

m
*
2 ~p!5

1

2M Pl
2 D̃ f f~p2!

.

Thus, the brane-to-brane propagator still has the form~44!.
The second term in Eq.~44! again has a negative sign, so th
model again has a ghost field, but now the mass of the g
is a solution to the following eigenvalue equation:

m
*
2 5

1

2M Pl
2 D̃ f f~m

*
2 !

. ~49!

The difference from the caseG50 studied in Sec. III is that
the ghost field in principle need not be a tachyon in t
general case and that the wave functions of the ghost
graviton have different profiles in the transverse directio
The graviton wave function is againD f(p;y), while the
ghost wave function isD̃ f(p;y).
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APPENDIX A

Here we calculate the tachyon pole term in the full prop
gator of the model of Sec. III. We do this by solving Eq.~20!
with the conserved right hand side,

]ATB
A50. ~A1!

OtherwiseTAB is arbitrary. We still use the gauge condition
~21!.

We begin with the~ab! components of Eq.~20!, which
read

2
1

2
F ! (41N)S hab2

1

2
habhD

DD5Tab . ~A2!

We decomposehab in the following way:

hab5hab
T 1

1

N
habhc

c , ~A3!
4-8
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where

hab
T 5hab2

1

N
habhc

c ~A4!

is the traceless part. The traceless part obeys

2
1

2
F~! (41N)!! (41N)hab

T 5Tab2
1

N
habTc

c , ~A5!

while the trace of Eq.~A2! gives

hc
c52

N

N22
hm

m1b, ~A6!

whereb obeys

2F~! (41N)!! (41N)b52
4

N22
Tc

c ~A7!

and hence is equal to

b~X!52
4

N22E d41NX8D* ~X2X8!Tc
c~X8!. ~A8!

We also have for the overall trace

hC
C52

2

N22
hm

m1b. ~A9!
10401
Let us now consider the (am) components of Eq.~20!. They
read

2
1

2
F~! (41N)!! (41N)ham5Tam . ~A10!

Hence,

ham~X!52E d41NX8D* ~X2X8!Tam~X8!. ~A11!

Finally, let us study the (mn) components of Eq.~20!. We
need the expression for]lhlr that entersGmn

(4) . This expres-
sion is obtained by making use of the gauge condition

]Ahm
A[]ahm

a 1]lhm
l 5

1

2
]mhC

C . ~A12!

Now, because of the conservation property~A1!, one has

]ahm
a 52E d41NX8D* ~X2X8!]aTm

a ~X8!

522E d41NX8D* ~X2X8!]lTm
l ~X8!. ~A13!

Hence, the (mn) components of Eq.~20! may be written in
terms ofhmn , the tracehl

l , and the componentsTl
r , andTa

a

of the stress-energy tensor. After some algebra one obta
2F~! (41N)!! (41N)S hmn1
1

N22
hmnhl

lD1M Pl
2 f 2~y!•E dy8 f 2~y8!F2

N

N22
]m]nhl

l2! (4)hmn1
N21

N22
hmn!

(4)hl
lG

52Tmn2
2

N22
hmnTa

a22M Pl
2 f 2~y!E dNy8D f~y8!F]l]mTn

l1]l]nTm
l 2

2

N22
]m]nTa

a2hmnS ]l]rTlr

2
1

N22
! (4)Ta

aD G . ~A14!

The trace of this equation gives

2F~! (41N)!! (41N)hm
m1M̃ Pl

2 f 2~y!E dy8 f 2
•! (4)hm

m

5
2~N22!

N12 FTm
m2

4

N22
Ta

a12M Pl
2 f 2~y!E dNy8D f~y8!•S ]l]rTlr2

1

N22
! (4)Ta

aD G . ~A15!

The solution to the latter equation is conveniently written in the mixed representation,

hm
m~p,y!5

2~N22!

N12 E dNy8D* ~p;y,y8!S Tm
m~p,y8!2

4

N22
Ta

a~p,y8! D1
4~N22!

N12

p2M Pl
2 D f~y!

12M̃ Pl
2 p2D f f~p!

E dNy8D f~p,y8!

3S N21

N12
Tm

m2
pmpn

p2
Tmn2

3

N12
Ta

aD , ~A16!
4-9
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where we made use of the relation~29!. This expression is
still exact. Clearly, it has a pole atp25m

*
2 @in the second

term in the right hand side of Eq.~A16!#.
To find the tachyon pole term inhmn , one plugs the so-

lution for hl
l back into Eq.~A14!. In terms of Eq.~A14!, the

tachyon pole inhmn comes entirely from the pole part inhl
l .

One makes use of Eq.~A15! and writes Eq.~A14! in the
following form:

2F~! (41N)!! (41N)hmn

1M Pl
2 f 2~y!p2E dy8 f 2~y8!hmn~p,y8!

5M Pl
2 p2f 2~y!E dNy8 f 2S N~N21!

~N22!~N12!
hmn

2
N

N22

pmpn

p2 D hl
l1•••, ~A17!

where the ellipsis denotes terms that do not contain a po
p25m

*
2 . This equation is straightforwardly solved, and af

some algebra one obtains that the tachyon pole part ofhmn is

hmn
(pole)~p,y!52

1

3

1

p22m
*
2

D f~p,y!

M Pl
2 D f f

2 S hmn2
N12

N21

pmpn

m
*
2 D

3E dNy8D f~p,y8!F S hlr2
N12

N21

plpr

m
*
2 D

3Tlr~p,y8!2
3

N21
Ta

a~p,y8!G . ~A18!

It remains to find the tachyon pole parts of other metric co
ponents. According to Eqs.~A5!, ~A7!, and~A10!, the trace-
less parthab

T , the termb, and the metric componentsham do
not have poles atp25m

*
2 . The pole term inha

a is determined
by the pole term inhm

m through Eq.~A6!. Thus, one finds

hab
(pole)~p,y!52

1

N22
habhm

(pole)m~p,y!

5
1

N21
hab

1

p22m
*
2

D f~p,y!

M Pl
2 D f f

2

3E dNy8D f~p,y8!

3F S hlr2
N12

N21

plpr

m
*
2 D Tlr~p,y8!

2
3

N21
Ta

a~p,y8!G . ~A19!

We see from Eqs.~A18! and~A19! that the pole terms inhAB
may indeed be written in the form
10401
at
r

-

hAB
(pole)~p,y!5E dNy8DAB,CD

(pole) ~p;y,y8!TCD~p,y8!,

~A20!

where the pole term in the propagator is given by Eq.~39!.

APPENDIX B

Let us calculate the (mn) components of the metric due t
the source of the form~40! with conservedumn . For this
particular type of source, the expression~A16! simplifies
considerably,

hm
m~p,y!52

2~N22!

N12

D f~p,y!

M̃ Pl
2 D f f~p!

1

p22m
*
2 ~p!

um
m~p!,

~B1!

wherem
*
2 (p) is given by Eq.~43!. We plug this expression

into Eq. ~A14! and again make use of the properties of t
source to obtain

2F~! (41N)!! (41N)hmn

1M Pl
2 f 2~y!p2E dy8 f 2~y8!hmn~p,y8!

5 f 2~y!S 2umn2
2

N12
hmnul

l2
N

N12

3
p2

p22m
*
2 ~p!

hmnul
lD 1 longitudinal part, ~B2!

where the longitudinal part is proportional topmpn . After
some algebra, one finds that the solution has indeed the f
~41!.

APPENDIX C

Here we sketch the calculations leading to the result~48!.
The steps are similar to those in Appendixes A and B. Fi
one considers the~ab! components of Eq.~47! and finds the
following generalization of Eq.~A6! @recall that we consider
a source of the form~40!#:

hc
c52

N1H~~N21!! (41N)1! (4)!

N221H~~N21!! (41N)1! (4)!
hm

m . ~C1!

For the overall trace one has

hC
C52

2

N221H~~N21!! (41N)1! (4)!
hm

m . ~C2!

From the (am) components of Eq.~47! one finds
4-10
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ham5
H

N221H~~N21!! (41N)1! (4)!
]a]mhn

n . ~C3!

By making use of the gauge condition~A12! one obtains the
following expression for the longitudinal components of t
four-dimensional part of the metric:
s

gy

ys

10401
]nhm
n 52

12H! (N)

N221H~~N21!! (41N)1! (4)!
]mhn

n ,

~C4!

where! (N)5dab]a]b . Plugging the expressions~C2!,~C4!
into the (mn) components of Eq.~47! one arrives at the
following analogue of Eq.~A14!:
2F~! (41N)!! (41N)S hmn1
11H! (N14)

N221H~~N21!! (41N)1! (4)!
hmnhl

lD
1F~! (41N)!! (41N)

H
N221H~~N21!! (41N)1! (4)!

]m]nhl
l1M Pl

2 f 2~y!•E dy8 f 2~y8!

3F2
N1H~~N11!! (41N)2! (4)!

N221H~~N21!! (41N)1! (4)!
]m]nhl

l2! (4)hmn

1
N211HN! (41N)

N221H~~N21!! (41N)1! (4)!
hmn!

(4)hl
lG52umn f 2~y!. ~C5!

The trace of this equation gives

2F~! (41N)!! (41N)
N121H~N13!! (41N)

N221H~~N21!! (41N)1! (4)!
hm

m12M Pl
2 f 2~y!E dy8 f 2

•! (4)

3
N211HN! (41N)

N221H~~N21!! (41N)1! (4)!
hm

m52um
m f 2~y!. ~C6!

The solution of this equation is

hm
m5

2um
m

122p2D f f~p!

N221H~~N21!! (41N)1! (4)!

N121H~N13!! (41N)
D̃ f . ~C7!

Plugging this result back into Eq.~C5!, one obtains after some algebra the desired expression~48!.
v.
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