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Five-dimensional black hole and particle solution with a non-Abelian gauge field
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We study the five-dimensional Einstein-Yang-Mills system with a cosmological constant. Assuming a spheri-
cally symmetric spacetime, we find a new analytic black hole solution, which approaches asymptotically
“quasi-Minkowski,” “quasi—anti-de Sitter,” or “quasi—de Sitter” spacetime depending on the sign of the
cosmological constant. Since there is no singularity except for the origin that is covered by an event horizon,
we regard it as a localized object. This solution corresponds to a magnetically charged black hole. We also
present a singularity-free particlelike solution and a nontrivial black hole solution numerically. Those solutions
correspond to the Bartnik-McKinnon solution and a colored black hole with a cosmological constant in four
dimensions. We analyze their asymptotic behavior, spacetime structures, and thermodynamical properties. We
show that there is a set of stable solutions if the cosmological constant is negative.
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[. INTRODUCTION nent in a fundamental theory. In four dimensions, Bartnik
and McKinnon found a particlelike solution as a globally
Recent progress in superstring theory shows that differeregular spacetime in a spherically symmetric Einstein-Yang-
string theories are connected with each other via dualitieMills system with SW2) gauge grou8]. Soon after, a col-
making them unified with M theory in 11 dimensiof].  ored black hole solution with a nontrivial non-Abelian struc-
This provides a motivation to study a higher-dimensionalture was also foun@]. These solutions were also extended
gravitational theory. String theory also predicts a boundaryto those in a system with a cosmological consfditt—12.
layer, abrane on which the edges of open strings stg@fi ~ From stability analysis, it turns out that solutions with zero
This suggests a new perspective in cosmology, that is, we a@ positive cosmological constant are unstafg], while
living in a brane world, which is a three-dimensional hyper-those with negative cosmological constant are stgi2el4).
surface in a higher-dimensional spacetime. In contrast witlsince a negative cosmological constant is naturally expected
the already familiar Kaluza-Klein picture in which we live in in a brane world scenario just as in the Randall-Sundrum
four-dimensional spacetime witkdimensional compactified model[15], the above fact is very interesting. In this paper,
“internal space,” our world view appears to be changedthen, we study a nontrivial particlelike solution or black hole
completely. Particles in the standard model are expected tsolution in five dimensions with a cosmological constant.
be confined to the brane, whereas the gravitons propagate in As for non-Abelian gauge fields in a bulk spacetime, al-
the entire bulk spacetime. though gauge interactions are confined on a brane and Yang-
In the brane world cosmological scenafi®], a higher- Mills fields are expected to exist only in the brane, if our
dimensional black hole solution plays an important role. Ouifive-dimensional spacetime is obtained as an effective theory,
Universe is just a domain wall expanding in the black holethis may not be the case. In fact, Lukesal. [16] showed
background spacetinié]. The black hole mass gives a con- that a U1) field appears in the effective five-dimensional
tribution to dark radiation through its tidal force. Hence, abulk spacetime, from dimensional reduction of the &ia-
higher-dimensional black hole or a globally regular solutionWitten model[1]. We may find non-Abelian gauge fields
with a cosmological constant is now a very interesting subfrom some other type of dimensional reduction of a unified
ject. In particular, in the context of the AdS conformal field theory.
theory (CFT) correspondencls] or proposed dS/CFT corre- There is another interesting point in discussing non-
spondence 6], since the five-dimensional Einstein gravity Abelian gauge fields in the bulk. Using a brane structure,
with a cosmological constant gives a description of four-new mechanisms of spontaneous symmetry breaking of
dimensional conformal field theory in the larlydimit, many ~ gauge interactions have been propogEd. In this picture,
authors study such localized objects in five dimensiall}s  the present standard modedU(3)x SU(2)x U(1)] is ob-
However, from the viewpoint of brane cosmology, a blacktained on the brane assuming some higher-symmetric gauge
hole solution has a singularity in a bulk spacetime, althoughnteractions such as ) in the bulk.
it is covered by a horizon. If a string theory or M theory is  Therefore, in this paper, we assume that a non-Abelian
fundamental, such a singularity should not exist. Then, if wegauge field appears in five-dimensional bulk spacetime. In
can construct some nonsingular object in the bulk spacetimé&ec. Il, we first derive the basic equations of a spherically
it might be a manifestation of singularity avoidance imma-symmetric Einstein-Yang-Mills system in five dimensions.
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With a spherically symmetric ansatz, the gauge potential of From Appendix A, we find a generic form of the spheri-
the SU2) Yang-Mills field is be decomposed into “electric” cally symmetric S{2) gauge potential. If we take only the

and “magnetic” parts; the derivation is given in Appendix A. “electric” part of the field, the gauge potential is given by
There is a nontrivial analytic solution in the case with aEq. (A19), which yields the basic equations as

“magnetic” field, which corresponds to a magnetically

charged black hole in four-dimensions. This analytic solution

r_—_ — 3 1 A0\ 2
and its properties are examined in Sec. Ill. We also present M= 3r (A€, 2.7
nontrivial particlelike and black hole solutions, which corre-
spond to the Bartnik-McKinnon type and colored black hole =0 2.9
type solutions in four dimensions, in Sec. IV. We also ana- ' '
lyze their stability in Sec. V. A summary and discussion fol- 5'=0 2.9
low in Sec. VI. ' '
A’e®)?] =0, 2.1
II. BASIC EQUATION ) )l (2.19
In order to find a black hole and particlelike solution of  S\2y E L s
the five-dimensional Einstein-Yang-Mills system, we first [(ATeD "+ r (A’e9)7=0, @19

write down the basic equations. The action is given by

S
~ 167 XV—0s

! (R—2A) ! TrF?|, (2.1
—(R—- ——TrFe|, (2.
Gs 9°

whereGs is a five-dimensional gravitational constant,is a
five-dimensional cosmological constant, agds a gauge
coupling constant. Now we assume that the gauge group
SU(2). F=F,,dx*/\dx” is the field strength of the gauge
field, which is described by the vector potentfe+ A , dx*
as

Fu=0d,A,—3d,A,—[A,A,] (2.2

Defining the five-dimensional Planck mass by=G;*

and the fundamental mass scale of the gauge fieldnpy
N2

=g
system, which is given by

EEEE

We will normalize the scale length by this
We consider a spherically symmetric five-dimensional
spacetime, whose metric is given by

Gs
-z

g

My

A
mg

(2.3

dr?

2 _ —20(t) Nt2 . .2 2

ds? x[ ftre 20 de st dﬂ}’
(2.9

where
w(t,r) 2

ftn=1-—"7"+e, 2.9
dQ3=dy?+sir? y(d6?+sir? 0de?), (2.6

where we sef\ = —6¢/(A€)? with e=0 or =1, correspond-
ing to the signature ol\, i.e.,e=1, 0, and—1 corresponds
to A<0, A=0, andA >0, respectively. Note thdt r, and
w are all dimensionless variables. We shall qala “mass”

, we introduce a typical length scale of the present

where the prime and overdot denote the partial derivatives
with respect tor andt, respectively. This equation gives a
Reissner-Nordstro type solution such as

2Q?
=M-—, 2.1
. u=M 3r? (2.12
5=0, (2.13
A=— Q (2.19

>

This result is the same as the case of four dimensions.

If the “magnetic” part of the gauge field, which is given
by Eg.(A22), appears, we find other basic equations as fol-
lows. Using the gauge freedom, we ¥et 0, resulting in the
gauge potentials as

A2=0, A?=0, (2.15
A%=(0,0W), (2.16
A%=(wsiny,—cosy,0), (2.17
AG=(—cosysing,—wsinysing,cosh), (2.18

where we seth=w(r,t). With the above ansatz, we find the
Einstein equations and Yang-Mills equation of the present
system as

) 2 e-1280 2, (17 %)2
wu'=2r| fw' s+ f e °w+ 2 , (2.19
w=4arfw’w, (2.20
’ 2 12 —2.28,),2
1) :_F[W +f e °w], (2.21)

function. € denotes the ratio of the length scale of the cos-

mological constant ta..

and
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1 2 .
F(rfe"sw’)’+r—ze*‘sw(l—wz)z(ffle‘sw)'. Ry, peRAPT— — (3.7)

mvpo €4
(2.22

asr—, This finite value just comes from the Ricci curva-
Equations(2.19—(2.22 look very similar to those in the ture. The metric form approaches
case of the four-dimensional Einstein-Yang-Mills system.
However, a small difference of the power exponentrof
brings a large difference in the behavior of solutions, as we f(r—1+e 2 (3.9
will see later.

r2

asr—oo, These spherically symmetric and static spacetimes
ll. ANALYTIC SOLUTIONS are singular only at =0, and seem to approach a “maxi-
mally symmetric spacetime.” Therefore we may recognize
the metric as a localized object in such a “maximally sym-
metric spacetime.”

However, we have to analyze the asymptotic behaviors
more carefully. The asymptotic flathess condition is math-
, (3.2 ematically defined using the conformal transformation. We

can also extend this formulation to an asymptotically de Sit-
ter (or anti—-de Sitter spacetime as well as to a higher-
, 2, dimensional spacetime.
0'=- P (3.2 In an asymptotically flat spacetime, we can naturally de-
fine the mass of an isolated object, which is called the
Arnowitt-Deser-MisnefADM) mass[18]. It is defined by

Now we look for a “magnetic” type static solution of the
system(2.19—(2.22. Dropping the time derivative terms,
we find the basic equations as

(1-w?)?

12
fw'c+ 5

u'=2r

r

1 2
F(rfe’ﬁw’)’+—Ze*‘sw(l—wz)zo. (3.3
r

1 . -
GsM aom =75 fﬁ dSlghi—7"9h] (3.9
The above differential equation@.1)—(3.3) have two 0
analytic solutions. One analytic solution is in five-dimensional spacetime, wherg,,, is the Minkowski
. _ _ metric andh,,=g,,— 7,,. dS is an infinitesimal surface
w==1 p=M, =0, S element of spacelike infinity,. For the present nontrivial
which corresponds to the Schwarzschild or thesolution withe=0, we find
Schwarzschild—anti de Sittéor de Sittey spacetime, whose
properties are well known. GsM ppy= |
;

3
: o im—X\2(M+2Inr) (3.10
Another analytic solution is given by » 8

—

w=0, u=M+2Inr, 6=0. (3.5  which diverges as In The coefficient 3r/8 appears just be-

cause Eq(2.19 vyields
This solution has a nontrivial geometry. In four-dimensional

spacetime, this type of solution describes the Reissner- 0

Nordstran type geometry with a magnetic charge. In five- H="g" f do[—=T]. (3.11
dimensional spacetime, a 2rnterm appears in the mass

function w. Although o diverges, the metric itself ap- For e=—1, if the spacetime is asymptotically de Sitter, we
proaches that of well-known symmetric spacetimes for eaclean also introduce a conserved mass, which is called the
€, i.e., the Minkowski, de Sitter, and anti—de Sitter space-Abbott-Deser mass defined §$9,20. If the spacetime is
times. We first study the properties of this solution in theasymptotically de Sitter,Mp=Mspy, Which diverges

following subsections. again as Im.
In a five-dimensional asymptotically anti—de Sitter space-
A. Asymptotic structure time, we can also define a conserved mass associated with a

g’melike Killing vector & at the three-spher@ on conformal

Since the mass function diverges, we have to analyzInfinity 7 as[21,22

carefully the asymptotic behaviors. For the cases0, the

Riemann curvature is finite except a0 and vanishes at N2¢
infinity as GsM{CJ:==— 167 i:éwgﬂ ds, (3.12
Inr\2 _ _ _
RupoeRHPT—28 ra (3.6  where€,, is the electric part of the Weyl tensor defined by
_ : - - 2
For the case o= =1, the Riemann curvature is also finite 5W::_2Cﬂpwnpna. (3.13

everywhere except at=0 and converges as
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Q is a conformal factor anah,=V,Q. In the case of the =1, the two horizons become degenerate and the black hole
Schwarzschild—anti de Sitter spacetifBed), this mass gives becomes extreme. IM<1 there is no horizon, so a naked
M. In the nontrivial solution, however, this quantity is cal- singularity appears.

culated on the three-sphe@with radiusr as

2.e=1
37 7 This case also has two horizons-r. (r_<r.) if M
=—)\? — = + \I- +
GsMC]= 8 N M2y 6| (3.14 > M. r. andr_ are an event horizon and an inner hori-

zon, respectively. The critical mass parametdy, is given

It diverges as Im asr— oo, by the horizon radius of the extreme case (), i.e.,
In any case, the “mass” is not finite, which means that the

“total energy” of the system is not finite. Therefore, strictly
speaking, we should not regard it as an isolated object. How-
ever, there is no singularity except et 0 and the metric
form itself approaches either the Minkowski or the de Sitterwhere
(anti—de Sitter one. Hence, we call it a “quasi-isolated”
object. We recall that we know a similar “isolated” object, €
i.e., the four-dimensional self-gravitating global monopole. r+cr:§
Its metric is described as

1
Mcr=§(1+ricr)_2|nr+cr, (3.18

1/2

8
—1+\/1+—

02 (3.19

B M, is always larger than unity and it approaches 1f¢as
ds’=—f(nd?+f(r) tdr’+r2dQ?% (319  _ o which corresponds to the case o£0. A timelike
singularity appears at=0. For the case of\l= M., the

wheref(r)zl—Zm(r)/rjl—a—ZM/r+O(1/r2). Inthis  plack hole is extreme, and fokt< M., the horizon disap-
case, the mass functiom(r) diverges asM+ar/2  pegrs,

+0O(1/r) asr—o. In fact the ADM mass diverges. Rescal-
ing the time and radial coordinates as»>(1— a)¥% andt 3. e=—1

—(1—a) Y2, we can rewrite the metric form as . . .
If a cosmological constant is positive, we expect a cosmo-

ds2= — f(r)dt2+f(r)"1dr2+ (1— a)r2d0? 31 logical horizon just as in a de Sitter spacetime. In fact, we
") ") rH(d-ar (3.19 always find at least one horizon. #£>2+/2 and

wheref(r)=1-2M/r with M=M(1—«a) %2 This space- Mpin< M< M maxs (3.20
time looks asymptotically flat but has a deficit angle Nu-
camendi and Sudarsky showed that this spacetime is asymphere Min=0(r +¢;) and Mpma=9(r_¢,) with g(r)=r?
totically simple but not asymptotically empty23]. They  —2Inr—r%¢? and
called it a “quasiasymptotically flat” spacetime and defined
a new mass for a spacetime with a deficit angle, which is a ¢ 8 2
generalization of the ADM mass, using the first law of black Fea=5| 1=\ 13| (3.21
hole thermodynamics. d

In our case, the mass function diverges as, Which is we find three horizong,  (<r_o)<r, (<r.g)<fe. T,

less divergent than the case with a deficit angleif five : . !
r., andr. are an inner, event, and cosmological horizon,

dimensiong Then we can also call such a spacetime a “qua- ; _ . )
siasymptotically” flat or “quasiasymptotically” de Sitter respectively. WheoV{= Mgy, the inner and event horizons

s . . become degenerate(=r ), while if M= M, the event
(anti—de Sitter spacetime. and cosmological horizons coincide,(=r.). In the limit of
0—22, Mpin=Muma=M=3/2-In2~0.80685, and

B. Spacetime structure: Horizon and singularity then the three horizons become degenerateMor M., .

This solution has a horizon, where For other cases, we have only one horizon. The singular-
ity at r=0 becomes naked. We summarize the types of ho-
M+2Inr  r? rizon in Table I.
f(r)=1——2+sﬁ=0. (3.17
r

C. Thermodynamical properties

We study those horizons and the singularity separately for Next we shall look at the thermodynamical properties.
each value of. The Hawking temperature is easily calculated from the regu-
larity condition at the event horizdr24]. We find

1.e=0
2
In this case, if_/\/l>1, Eqg. (3.17 has t_wo rootsr Tone 1 1__17+26r_+. (322
=r. (r_<r,), which correspond to two horizons; cor- 2l rey £?

responds to an event horizon, while is an inner horizon. A
timelike singularity appears at=0. For the case of\ The entropyS=A/4 is given by
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TABLE |. Types of horizon. I, E, C, and D denote an inner, 6

event, cosmological, and degenerate horizon, respectively. “0”
means no horizonM,, Mpi,, and M., are defined in the text.
e=0 M<1 0 i
M=1 D 4 el
M>1 I, E ot
e=1 M<Mg 0 ey
M= M, D Iy 3 // -
Mg<M I, E ’,”
e=—1, (=22 M< Mo | ) pav [ —
M= Mpin I, D . een e s I
Mpin< M<Mpnax ILE C ,'l_. ';--:..—
M= Mmax D, C 1 Lo
M>Mmax Cc
e=—1, (=22 C 0
0 5 10 15 20 25 30
1 Mo
_— .23
S= 2 ™ (323 FIG. 1. M4-r, relation. The horizon radius, is depicted in

terms of the thermodynamical makk; for e=0 ande=1 by the
because the volume of a unit three-sphereﬁg.ZSince the solid and dotted lines, respectively. That for the Reissner-Nomistro
solution does not satisfy the asymptotically flat or de Sitterselution with the same charge fer=0 ande=1 is given by the
(or anti—de Sitter conditions, we cannot define the gravita- dashed and dot-dashed lines as reference, respectively.

tional mass. However, if we use the first law of thermody- 2
namics just as in the case of a global monopole with a deficit ; _ﬁ 1+ [, E‘ (3.27
angle[23], we can define the thermodynamical mass as o =~ 2] '

dM;=T dS+d dQ. We find
For the case ot= —1, the specific heat is positive in_,

3 <r,<r¢, While it is negative for .,<r,.<r,., where
MT:?M, (3.24) + ch g ch -1%—/2 +cr
4

where the integration constant is set to zero. This result rChZE

shows that the mass parametét essentially denotes the

thermodynamical mass. 0.2 — T
From Eq.(3.17), the thermodynamical mass is given by [

the horizon radius as

24
—1+\/1+ =

= (3.28

0.15 I
. (325 i -

3
M=%

g
r2 1+eﬁ —2Inr,

0.1 e T T

We depict theM+-r, relation in Fig. 1. We find that the I -7
horizon radius is larger than that of the electrically charged "pa [ /e s ]
Reissner-Nordstr black hole. We also show thd +-Tgy [
relation in Fig. 2. From Eqg3.22 and(3.24), we find 0.05 A

d Ty 2 1-3/r%—2er?/¢? (3.26 [ i N,
== , . 0 !
dMr 3723 1-1k2 +2er?/6? :

which gives a turning point where the specific heat changes

its sign. For the case af=0, the specific heat is positive in 005 = T T
1<r, <3 but becomes negative for.>/3. [The corre- M

sponding critical value for thermodynamical mass is ob- T

tained via Eq(3.25.] For the case of=1, if £<26, the FIG. 2. M1-Tgy relation. The solid line depicts the relation for
specific heat is always positive. 4£>2/6, the specific heat ¢=0, while the dotted and dashed lines represent thosedt

is positive inr o <r, <r_g,and inr,>r, ., while itis  with £=6.0 andf=4.0, and the dot-dashed line corresponds to that
negative inr _4,<r , <r,,, where for e=—1 with €=5.0.
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0.1 1 10 100 1000 r
r

FIG. 4. The mass functiop(r) for a particlelike solution with
e=0. The solid, dotted, and dashed lines depict thosebfer
—0.01, —0.1, and—0.5, respectively.

FIG. 3. The metric functiord(r) for a particlelike solution with
e=0. The solid, dotted, and dashed lines depict thosebfer
—0.01, —0.1, and—0.5, respectively.

mass particlelike solution. The mass function increases as
Inr asymptotically just like the analytic solutiof3.5). The
Just as in four dimensions8,9,12,14, we can find the period of oscillation ofwv is the same as that of the stepsuin
nontrivial structure of a self-gravitating Yang-Mills field. We and it is constant in terms of m This behavior is easily
obtain those solutions numerically. We discuss two cases; anderstood by solving the basic equations in the asymptotic
particle solution and a black hole, separately. Here, we andar region ¢ —); the analytic forms are given in Appendix
lyze only the case oé=0 or 1. C. We can check that the asymptotic solution is consistent
with our numerical solutions. The oscillations wfand the

IV. NUMERICAL SOLUTIONS

A. Particle solution

In the case of a particle solution, we have to impose regu- ' ' ' '
larity at the originr=0. Since Eqs(2.19—(2.22 are invari-
ant under the transformation @f— —w, we can setw(0)
>0 without loss of generality. Expanding andw around 1
r=0, we find the behavior near the origin as [
w(r)=4b%r*+0(r®), 4.1
0.5
4 [4e [
— 202 _Rh2| __ _ _ 2|4 5 w \ -
o(r)y=—4br +3b (62 3b—8b°|r*+0(r®), (4.2 i \ ‘ N ;
0 \ “ 'I N
b(a4 [ N ;Y
€ L \ . . N
w(r) =1+ br— 6<«2‘3b_8b2>”+0<r5> @3 - <\ S
-0.5 I :
with one free parametdx. Using this boundary condition, we . 1
integrate the basic equations by the Runge-Kutta method. J
For the case 0é=0, we find solutions whose metrics are
regular in the whole spacetime and approach the Minkowski -1 i "'i'o "'i'(')o : Iil(l)loo
metric asr—oo for b, <b<0, whereb,~—0.635607. r

We show the numerical results in Figs. 3-5.

The potential functiorw is oscillating betweent1 and FIG. 5. The potential functiomv(r) for a particlelike solution

the mass functioru is increasing without bound just as a with e=0. The solid, dotted, and dashed lines depict thosebfor
step function. As we show in Appendix B, there is no finite = -0.01, —0.1, and—0.5, respectively.
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1

T T
-~
,

-1

T T 7T
-

-2

2.5 PRI BT AT T T B E AT |
0.1 1 10 100 1000

r

FIG. 6. The metric functiord(r) for a particlelike solution with
e=1. The solid, dotted, and dashed lines depict thosebfer
—0.01, —0.1, and—0.5, respectively. We sét=10.

periodic steps inu are caused by an infinite number of in-
stantongsee Appendix €

For the case ofe=1, we also find a regular solution
for by,in<b<0. b, depends orf and decreases dsde-
creases. For exampl®,,,~ —0.644036 for{ =10, b~
—1.105002 for = 1. We show the numerical results in Figs.
6-8.

1 A —

20 |

15 |

-5 T R BT BT

0.1 1 10 100 1000
r

FIG. 7. The mass functiop(r) for a particlelike solution with
e=1. The solid, dotted, and dashed lines depict thosebfer
—0.01, —0.1, and—0.5, respectively. We sét=10.
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1 —

0.5

0.1 1 10 100 1000
r

FIG. 8. The potential functionv(r) for a particlelike solution
with e=1. The solid, dotted, and dashed lines depict thosebfor
=-0.01, - 0.1, and—0.5, respectively. We set=10.

In this case, the potential does not oscillate and con-
verges to some value,, ; thus the number of nodes is finite.
The mass function increases monotonically as

u—2(1-w?)?Inr (4.4

asr—o. This behavior is also understood by solving the
asymptotic solution, which is given in Appendix C.

B. Black hole solution

Next we show a nontrivial black hole solution. To find a
black hole solution, we have to impose a boundary condition
at a horizonry,. The horizon is defined b¥(r,)=0, which
gives

r2
M(rh)=rﬁ(1+e€2). (4.5

Here we se®(r,) =0. The proper time of the observer at
infinity [i.e., 5(0)=0] is obtained by the transformatidn
=e °()t. From Eq.(2.22), w’'(r},) has to satisfy

o Wi(1—w?2) s
Wi (ry)=— , .
Y nll+2er¥e2—(1-w)UrE]

wherew,=w(r). There is only one free parametgy, for a
given value ofry,. Since EQs.(2.19—(2.22 are invariant
under the transformatiomn— —w, we can setv,>0 without
loss of generality.

For the solution withw,>1, we find that the curvature
diverges at a finite distance. Then we obtain a numerical
solution for O<swp,=<1 for a givenry. We show the results in
Figs. 9-11.
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01 f [
- 0.5
I s
N 1 [\
0.2 M e S \ _
! \ P B o
1 - \ > A
0
-0.3 M ' 7 \ 4
L | \ Vs ~_ 7N
: l S -
-1
-0.4 4
[\ 0.5
-
o\
-0.5 %
[ ] _1- ol el il
-0.6 R 1 10 100 1000
1 10 100 1000 r
r
_ _ _ _ FIG. 11. The potential functiom(r) for a black hole solution
FIG. 9. The metric function5(r) for a black hole solution with  wijth e=0. The solid, dotted, and dashed lines depict thosevipr
€=0. The solid, dotted, and dashed lines depict thosewpr =0.99, 0.9, and 0.5, respectively.
=0.99, 0.9, and 0.5, respectively.

also shows similar asymptotic behaviors to those of a particle
The asymptotic behavior is similar to that of the particle solution withe=1.
solution. The potentialv oscillates infinitely with a constant ~ As for the thermodynamical properties, we find the
period in terms of Im. For any solutions with &w,<1, we  Hawking temperature as
find that the mass functiop(r) diverges as In at large

distance. - e’ 1_(1*Wﬁ)2+2 E @7
We also show the case with=1 in Figs. 12—14. This BH 27, r2 €2l :
25 —TT T —TT T —T T —rT 0 o — I |
20 I -0.1

X
1 e
R |
0.2 0
L
L1
&
-0.3
1
[ 1
[ 1
!
0.4 B
L\
-\
== - N e e Y o ___1
0 Ll TR | PR | L 0.5 Lt ] ] i
1 10 100 1000 1 10 100 1000

FIG. 10. The mass function(r) for a black hole solution with
e=0. The solid, dotted, and dashed lines depict thosewigr
=0.99, 0.9, and 0.5, respectively.

FIG. 12. The metric functiod(r) for a black hole solution with
e=1. The solid, dotted, and dashed lines depict thosewgr
=0.99, 0.9, and 0.5, respectively. We get 10.
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FIG. 13. The mass functiop(r) for a black hole solution with
e=1. The solid, dotted, and dashed lines depict thosewigr
=0.99, 0.9, and 0.5, respectively. We get 10.

FIG. 15. Ther,-M+ relation. The solid, dotted, and dashed lines
depict those fow,,=0.9, 0.5, and 0.@analytic solutiom.

We numerically confirm that the thermodynamical mass

wheres(=) comes from our coordinate condition, that is, we M is equal to

setd(rp) =0. The thermodynamical masé is found from 3

the first law of black hole thermodynamicdM{=T dS M= i e —2(1—w?)2| 4.8
+® dQ. In order to calculateM, fixing w,,=w(x), we T rTl g Lr—2(l=wi)Tinr]. .8
obtain a black hole solution because the “global charge” is

proportional to (:w?2). The result is shown in Fig. 15.
V. STABILITY

In this section, we analyze the stability of the static solu-

I ' I
tions obtained above. We perturb the metric and potential as
(1 1) = po(r) + py(r)e', (5.1
S(r,t)=8(r)+ 8y(r)e'", (5.2
) w(r,t)=wo(r)+wi(r)e', (5.3
.\ “ 1 .
w [\ . ] where ug(r), do(r), andwy(r) are those of the static solu-
L\ : ] tion obtained in the previous section. Substituting them into
[ ) ] the Einstein equations and Yang-Mills equation, we find the
0 \\ e perturbation equations as
\ . S g 1
~_Y : , Wt A(l-wywg
] p1=2r| 2fowowy — —- = —————wy |, (5.9
] r r
0.5 L 1l 1 i /.L1:4rf0W(,)Wl, (55)
1 10 100 1000
r 4
1= — —wiwiy, (5.6)
FIG. 14. The potential functiom(r) for a black hole solution r
with e=1. The solid, dotted, and dashed lines depict thosevipr
=0.99, 0.9, and 0.5, respectively. We get 10. and
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!

1 YT AN 2t — o/ 1 -1
_r_g("foe owg) ' fo “ua—foe™ “owg r_zfo M1t 01

1 S 2 ) 2
+ F(rfoe* ows)’ + —e o(1-3wg)w,
r

w?fy tedow,, (5.7
where fo=1— uy(r)/r2+ er?/€2. Equation(5.4) is derived
from Eq. (5.5 by differentiation.

We introduce a tortoise coordinatg such that

(5.9

and definey=w;r*2 Then, by substituting Eq$5.4)—(5.6),
Eq. (5.7) turns out to be the single uncoupled equation

dx

dr?

*

— —>+V(r,)x= o, (5.9

where

-1/2

2 r
V(r*)=f0e50{—2e50(3wg—1)+ (r=Y2foe %)’
r

(5.10

4
+ F[foe‘sow(’)z]’] :
WhenV/(r ) is positive definite, we can prove its stability
as follows. Multiplying Eq.(5.9) by y and integrating from
r=r, (r,=—=) in the case of a black hole solution or

=0 (r,=0) in the case of a particle solution te=o [r,
=Iy ma{<%®)], EQ. (5.9 is written as

] oot e

—x +f +V(r)|x|?|dr
[ dr* r=r(or0) dl’* *
=w2J |x|?dr, . (5.19)

We assume thatv;—0 at infinity [r—oo(r, —r, nad ]

Thenydy/dr,—0. In the case of a black holg, must be
ingoing at the horizofir=r, (r, =—=)]. Since the poten-
tial V vanishes at the horizon, the ingoing wave condition
gives y~e'“~. If we assume that Im<O0, then

x dx/dr,—0 at the horizon is obtained. Becaugér) is
positive definite, Eq(5.11) implies that the eigenvalue is
real, that is, Inw=0, which contradicts the above assump-
tion. Hence, we conclude that le=0, which means that
the present system is stable. In the case of a particle solutio
we should imposev; =0 at the origifr=0 (r, =0)]; then
we find y dy/dr,—0. If V(r) is positive definite, Eq(5.11)
again implies that the eigenvalue is real. Hence, in both

PHYSICAL REVIEW D 67, 104012 (2003

0.5 |

V*)

10 100
r

FIG. 16. PotentiaM(r,) for e=0. The solid and dotted lines
denote those fob=—0.01 andb=—0.1. There is a negative re-
gion[V(r,)<0] for both potentials.

f (4
V(r*)z4—:4{5/\/1—4+10Inr—9r2+36 (5.12

p .

In the case of=0 or —1, V(r,) is negative at large dis-
tancer, while, in the case ok=1, we see thav/(r,) is
positive definite for sufficiently large, i.e., for

4
p

1 r
2
M>§(4—10Inrp+9rp—3€2), (5.13

wherer ,=(9— V81— 120/?)€/12 and¢>/40/27.

For the numerical solutions, we also find a positive defi-
nite potential(r, ) only for the case ot=1. For a particle
solution, for example, a positive definite potential is found in
the parameter range of 0.010368b<0 for ¢{=10 and
—0.65421Kb<0 for ¢=1. We depict some typical poten-
tials in Figs. 16 and 17.

If V(r,) is positive definite, we conclude that the system
is stable; however, we cannot predict anything/{fr, ) is
not positive definite. We have to solve E¢5.4)—(5.7) as an
eigenvalue problem numerically. We leave this to future
work and in this paper we do not discuss it further.

VI. SUMMARY AND DISCUSSION

In this paper we have studied a spherically symmetric
Einstein—SW2)—Yang-Mills system in five dimensions. If
We consider only the “electric part” of the Yang-Mills field,
we find the five-dimensional Reissner-Nordstrblack hole
solution. As for the “magnetic part” of the Yang-Mills field,
apart from a trivial SchwarzschilSchwarzschild—de Sitter

cases, we obtain the result that solutions with a positive defier Schwarzschild—anti de Sitdesolution, we find a non-

nite potentialV(r, ) are stable.
For the analytic solutiori3.5), we find

trivial analytic solution, which corresponds to a magnetically
charged black hole(lt turns out to be just the Reissner-

104012-10
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I ] find some interesting effect on the brane dynamics. We will
. ; publish its analysis in a separate paper.
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APPENDIX A: FIVE-DIMENSIONAL SPHERICALLY
SYMMETRIC SU (2) GAUGE FIELD

Here we calculate a generic form of the spherically sym-
[ ] metric SU2) Yang-Mills field in five-dimensional spacetime.
05 Liais L ] In the case of four dimensions, Witten gave its generic form
1 10 100 [25], which was called the Witten ansatz and proved by
r Forga and Mantor]26]. Forga and Manton showed how to
find a generic form of the spherically symmetric Yang-Mills
denote those fob=—0.01 andb=—0.1. There is a negative re- flelgljgpac:sgr\z;yr?alc]:giﬁ]gséyx]e rri:zt)/fg?()svga'[::](aetlil;nn;eéglc’)lg;‘ate d
gion[V(r,)<0] for b=—0.1 but the result is positive definite for N
b=—0.01. We set =10. by a vectorz. A tensor field must be invariant under an

infinitesimal transformation generated By i.e., the Lie de-

Nordstran solution in the four-dimensional cas@his non-  fivative of this tensor field with respect tg must vanish.
trivial solution shows that the gravitational “mass” is infinite However, in the case of a gauge fiedd,, there is gauge

and the spacetime does not satisfy asymptotically flat, gfreedom by which we can weaken this condition such that

Sitter, or anti—de Sitter conditions, in contrast to the case O}here exists an infinitesimal gauge transformation equivalent

four dimensions. However, its metric approaches either thlP @ spacetime transformation, that is,
Minkowski or de Sitter(or anti—de Sitter metric. We also

find that there is no singularity except one at the origin which
is covered by a horizon. Hence we call its behavior at infinity

. ) . N . . . for some scalar fieldV [27].
quasiasymptotically” flat, de Sitter, or anti—-de Sitter and Suppose that ®-dimensional Riemannian manifoli

S some spacetime symmetry represented-dimensional

FIG. 17. PotentiaM(r,) for e=1. The solid and dotted lines

£,A,=D,W=9,W-[A, W] (A1)

show that the mass parametgt in the solution can be re-
garded as a thermodynamical mass, which satisfies the fir
law of the black hole thermodynamics.

For the case with zero or negative cosmological constant, - o
we also find numerically particlelike solutions, which have [€m) »Em )= Fmnpé(p) (A2)
no singularity, and black hole solutions with nontrivial struc-
tures of the Yang-Mills field. Although, for both cases, theWhere f,, is a structure constant. We assume that the
mass function diverges astnthey satisfy “quasiasymptoti- Orbit X={apeM[aeS} for some pointpeM is an
cally” flat or anti—de Sitter conditions. IA =0, in contrast N’-dir_nensional submanifold d¥l. Then we choose the local
to the case of four dimensions, the Yang-Mills field oscillatescoordinate system as
and has an infinite number of nodes. For a negative cosmo-

éilling vectors E(n) (1=n=N), with commutation relations
given by

logical constant, the Yang-Mills field potential settles to xt=(x,y*), 1<isD-N’, 1lsasN’' (A3)
some constant, which is similar to that in the four- _
dimensional case. so that a hypersurface a&f=const defines the orbit spae

From the stability analysis, we find that there is a set ofBy Frobenius’ theorem, the above Killing vectors are or-
stable solutions if a cosmological constant is negative. Thi¢hogonal toX; then £, = (0,§,,)) in this coordinate system.
result is very similar to the four-dimensional case, in which Because the isometry group is afdimensional Lie
the Bartnik-McKinnon solution and a colored black hole aregroup, we can define r|ght and left invariant Vectcﬁg& and
unstable, while those extended to the case with a negativg ) as
cosmological constant become stable. W)

Since we find a stable nonsingular solution in the five Y +n o n
dimensions, if we apply it to a brange world scenario, we may £§(Rn)S_SJ( g £§(Ln>s_ —30s (A4)
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for anyse S, whereJ(™ is the generator of the Lie group Applying this formalism, the five-dimensional spherically
associated with the Killing vectof(n) Then bothé(n) and Ssymmetric SW2) gauge field, we obtain a generic form of

the gauge potentiah,(x*). We assume that the isometric
g(”) have the same commutation relations as those(rgf group is S@4). In the coordinate systefi2.4), the orbitX is

We also define the covariant vector f'elg%) ’g(n)a given ast,r=const, and therx* is divided intox'=(t,r)
andy“=(#,0,¢).
§(m)a§(n) mn> f(m)af(n) (A5) The Killing vectors are given by
For a fixed pointge X, R={aeSlagq=q}CSis an in- £1)=(0,0,— cos,coty sin6,0),

variant subgroup o with dimensionN—N’, and the quo-

tient groupS/R is diffeomorphic toX. So we can adopt the R _ cotysing
same coordinateg® in X for the coseRse S/R. We take the é2)=| 0,0,—sind cosg, —coty cosé Cose.—<ing |’
other coordinate components to be expressed/tl<w
<N-N"), corresponding to those of the isotropy grdridf . _ . _
we fix the originsy(y®) e RY(y%) for each coset in a smooth  &(3)= ( 0,0,~sinésing, —coty cosd sineg,
way, then any elemerstof Sis written uniquely with coor-
dinatesy“=(y®,y%) as _ cotycose
. sing '
S(y“)=r(y*)so(y®) (AB) A
. N . =(0,0,0,- ,cotdsing),

for somer e R. In these coordinates, the right invariant vec- Ey=( cose,cotfsing)
tor g(Rn) is expressed with Killing vectog ) as 5(5):(0,0,0,_ sing, —cotf cose),

€05 = (€8 &), (A7) £6=(0,0,0,0--1), (A11)

By the above definition, we find a generic form of the and the structure constarttg,,, are found to be
gauge potentialA ,(x*) with a gauge symmetry§c and a
spacetime symmetr$ as fios=1, fias=1, fae=1, fase=1, (Al2)

A Yy =A(X),  A(XyY)=d (x) ek Y with the other components totally antisymmetrized.
(Y =A) XY =P myalylye-y Next we adopt the local coordinate system which satisfies
Eqg. (A6) in SQO(4). It is given as a four-dimensional Euler

A8 angle @.B.x.4,6.¢) by
whereA;(x') and®,(x) satisfy the conditions S(a, B,x, 1, 6,0) =1 (a, B, x)So( 1, 0,¢)
fmnp —I—[(I)m,(I)n] O(Vm n>N’), :ny(a)Ryz(B)ny(X)Rzu(‘p)
&, —[A,®,]1=0("i,Yn>N"), (A9) X Ry 0)Ryy(¢), (A13)

andy“=y¢ is a coordinate component of a unit element of whereR,, denotes a rotation matrix of theq plane. Note
the isotropy groupR. Incidentally, W, in Eq. (A1) are ob-  thatR(a)Ry(B)Ryy(x) describes any element of an isot-
tained as ropy groupR.

In this coordinate system, the right invariant veciBrand

I yay— i\ ¢Ro/\,ay L a ® N
Wa(X,y®) == ®n(X) Em) (Y émyo(Yyo=ye: (AL0) o ovariant left invariant vectdj, are

sinysind  cosysin@ cotBsiny sind

5(1) ( sinBsing’  sing siny

,—cosd,cotising,0],

Ry | COSYSing+siny cosfcose  siny sing—Ccosy cosf cose
ON sinBsiny ' siny ’
cotB siny cosf cose + (cosy cotH+ cot B cosy)sine

siny '
cotysing
siné

—sin @ cose, — coty cosh cose,
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_ COsy cOsp— siny cosf#sing siny COSg+ COSy COSH Sing
6G)= sinBsiny ’ siny ’

cotB siny cosd sing— (cosy cotf+cot B cosy)cose
siny '
coty cose
sing '

—sin@sing, — coty cosf sing, —
sing _
§(4) W’O'_ cosg,cotgsing |,

COS¢p .
€= g0 Sing, —cotd cose |,

5(6) (0,0,0,0,0+-1), (A14)
and

§(L1)&= (0,0,0,co8,sinB cosy siny,sinB siny siny sinh),

g(Lz)f (0,0,0,~cosa sin B, —sina siny sin ¢+ cosa cosB cosy Siny,

sina cosy siny sin @+ cosa cosB siny siny sin§),
g(LS)&z (0,0,0,sinx sin B, — cosa siny siny— sina cosB cosy sin i,
COSa COSY Siny sin@—sina cosB sin y sing sing),
g(ﬁ”&: (0,cosa,sina sin 8,0,c0sx COSy COSy— Sina cOSB Siny coSy,
Sina Sin B cos#+ cosa Siny COSy Sin 6+ Sina COSB COSy COSyY Sin6),
g(L5)&: (0,—sina, cosa sin B,0,— sina COSy COSy— COSa COSB Sin y COSYs,

COSa Sin B cosf— sina sin y cosy sin #+ coSa COSB CoSy COSy Sinb),

g(Le)&z (1,0,c0s8,0,sinB siny cosy,cosB cosf—sin B CoSy COSy sinb). (A15)

Equations(A9) are given as Using the gauge freedom, we can set=0. The “electric”
type of potential is now given b
franpPht e3P dE=0 ype ot ? g
A= r3A(t,r)dt. (A19)
(a=1,2,3m=1,...,6n=4,5,6),
The latter type of solution is given by
8, d3-g°APPC=0 (a=1,2,3i=t,r;n=45,6). ,
(A16) A?=(0,0,X), A?=(0,0,X"),

This set of equations has two types of solutions; one is the  §3=(0,04), ®3==* (¢ cosX,d sinX,0),
“electric” type and the other is the “magnetic” one. The

former type is given by 8= (¢ sinX, — ¢ cosX,0), (A20)
=(00A), A=(0.0A), and &g=0, = *(sinX,—cosX,0), ®&=—(cosX,sinX,0),
(A17)
leading to the potential form ®&=(0,0,+1).
A= 713(A dt+A, dr). (A18) We then obtain a general form élf‘L as
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A= r5(Xdt+ X' dr+ ¢dy+cosh de)
+cosyf (71 SINX— 75, cosX)d b
— (711 C0SX+ 15 sinX)sind de]
+ ¢ sinyf (74 cosX+ 7, sinX)dd

+ (71 SiINX— 15 cosX)sinf de]. (A21)

X is not a dynamical variable but it is regarded as a gauge

variable. In fact, the field strength,,, % is given by

F=r5[ ¢ dtA\dy+ ¢’ dr/A\dy
—(1—¢?)(sinygdO)/\(sinysindde)]
+ (71 C0SX+ 7, siNX)[ ¢ dt/\(siny d o)
+ o' dr/A(sing d@)+(1— ¢?)dy/\(singsindde)]
+ (71 SINX— 7, cosX)[ ¢ dt/\(sinysin 6 d)
+ ¢ dr/\(singsinfdde)—(1— ) dy/\(sinydo)].
(A22)

Rotating ther;-7, plane of the interior space by X, the
variableX is eliminated. If we choos&=0, we find

A=r13(¢pdiy+cosfde)—cosy| 7, do+ r,sinfdo]
+¢siny[ T, do—r,sinfde],

F=r[ ¢ dt\dy+ &' drAdy
—(1—¢?)(singde)/\(sinysindde)]
+m[ ¢ dt/\(singdg)+ ¢’ dr/\(siny de)
+(1— ¢?)dy/\(singsinfde)]

— [ pdt/\(sinygsinfde)
+ ¢ dr/\(singsinfde)

—(1— ) dy/\(singdo)]. (A23)

APPENDIX B: NONEXISTENCE OF FINITE MASS
OBJECT (A=<0)

Here we show that there is no particlelike solution with

finite mass ifA<0 (e=0 or 1).
Introducing the new variable
z=2lnr, (B1)

we rewrite the basic equatiori8.1) and(3.3) with Eq. (3.2
as

(B2)

PHYSICAL REVIEW D 67, 104012 (2003

fd2W e, ,oldw 1 1w
E'F e ,u+ﬁe—e (1—w?) E+§W( —W*)
=0 (B3)
with

€
f=1—-e Zu+ ﬁez, (B4)

where the functiors is eliminated.

If we turn off gravity, that is, if we consider the Yang-
Mills field equation in Minkowski space, we have one basic
equation

dw w22 L owe =0, @5
FEEI (1=wH)? gt ow(l-w9)=0.  (BS
This is easily integrated as
1/dw\? 1 -
51 az) “g1~WIH=Eo, (B6)

whereE, is an integration constant. Integrating this equation
with the boundary conditiow— +1 asz— —« (r—0) and
z—o (r—o0), which impliesgy=0, we obtain the solution
for w as

z
w= itanhi. (B7)

This is exactly the same as the Yang-Mills instanton solution
in four-dimensional Euclidean spacetirf28]. If we regard

U(Z)=—%(1—W2)2 (B8)

as a potential, EqB6) just denotes energy conservation. The
instanton corresponds to the zero energy solution, in wivich
varies from*=1 to ¥ 1 asz=—ow—o»,

When we include the effect of gravity, do we still have
such a nontrivial structure or not? This is our question. In
this appendix, we will show that there is no self-gravitating
nontrivial solution with a finite mass energy. To discuss this,
we introduce the energy functida by

S e . 1-w?)? B9
=54z §( we)“. (B9)
The basic equationd2) and (B3) are described by
B s e E | (a10
4z e 4z 3 @e ) (B10)
du
E=8E+2(1—W2)2. (B11)
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Since we are interested in a particlelike solution, which Wy ) )
must be regular at the origin, we can expand the functions Ws= -~ (4Mo =5 MW +2WV1) (B19)
andw as

- for e= n
M_Mlez+M2622+M3e3z+.”, or € 0, al d

W=1+W; €%+ WoeZ2+ Wae32+ - - - (B12) % 8

M1= —47 Mgz _ﬁWlWZ,
as z— —o(r—0). Inserting this form into Eqs(B2) and

(B3), we find the expansion coefficients as

2
Mg=— §W§(4MO—3W1), W,=0,

5 4e , 16 ,
m1=0, up=4wi, pz=-— EW1+ §W1(1+W1),
€2
2¢ W% Wgz 1_2W1(4M0_3W1) (Blg)
Wp=— —w;+ ?(3+8W1),
3¢ for e=1. Here,M, and W, are free parameters.
) Using those relations, the energy functiBmear infinity
€ € 2 is evaluated as
Wz=—w;— ——W7(5+ 24w
3 264 1 862 l( l)
1 a2
w3 E:6e Wi+ —+0 (B20)
+ T(1+ 8w;)(1+2w,), (B13)
) for e=0 and
wherew, is a free parameter.
Putting those relations into EqeB9) and (B12), we find 1
E=—e Wi+...—+0 (B21)
1 € 202
— 2.3z 2
E=-— gWie 2 +4W1) , (B14)
for e=1.
,u=4wiezz. (B15) SinceE— — 0 near the origin whil&E— + 0 at infinity, if

the solution is regular everywherg, must vanish at some
Fore=0 or 1,E——0 andu— +0 asz— —. The right- finite point (zo) anddE/dz=0 there. On the other hand, Eq.
hand side of Eq(B11) is positive definite because (B10) yieldsdE/dz=0 sinceE(zp) =0 andu(zp)>0. As a
result, we havedE/dz(zy)=0. Using Eg. (B10), we
22 then finddw/dz(zy)=0. E(zy)=0 with this equation im-
+(1-w%%  (B16) pliesw(zy) = £ 1. Solving the basic equatioriB2) and(B3)
with the above initial values aty [w(zy)= =1,dw/dz(zp)
and f>0 should be imposed for a particlelike solution. =0,u(zp) = positive and finit¢, we find a trivial solution
Hence, the mass functign is also positive definite. [w(z)==*1,u(z)=a positive constaft We conclude that
Next, we analyze the behavior of the solution near infinitythere is no nontrivial particlelike solution with a finite mass
(z—). If the mass function does not diverge, we can ex-for A<0.
pandu andw as

2

8E+2(1—w?)2=4f dw
(1-w)"= dz

_ _ _ APPENDIX C: ASYMPTOTIC SOLUTION (A=<O0
w=Mo+ M+ Moe 22+ Mge 32+ ... ( )

We present the asymptotic solution of the present system
w=—1+Wie 24+ W,oe #?+Wze ¥+..., (B17)  with A<O. As we proved for a particlelike solution in the
previous appendix and numerically solved for a more generic

asz—x. _ . _ . case, the mass functigm seems to diverge. Here we solve
From the basic equations, we find the relations betweefne pasic equations with some ansatz and find the analytic
the expansion coefficients as solution in the asymptotically far region.
First, we consider the case e=0. As our ansatz, we
My=0, Mp=—4Wi, adopt

4
M3=§W§(4W1—3M0), u~M,z, (CD
which is suggested from numerical solutions and also con-
W= EM Wi — }Wz firmed from the following result. The basic equation for the
27 g7ror ot Yang-Mills field is now written as
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d?w dw 1 d®w 1
JZ e ’U“d +ow(l- w)~—z_¢—+ ~w(1-w?)=0
(C2
asz—o. We can integrate this equation as
1/dw\? 1 -
3l az] “gt—w)=Eo, (C3

where Ey, is an integration constant and denotes the
asymptotic value of the energl, must be negative, other-

wise w diverges ag— .
Rewriting Eq.(C3), we find

Wl BEr (i w??
Gz T7V8EeH(1-w)
1
=25V (W2 —Wh) AW —w)?, (c4
where
W.=V1+2-2E,, (C5)
which is integrated as
Wy
w= iw_sr(Tz,k), (Co)

wherek=w_/w, . w is oscillating in a potential(z)=
—3(1—w?)? with a negative energg,.

In order to check our ansatz, we also solve the mass func-
tion with the above solution ofv. The mass functionu is

obtained by integration of EqB11), that is,

w= f dZ8E,+2(1—w?)?]

w z/2
=Moz+4w+wz,f dx[ (1—k?)cré(x,k)

+k%enf(x,k) ], (C7)

where po=8Ey+2(1—w?)?=—8E,=(1—w?)?. The in-
tegration of the functions énand cff is evaluated by the

elliptic functions as
f dxcr?(x,k)

—(1-K?)x

. E(sin Y[snx,k)],k)X[1—k?srf(x,k)]
dré(x,k)
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f dx crt(x,k)

= gel(1- k?)x+ cn(x,k)dn(x,k)sn(x,k)]
2(2k2 1)

3 —(1-k?)x

E(sm Ysn(x,k)],K) % [1—K? sré(x, k)])
dré(x,k)

(C8)

These functions increase with oscillations mas «. When
we take an average of these functions over the period of
oscillation, the averaged values are linearly increasing like
our ansatACl).

Dividing these functions into two partdinear functions
and oscillating functions we find

8\/—k2 (w+ k)'

(C9
where

M= =g [ (1- K2+ 8K{(1—K) Gy KPC .

(11K
(C10
D,u(x,k)z(l—kz)f dx[cr?(x,k) — C,]
+k2f dx[erf(x,k)—C,], (C11)
1 K(k)
C,= Wfo dxcr(x,k),
1 K(k)
C,= WL dxcrf(x,k). (C12

The energyE, and the amplitudev_ are found to be

o 1[1-K%?
0= gl1re)
J2k
w_= C13
J1+Kk2 (13
with k (0=<k=1).
The asymptotic solution is then given by
Wy
Wztw_sr(Tz,k), (C19
8/2k? W,
u=Mz+ 1+ k2)3/2D'““( 5 zk). (C1H
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D is a periodic function with a constant period, which in and thenu is given by

the z coordinate is

az= Skpo=2Te(L e C16
Z—W—+ ()_W_+ E,E, ) y ( )
where
V2
w, = (C17)

Vi+k2

Note that if we take a limit ok—1, E;— —0, we re-

cover the instanton solution, that is,is oscillating between

+1. The width of one instantorw(~ = 1— +1) is given by

Az/2, which diverges in this limit. However, this oscillation
is repeated infinitely when the gravitational effect is in-

cluded, that is, an infinite number of instantons appear in the

present system. This is why the mass function diverges.
For the case oé=1 (A<0), sincef —¢€ 2, the equation
for wis now

d>w  dw €2 d>w dw

EJF FERL w(1—w2)~d—22+ 9;-0 (19
Integrating this equation, we obtain that
dw|
a4z xe”? (C19
which gives the asymptotic behavior wfas
w=Wot+Wqe -, (C20
The equation fo is
2
Z—/;= %(Z—VZV +(1-w?)?
~(1-W§)2+4wW, %—wo(l—wg) e+
(C21

/.L:MLZ+M0+M 1e_Z+ ceey, (C22)
where
M=(1-Wp)?,
1 2
M1:_4W1 ;Wl_WO(l_WO) . (C23)
The energy functiork is evaluated as
e L dw)? P I
=502° laz —g(1-w)T= =3 (1=-Wp)" (=Eo).
(C24
Since the damping rate of the energy is given by
dE dw nwo1 1
_ -z =, 7 J2z T I\M24—2
dz 4de 4z E+ 8 +8€2e 2ezwle ,
(C25

the energy damping ceases very soon. As a result, the energy
of the system approaches some finite val&®g)( This is
because the potential term drops exponentially while the
adiabatic damping term remains. The solution does not os-
cillate because the potential term becomes ineffective
quickly.
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