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Brane-induced gravity in more than one extra dimension: Violation of equivalence
principle and ghost
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We consider a brane-induced gravity model in more than one extra dimension, regularized by assuming that
the bulk gravity is soft in the ultraviolet. We study linear theory about a flat multidimensional space-time and
a flat brane. We first find that this model allows for the violation of equivalence between the gravitational and
inertial masses of brane matter. We then observe that the model has a scalar ghost field localized near the brane,
as well as a quasilocalized massive graviton. The pure tensor structure of four-dimensional gravity on the brane
at intermediate distances is due to the cancellation between the extra polarization of the massive graviton and
the ghost. This is completely analogous to the situation in the GRS model.
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I. INTRODUCTION AND SUMMARY behavior of the model at large distances along the brane de-
pends on how the singularity in transverse dimensions is
In view of the observatiofl] that gravity may be local- resolved.

ized on a brane embedded in space with one extra dimension One way to resolve this singularity would be to smear the
of infinite size, it is of interest to study whether there existé function in the brane action. This proposal, however, suf-
mechanisms ofquas)localization of gravity in spaces with fers from the strong coupling problem at unacceptably low
more than one infinite extra dimension. One proposal of thienergies[6]. Hence, we will not consider this option any
sort has been put forward in Re¢R]. The basic ided3] is  longer.
that radiative effects due to matter residing on the brane may Another proposdl7,8], which is the subject of this paper,
induce new terms in the effective action of multidimensionalis that the bulk gravity is “soft” at distances shorter than
gravity (cf. Ref.[4]), which concentrate on the brane and M;l. Under this assumption, matter on the brane experi-
dominate the gravitational interactions of brane matter. Thusences four-dimensional gravity at intermediate distances
the effective action has the form [7.8]

ff
Stot= eulk'}'Sbrane- (1) 1 <r<l’cf%, 3)

2

* *

Here the bulk term involves a (#@N)-dimensional metric

gag (N>1 is the number of extra dimensignand at low while the four-dimensional Newton law ceases to hold at
energy reduces to the ¢4N)-dimensional Einstein-Hilbert both short and ultralarge distances. It is worth noting that this
action” with the fundamental scalél, . The brane Einstein- multidimensional brane-induced gravity model, linearized
Hilbert term, on the other hand, involves an induced four-about a flat background, leads to pure ten§d} four-
dimensional metrig,, on the brane and has its own mass dimensional gravity on the brane at intermediate distances
scaleMp, which supposedly is determined by dynamics on(3), without an extra scalar inherent in the linearized brane-
the brane. It was argued in R¢6] that the two scales may induced gravity in one extra dimensi¢8].

be completely different, and, in particular, that the relation ~ These features make brane-induced gravity With1 po-
tentially interesting, in particular, from the viewpoint of the

cosmological constant problef@]. The violation of the four-
dimensional Newton law at ultralarge distances, combined
with the absence of an extra scalar interaction on the brane at
may hold. intermediate scales, is alarming, however, as the same prop-
For more than one extra dimensidw>1, the model ex- erty was present in the model of R¢f.0] which has been
hibits a potentially interesting UV-IR mixing. Naively, one found to have a gho$fl1,12. Hence, brane-induced gravity
would expect that at large distances along the brane, thia more than one extra dimension is worth studying in some
relevant terms irS,,c and S,,.ne are the multidimensional  detail.
and four-dimensional Einstein-Hilbert terms, respectively, In this paper we consider brane-induced gravity, linear-
while the brane may be treated ag &unction in transverse ized about a flat multidimensional space and a flat brane,
directions. This is not the case, however, because of the simnostly atN>2; we discuss somewhat the special cake
gularity of theN-dimensional propagatd6—8]. Hence, the

M, <Mp, )

2Just for brevity, we will call this proposal “brane-induced grav-
!Leaving aside the issue of the cosmological constant. ity” in what follows.
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=2 toward the end. In Sec. Il we neglect complications dueas an indication that this version of induced gravity cannot
to the tensor structure and study a scalar counterpart of themerge as a low-energy limit of any consistent microscopic
model. We find that once the brane has finite thickness, ththeory.

equivalence between the gravitational and inertial masses is It is worth noting that a low-energy action of the general
generally violated for matter on the brane, even in a theoryorm (1) emerges in the string theory contdd#]. Further-
restricted to intermediate scal€®). This is again alarming, more, the hierarchy?2) is also possible in the string theory
since in other modefsviolation of “charge universality’(in ~ framework[14]. It would be of interest to understand how
the gravitational context, the equivalence principtea sig-  string theory resolves the UV-IR ambiguity inherent in the

nal of inconsistency6]. case of more than one extra dimension.
We then proceed in Sec. Ill to brane-induced gravity it-
self. We study the linearized field equations, assuming first Il. SCALAR MODEL

that the bulk term has the tensor structure of general relativ- S ] .
ity. We begin with the study of low-mass states which are We begin with a counterpart of the brane-induced gravity
localized or quasilocalized near the brane. We find in Sec/Vith metric perturbations mimicked by a single scalar field
Il A that one such state is a four-dimensional scalar: it is®- In what follows it will be convenient to consider a thick
exactly localized on the brane and has negattaehyonig ~ Prane, and take the limit of the delta function brane at the

mass squared. Another state is a massive four-dimensiongld Of the calculations, if desired. It has been argued in Ref.
graviton® Both masses are of order [8] that the loopsiand/or nonperturbative effegtgvolving

matter on the brane induce nonlocal terms in the effective
action, with the scale of nonlocality set by the brane thick-
nessA. At the quadratic level, this effect is modeled by an

| Meachyord ~Mgravitonl ~T¢ 1= induced action of the following form8]:

2

M

| e | dixeyay 2)5, 000y (')
In Sec. 1l B we proceed to show that the tachyon is actually
a ghost. This can be seen in two ways. One is to study the X JAD(x,y"), ()
propagator of the full linearized theory near the tachyon pole
and show that the residue has negative sign. Another way igheref(y) is a smooth function localized near the brane; it
to evaluate the propagator from brane to brane, which deaccounts for the thickness of the brameis the number of
scribes the gravitational interaction of the matter on theextra dimensions; we concentrate on the ddse2. Without
brane. We find that the brane-to-brane propagator is a sum @dss of generalityf is normalized to unity,
two terms, one of which has a pole |a&=méraviwn with
tensor structure appropriate for a massive graviton, while the J dNy f2(y)=1 )
other is a scalar ghost ter(of overall negative signwith a yry '
pole atp®= mtzachyon. This situation is completely analogous ) , ) ,
to that in the model of Ref.10]: at intermediate scalgg), ~ a"d is nonzero in a region of size of order HereafterX,
the ghost term cancels out the exffe8] scalar part of the = (XuYa) are coordinates in (4N) dimensions, u
massive graviton propagator, so that the brane-to-brang0::--:3, @=4,...N+3; the signature of the metric is

propagator at intermediate distances has a massless tendgpStly negative. _ ot
form. Let the bulk theory have the effective acti@j, [P].

We comment on the case of two extra dimensioNs, There are two more assumptions in the modal (i) The
=2, in Sec. Il C. There are peculiarities, but the outcome ignass scale enterirg(|, is M, which is much smaller than
the same: the model has a tachyonic ghost. Mp,; (i) the bulk theory is “soft” at length scales below

In Sec. IV we generalize by allowing for the most generall/M, , which we understand as the assumption that the
tensor structure of the linearized bulk equatidits fact, ~ Green's functions of the bulk theory rapidly vanish at high
there are only two terms consistent with¢)-dimensional ~ Euclidean momenta.
general covariande We again study the casN>2 and To consider linearized theorfweak sources let us ne-
evaluate the brane-to-brane propagator. We find that it agaiglect the nonlinear terms in the bulk effective action. Then
has a ghost term, although the mass of the ghost is no longée only relevant term iS5, is quadratic in®, and has the
necessarily tachyonic. form

Our overall conclusion is that the linearized brane- 1
induced gravity as it stands has a ghost, if the number of fh(2)_ _ = | 4N+4 (4+N)y(4+N)
extra dimensions is larger than 1. We interpret this property ~Pulk Zf dTXOOAOT TR

where F([O@N)OATN) js the exact inverse propagator of
3Leaving aside models with extra light four-dimensional degreedh€ bulk theory. At low energies, the form factéris a con-

of freedom. stant of ordeM2*N (note that the fieldP is dimensionless
“The graviton has finite, though very small, widihy,,ion L€t US denote the exact propagator of the bulk theory by
<Mygraviton » 1-€., it IS, strictly speaking, quasilocalized. D, (X—X"), so that
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D*(P):m,

where P?=p?—p?, and p?=p,p*. At momenta below

M, , the propagatoD, coincides with the free propagator,

D, (P)= |P2|<M?, (6)

Mi+N Pz,

and, by the assumption of softne&s, (P) rapidly tends to
zero at large negativéEuclidean P?, with characteristic
scaleM, .

A. Scalar propagator

PHYSICAL REVIEW D 67, 104014 (2003
Dgy(p,y)
1+M3p?Dy(p)

) M2,p2[Dy¢(p)Dy(p,y) —Dig(P)Di(p,Y)]
1+M3,p?D(p) .

Gg(pvy):

(12

Now, recall that

Du(py—y")= j d"p,D,, (p2—p2)elPy =Y,

To evaluate the integral of the forb,,(p), we assume that
the brane thicknes& is much smaller than M, , and write
for smally andy’

Let the source on the brane be characterized by a spread

function g?(y), and be as function in thex coordinates,
where, again without loss of generality,is normalized to
unity,

f dyg?(y)=1. (7)

D, (p,y—y")=DO(p)+DP(p)-(y—y")2+---.

Clearly,

DO(p)= f dNp,D, (p*—p?)

It is convenient to work in the mixed representation, momen-and
tum in four dimensions and coordinates in extra dimensions.
One has the following equation for the propagator from the

brane to everywhere for a given shape of the source:

~ AOE)RENG(p,y)

+ MZ,p2F3(y) f dy' 2y Gy(p.y ) = gAY),
®

(4+N)— _ 2 72
whered =—p°—dy.

Dvali et al. [8] proceed under the assumption tigdty)
=f2(y) with corrections suppressed ty, /Mp,. Let us
drop this assumption, and see what happens.

Equation(8) has the following solution:

M2,p?Di4(p)

PP by, ©
1+MZp2D(p)

Gg(D,Y) = Dg(pyy) -
where for any functioru(y) one defines

Du(p,y)=f dy'D, (p,y—y" u(y’), (10)

and for two functionau(y),v(y) one writes
D,,(p)=D,(p) = [ d'yay D, (p.y—y Uy W (y)
(11)

Let us rewrite the expressigf) in the following suggestive
form:

1
DP(p)=- 5y | dpyPiDL(P*—P). (13
We assume that the latter integrals are convergent at negative

(Euclidean four-momentap?<0, because of softness of the
propagatoD, at short distances. On dimensional grounds,

1
DO(|pl <My )~ —+ (14)
M*
and
(2) .
D* (|p|<M*)~W- (15)

*

To the first nontrivial order in brane thickness, one f&s
suming thau andv are normalized to unity; see Ed$) and
(7]

Dy, (p) =D (p) +DP(p)A]

uv?

(16)

where
Aﬁﬁf dVydVy’ (y—y")2u?(y)v3(y’)

explicitly depends on the shapes of the functiofy) and
v(y) and is generically of the order af.

At low momenta,|p|<M,, one can setD;;=const
~M_ *in the denominators in Eq12). Then at intermediate
distanceg?3), the virtuality p? is large enough, and one has
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Dy(p,y)
M3,p?D+(p)

fo(p)D (P.y)~D1y(P)D1(p.y) 1 up to a numerical constant of order 1. Hence, the correction
D¢¢(p) - (17 to Newton’s potential is

1 -
Gg(D,Y)Z f dXOD&Z)(X):Wv |X|>M*la
*

This propagator determines the field induced by a weak
source of shapg?(y) in transverse directions, in the theory
restricted to intermediate scal&3.

AV(r)= (AS+ AR — A% —AF).

m

This is a short-ranged potential, the “fifth force,” which
B. Potential on the brane again depends on the composition of mattee functionsgy®
and h?). It is worth noting that the latter nonuniversality
§X|sts also aN=1 [7], where the brane-induced gravity does
not show any inconsistency.

The interaction between sources with spread function
g’(y) and h?(y) is described by an effective four-
dimensional propagator, which is the convolution of

le(p yg and h2(y). At intermediate values of the momenta, Il TACHYONIC GHOST

Mi>p“>r_“, one has from Eq(17)

Let us now consider the linearized brane-induced gravity

Dgn(p) and keep track of its tensor structure. In this section we as-

Gerfaa(P) = M2,p2D((p) sume for simplicity that the tensor structure of the linearized
PIE =t equations in the bulk coincides with that in the linearized
Dgn(P)D+¢(P) —Dig(P)D¢n(P) Einstein theory in (4 N) dimensions. Then the linearized
Di(p) (18 field equation takes the following form:
Keeping terms of ordeA?, one finds FAOWTNYGpp(x,y) + M§,|f2(y)f dy’ f2(y")G{(x,y")
DP(p)+DPAP)(AG—AF) ) =Tas(x.y), (20
Geff,4d(p): 21 (0) +D* (p)
pIPDL(P) whereGag=Rag— (1/2)gagR is the linearized Einstein ten-
(A2 +AZ—AZ —A2). (19 SO in (4+N) dimensions, G{}=0, and the four-

dimensional Einstein tenscﬁBﬁfV) is constructed in terms of
four-dimensional components of the metric. The form factor
F has the same properties as above. The fundifgy) is
again the spread function for the induced term.

Let us impose the harmonic gauge

Consider the first term. Because of the expligft in the
denominator, one can replafg® andD{? by constants at
p<M, , i.e., at distances larger thzm;l. This leads to a
four-dimensional Newton potential with nonuniversal gravi-
tational constant: 1

0Ahé=§&BhA, (21)
1 D{(0)

— |1+
M& [ DY(0)

(Adn—A%) | where h,g are perturbations about the Minkowski metric
nag; indices are raised and lowered by the Minkowski met-

According to Eqs(14) and(15), the nonuniversal correction "'c 1nen One has

is of orderA?M?Z .
This is the main result of this section: the model allows Gpg=— ED(“N)( has— 5 ﬂABhB), (22
for (weak violation of the equivalence principle, since the
spread functiong?(y) andh?(y) may have different shapes, \yhile G remains in its general form
depending on the type of matter residing on the brane.

GNewtoneff:

The second term in Eq19) corresponds to a short-ranged 1
force. According to Eq(13), one has, in coordinate repre- Gﬁfy):g[%ﬂxhﬁJf&Vaxhﬁ—m(“)hw—%&uhi
sentation,
- nuv((?)\aph)\p_lj(zl)hi)]' (23)
D(z)( _ i 2_\,2 (4)
» (=5 I5D 4 (X2=y?)|y—o. Hereafter*) =g 9~

At relatively large distance$,>M;1, the propagatoD, is A. (Quasi)localized states: Tachyon and massive graviton

a free propagator in (#N) dimensions, up to a factor  Let us consider the sourceless field equation, i.e. (F).
1/M3+N. This gives with Tog=0, to see whether there exist modes which are
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(quas)local_ized near the brane. Theb) and @u) compo- h&(y)=c- Df(p2=m§ ), (30)
nents of this equation in the gau¢2l) read
1 1 wherec is a normalization constant and the mass is deter-
_ E]:(D(4+N))D(4+N)( hap— 3 nabhg) -0, mined by the “eigenvalue equation

) 1
m==—s—5— (32)

1 - .
—Ef(D(“N))D(“N)haM:O- M2 Dg(m2)

) Let us see that the mass squared,, is, in fact, negative
These are the equations of the bulk theory for the correz nd real a mi g

sponding combinations of metrics, and they do not have lo-

calized solutions. Hence, 2

mtzachyonE my <01 (32)

1
Nap=>5 7aohG (24 Im(m() =0, (33

so the mode we consider is a tachyon localized near the

and brane. We first note that
ha'u: 0. (25) | | M>2\- .
m,|~——~r.",
After taking the trace of Eq(24), one expresses th@b) ' Mp €
components of the metric in terms of the trace of the four- =
components, which is small compared td, . Now, one has
1 [f%(py)[?
- ; Dy(p?) = | ¥, — P (34
hap=— =5 7abh. (26) 1(P) oy (34)
(at this point we specialize td>2). Then the gauge condi- where P?=p?—p;, as before. Since one assumes that the
tion (21) with B= u, together with Eq(25), give form factor F rapidly grows at large negative? (the propa-
gator D, rapidly decayy this integral is convergent in the
9 ht=— 9 h ulraviolet, and the integrand does not have singularities at
v N=2TTN p2<0 [a zero of F(— P?) at negativeP? would imply that

Maki f the ab lati btains for th there is a tachyon in bulk thegfyFor N>2 the integral is
* _ ; 2
aking use of the a ovte ref f‘;'o?_SvldO”e ot.talns or the reinfrared convergent even af=0, since for|P2|<M?2 the
maining (v) components of the field equations form factor F is constant. For smap?<0 the integral here
is a real positive constant, which is of orddr, * on dimen-
sional grounds, sB(p?=— |mfc |) is a negative constant at
small|m, |. One concludes that, as long as scales lower than
N . . M, are concerned, there exists a single solution to(B#).
- maMayhx—D( h,, which indeed obeys Eq$32),(33). _
Finally, we have to show that the wave functi(80) de-

hy

1 1
_ Ef(D(4+N))D(4+ N)( h,lLV+ m 7]#1}

M
+ 5 fAy)- f dy’f2

-1 cays agy|—. One writes
A 7,,0®h}|=0. (27)
[ €PYYE(py)
The trace of this equation gives Df(p,y)—f d%py P2F(—P?) '
—f(D(4+N))D(4+N)hﬁ+|\~/|%|f2(y)f dy’fz-D(4)hﬁ=0, Large|y| corresponds to smafi,, so at larggy| one has
(28) efipy-yfz(
Py)
Dy(p?=m ,y)x—f dpy—5——=>. (39
where py+|mg|
£12 _2(N-1) 29 Recalling thatf(p,=0)=fd"yf?(y)=1, one obtains that
PIT N+2 Pl (29) the wave function(35) has the shape of thi-dimensional

Yukawa potential with(smal) mass|m, |. Hence the wave
The latter is a scalar equation, and we are interested in ithinction indeed decays ag|— .
solution localized near the brane. This solution is expressed To obtain the complete tensor structure of the tachyon
in terms of the function®(p,y) andD¢(p) introduced in  mode, one plugs the solution for the trace, 8%), back into
Egs.(10) and(11). In the mixed representation the solution is Eq. (27), and obtains, in the mixed representation,
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— AO@IO@N —ipN-2, (39
So, forN>2, the quasilocalized graviton has a small mass
2 ¢2 2 1£2/0\,1 ’
+Mp fo(y)p fdyf (Y)h..(p.y") Mgrauiton=m, Where
N p.p, 1 M2
=—c-M3Dyp? = Re(mM=———-~ >~y 1
N-2 p? MpVIDi1(0)]  Mer

N(N—1) and an even smaller width,

D¢(p,y), (36)

T (N=2)(N+2) Ter -
1_‘graviton » m

where p2=mi for the mode we discuss. This inhomoge- m M:'*T

neous equation is readily solved. Tlad® components are

found from Eg.(26). In this way one finds the complete We conclude that in this model there is a massive four-

expression for théunnormalized tachyon mode: dimensional graviton with a tiny width. The violation of
Newton’s law at distances of ordeg is due to the graviton
mass not width, in clear contrast to the five-dimensional

D«(y), case[3].

h(m*)zl N+2p,p,
3| TmN=1 p?

h(m*)=0 B. Propagators at low energies: The tachyon is a ghost
ma One way to see that the tachyon is in fact a ghost is to
1 calculate the full propagatoD g cp(p;y,y’) near p?
h{M) = — N1 7a0D1(Y), (37 =mZ, i.e., to extract its pole term. This is done in Appendix

A. The outcome is

Wherepzzm?\-<0 ande(y):Df(pzzmi 1y) 3 h(m*)( )h(m*)( )
For completeness, let us consideuasjlocalized trace- D(pole) L (piy,y)=— __AB y ,
less modes, for WhiChZ=0. For these modes, one obtains M§,|[fo(mi)]2 p? —m*
from Eq. (27) the following equation: (39
- AOUN)gUNp Whereh( *)(y) is the (unnormalizeditachyon wave function
(37). The overall negative sign here means that the tachyon

2 2 2 1§20\, "N— is indeed a ghost.
TMREF)P f Ay YRRy =0. The structure of the pole terii89) is precisely what one
expects for the contribution of a mode localized near the
brane. From Eq(39) one deduces also that the properly nor-
malized tachyon-ghost mode is

The solution to this equation is again of the form

h,u.y(y):C,LLV' Df(pzz mz,y),

where thec,,, are independent of, and the mass now obeys hg\%fma“ze@t %hg@ )
2 _ ; One observes from the latter formula and Egj7) that the
M%,fo(mz) tachyonic ghost couples to matter on the brane at gravita-
tional strength.
We are interested in solutions witm|<M, , which are rel- It is perhaps more instructive to study the propagator with
evant at low energies. According to E(B4), for such a both end points on the brane. More precisely, let us consider
solution the real part ofn? is positive, and is of orderr_ the source on the brane with the only nonvanishing compo-

Now, for small positivep?, the functionD;(p?) has an even nentsT,,,, which is distributed in the transverse directions
smaller imaginary part, which may be estimated as followswith the same spread functiorf?(y) as in Eq.(20),

The integrand in Eq(34) is a smooth positive function at 5

ps>p?, so this region does not contribute to the imaginary T (6Y)=6,,0015(y), (40)
part The imaginary part comes from the infrared region, and

is proportional to where 6,,,(x) is conserved in the four-dimensional sense.

The pomt is to calculate theu(v) components of the metric
fe py 'dpy

0 pf,— pz_ i0 5The analysis of the general case of a source with spread function

g? different fromf? proceeds along the lines of Sec. II. This analy-
The imaginary part of the latter integral is proportional to sis is straightforward but not illuminating.
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due to this source. This is done in Appendix B, with theThis is precisely the same situation as in the model of Ref.
result, in mixed representation, [10]: the reason why the correct tensor structure emerges in
the linearized theory at intermediate distances is the exis-

2 D¢(p,y) 1 1 . tence of a ghost field.
h V(p!y):_ (0 v__77 Va)\)
. M3, D#(P) | p?—m?(p)\ *" 37 C N=2
1 1 N o The caseN=2 is somewhat special. Let us first consider
T8 g2 () | Flongitudinalpart - the tachyon mode. Equatia@4) implies now
*
(42) hﬁj= 0, (45)
where while hd is arbitrary at this point. The four-dimensional trace
of the sourceless equatidg0) then gives
2 = —— ~
m*(p) MZD . (p)’ 42 _ mgoerNp@eNpay Mglfz(y)J dy’ f2.0®ha=0.
1 This equation has the same structure as 2§), so there
mi(p): - (43) again exists a tachyon. M =2, it is the extra-dimensional
M2 D¢(p) metrich,;, and the traceless part bf,, that do not vanish in
the tachyon modéin the gaugg21)].
and the longitudinal part is proportional W,p, and van- Another point is that the integrdB4) is logarithmic at
ishes when contracted with the conserved stress-efilrgy N=2, so the estimate for the graviton and tachyon masses is
overall factor 2 in Eq(41) is due to our definition oMp, ; now
see Eq.(20)]. Now, the interaction between two sources of
the form (40) may be written in terms of the effective four- ) M2 Mp,
: : 4) Re(m?)~|mZ |~ —-log—.
dimensional propagatd?DEw rp(P), so that one has * M2 M,
) Pl

The imaginary part of the graviton mass is suppressed rela-

’ 4) —p’ N,, 2
0 (P)D s (P) Or(P) 6’“’(p)f Ay EYNLY.P), tive to its real part by a logarithm only,

whereh,,, is given by Eq.(41). Hence, the effective brane- Lgra _ 1
to-brane propagator is Im|  log(Mp/M,)’
2 1 1 Yet the graviton width is smaller than its mass.
D,Efg-)\P:M_Z 2_—2<§(7;M7;Vp+ Np M) The tachyon is a ghost &=2 as well. A simple way to
pILP —m(p) see this is to redo the calculation leading to the brane-to-
1 1 1 brane propagator. One finds that the expresé&idi remains
— | — = N valid atN=2, the property(45) being ensured by the appro-
3T 6 p2—m2(p) T priate structure of the longitudinal terms. The negative sign

o of the last term on the right hand side of E44) tells us that
+ longitudinal part. (44 the tachyon is indeed a ghost.
So, in spite of peculiarities, the conclusion fér=2 is the
At low energies the “massesi?(p) and m?(p) are con- same as foN>2: the model has a tachyonic ghost.
stants[up to a tiny p-dependent imaginary part; see Eq.

(38)]. Thus, at low energies the propagatéd) corresponds IV. GENERALIZED MODEL
to a massive graviton of mass (note that the Van Dam-— . _ _
Veltman—Zakharov property indeed holdand a tachyonic In this section we drop the assumption that the tensor

ghost with negative‘ni . This ghost cancels the contribution Structure of the linearized bulk equations coincides with that
of the extra graviton polarization at intermediate momentdn the linearized Einstein theory and consider the most gen-
M, > |p|>(m,m,)~r;*, so that at these scales the brane-€ral  tensor ~ structure  compatible ~ with ~ the

to-brane propagator has the same structure as in general ref4+ N)-dimensional general covariance. The linearized field

tivity, equation in the bulk theory has the following general form:
1 D apcoh®P=0 (46)
(G N — — .
Dluvne M2, pz(”ﬂWVPJr”#P”W RNy with some linear operatoPagcp. The symmetry of this
operator undeA— B, C+—D, and (AB)« (CD) implies the
+longitudinal part. following structure ofDagcp:
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Dpgcp=2adadsdcdp+b(dadsnept 1a9cdn) with
+C(Ipnpcdp+ daTacdn+ dasndet s Mandc) (4+N)
ATBCID T 0BNACID T IATIBDICT IBTIADIC H(E\(‘”N)):ZQ(D )
+d +e( + ) AOGN)y
naMcp T €(7ac”ept MAD7BC), ( )
wherea,b,c,d,e are as yet arbitrary functions @™*%.  The “mass”m?(p) entering Eq.(48) is the same as in Sec.
Now, gauge invariance implies 111, while mi(p) is now
daDpcp=0. , 1
m; (p)=

This leaves only two possible tensor structures that may ap- 2M§,|5ff(p2) '

pear inDagcp, Namely, the usual Einstein structure and the

product of two projectorsPagcp*PagPcp. Where Thus, the brane-to-brane propagator still has the feta).
(@+N) The second term in Eq44) again has a negative sign, so the
Pag=0 A~ IadB - model again has a ghost field, but now the mass of the ghost

. is a solution to the following eigenvalue equation:
In the harmonic gaug&1) one has ge€g q

1
1 2 _
PABPCDhCDEHAB:E(D(4+N) nas— dadg) D@ VNE. M _ZM%IBff(m?\-) . (49
Consequently, the generalization of Eg0) is The difference from the cagg=0 studied in Sec. Il is that

(4+N) (@+N) the ghost field in principle need not be a tachyon in the

FOY ) Gap(x,y) + (O ) ILap(X,Y) general case and that the wave functions of the ghost and
graviton have different profiles in the transverse directions.
+M§,,f2(y)f dy’ f2(y)GEA(x,y" ) =Tas(X,Y), The graviton wave function is agaiB(p;y), while the

ghost wave function i©(p;y).

(47)
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2 | D¢(p, 1 1
h(PY)= Df(sz%) L ( s ﬂwﬂi) APPENDIX A
2 " p*=m(p) Here we calculate the tachyon pole term in the full propa-
D¢(p,y) 1 1 gator of the model of Sec. lll. We do this by solving EB0)
- C nMﬂQ with the conserved right hand side,
Dy 6 p?~mi(p) X
+ longitudinal part, (49) IaTg=0. (A1)

~ ~ , . - OtherwiseT » is arbitrary. We still use the gauge conditions
whereD; andDy; are defined in a similar way a&%; andD ¢¢ 1) AB y gaug

[see Eqgs(10), (11)] but with a new fun(itiorf)*(p;y,y’) We begin with the(ab) components of Eq(20), which
substituted foD, (p;y,y’). The functionD, (p;y,y') isa read
solution of the following equation:

1 1
—O@@ M) RO ). 0@ VB, (pry,y') = oy —y'), 27 ':‘(“N)(hab‘ z”abhg) “Te- (A2

where the operato®(C0“*N) is We decomposé,,, in the following way:

N—1+NH(DO@N).gl+N)

1
(4+N)y — =h!
o) N+2—(N+3)H(DO®N).O@N Ma=Nap T I 7anfc.

(A3)
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where Let us now consider theaw) components of E¢20). They
read

h! =h ! h¢ (A4)
ab ab N Nablle

1
- Ef(D“*N))D(“N)haf (A10)

au "
is the traceless part. The traceless part obeys
Hence,

1 1
—ZAOEIHOE NG =Tap— G 7anTc,  (AS) .
haﬂ(X)=2]d X'Dy (X=X")Ta,(X"). (Al

while the trace of Eq(A2) gives
Finally, let us study the g v) components of Eq(20). We

hee — N hetb, (A6) need the expression fayh** that entersG(;). This expres-
¢ N—2 # sion is obtained by making use of the gauge condition
whereb obeys 1
, dahl=d,h% +g\h) = 5 =d,hg. (A12)
(4+N)y(4+N)y— _ ¢
~ A0 )0 b N-— 2T (A7) Now, because of the conservation propd#l), one has

and hence is equal to ﬁahZZZJ’ 4N D, (X=X )3 T(X')

b(X)=— N42f d**NX'D, (X=X")TYX'). (A8)
=—2f d*"NX'D, (X=X"),TH(X"). (AL3)

We also have for the overall trace

Hence, the fv) components of Eq20) may be written in

terms ofh,,, , the traceh), and the componentg, , and T2

of the stress-energy tensor. After some algebra one obtains

2
he=——5hi+b. (A9)

1
- AO@NO@N h -+ N=3 7,00\

N N—1
M3 ) | dy'f%y')[ N2 A= 0 O, + 5 7,0

=27 _i Ta_2M2f2() dN ’D(’)ﬁ(?T)\—F(?ﬁT}‘ 2 (9{71- (9(9T)‘p
nv N_277/.wa Pl y y iy Nou 'ty ANy N— 2/.LV Nuv| ONO)p

1
N ()
N_2D Ta) : (A14)
The trace of this equation gives
—f(D(4+N>)D<4+N>h;+|\7|§,|f2(y)f dy’ f2.0@h#
2(N-2) 4 1
=—~Nz2 | i N_2T2+2M,23|f2(y)fdNy’Df(y’)~<ak&pT“’— m[\(“)Tg”. (A15)

The solution to the latter equation is conveniently written in the mixed representation,

4(N-2) p*MED(y)
N+2 1- I'\7I,2;,p2fo(p)

4
h,’j(p,y)— N+2 fd“‘y D (p:y.y’ )(T“(py )= N=z Ta(PY )) dey’Df(p,y’)

N_:I._I_ll2 pﬂval“,_

a
“INTF2 02 NT2 2

(A16)
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where we made use of the relati¢®29). This expression is
still exact. Clearly, it has a pole eptzzmi [in the second

term in the right hand side of EGA16)].

To find the tachyon pole term ih,,,,
lution for hﬁ back into Eq.(A14). In terms of Eq(A14), the
tachyon pole irh ,, comes entirely from the pole part i .
One makes use of EqA15) and writes Eq.(A14) in the
following form:

_f(D(4+N))D(4+N)hMV

* 'V'Enfz(y)pzf dy' f2(y")h,.(py")

N(N—1)
— M2 n2f2 Ny,7 §2
_MPIp f (y)f d y f (N_Z)(N+2) Nuv
N p.p,
“N_2 ;2 )h;\-i-, (A17)

where the ellipsis denotes terms that do not contain a pole
p’= mi . This equation is straightforwardly solved, and after

some algebra one obtains that the tachyon pole pdrf, pfs

1 1 D:(p,
NE(py) = - 5 g 1o
3 p?-m; MZDF

N+ 2 PuPy
TeTN=T 2

B N+2 PP,
™™ N—1 m?2
*

><f dy'D¢(p.y’)

3
><T”(p,y’)—mTi(p,y’) . (A18)

one plugs the so-

at

PHYSICAL REVIEW D 67, 104014 (2003

hkps‘"e)(p,y)=f dVy DS (p;y,y ) TP (p,y"),
(A20)

where the pole term in the propagator is given by 89).

APPENDIX B

Let us calculate theyfv) components of the metric due to
the source of the fornt40) with conservedd,, . For this
particular type of source, the expressiohl6) simplifies
considerably,

2(N=2) Dy(p.y)
N+2 M2 D¢(p) p2—m2(p)

hi (p,y)= 0% (p),

(B1)
wheremi(p) is given by Eq.(43). We plug this expression

into Eq. (A14) and again make use of the properties of the
source to obtain

_f(D(4+N))D(4+N)hMV
+M%|f2(y)p2f dy’ f2(y )h,,,(p,y")

~t2(y)| 26, P
~PW| 2607 g T N2

p2

X———F—7 ,,0") + longitudinal part, (B2)
p2—mZ(p) "

It remains to find the tachyon pole parts of other metric comyyhere the longitudinal part is proportional m,p,. After

ponents. According to Eq$A5), (A7), and(A10), the trace-

less part,,, the termb, and the metric components, do

not have poles gi>=m? . The pole term ith? is determined
by the pole term irhj; through Eq.(A6). Thus, one finds

1
h&*'(p,y) = - N=2 7ah P 9*(p,y)

_ 1 1 Dipy)
N—17%p2_mz 2 p?,

Xf dVy'D¢(p,y")

N+2 p\p,

o RV N
*

)T“’(p,y’)

3
_ a ’
N1 la(PY) . (A19)

We see from Eq4A18) and(A19) that the pole terms ihag
may indeed be written in the form

some algebra, one finds that the solution has indeed the form
(41).

APPENDIX C

Here we sketch the calculations leading to the re@d}.
The steps are similar to those in Appendixes A and B. First,
one considers theab) components of Eq47) and finds the
following generalization of Eq(A6) [recall that we consider
a source of the forng40)]:

N+H((N—1)O#N 4@y

= — h#. (C1

© N=2+H(N-1)O@N @) ¥ (v
For the overall trace one has
2

hS= L. (C2

- h
N—2+H((N-1)O@N 4@y~

From the @u) components of Eq47) one finds
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Nau= " da0,h". (C3) g, = Lo Ho™ a,h?
ON=—2+H((N- )OOy T N2+ H((IN- 1O @) e
(CH

By making use of the gauge conditi¢A12) one obtains the where 0N =535, . Plugging the expression€2),(C4)
following expression for the longitudinal components of theinto the (wr) components of Eq(47) one arrives at the
four-dimensional part of the metric: following analogue of Eq(A14):

1+HON+4)

V+ \
HUON=2+H(N=1)OGN 1 O @)

77;1,Vh)\

_:F'(D(4+ N))D(4+ N)( h

H
+AOUN)DEN 9,0,h\+ M3, {2 -fd "2y’
( ) N—2+H((N—1)0GN @) 7 N pife(y) y'f(y’)

N+H((N+1)04+N -
x| — « ) ) 9,0, —0%h,,
N—2+H((N-1)0@N 4+ )

N—1+HNOWN
+
N—2+H((N—1)0“+N 4@y

7,,0Wn) [=26,,F2(y). (CH

The trace of this equation gives

N+2+H(N+3)0¢N ,
— AOGFNY OGN hg+2|v|,2,,f2(y)f dy’ 2.0

N—2+H((N—1)O® N+ O@)

N—1+HNOWN
X
N—2+H((N—1)0@+N 4@y

hi=26412(y). (C6)

The solution of this equation is

26k N—2+H((N—1)O®N+O®)) _
D;. (C7)

hﬂ

“1-2p?Dg(p)  N+2+H(N+3)OEN

Plugging this result back into EC5), one obtains after some algebra the desired expre$48n
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