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Five-dimensional black hole and particle solution with a non-Abelian gauge field
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We study the five-dimensional Einstein-Yang-Mills system with a cosmological constant. Assuming a spheri-
cally symmetric spacetime, we find a new analytic black hole solution, which approaches asymptotically
‘‘quasi-Minkowski,’’ ‘‘quasi–anti-de Sitter,’’ or ‘‘quasi–de Sitter’’ spacetime depending on the sign of the
cosmological constant. Since there is no singularity except for the origin that is covered by an event horizon,
we regard it as a localized object. This solution corresponds to a magnetically charged black hole. We also
present a singularity-free particlelike solution and a nontrivial black hole solution numerically. Those solutions
correspond to the Bartnik-McKinnon solution and a colored black hole with a cosmological constant in four
dimensions. We analyze their asymptotic behavior, spacetime structures, and thermodynamical properties. We
show that there is a set of stable solutions if the cosmological constant is negative.
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I. INTRODUCTION

Recent progress in superstring theory shows that diffe
string theories are connected with each other via dualit
making them unified with M theory in 11 dimensions@1#.
This provides a motivation to study a higher-dimensio
gravitational theory. String theory also predicts a bound
layer, abrane, on which the edges of open strings stand@2#.
This suggests a new perspective in cosmology, that is, we
living in a brane world, which is a three-dimensional hyp
surface in a higher-dimensional spacetime. In contrast w
the already familiar Kaluza-Klein picture in which we live i
four-dimensional spacetime withn-dimensional compactified
‘‘internal space,’’ our world view appears to be chang
completely. Particles in the standard model are expecte
be confined to the brane, whereas the gravitons propaga
the entire bulk spacetime.

In the brane world cosmological scenario@3#, a higher-
dimensional black hole solution plays an important role. O
Universe is just a domain wall expanding in the black h
background spacetime@4#. The black hole mass gives a co
tribution to dark radiation through its tidal force. Hence,
higher-dimensional black hole or a globally regular soluti
with a cosmological constant is now a very interesting s
ject. In particular, in the context of the AdS conformal fie
theory~CFT! correspondence@5# or proposed dS/CFT corre
spondence@6#, since the five-dimensional Einstein gravi
with a cosmological constant gives a description of fo
dimensional conformal field theory in the largeN limit, many
authors study such localized objects in five dimensions@7#.

However, from the viewpoint of brane cosmology, a bla
hole solution has a singularity in a bulk spacetime, althou
it is covered by a horizon. If a string theory or M theory
fundamental, such a singularity should not exist. Then, if
can construct some nonsingular object in the bulk spacet
it might be a manifestation of singularity avoidance imm
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nent in a fundamental theory. In four dimensions, Bartn
and McKinnon found a particlelike solution as a globa
regular spacetime in a spherically symmetric Einstein-Ya
Mills system with SU~2! gauge group@8#. Soon after, a col-
ored black hole solution with a nontrivial non-Abelian stru
ture was also found@9#. These solutions were also extend
to those in a system with a cosmological constant@10–12#.
From stability analysis, it turns out that solutions with ze
or positive cosmological constant are unstable@13#, while
those with negative cosmological constant are stable@12,14#.
Since a negative cosmological constant is naturally expe
in a brane world scenario just as in the Randall-Sundr
model @15#, the above fact is very interesting. In this pap
then, we study a nontrivial particlelike solution or black ho
solution in five dimensions with a cosmological constant.

As for non-Abelian gauge fields in a bulk spacetime,
though gauge interactions are confined on a brane and Y
Mills fields are expected to exist only in the brane, if o
five-dimensional spacetime is obtained as an effective the
this may not be the case. In fact, Lukaset al. @16# showed
that a U~1! field appears in the effective five-dimension
bulk spacetime, from dimensional reduction of the Horˇava-
Witten model @1#. We may find non-Abelian gauge field
from some other type of dimensional reduction of a unifi
theory.

There is another interesting point in discussing no
Abelian gauge fields in the bulk. Using a brane structu
new mechanisms of spontaneous symmetry breaking
gauge interactions have been proposed@17#. In this picture,
the present standard model@SU(3)3SU(2)3U(1)# is ob-
tained on the brane assuming some higher-symmetric ga
interactions such as SU~5! in the bulk.

Therefore, in this paper, we assume that a non-Abe
gauge field appears in five-dimensional bulk spacetime
Sec. II, we first derive the basic equations of a spherica
symmetric Einstein-Yang-Mills system in five dimension
©2003 The American Physical Society12-1
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With a spherically symmetric ansatz, the gauge potentia
the SU~2! Yang-Mills field is be decomposed into ‘‘electric
and ‘‘magnetic’’ parts; the derivation is given in Appendix A
There is a nontrivial analytic solution in the case with
‘‘magnetic’’ field, which corresponds to a magnetical
charged black hole in four-dimensions. This analytic solut
and its properties are examined in Sec. III. We also pres
nontrivial particlelike and black hole solutions, which corr
spond to the Bartnik-McKinnon type and colored black ho
type solutions in four dimensions, in Sec. IV. We also an
lyze their stability in Sec. V. A summary and discussion f
low in Sec. VI.

II. BASIC EQUATION

In order to find a black hole and particlelike solution
the five-dimensional Einstein-Yang-Mills system, we fir
write down the basic equations. The action is given by

S5
1

16pE d5xA2g5F 1

G5
~R22L!2

1

g2 Tr F2G , ~2.1!

whereG5 is a five-dimensional gravitational constant,L is a
five-dimensional cosmological constant, andg is a gauge
coupling constant. Now we assume that the gauge grou
SU~2!. F5Fmn dxm`dxn is the field strength of the gaug
field, which is described by the vector potentialA5Am dxm

as

Fmn5]mAn2]n Am2@Am ,An#. ~2.2!

Defining the five-dimensional Planck mass bym55G5
21/3

and the fundamental mass scale of the gauge field bymg
5g22, we introduce a typical length scale of the prese
system, which is given by

l5S mg

m5
3D 1/2

5S G5

g2 D 1/2

. ~2.3!

We will normalize the scale length by thisl.
We consider a spherically symmetric five-dimension

spacetime, whose metric is given by

ds25l2F2 f ~ t,r !e22d(t,r ) dt21
dr2

f ~ t,r !
1r 2 dV3

2G ,
~2.4!

where

f ~ t,r !512
m~ t,r !

r 2
1e

r 2

,2
, ~2.5!

dV3
25dc21sin2 c~du21sin2 u dw2!, ~2.6!

where we setL526e/(l,)2 with e50 or 61, correspond-
ing to the signature ofL, i.e., e51, 0, and21 corresponds
to L,0, L50, andL.0, respectively. Note thatt, r, and
m are all dimensionless variables. We shall callm a ‘‘mass’’
function. , denotes the ratio of the length scale of the c
mological constant tol.
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From Appendix A, we find a generic form of the sphe
cally symmetric SU~2! gauge potential. If we take only th
‘‘electric’’ part of the field, the gauge potential is given b
Eq. ~A19!, which yields the basic equations as

m85
2

3
r 3~A8ed!2, ~2.7!

ṁ50, ~2.8!

d850, ~2.9!

@~A8ed!2#•50, ~2.10!

@~A8ed!2#81
6

r
~A8ed!250, ~2.11!

where the prime and overdot denote the partial derivati
with respect tor and t, respectively. This equation gives
Reissner-Nordstro¨m type solution such as

m5M2
2Q2

3r 2
, ~2.12!

d50, ~2.13!

A52
Q

r 2
. ~2.14!

This result is the same as the case of four dimensions.
If the ‘‘magnetic’’ part of the gauge field, which is give

by Eq. ~A22!, appears, we find other basic equations as
lows. Using the gauge freedom, we setX50, resulting in the
gauge potentials as

At
a50, Ar

a50, ~2.15!

Ac
a5~0,0,w!, ~2.16!

Au
a5~w sinc,2cosc,0!, ~2.17!

Aw
a5~2cosc sinu,2w sinc sinu,cosu!, ~2.18!

where we setf5w(r ,t). With the above ansatz, we find th
Einstein equations and Yang-Mills equation of the pres
system as

m852r F f w821 f 21e2dẇ21
~12w2!2

r 2 G , ~2.19!

ṁ54r f w8ẇ, ~2.20!

d852
2

r
@w821 f 22e2dẇ2#, ~2.21!

and
2-2
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1

r
~r f e2dw8!81

2

r 2
e2dw~12w2!5~ f 21edẇ!•.

~2.22!

Equations~2.19!–~2.22! look very similar to those in the
case of the four-dimensional Einstein-Yang-Mills syste
However, a small difference of the power exponent or
brings a large difference in the behavior of solutions, as
will see later.

III. ANALYTIC SOLUTIONS

Now we look for a ‘‘magnetic’’ type static solution of th
system~2.19!–~2.22!. Dropping the time derivative terms
we find the basic equations as

m852r F f w821
~12w2!2

r 2 G , ~3.1!

d852
2

r
w82, ~3.2!

1

r
~r f e2dw8!81

2

r 2
e2dw~12w2!50. ~3.3!

The above differential equations~3.1!–~3.3! have two
analytic solutions. One analytic solution is

w561, m5M, d50, ~3.4!

which corresponds to the Schwarzschild or t
Schwarzschild–anti de Sitter~or de Sitter! spacetime, whose
properties are well known.

Another analytic solution is given by

w50, m5M12 ln r , d50. ~3.5!

This solution has a nontrivial geometry. In four-dimension
spacetime, this type of solution describes the Reiss
Nordström type geometry with a magnetic charge. In fiv
dimensional spacetime, a 2 lnr term appears in the mas
function m. Although m diverges, the metric itself ap
proaches that of well-known symmetric spacetimes for e
e, i.e., the Minkowski, de Sitter, and anti–de Sitter spa
times. We first study the properties of this solution in t
following subsections.

A. Asymptotic structure

Since the mass function diverges, we have to anal
carefully the asymptotic behaviors. For the case ofe50, the
Riemann curvature is finite except atr 50 and vanishes a
infinity as

RmnrsRmnrs→288S ln r

r 4 D 2

. ~3.6!

For the case ofe561, the Riemann curvature is also fini
everywhere except atr 50 and converges as
10401
.

e

l
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e

RmnrsRmnrs→ 40

,4
~3.7!

as r→`. This finite value just comes from the Ricci curva
ture. The metric form approaches

f ~r !→11e
r 2

,2
~3.8!

asr→`. These spherically symmetric and static spacetim
are singular only atr 50, and seem to approach a ‘‘max
mally symmetric spacetime.’’ Therefore we may recogn
the metric as a localized object in such a ‘‘maximally sym
metric spacetime.’’

However, we have to analyze the asymptotic behavi
more carefully. The asymptotic flatness condition is ma
ematically defined using the conformal transformation. W
can also extend this formulation to an asymptotically de S
ter ~or anti–de Sitter! spacetime as well as to a highe
dimensional spacetime.

In an asymptotically flat spacetime, we can naturally d
fine the mass of an isolated object, which is called
Arnowitt-Deser-Misner~ADM ! mass@18#. It is defined by

G5MADM5
1

16p R
I 0

dSi@] jh
i j 2h i j ] jhk

k# ~3.9!

in five-dimensional spacetime, wherehmn is the Minkowski
metric andhmn5gmn2hmn . dSi is an infinitesimal surface
element of spacelike infinityI 0. For the present nontrivia
solution withe50, we find

G5MADM5 lim
r→`

3p

8
l2~M12 ln r ! ~3.10!

which diverges as lnr. The coefficient 3p/8 appears just be
cause Eq.~2.19! yields

m5
3p

8 E dv@2T 0
0 #. ~3.11!

For e521, if the spacetime is asymptotically de Sitter, w
can also introduce a conserved mass, which is called
Abbott-Deser mass defined by@19,20#. If the spacetime is
asymptotically de Sitter,MAD5MADM , which diverges
again as lnr.

In a five-dimensional asymptotically anti–de Sitter spa
time, we can also define a conserved mass associated w
timelike Killing vector jW at the three-sphereC on conformal
infinity I as @21,22#

G5M j@C#ª2
l2,

16p R
C
E mnjm dSn, ~3.12!

whereEmn is the electric part of the Weyl tensor defined b

Emnª
,2

V2
Cmrnsnrns. ~3.13!
2-3
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V is a conformal factor andnm5¹mV. In the case of the
Schwarzschild–anti de Sitter spacetime~3.4!, this mass gives
M. In the nontrivial solution, however, this quantity is ca
culated on the three-sphereC with radiusr as

G5M j@C#5
3p

8
l2FM12 ln r 2

7

6G . ~3.14!

It diverges as lnr as r→`.
In any case, the ‘‘mass’’ is not finite, which means that t

‘‘total energy’’ of the system is not finite. Therefore, strict
speaking, we should not regard it as an isolated object. H
ever, there is no singularity except atr 50 and the metric
form itself approaches either the Minkowski or the de Sit
~anti–de Sitter! one. Hence, we call it a ‘‘quasi-isolated
object. We recall that we know a similar ‘‘isolated’’ objec
i.e., the four-dimensional self-gravitating global monopo
Its metric is described as

ds252 f ~r !dt21 f ~r !21 dr21r 2 dV2, ~3.15!

where f (r )[122m(r )/r;12a22M /r 1O(1/r 2). In this
case, the mass functionm(r ) diverges as M1ar /2
1O(1/r ) asr→`. In fact the ADM mass diverges. Resca
ing the time and radial coordinates asr→(12a)1/2r and t
→(12a)21/2t, we can rewrite the metric form as

ds252 f ~r !dt21 f ~r !21 dr21~12a!r 2 dV2, ~3.16!

where f (r )5122M̃ /r with M̃5M (12a)23/2. This space-
time looks asymptotically flat but has a deficit anglea. Nu-
camendi and Sudarsky showed that this spacetime is asy
totically simple but not asymptotically empty@23#. They
called it a ‘‘quasiasymptotically flat’’ spacetime and defin
a new mass for a spacetime with a deficit angle, which
generalization of the ADM mass, using the first law of bla
hole thermodynamics.

In our case, the mass function diverges as lnr, which is
less divergent than the case with a deficit angle (r 2 in five
dimensions!. Then we can also call such a spacetime a ‘‘qu
siasymptotically’’ flat or ‘‘quasiasymptotically’’ de Sitte
~anti–de Sitter! spacetime.

B. Spacetime structure: Horizon and singularity

This solution has a horizon, where

f ~r !512
M12 ln r

r 2
1e

r 2

,2
50. ~3.17!

We study those horizons and the singularity separately
each value ofe.

1. eÄ0

In this case, if M.1, Eq. ~3.17! has two rootsr
5r 6 (r 2,r 1), which correspond to two horizons;r 1 cor-
responds to an event horizon, whiler 2 is an inner horizon. A
timelike singularity appears atr 50. For the case ofM
10401
-

r

.

p-

a

-

r

51, the two horizons become degenerate and the black
becomes extreme. IfM,1 there is no horizon, so a nake
singularity appears.

2. eÄ1

This case also has two horizonsr 5r 6 (r 2,r 1) if M
.Mcr . r 1 and r 2 are an event horizon and an inner ho
zon, respectively. The critical mass parameterMcr is given
by the horizon radius of the extreme case (r 1cr), i.e.,

Mcr5
1

2
~11r 1cr

2 !22 ln r 1cr , ~3.18!

where

r 1cr5
,

2 S 211A11
8

,2D 1/2

. ~3.19!

Mcr is always larger than unity and it approaches 1 as,
→`, which corresponds to the case ofe50. A timelike
singularity appears atr 50. For the case ofM5Mcr , the
black hole is extreme, and forM,Mcr the horizon disap-
pears.

3. eÄÀ1

If a cosmological constant is positive, we expect a cosm
logical horizon just as in a de Sitter spacetime. In fact,
always find at least one horizon. If,.2A2 and

Mmin,M,Mmax, ~3.20!

where Mmin5g(r 1cr) and Mmax5g(r 2cr) with g(r )5r 2

22 ln r2r4/,2 and

r 6cr5
,

2 S 16A12
8

,2D 1/2

, ~3.21!

we find three horizons,r 2 (,r 2cr),r 1 (,r 1cr),r c . r 2 ,
r 1 , and r c are an inner, event, and cosmological horizo
respectively. WhenM5Mmax, the inner and event horizon
become degenerate (r 25r 1), while if M5Mmin , the event
and cosmological horizons coincide (r 15r c). In the limit of
,→2A2, Mmin5Mmax5Mcr53/22 ln 2'0.80685, and
then the three horizons become degenerate forM5Mcr .

For other cases, we have only one horizon. The singu
ity at r 50 becomes naked. We summarize the types of
rizon in Table I.

C. Thermodynamical properties

Next we shall look at the thermodynamical propertie
The Hawking temperature is easily calculated from the re
larity condition at the event horizon@24#. We find

TBH5
1

2pr 1
F12

1

r 1
2 12e

r 1
2

,2G . ~3.22!

The entropyS5A/4 is given by
2-4
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S5
1

2
p2r 1

3 , ~3.23!

because the volume of a unit three-sphere is 2p2. Since the
solution does not satisfy the asymptotically flat or de Sit
~or anti–de Sitter! conditions, we cannot define the gravit
tional mass. However, if we use the first law of thermod
namics just as in the case of a global monopole with a de
angle@23#, we can define the thermodynamical massMT as
dMT5T dS1F dQ. We find

MT5
3p

8
M, ~3.24!

where the integration constant is set to zero. This re
shows that the mass parameterM essentially denotes th
thermodynamical mass.

From Eq.~3.17!, the thermodynamical mass is given b
the horizon radius as

MT5
3p

8 F r 1
2 S 11e

r 1
2

,2 D 22 ln r 1G . ~3.25!

We depict theMT-r 1 relation in Fig. 1. We find that the
horizon radius is larger than that of the electrically charg
Reissner-Nordstro¨m black hole. We also show theMT-TBH
relation in Fig. 2. From Eqs.~3.22! and ~3.24!, we find

dTBH

dMT
52

2

3p2r 1
3

123/r 1
2 22er 1

2 /,2

121/r 1
2 12er 1

2 /,2
, ~3.26!

which gives a turning point where the specific heat chan
its sign. For the case ofe50, the specific heat is positive i
1,r 1,A3 but becomes negative forr 1.A3. @The corre-
sponding critical value for thermodynamical mass is o
tained via Eq.~3.25!.# For the case ofe51, if ,<2A6, the
specific heat is always positive. If,.2A6, the specific hea
is positive in r 1cr,r 1,r 2ch and in r 1.r 1ch, while it is
negative inr 2ch,r 1,r 1ch, where

TABLE I. Types of horizon. I, E, C, and D denote an inne
event, cosmological, and degenerate horizon, respectively.
means no horizon.Mcr , Mmin , andMmax are defined in the text.

e50 M,1 0
M51 D
M.1 I, E

e51 M,Mcr 0
M5Mcr D
Mcr,M I, E

e521, ,.2A2 M,Mmin I
M5Mmin I, D

Mmin,M,Mmax I, E, C
M5Mmax D, C
M.Mmax C

e521, ,<2A2 C
10401
r

-
it

lt

d

s
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r 6ch5
,

2 S 16A12
24

,2D 1/2

. ~3.27!

For the case ofe521, the specific heat is positive inr 2cr
,r 1,r ch, while it is negative forr ch,r 1<r 1cr , where

r ch5
,

2 S 211A11
24

,2D 1/2

. ~3.28!

’’

FIG. 1. MT-r 1 relation. The horizon radiusr 1 is depicted in
terms of the thermodynamical massMT for e50 ande51 by the
solid and dotted lines, respectively. That for the Reissner-Nordst¨m
solution with the same charge fore50 ande51 is given by the
dashed and dot-dashed lines as reference, respectively.

FIG. 2. MT-TBH relation. The solid line depicts the relation fo
e50, while the dotted and dashed lines represent those fore51
with ,56.0 and,54.0, and the dot-dashed line corresponds to t
for e521 with ,55.0.
2-5
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IV. NUMERICAL SOLUTIONS

Just as in four dimensions@8,9,12,14#, we can find the
nontrivial structure of a self-gravitating Yang-Mills field. W
obtain those solutions numerically. We discuss two case
particle solution and a black hole, separately. Here, we a
lyze only the case ofe50 or 1.

A. Particle solution

In the case of a particle solution, we have to impose re
larity at the originr 50. Since Eqs.~2.19!–~2.22! are invari-
ant under the transformation ofw→2w, we can setw(0)
.0 without loss of generality. Expandingm and w around
r 50, we find the behavior near the origin as

m~r !54b2r 41O~r 5!, ~4.1!

d~r !524b2r 21
4

3
b2S 4e

,2
23b28b2D r 41O~r 5!, ~4.2!

w~r !511br22
b

6 S 4e

,2
23b28b2D r 41O~r 5! ~4.3!

with one free parameterb. Using this boundary condition, w
integrate the basic equations by the Runge-Kutta metho

For the case ofe50, we find solutions whose metrics a
regular in the whole spacetime and approach the Minkow
metric asr→` for bmin,b,0, wherebmin'20.635607.
We show the numerical results in Figs. 3–5.

The potential functionw is oscillating between61 and
the mass functionm is increasing without bound just as
step function. As we show in Appendix B, there is no fin

FIG. 3. The metric functiond(r ) for a particlelike solution with
e50. The solid, dotted, and dashed lines depict those forb5
20.01, 20.1, and20.5, respectively.
10401
a
a-

-

ki

mass particlelike solution. The mass function increases
ln r asymptotically just like the analytic solution~3.5!. The
period of oscillation ofw is the same as that of the steps inm
and it is constant in terms of lnr. This behavior is easily
understood by solving the basic equations in the asympt
far region (r→`); the analytic forms are given in Appendi
C. We can check that the asymptotic solution is consist
with our numerical solutions. The oscillations ofw and the

FIG. 4. The mass functionm(r ) for a particlelike solution with
e50. The solid, dotted, and dashed lines depict those forb5
20.01, 20.1, and20.5, respectively.

FIG. 5. The potential functionw(r ) for a particlelike solution
with e50. The solid, dotted, and dashed lines depict those fob
520.01, 20.1, and20.5, respectively.
2-6
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periodic steps inm are caused by an infinite number of in
stantons~see Appendix C!.

For the case ofe51, we also find a regular solutio
for bmin,b,0. bmin depends on, and decreases as, de-
creases. For example,bmin'20.644036 for,510, bmin'
21.105002 for,51. We show the numerical results in Fig
6–8.

FIG. 6. The metric functiond(r ) for a particlelike solution with
e51. The solid, dotted, and dashed lines depict those forb5
20.01, 20.1, and20.5, respectively. We set,510.

FIG. 7. The mass functionm(r ) for a particlelike solution with
e51. The solid, dotted, and dashed lines depict those forb5
20.01, 20.1, and20.5, respectively. We set,510.
10401
In this case, the potentialw does not oscillate and con
verges to some valuew` ; thus the number of nodes is finite
The mass function increases monotonically as

m→2~12w`
2 !2 ln r ~4.4!

as r→`. This behavior is also understood by solving t
asymptotic solution, which is given in Appendix C.

B. Black hole solution

Next we show a nontrivial black hole solution. To find
black hole solution, we have to impose a boundary condit
at a horizonr h . The horizon is defined byf (r h)50, which
gives

m~r h!5r h
2S 11e

r h
2

,2D . ~4.5!

Here we setd(r h)50. The proper time of the observer a
infinity @i.e., d(`)50] is obtained by the transformationt8
5e2d(`)t. From Eq.~2.22!, w8(r h) has to satisfy

w8~r h!52
wh~12wh

2!

r h@112er h
2/,22~12wh

2!2/r h
2#

, ~4.6!

wherewh5w(r h). There is only one free parameterwh for a
given value ofr h . Since Eqs.~2.19!–~2.22! are invariant
under the transformationw→2w, we can setwh.0 without
loss of generality.

For the solution withwh.1, we find that the curvature
diverges at a finite distance. Then we obtain a numer
solution for 0<wh<1 for a givenr h . We show the results in
Figs. 9–11.

FIG. 8. The potential functionw(r ) for a particlelike solution
with e51. The solid, dotted, and dashed lines depict those fob
520.01, 20.1, and20.5, respectively. We set,510.
2-7
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The asymptotic behavior is similar to that of the partic
solution. The potentialw oscillates infinitely with a constan
period in terms of lnr. For any solutions with 0,wh,1, we
find that the mass functionm(r ) diverges as lnr at large
distance.

We also show the case withe51 in Figs. 12–14. This

FIG. 9. The metric functiond(r ) for a black hole solution with
e50. The solid, dotted, and dashed lines depict those forwh

50.99, 0.9, and 0.5, respectively.

FIG. 10. The mass functionm(r ) for a black hole solution with
e50. The solid, dotted, and dashed lines depict those forwh

50.99, 0.9, and 0.5, respectively.
10401
also shows similar asymptotic behaviors to those of a part
solution withe51.

As for the thermodynamical properties, we find th
Hawking temperature as

TBH5
ed(`)

2pr h
F12

~12wh
2!2

r h
2 12e

r h
2

,2G , ~4.7!

FIG. 11. The potential functionw(r ) for a black hole solution
with e50. The solid, dotted, and dashed lines depict those forwh

50.99, 0.9, and 0.5, respectively.

FIG. 12. The metric functiond(r ) for a black hole solution with
e51. The solid, dotted, and dashed lines depict those forwh

50.99, 0.9, and 0.5, respectively. We set,510.
2-8
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FIVE-DIMENSIONAL BLACK HOLE AND PARTICLE . . . PHYSICAL REVIEW D 67, 104012 ~2003!
whered(`) comes from our coordinate condition, that is, w
setd(r h)50. The thermodynamical massMT is found from
the first law of black hole thermodynamics,dMT5T dS
1F dQ. In order to calculateMT , fixing w`5w(`), we
obtain a black hole solution because the ‘‘global charge’
proportional to (12w`

2 ). The result is shown in Fig. 15.

FIG. 13. The mass functionm(r ) for a black hole solution with
e51. The solid, dotted, and dashed lines depict those forwh

50.99, 0.9, and 0.5, respectively. We set,510.

FIG. 14. The potential functionw(r ) for a black hole solution
with e51. The solid, dotted, and dashed lines depict those forwh

50.99, 0.9, and 0.5, respectively. We set,510.
10401
s

We numerically confirm that the thermodynamical ma
MT is equal to

MT5 lim
r→`

3p

8
@m22~12w2!2 ln r #. ~4.8!

V. STABILITY

In this section, we analyze the stability of the static so
tions obtained above. We perturb the metric and potentia

m~r ,t !5m0~r !1m1~r !eivt, ~5.1!

d~r ,t !5d0~r !1d1~r !eivt, ~5.2!

w~r ,t !5w0~r !1w1~r !eivt, ~5.3!

wherem0(r ), d0(r ), andw0(r ) are those of the static solu
tion obtained in the previous section. Substituting them i
the Einstein equations and Yang-Mills equation, we find
perturbation equations as

m1852r F2 f 0w08w182
w08

2

r 2
m12

4~12w0
2!w0

r 2
w1G , ~5.4!

m154r f 0w08w1 , ~5.5!

d1852
4

r
w08w18 , ~5.6!

and

FIG. 15. Ther h-MT relation. The solid, dotted, and dashed lin
depict those forw`50.9, 0.5, and 0.0~analytic solution!.
2-9
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2
1

r 3
~r f 0e2d0w08!8 f 0

21m12 f 0e2d0w08S 1

r 2
f 0

21m11d1D 8

1
1

r
~r f 0e2d0w18!81

2

r 2
e2d0~123w0

2!w1

52v2f 0
21ed0w1 , ~5.7!

where f 0512m0(r )/r 21er 2/,2. Equation~5.4! is derived
from Eq. ~5.5! by differentiation.

We introduce a tortoise coordinater * such that

dr*
dr

5ed0f 0
21 ~5.8!

and definex5w1r 1/2. Then, by substituting Eqs.~5.4!–~5.6!,
Eq. ~5.7! turns out to be the single uncoupled equation

2
d2x

dr
*
2

1V~r * !x5v2x, ~5.9!

where

V~r * !5 f 0e2d0H 2

r 2
e2d0~3w0

221!1
r 21/2

2
~r 21/2f 0e2d0!8

1
4

r
@ f 0e2d0w08

2#8J . ~5.10!

WhenV(r * ) is positive definite, we can prove its stabilit
as follows. Multiplying Eq.~5.9! by x̄ and integrating from
r 5r 1 (r * 52`) in the case of a black hole solution orr
50 (r * 50) in the case of a particle solution tor 5` @r *
5r * ,max(,`)#, Eq. ~5.9! is written as

2F x̄ dx

dr*
G

r 5r 1(or 0)

r 5`

1E FU dx

dr*
U2

1V~r !uxu2Gdr*

5v2E uxu2 dr* . ~5.11!

We assume thatw1→0 at infinity @r→`(r * →r * ,max)#.
Then x̄ dx/dr* →0. In the case of a black hole,x must be
ingoing at the horizon@r 5r 1 (r * 52`)#. Since the poten-
tial V vanishes at the horizon, the ingoing wave conditi
gives x;eivr

* . If we assume that Imv,0, then
x̄ dx/dr* →0 at the horizon is obtained. BecauseV(r ) is
positive definite, Eq.~5.11! implies that the eigenvaluev is
real, that is, Imv50, which contradicts the above assum
tion. Hence, we conclude that Imv>0, which means tha
the present system is stable. In the case of a particle solu
we should imposew150 at the origin@r 50 (r * 50)#; then
we find x̄ dx/dr* →0. If V(r ) is positive definite, Eq.~5.11!
again implies that the eigenvaluev is real. Hence, in both
cases, we obtain the result that solutions with a positive d
nite potentialV(r * ) are stable.

For the analytic solution~3.5!, we find
10401
-

n,

fi-

V~r * !5
f 0

4r 4F5M24110 lnr 29r 213e
r 4

,2G . ~5.12!

In the case ofe50 or 21, V(r * ) is negative at large dis
tance r, while, in the case ofe51, we see thatV(r * ) is
positive definite for sufficiently largeM, i.e., for

M.
1

5 S 4210 lnr p19r p
223

r p
4

,2D , ~5.13!

wherer p5(92A812120/,2),/12 and,.A40/27.
For the numerical solutions, we also find a positive de

nite potentialV(r * ) only for the case ofe51. For a particle
solution, for example, a positive definite potential is found
the parameter range of20.010368,b,0 for ,510 and
20.654211,b,0 for ,51. We depict some typical poten
tials in Figs. 16 and 17.

If V(r * ) is positive definite, we conclude that the syste
is stable; however, we cannot predict anything ifV(r * ) is
not positive definite. We have to solve Eqs.~5.4!–~5.7! as an
eigenvalue problem numerically. We leave this to futu
work and in this paper we do not discuss it further.

VI. SUMMARY AND DISCUSSION

In this paper we have studied a spherically symme
Einstein–SU~2!–Yang-Mills system in five dimensions. I
we consider only the ‘‘electric part’’ of the Yang-Mills field
we find the five-dimensional Reissner-Nordstro¨m black hole
solution. As for the ‘‘magnetic part’’ of the Yang-Mills field
apart from a trivial Schwarzschild~Schwarzschild–de Sitte
or Schwarzschild–anti de Sitter! solution, we find a non-
trivial analytic solution, which corresponds to a magnetica
charged black hole.~It turns out to be just the Reissne

FIG. 16. PotentialV(r * ) for e50. The solid and dotted lines
denote those forb520.01 andb520.1. There is a negative re
gion @V(r * ),0# for both potentials.
2-10
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FIVE-DIMENSIONAL BLACK HOLE AND PARTICLE . . . PHYSICAL REVIEW D 67, 104012 ~2003!
Nordström solution in the four-dimensional case.! This non-
trivial solution shows that the gravitational ‘‘mass’’ is infinit
and the spacetime does not satisfy asymptotically flat,
Sitter, or anti–de Sitter conditions, in contrast to the case
four dimensions. However, its metric approaches either
Minkowski or de Sitter~or anti–de Sitter! metric. We also
find that there is no singularity except one at the origin wh
is covered by a horizon. Hence we call its behavior at infin
‘‘quasiasymptotically’’ flat, de Sitter, or anti–de Sitter an
we regard our solution as a localized object. We analyze
spacetime structure and thermodynamical properties. T
show that the mass parameterM in the solution can be re
garded as a thermodynamical mass, which satisfies the
law of the black hole thermodynamics.

For the case with zero or negative cosmological const
we also find numerically particlelike solutions, which ha
no singularity, and black hole solutions with nontrivial stru
tures of the Yang-Mills field. Although, for both cases, t
mass function diverges as lnr, they satisfy ‘‘quasiasymptoti-
cally’’ flat or anti–de Sitter conditions. IfL50, in contrast
to the case of four dimensions, the Yang-Mills field oscilla
and has an infinite number of nodes. For a negative cos
logical constant, the Yang-Mills field potential settles
some constant, which is similar to that in the fou
dimensional case.

From the stability analysis, we find that there is a set
stable solutions if a cosmological constant is negative. T
result is very similar to the four-dimensional case, in whi
the Bartnik-McKinnon solution and a colored black hole a
unstable, while those extended to the case with a nega
cosmological constant become stable.

Since we find a stable nonsingular solution in the fi
dimensions, if we apply it to a brane world scenario, we m

FIG. 17. PotentialV(r * ) for e51. The solid and dotted lines
denote those forb520.01 andb520.1. There is a negative re
gion @V(r * ),0# for b520.1 but the result is positive definite fo
b520.01. We set,510.
10401
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find some interesting effect on the brane dynamics. We w
publish its analysis in a separate paper.
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APPENDIX A: FIVE-DIMENSIONAL SPHERICALLY
SYMMETRIC SU „2… GAUGE FIELD

Here we calculate a generic form of the spherically sy
metric SU~2! Yang-Mills field in five-dimensional spacetime
In the case of four dimensions, Witten gave its generic fo
@25#, which was called the Witten ansatz and proved
Forgác and Manton@26#. Forgác and Manton showed how to
find a generic form of the spherically symmetric Yang-Mil
field in arbitrary dimensions. We just follow their method.

Suppose we have some symmetry of spacetime gener
by a vectorhW . A tensor field must be invariant under a
infinitesimal transformation generated byhW , i.e., the Lie de-
rivative of this tensor field with respect tohW must vanish.
However, in the case of a gauge fieldAm , there is gauge
freedom by which we can weaken this condition such t
there exists an infinitesimal gauge transformation equiva
to a spacetime transformation, that is,

£hW Am5DmW[]mW2@Am ,W# ~A1!

for some scalar fieldW @27#.
Suppose that aD-dimensional Riemannian manifoldM

has some spacetime symmetry represented byN-dimensional
isometry groupS. This isometry group is generated byN
Killing vectors jW (n) (1<n<N), with commutation relations
given by

@jW (m) ,jW (n)#
m5 f mnpj (p)

m , ~A2!

where f mnp is a structure constant. We assume that
orbit X5$apPM uaPS% for some point pPM is an
N8-dimensional submanifold ofM. Then we choose the loca
coordinate system as

xm5~xi ,ya!, 1< i<D2N8, 1<a<N8 ~A3!

so that a hypersurface ofxi5const defines the orbit spaceX.
By Frobenius’ theorem, the above Killing vectors are o
thogonal toX; thenj (n)

m 5(0,j (n)
a ) in this coordinate system

Because the isometry group is anN-dimensional Lie
group, we can define right and left invariant vectors (jW (n)

R and

jW (n)
L ) as

£jW
(n)
R s5sJ(n), £jW

(n)
L s52J(n)s ~A4!
2-11
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N. OKUYAMA AND K. MAEDA PHYSICAL REVIEW D 67, 104012 ~2003!
for any sPS, whereJ(n) is the generator of the Lie groupS
associated with the Killing vectorjW (n) . Then bothjW (n)

R and

jW (n)
L have the same commutation relations as those ofjW (n) .

We also define the covariant vector fieldsj (n)â
R ,j (n)â

L by

j (m)â
R

j (n)
Râ5dmn , j (m)â

L
j (n)

Lâ 5dmn . ~A5!

For a fixed pointqPX, R5$aPSuaq5q%,S is an in-
variant subgroup ofS with dimensionN2N8, and the quo-
tient groupS/R is diffeomorphic toX. So we can adopt the
same coordinatesya in X for the cosetRsPS/R. We take the
other coordinate components to be expressed byyv(1<v
<N2N8), corresponding to those of the isotropy groupR. If
we fix the origins0(ya)PRs(ya) for each coset in a smoot
way, then any elements of S is written uniquely with coor-
dinatesyâ5(yv,ya) as

s~yâ!5r ~yv!s0~ya! ~A6!

for somer PR. In these coordinates, the right invariant ve
tor jW (n)

R is expressed with Killing vectorjW (n) as

j (n)
Râ5~j (n)

Rv ,j (n)
a !. ~A7!

By the above definition, we find a generic form of th
gauge potentialAm(xm) with a gauge symmetryG and a
spacetime symmetryS as

Ai~xi ,ya!5Ai~xi !, Aa~xi ,ya!5Fn~xi !j (n)a
L ~ya!uyv5y

0
v,

~A8!

whereAi(x
i) andFn(xi) satisfy the conditions

f mnpFp1@Fm ,Fn#50~;m,;n.N8!,

] iFn2@Ai ,Fn#50~;i ,;n.N8!, ~A9!

andyv5y0
v is a coordinate component of a unit element

the isotropy groupR. Incidentally,Wn in Eq. ~A1! are ob-
tained as

Wn~xi ,ya!52Fm~xi !j (n)
Rv~ya!j (m)v

L ~ya!uyv5y
0
v. ~A10!
10401
f

Applying this formalism, the five-dimensional spherical
symmetric SU~2! gauge field, we obtain a generic form o
the gauge potentialAm(xm). We assume that the isometr
group is SO~4!. In the coordinate system~2.4!, the orbitX is
given ast,r 5const, and thenxm is divided into xi5(t,r )
andya5(c,u,w).

The Killing vectors are given by

jW (1)5~0,0,2cosu,cotc sinu,0!,

jW (2)5S 0,0,2sinu cosw,2cotc cosu cosw,
cotc sinw

sinu D ,

jW (3)5S 0,0,2sinu sinw,2cotc cosu sinw,

2
cotc cosw

sinu D ,

jW (4)5~0,0,0,2cosw,cotu sinw!,

jW (5)5~0,0,0,2sinw,2cotu cosw!,

jW (6)5~0,0,0,0,21!, ~A11!

and the structure constantsf mnp are found to be

f 12451, f 13551, f 23651, f 45651, ~A12!

with the other components totally antisymmetrized.
Next we adopt the local coordinate system which satis

Eq. ~A6! in SO~4!. It is given as a four-dimensional Eule
angle (a,b,x,c,u,w) by

s~a,b,x,c,u,w!5r ~a,b,x!s0~c,u,w!

5Rxy~a!Ryz~b!Rxy~x!Rzu~c!

3Ryz~u!Rxy~w!, ~A13!

whereRpq denotes a rotation matrix of thepq plane. Note
that Rxy(a)Ryz(b)Rxy(x) describes any element of an iso
ropy groupR.

In this coordinate system, the right invariant vectorjWn
R and

the covariant left invariant vectorjWn
L are
j (1)
Râ5S 2

sinx sinu

sinb sinc
,2

cosx sinu

sinc
,
cotb sinx sinu

sinc
,2cosu,cotc sinu,0D ,

j (2)
Râ5S cosx sinw1sinx cosu cosw

sinb sinc
,2

sinx sinw2cosx cosu cosw

sinc
,

2
cotb sinx cosu cosw1~cosc cotu1cotb cosx!sinw

sinc
,

2sinu cosw,2cotc cosu cosw,
cotc sinw

sinu D ,
2-12
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j (3)
Râ5S 2

cosx cosw2sinx cosu sinw

sinb sinc
,
sinx cosw1cosx cosu sinw

sinc
,

2
cotb sinx cosu sinw2~cosc cotu1cotb cosx!cosw

sinc
,

2sinu sinw,2cotc cosu sinw,2
cotc cosw

sinu D ,

j (4)
Râ5S 0,0,2

sinw

sinu
,0,2cosw,cotu sinw D ,

j (5)
Râ5S 0,0,

cosw

sinu
,0,2sinw,2cotu cosw D ,

j (6)
Râ5~0,0,0,0,0,21!, ~A14!

and

j (1)â
L

5~0,0,0,cosb,sinb cosx sinc,sinb sinx sinc sinu!,

j (2)â
L

5~0,0,0,2cosa sinb,2sina sinx sinc1cosa cosb cosx sinc,

sina cosx sinc sinu1cosa cosb sinx sinc sinu!,

j (3)â
L

5~0,0,0,sina sinb,2cosa sinx sinc2sina cosb cosx sinc,

cosa cosx sinc sinu2sina cosb sinx sinc sinu!,

j (4)â
L

5~0,cosa,sina sinb,0,cosa cosx cosc2sina cosb sinx cosc,

sina sinb cosu1cosa sinx cosc sinu1sina cosb cosx cosc sinu!,

j (5)â
L

5~0,2sina,cosa sinb,0,2sina cosx cosc2cosa cosb sinx cosc,

cosa sinb cosu2sina sinx cosc sinu1cosa cosb cosx cosc sinu!,

j (6)â
L

5~1,0,cosb,0,sinb sinx cosc,cosb cosu2sinb cosx cosc sinu!. ~A15!
th
e

Equations~A9! are given as

f mnpFp
a1«abcFm

b Fn
c50

~a51,2,3;m51, . . . ,6;n54,5,6!,

] iFn
a2«abcAi

bFn
c50 ~a51,2,3;i 5t,r ;n54,5,6!.

~A16!

This set of equations has two types of solutions; one is
‘‘electric’’ type and the other is the ‘‘magnetic’’ one. Th
former type is given by

At
a5~0,0,At!, Ar

a5~0,0,Ar !, and Fm
a 50,

~A17!

leading to the potential form

A5t3~At dt1Ar dr !. ~A18!
10401
e

Using the gauge freedom, we can setAr50. The ‘‘electric’’
type of potential is now given by

A5t3A~ t,r !dt. ~A19!

The latter type of solution is given by

At
a5~0,0,Ẋ!, Ar

a5~0,0,X8!,

F1
a5~0,0,f!, F2

a56~f cosX,f sinX,0!,

F3
a5~f sinX,2f cosX,0!, ~A20!

F4
a56~sinX,2cosX,0!, F5

a52~cosX,sinX,0!,

F6
a5~0,0,61!.

We then obtain a general form ofAm
a as
2-13
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A5t3~Ẋ dt1X8 dr1fdc1cosu dw!

1cosc@~t1 sinX2t2 cosX!du

2~t1 cosX1t2 sinX!sinu dw#

1f sinc@~t1 cosX1t2 sinX!du

1~t1 sinX2t2 cosX!sinu dw#. ~A21!

X is not a dynamical variable but it is regarded as a ga
variable. In fact, the field strengthFmn

a is given by

F5t3@ḟ dt`dc1f8 dr`dc

2~12f2!~sincdu!`~sinc sinu dw!#

1~t1 cosX1t2 sinX!@ḟ dt`~sinc du!

1f8 dr`~sinc du!1~12f2!dc`~sinc sinu dw!#

1~t1 sinX2t2 cosX!@ḟ dt`~sinc sinu dw!

1f8 dr`~sinc sinu dw!2~12f2!dc`~sinc du!#.

~A22!

Rotating thet1-t2 plane of the interior space by2X, the
variableX is eliminated. If we chooseX50, we find

A5t3~f dc1cosu dw!2cosc@t2 du1t1 sinu dw#

1f sinc@t1 du2t2 sinu dw#,

F5t3@ḟ dt`dc1f8 dr`dc

2~12f2!~sinc du!`~sinc sinu dw!#

1t1@ḟ dt`~sinc du!1f8 dr`~sinc du!

1~12f2!dc`~sinc sinu dw!#

2t2@ḟ dt`~sinc sinu dw!

1f8 dr`~sinc sinu dw!

2~12f2!dc`~sinc du!#. ~A23!

APPENDIX B: NONEXISTENCE OF FINITE MASS
OBJECT „LÏ0…

Here we show that there is no particlelike solution w
finite mass ifL<0 (e50 or 1!.

Introducing the new variable

z52 ln r , ~B1!

we rewrite the basic equations~3.1! and~3.3! with Eq. ~3.2!
as

dm

dz
54 f S dw

dzD 2

1~12w2!2, ~B2!
10401
e

f
d2w

dz2
1Fe2zm1

e

,2
ez2e2z~12w2!2G dw

dz
1

1

2
w~12w2!

50 ~B3!

with

f 512e2zm1
e

,2
ez, ~B4!

where the functiond is eliminated.
If we turn off gravity, that is, if we consider the Yang

Mills field equation in Minkowski space, we have one bas
equation

d2w

dz2
2e2z~12w2!2

dw

dz
1

1

2
w~12w2!50. ~B5!

This is easily integrated as

1

2 S dw

dzD 2

2
1

8
~12w2!25E0 , ~B6!

whereE0 is an integration constant. Integrating this equati
with the boundary conditionw→61 asz→2` (r→0) and
z→` (r→`), which impliesE050, we obtain the solution
for w as

w56tanh
z

2
. ~B7!

This is exactly the same as the Yang-Mills instanton solut
in four-dimensional Euclidean spacetime@28#. If we regard

U~z!52
1

8
~12w2!2 ~B8!

as a potential, Eq.~B6! just denotes energy conservation. T
instanton corresponds to the zero energy solution, in whicw
varies from61 to 71 asz52`→`.

When we include the effect of gravity, do we still hav
such a nontrivial structure or not? This is our question.
this appendix, we will show that there is no self-gravitati
nontrivial solution with a finite mass energy. To discuss th
we introduce the energy functionE by

E5
1

2
f S dw

dzD 2

2
1

8
~12w2!2. ~B9!

The basic equations~B2! and ~B3! are described by

dE

dz
524e2zS dw

dzD 2FE1
m

8
1

e

8,2
e2zG , ~B10!

dm

dz
58E12~12w2!2. ~B11!
2-14



ich
s

n.

ity
x

ee

.

ss

tem
e
eric
e
lytic

on-
e

FIVE-DIMENSIONAL BLACK HOLE AND PARTICLE . . . PHYSICAL REVIEW D 67, 104012 ~2003!
Since we are interested in a particlelike solution, wh
must be regular at the origin, we can expand the functionm
andw as

m5m1ez1m2e2z1m3e3z1•••,

w511w1ez1w2e2z1w3e3z1••• ~B12!

as z→2`(r→0). Inserting this form into Eqs.~B2! and
~B3!, we find the expansion coefficients as

m150, m254w1
2 , m352

4e

,2
w1

21
16

3
w1

3~11w1!,

w252
2e

3,2
w11

w1
2

6
~318w1!,

w35
e2

2,4
w12

e

8,2
w1

2~5124w1!

1
w1

3

4
~118w1!~112w1!, ~B13!

wherew1 is a free parameter.
Putting those relations into Eqs.~B9! and ~B12!, we find

E52
1

6
w1

2e3zS e

,2
14w1

2D , ~B14!

m54w1
2e2z. ~B15!

For e50 or 1, E→20 andm→10 asz→2`. The right-
hand side of Eq.~B11! is positive definite because

8E12~12w2!254 f S dw

dzD 2

1~12w2!2, ~B16!

and f .0 should be imposed for a particlelike solutio
Hence, the mass functionm is also positive definite.

Next, we analyze the behavior of the solution near infin
(z→`). If the mass function does not diverge, we can e
pandm andw as

m5M01M 1e2z1M 2e22z1M3e23z1•••,

w5211W 1e2z1W 2e22z1W 3e23z1•••, ~B17!

asz→`.
From the basic equations, we find the relations betw

the expansion coefficients as

M150, M2524W 1
2 ,

M35
4

3
W 1

2~4W123M0!,

W25
2

3
M0W12

1

2
W 1

2 ,
10401
-

n

W35
W1

8
~4M 0

225M0W112W 1
2! ~B18!

for e50, and

M1524
W 1

2

,2
M252

8

,2
W1W2 ,

M352
2

3
W 1

2~4M023W1!, W250,

W35
,2

12
W1~4M023W1! ~B19!

for e51. Here,M0 andW1 are free parameters.
Using those relations, the energy functionE near infinity

is evaluated as

E5
1

6
e23zW 1

21•••→10 ~B20!

for e50 and

E5
1

2,2
e2zW 1

21•••→10 ~B21!

for e51.
SinceE→20 near the origin whileE→10 at infinity, if

the solution is regular everywhere,E must vanish at some
finite point (z0) anddE/dz>0 there. On the other hand, Eq
~B10! yields dE/dz<0 sinceE(z0)50 andm(z0).0. As a
result, we havedE/dz(z0)50. Using Eq. ~B10!, we
then find dw/dz(z0)50. E(z0)50 with this equation im-
pliesw(z0)561. Solving the basic equations~B2! and~B3!
with the above initial values atz0 @w(z0)561,dw/dz(z0)
50,m(z0)5positive and finite#, we find a trivial solution
@w(z)561,m(z)5a positive constant#. We conclude that
there is no nontrivial particlelike solution with a finite ma
for L<0.

APPENDIX C: ASYMPTOTIC SOLUTION „LÏ0…

We present the asymptotic solution of the present sys
with L<0. As we proved for a particlelike solution in th
previous appendix and numerically solved for a more gen
case, the mass functionm seems to diverge. Here we solv
the basic equations with some ansatz and find the ana
solution in the asymptotically far region.

First, we consider the case ofe50. As our ansatz, we
adopt

m'MLz, ~C1!

which is suggested from numerical solutions and also c
firmed from the following result. The basic equation for th
Yang-Mills field is now written as
2-15
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d2w

dz2 1e2zm
dw

dz
1

1

2
w~12w2!'

d2w

dz2 1
1

2
w~12w2!50

~C2!

asz→`. We can integrate this equation as

1

2 S dw

dzD 2

2
1

8
~12w2!25E0 , ~C3!

where E0 is an integration constant and denotes
asymptotic value of the energy.E0 must be negative, other
wise w diverges asz→`.

Rewriting Eq.~C3!, we find

dw

dz
56

1

2
A8E01~12w2!2

56
1

2
A~w2

2 2w2!2~w1
2 2w2!2, ~C4!

where

w65A162A22E0, ~C5!

which is integrated as

w56w2snS w1

2
z,kD , ~C6!

where k5w2 /w1 . w is oscillating in a potentialU(z)5
2 1

8(12w2)2 with a negative energyE0.
In order to check our ansatz, we also solve the mass fu

tion with the above solution ofw. The mass functionm is
obtained by integration of Eq.~B11!, that is,

m5E dz@8E012~12w2!2#

5m0z14w1w2
2 Ew1z/2

dx@~12k2!cn2~x,k!

1k2cn4~x,k!#, ~C7!

where m058E012(12w2
2 )2528E05(12w2

2 )2. The in-
tegration of the functions cn2 and cn4 is evaluated by the
elliptic functions as

E dx cn2~x,k!

5
1

k2 F2~12k2!x

1
E„sin21@sn~x,k!#,k…3@12k2 sn2~x,k!#

dn2~x,k!
G ,
10401
e

c-

E dx cn4~x,k!

5
1

3k2 @~12k2!x1cn~x,k!dn~x,k!sn~x,k!#

1F2~2k221!

3k4 S 2~12k2!x

1
E„sin21@sn~x,k!#,k…3@12k2 sn2~x,k!#

dn2~x,k!
D G .

~C8!

These functions increase with oscillations asz→`. When
we take an average of these functions over the period
oscillation, the averaged values are linearly increasing
our ansatz~C1!.

Dividing these functions into two parts~linear functions
and oscillating functions!, we find

m5MLz1
8A2k2

~11k2!3/2
DmS w1

2
z,kD , ~C9!

where

ML5
1

~11k2!2 @~12k2!218k2$~12k2!C21k2C4%#,

~C10!

Dm~x,k!5~12k2!E dx@cn2~x,k!2C2#

1k2E dx@cn4~x,k!2C4#, ~C11!

C25
1

K~k!
E

0

K(k)

dx cn2~x,k!,

C45
1

K~k!
E

0

K(k)

dx cn4~x,k!. ~C12!

The energyE0 and the amplitudew2 are found to be

E052
1

8 S 12k2

11k2D 2

,

w25
A2k

A11k2
~C13!

with k (0<k<1).
The asymptotic solution is then given by

w56w2snS w1

2
z,kD , ~C14!

m5MLz1
8A2k2

~11k2!3/2
DmS w1

2
z,kD . ~C15!
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Dm is a periodic function with a constant period, which
the z coordinate is

Dz5
8

w1
K~k!5

4p

w1
FS 1

2
,
1

2
,1,k2D , ~C16!

where

w15
A2

A11k2
. ~C17!

Note that if we take a limit ofk→1, E0→20, we re-
cover the instanton solution, that is,w is oscillating between
61. The width of one instanton (w;61→71) is given by
Dz/2, which diverges in this limit. However, this oscillatio
is repeated infinitely when the gravitational effect is i
cluded, that is, an infinite number of instantons appear in
present system. This is why the mass function diverges.

For the case ofe51 (L,0), sincef→,22, the equation
for w is now

d2w

dz2
1

dw

dz
1

,2

2
e2zw~12w2!'

d2w

dz2 1
dw

dz
50. ~C18!

Integrating this equation, we obtain that

Udw

dzU}e2z, ~C19!

which gives the asymptotic behavior ofw as

w5W01W 1e2z1•••. ~C20!

The equation form is

dm

dz
5

4

,2 S dw

dzD 2

1~12w2!2

'~12W 0
2!214W1FW1

,2
2W0~12W 0

2!Ge2z1•••

~C21!
. B

.

10401
e

and thenm is given by

m5MLz1M01M 1e2z1•••, ~C22!

where

ML5~12W 0
2!2,

M1524W1F 1

,2
W12W0~12W 0

2!G . ~C23!

The energy functionE is evaluated as

E5
1

2,2
e2zS dw

dzD 2

2
1

8
~12w2!2→2

1

8
~12W 0

2!2 ~5E0!.

~C24!

Since the damping rate of the energy is given by

dE

dz
524e2zS dw

dzD FE1
m

8
1

1

8,2
e2zG→2

1

2,2
W 1

2e2z,

~C25!

the energy damping ceases very soon. As a result, the en
of the system approaches some finite value (E0). This is
because the potential term drops exponentially while
adiabatic damping term remains. The solution does not
cillate because the potential term becomes ineffec
quickly.
d
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