
PHYSICAL REVIEW D 67, 104010 ~2003!
Magnetic extraction of black hole rotational energy: Method and results of general relativistic
magnetohydrodynamic simulations in Kerr space-time

Shinji Koide*
Department of Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan

~Received 4 October 2002; published 19 May 2003!

We present the complete numerical method of general relativistic magnetohydrodynamic simulations in Kerr
space-time, and then apply those techniques to the basic astrophysical problem of activity near a Kerr black
hole immersed in a plasma with a large-scale magnetic field. Our numerical results show that a torsional Alfven
wave is generated in the ergosphere of the Kerr black hole. This wave propagates outward along the magnetic
field lines, extracting rotational energy from the plasma in the ergosphere. If the magnetic field is strong
enough, the plasma energy in the ergosphere rapidly decreases and eventually becomes negative. When this
negative energy plasma is swallowed by the black hole, the total energy of the black hole decreases, spinning
it down. This energy extraction mechanism is similar to the ‘‘Penrose process,’’ in which the negative energy
also plays an important role. The difference between the two is the force that causes the redistribution of the
angular momentum~which is necessary to produce the negative energy!. In the Penrose process, elementary
particle interactions cause the redistribution, while in the present case it is performed by magnetic tension.

DOI: 10.1103/PhysRevD.67.104010 PACS number~s!: 04.25.Dm, 04.70.2s, 52.30.Cv, 97.60.Lf
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I. INTRODUCTION

Relativistic jets are often ejected from active objects
the universe. Superluminal motion, for example, has b
observed not only from quasars and active galactic nu
~AGNs! @1,2#, but also from binary systems in our Galax
such as GRS19151105 and GRO J1655-40@3,4#. Recently
the most powerful explosions in the universe, gamma-
bursts~GRBs!, have been explained by extremely high Lo
entz factor jets@5#. It is believed that such relativistic jets ar
formed near the black hole. Furthermore, because it is v
difficult for any black hole to be formed with exactly zer
angular momentum, it is believed that most black holes
tate. In fact, some measurements of black hole rotation s
gest that most black holes rotate rapidly@6#. Two kinds of
energy are available for generating a jet from a rotat
~Kerr! black hole. One is the rotational energy of the acc
tion disk around the black hole and the other is the rotatio
energy of the Kerr black hole itself. In the latter case, it is
complex interaction between the rotating black hole and
strongly magnetized plasma around it that creates the rel
istic jet engine. In this process, magnetic extraction of bla
hole rotational energy is the fundamental driver.

Extraction of Kerr black hole rotational energy was fir
proposed by Penrose@7#. He considered relativistic particl
fission (0→112) in the black hole’s ergosphere. If the a
gular momentum of particle 2 is opposite to that of the bla
hole, and large enough, then the energy-at-infinity of part
2 will be negative. And, because the total energy-at-infin
is conserved, the energy-at-infinity of particle 1 will be larg
than that of the injected particle 0. When particle 2~with the
negative energy-at-infinity! is swallowed by the black hole
and particle 1 is ejected, the total energy of the black h
decreases and the energy of the ejected particle outside
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ergosphere increases. That is, rotational energy of the b
hole has been extracted and imparted to particle 1. It sho
be noted that the propagation of material, energy, and in
mation across the black hole horizon is only inward towa
the black hole. That is, causality at the horizon is one-way
the Penrose process, the falling of a negative energy
infinity particle through the horizon transports energy o
ward, extracting black hole rotational energy and obey
causality. Unfortunately, this process is not directly app
cable to astrophysical jets for two reasons. In the Penr
process, the particle is accelerated in a direction perpend
lar to the Kerr black hole rotation axis, creating a distributi
of accelerated particles in the shape of a disk, not a
Furthermore, the mechanism requires frequent relativi
fission in the ergosphere in order to create the observed
This is not astrophysically plausible, as it requires the acc
tion of large amounts of fissionable material.

Blandford and Znajek investigated magnetospheres
Kerr black holes and derived a force-free, static solution
the electromagnetic field@8#. Their results show that electro
magnetic energy is radiated from the black hole horizon
rectly, and the generated power can be large enough to
plain observed astrophysical jets, if the magnetic field
strong enough. However, if we consider the dynamics
magnetic extraction of Kerr black hole rotational energy,
rect energy radiation from the black hole appears to be
consistent with causality at the horizon. A similar argume
but with respect to the flow critical points such as the ma
netohydrodynamic~MHD! fast point, and not the horizon
itself, was also presented by@9#. We discuss the Blandford
Znajek mechanism below, comparing it to our simulati
results, and show that it indeed satisfies causality at the
rizon.

To investigate the dynamics of electromagnetic extract
of black hole rotational energy, we have performed gene
relativistic magnetohydrodynamic~GRMHD! simulations of
a rather simple system that involves a strong magnetic fi
thin plasma, and a Kerr black hole@10#. The purpose of this
©2003 The American Physical Society10-1
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paper is to present the entire GRMHD numerical method
Kerr space-time and, as an application, to show the detai
magnetic energy extraction from a Kerr black hole.

The reader will find the GRMHD equations in this pap
are very similar to the non-relativistic MHD ones. Therefo
it is not that difficult to develop a GRMHD numerical cod
by modifying a non-relativistic MHD code. Non-relativisti
MHD simulations have a long history, and various use
methods have been developed. Using the present form o
GRMHD equations in this paper, we are able to take adv
tage of much of this excellent previous work. The most c
cial difference between GRMHD and non-relativistic MH
is the treatment of the displacement current. In no
relativistic MHD, the latter is negligible, while even in th
special relativistic cases, it cannot be neglected. To calcu
the displacement current, we must calculate the time ev
tion of the electric field or extrapolate the electric field fro
the previous variables. These are difficult to calculate w
out significant numerical error. Therefore, in GRMHD, acc
rate calculation of the electric current densityJ is difficult
while in non-relativistic MHDJ can be calculated easily
Here we use the conservation form of the GRMHD eq
tions. In this case, we do not need to calculate the elec
current and displacement current explicitly if the electric
sistivity is negligible. This is much easier than using form
of the GRMHD equations that explicitly include the electr
current densityJ.

The organization of this paper is as follows: in Sec. II w
present the basic equations of GRMHD in Kerr space-tim
In Sec. III, we illustrate the numerical method used in t
simulations in this paper. The application of the numeri
method, the detailed mechanism of magnetohydrodyna
extraction of Kerr black hole rotational energy, is shown
Sec. IV. A summary is briefly presented in Sec. V.

II. BASIC EQUATIONS

A. Four-dimensional form of GRMHD equations

GRMHD numerical methods are required in order
study the complex evolution of plasmas around a black h
This method is based on the general relativistic formulat
of the laws of particle number, energy-momentum, Maxw
equations, and Ohm’s law with zero electrical resistan
~ideal MHD condition! in curved space-time@11–15#. Here
we will neglect radiation cooling effects, electric resistivit
plasma viscosity, and self-gravity in order to study the fu
damentals of the interaction of Kerr black hole, magne
field, and plasma. The space-time, (x0,x1,x2,x3)
5(ct,x1,x2,x3) is described by a metric,gmn , where the line
element,ds is given by (ds)25gmndxmdxn. Here, Greek
subscripts such asm or n run from 0 to 3, andc is the speed
of light. The basic equations of GRMHD in four-dimension
space-time are

“n~rUn!5
1

A2igi

]

]xn
~A2igirUn!50, ~1!
10401
n
of

,

l
he
n-
-

-

te
u-

-
-

-
ic
-

.

l
ic

e.
n
ll
e

-
c

l

“nTmn5
1

A2igi

]

]xn
~A2igiTmn!1Gsn

m Tsn50, ~2!

]mFnl1]nFlm1]lFmn50, ~3!

“mFmn52m0Jn, ~4!

wherem0 is the magnetic permeability in a vacuum;igi is
the determinant of the matrix with elementsgmn ; Gmn

l

[ 1
2 gls(2]gmn /]xs1]gns /]xm1]gsm /]xn) are the

Christoffel symbols;¹n is the covariant derivative@34#. Here,
Un andJn5(cre,J1,J2,J3) are the four-velocity and electric
four-current density, respectively (re is the electric charge
density!; the general relativistic energy momentum tens
Tmn is given by

Tmn5pgmn1~eint1p!UmUn1Fs
mFns2

1

4
gmnFlkFlk ,

~5!

whereFmn is the electromagnetic field-strength tensor,Fmn

5]mAn2]nAm and Am5(fe/c,A1,A2,A3) is four-vector
potential (fe is the electro-static potential!. The electric field
Ei and the magnetic fieldBi are given by Ei5cFi0 ( i
51,2,3) and B15F23, B25F31, B35F12, respectively.
Scalar values,r, p, andeint are proper mass density, prop
pressure, and proper internal energy density,eint5rc2

1p/(G21), respectively, whereG is the specific-heat ratio
In addition to the equations, we assume the infinite elec
conductivity condition:

FmnUn50. ~6!

Using this condition, Eqs.~1!–~3! close self-consistently
Equation~4! is used only to calculate the four-current dens
Jm.

We assume that the off-diagonal spatial elements of
metric gmn vanish:

gi j 50 ~ iÞ j !. ~7!

Here Roman indices (i , j ) run from 1 to 3. If we write

g0052h0
2 , gii 5hi

2 , ~8!

gi05g0i52hi
2v i /c, ~9!

then the scale of a small element in space-time is given

~ds!25gmndxmdxn

52h0
2~cdt!21(

i 51

3

@hi
2~dxi !222hi

2v idtdxi #.

~10!

When we define the lapse functiona and ‘‘shift velocity’’
~shift vector! b i as

a5Ah0
21(

i 51

3 S hiv i

c D 2

, ~11!
0-2
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b i5
hiv i

ca
, ~12!

the line elementds is written as

~ds!252a2~cdt!21(
i 51

3

~hidxi2cb iadt!2. ~13!

The determinantigi is given byA2igi5ah1h2h3, and the
contravariant metric is written explicitly as

g0052
1

a2
, ~14!

gi05g0i52
1

a2

v i

c
, ~15!

gi j 5
1

hihj
~d i j 2b ib j !, ~16!

whered i j is the Kronecker’sd symbol.

B. Kerr space-time

A Kerr black hole has two characteristic parameters:
massM and its angular momentumJ. We often use the rota
tion parametera5J/Jmax, whereJmax5GM2/c is the angu-
lar momentum of a maximumly rotating black hole wi
massM (G56.67310211 Nm2/kg2 is the gravitational con-
stant!. In the Boyer-Lindquist coordinates, (x0,x1,x2,x3)
5(ct,r ,u,f), the metric of Kerr space-time is written as

h05A12
2r gr

S
, h15AS

D
, h25AS, h35AA

S
sinu,

~17!

v15v250, v35
2crg

2ar

A
, ~18!

where r g[GM/c2 is the gravitational radius,D5r 222r gr
1(arg)

2, S5r 21(arg)
2cos2u, and A5$r 21(arg)

2%2

2D(arg)
2sin2u. Here, r , u, and f are the radial, co-

latitudinal, and azimuthal coordinates, respectively. In t
metric, the lapse function isa5ADS/A. The radius of the
event horizon isr H5r g(11A12a2), which is found by set-
ting a50. We sometimes also use the Schwarzschild rad
of the black hole,r S52GM/c252r g as a unit of length in
this paper.

As it rotates, a black hole drags the space surroundin
This is called theframe-draggingeffect. Because of frame
dragging, there exists a special region just outside the h
called theergosphere, in which any matter, energy, and in
formation must rotate in the same direction as the black h
rotation. The surface of the ergosphere is given byh050,
that is, r 5r g(11A12a2cos2u). In the ergosphere, the shi
velocity cbf is greater than the light speed. In the high r
tation case (a;1), the shape of the ergosphere surface
like that of an apple, with a cusp-like dimple at the top a
10401
s

s
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bottom: at the pole it touches the horizonr 5r H , and on the
equatorial plane, the radius isr S. In the low rotation param-
eter case,a,0.8, its shape is like an ellipsoid.

C. 3¿1 formalism of the GRMHD equations

We present the 311 formalism of the GRMHD equations
derived from the four-dimensional expressions~1!–~4!, and
~6!. In order to express observed physical quantities, we
use several different reference frames, as follows:

Laboratory frame
This is a global fixed frame, with the observer far fro

the black hole. For astrophysics, a better name might be
‘‘observer-at-infinity’’ frame. For Kerr space-time, the coo
dinates of the frame are given by Boyer-Lindquist coor
nates. In the laboratory frame we will write any contravaria
vector asam.

Local laboratory (LOLA) frame
While this is a very useful frame, there is no popul

terminology for it. The ‘‘LOLA’’ frame is fixed to the labo-
ratory frame, but an observer in this frameseesevents lo-
cally only, that is, only those in the neighborhood of t
observer. In this frame (c t̃,x̃1,x̃2,x̃3), the line element is
written as

~ds!252~cd t̃!21(
i

~dx̃i2cb id t̃ !2, ~19!

wherecd t̃5acdt, dx̃i5hidxi . Therefore, a covariant vec
tor measured in the ‘‘LOLA’’ frame is related toam as

ã05aa0, ãi5hia
i . ~20!

A covariant vector is expressed in the ‘‘LOLA’’ frame as

ã05
1

a
a0 , ãi5

1

hi
ai . ~21!

Fiducial observer (FIDO) frame
This is a locally inertial frame. Using the coordinates

the frame (c t̂,x̂1,x̂2,x̂3), the line element is

~ds!252~cd t̂!21(
i

~dx̂i !2, ~22!

wherecd t̂5cd t̃, dx̂i5dx̃i2b icd t̃. This is the same metric
as that of Minkowski space-time. A contravariant vectorâm

in the ‘‘FIDO’’ frame is

â05ã0, âi5ãi2ã0b i ~23!

and the covariant vectorâm is

â05ã01(
i

b i ãi , âi5ãi . ~24!

Note that, because the metric is Minkowskian,â052â0 and
âi5âi .
0-3
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Comoving frame
An observer in this framerides onthe gas or the plasm

and sees events locally. Quantities observed in this frame
often calledproper values because they depend only on
nature of the gas or plasma itself. Any scalar quantity, s
as pressure or density, is measured in this frame.

The components of vectors and tensors measured in
‘‘LOLA’’ frame are given by Eqs.~20! and ~21!. To trans-
form any tensorqmn we can simply consider the product o
vectors likeambn. Here, we denote these components w
tilde. We find

g̃5aU0, ~25!

ṽ i5
hi

g̃
cUi , ~26!

T̃005a2T00, ~27!

P̃i5
1

c
T̃i05

ahi

c
Ti05

ahi

c
T0i , ~28!

T̃i j 5hihjT
i j , ~29!

F̃0i52F̃ i05
1

ahi
F0i , ~30!

F̃ i j 52F̃ i j 5
1

hihj
Fi j , ~31!

r̃e5
J̃0

c
5

1

c
aJ0, ~32!

J̃i5hiJ
i . ~33!

We usually will use physical variables that are measured
the FIDO frame, which, using Eqs.~23! and ~24!, are given
by

ĝ5g̃, ~34!

D5ĝr, ~35!

v̂ i5 ṽ i2cb i , ~36!

e1Dc25T̂005T̃00, ~37!

P̂i5
1

c
T̂i05 P̃i2

1

c
b i T̃005 P̃i2

b i

c
~e1Dc2!, ~38!

T̂i j 5T̃i j 2b i T̃0 j2b j T̃i01b ib j T̃00, ~39!

F̂ i052F̂0i5F̃ i01(
j

b j F̃ i j , ~40!

F̂ i j 5F̃ i j , ~41!
10401
re
e
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r̂e5 r̃e, ~42!

Ĵi5 J̃i2 r̂ecb i , ~43!

where ĝ is Lorentz factor;v̂ i is three-velocity;e is energy
density; andP̂i is momentum density. We usually will write
g5ĝ andre5 r̂e, omitting the hat.

The relationship between the variables measured in
FIDO frame is the same as that of special relativistic MH
@16,17#. Here, we summarize the relation

D5gr, ~44!

g5
1

A12(
i 51

3

~ v̂ i /c!2

, ~45!

P̂i5
1

c2
hg2v̂ i1

1

c2
~Ê3B̂! i , ~46!

T̂i j 5pd i j 1
h

c2
g2v̂ i v̂ j1S B̂2

2
1

Ê2

2c2D d i j 2B̂i B̂j2
Êi Êj

c2
,

~47!

e5hg22p2Dc21
B̂2

2
1

Ê2

2c2
, ~48!

whereh is the relativistic enthalpy density,h5rc21Gp/(G
21)5eint1p. Here, the magnetic fieldB̂ and the electric
field Ê are defined as

B̂i5(
j ,k

1

2
e i jk F̂ jk , ~49!

Êi5cF̂i0 . ~50!

The following relations hold:

B̂i5B̃i , ~51!

Êi5Ẽi1(
j ,k

e i jkcb j B̃k , ~52!

where

B̃i5(
j ,k

1

2
e i jk F̃ jk , ~53!

Ẽi5cF̃i0 . ~54!

Using FIDO variables, we derive the following set o
equations from the general relativistic conservation la
governing the plasma and from Maxwell equations~1!–~4!
and ~6!:
0-4
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]D

]t
52

1

h1h2h3
(

i

]

]xi Fah1h2h3

hi
D~ v̂ i1cb i !G , ~55!

] P̂i

]t
52

1

h1h2h3
(

j

]

]xj Fah1h2h3

hj
~ T̂i j 1cb j P̂i !G

2~e1Dc2!
1

hi

]a

]xi
1a f curv

i 2(
j

P̂ js j i , ~56!

]e

]t
52

1

h1h2h3
(

i

]

]xi Fah1h2h3

hi
c2S P̂i2D v̂ i1

b i

c
e D G

2(
i

c2P̂i
1

hi

]a

]xi
2(

i , j
T̂i j s j i , ~57!

Êi52(
j ,k

e i jk v̂ j B̂k , ~58!

]B̂i

]t
5

2hi

h1h2h3
(
j ,k

e i jk
]

]xj FahkS Êk2(
l ,m

eklmcb l B̂mD G ,
~59!

(
i

1

h1h2h3

]

]xi S h1h2h3

hi
B̂i D50, ~60!

re5(
i

1

c2

1

h1h2h3

]

]xi S h1h2h3

hi
Êi D , ~61!

a~ Ĵi1recb i !1
1

c2

]Êi

]t
5(

j ,k

hi

h1h2h3
e i jk

]

]xj FahkS B̂k

1(
l ,m

eklmb l
Êk

c D G , ~62!

where f curv
i [( j (Gi j T̂

i j 2Gji T̂
j j ), Gi j [2(1/hihj )

3(]hi /]xj ), ands i j [(hi /hj )(]v i /]xj ). This form for the
equation is called the311 form, because the derivatives wit
respect to time and space are separated completely@18#.

Throughout this paper, we used normalized forms of
magnetic fieldB and electric fieldE, so thatB2/2 andE2/2c2

present the magnetic and electric field energy density,
spectively. We also normalize the electric charge densityre
and the electric current densityJ so that the Lorentz force
density is given byfL5reE1J3B. The normalized vari-
ables used here are related to variables in MKSA unit sys
~SI unit system! as follows:

B5
B*

Am0

, E5
E*

Am0

, ~63!

re5Am0re* , J5Am0J* , ~64!
10401
e

e-

m

where a quantity with an asterisk is in the MKSA unit sy
tem.

D. Vector form of the GRMHD equations

We introduce the derivatives of arbitrary three-vec
fields â andb̂ and an arbitrary scalar fieldf̂ measured by the
FIDO frame:

¹̂•â5(
i

1

h1h2h3

]

]xi S h1h2h3

hi
âi D , ~65!

~¹̂f̂ ! i5
1

hi

]f̂

]xi
, ~66!

~¹̂3â! i5(
j ,k

hi

h1h2h3
e i jk

]

]xj
~hkâ

k!, ~67!

@~ b̂•¹̂ !â# i5(
j

F b̂ j

hj

]âi

]xj
2Gi j â

j b̂i1Gji â
j b̂ j G . ~68!

Using these definitions, most formulae of standard vec
analysis can be used without modification except for the
lowing:

~¹̂3â!3b̂5~ b̂•¹̂ !â2~¹̂â!•b̂1@ â,b̂#, ~69!

where @(¹̂â)•b̂# i[(
j

1
hi

]â j

]xi
b̂j and @ â,b̂# i[(

j
Gi j (â

j b̂i

2âi b̂ j ). Furthermore, in the case of the relation

¹̂3~ â3b̂!5~¹̂•b̂!â1~ b̂•¹̂ !â2~¹̂•â!b̂2~ â•¹̂ !b̂,
~70!

we will find it more useful to employ the following form:

@¹̂3~ â3b̂!# i5~¹̂•b̂!âi2~¹̂•â!b̂i

1(
j

hi

hj
F b̂ j

]

]xj
S âi

hi
D 2â j

]

]xj
S b̂i

hi
D G .

~71!

With the above derivatives of the three-vector and sca
fields, the equations of GRMHD~55!–~62! can be re-written
in their FIDO vector form

]D

]t
52¹̂•@aD~ v̂1cb!#, ~72!

]P̂

]t
52¹̂•@a~ T̂1cbP̂!#2~e1Dc2!¹̂a1afcurv2P̂•s,

~73!

]e

]t
52¹̂•@a~c2P̂2Dc2v̂1ecb!#2~¹̂a!•c2P̂2T̂:s,

~74!
0-5
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]B̂

]t
52¹̂3@a~Ê2cb3B̂!#, ~75!

a~ Ĵ1 r̂ecb!1
1

c2

]Ê

]t
5¹̂3FaS B̂1

1

c
b3ÊD G , ~76!

¹̂•B̂50, ~77!

r̂e5
1

c2
¹̂•Ê, ~78!

Ê1 v̂3B̂50, ~79!

where b is three-vector with the componentsb i , b
5(b1 ,b2 ,b3). These equations are very similar to the co
servative form of the non-relativistic MHD equations exce
for the geometric factors and terms involving the lapse fu

tion a and the shift velocityb. Note that2c2
“̂a corre-

sponds to the gravitational force in the non-relativistic eq
tions and that c2a can be regarded as the~specific!
gravitational potential. The termafcurv contains the centrifu-
gal force. The terms involvings arise from the shear of th
space dragging itself.

III. NUMERICAL METHOD

For our GRMHD simulations we use thesimplified total
variation diminishing~TVD! method, which was develope
by Davis @19# for violent phenomena such as shocks~see
Appendix D in @13#!. This method is similar to the Lax
Wendroff method with the addition of a diffusion term. In th
simplified method, in order to integrate the time-depend
conservation laws, we need only the maximum speed
waves, not each eigenvector or eigenvalue of the coeffic
matrix of the linearized GRMHD equations.

During the evolution of the difference equations, we o
tain only the quantitiesD, P̂, e, andB̂ directly at each step
In order to proceed further, we must calculate the primit
variablesg, v̂, andp from the conserved quantitiesD, P̂, e,
and B̂ using Eqs.~44!, ~45!, ~46!, and ~48!. To do this, we
solve two nonlinear, simultaneous algebraic equations w
unknown variablesx[g21 andy[g( v̂•B̂)/c2,

x~x12!FGRx21~2GR2d!x1GR2d1u1
G

2
y2G2

5~Gx212Gx11!2@ f 2~x11!212sy12sxy1b2y2#,

~80!

FG~R2b2!x21~2GR22Gb22d!x1GR2d1u2b2

1
G

2
y2Gy5s~x11!~Gx212Gx11!, ~81!
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where R5D1e/c2, d5(G21)D, u5(12G/2)B̂2/c2, f

5 P̂/c, b5B̂/c, ands5B̂•P̂/c2. Note that, in the absenc
of the magnetic fieldB, Eq. ~80! reduces to the well-known
relativistic hydrodynamic one, derived by Duncan a
Hughes@20#, and Eq.~81! becomes a trivial equation. Thes
algebraic equations are solved at each cell using a 2-vari
Newton-Raphson iteration method. The primitive variab
then are calculated easily fromx, y, D, P̂, e, andB̂, using

g511x, ~82!

p5
~G21!@e2xDc22~221/g2!B2/21~cy/g!2/2#

@Gx~x12!11#
,

~83!

v̂5
P1~y/g!B

D1$e1p1B2/2g21~cy/g!2/2%/c2
. ~84!

This method is identical to that used in special relativis
MHD simulations @16,17#. Our numerical code has bee
tested in both the special relativistic regime@16,17# and in
the general relativistic regime@13#, the latter using a
Schwarzschild black hole. We also checked the code per
mance in a Kerr metric by computing circular orbits a
their stability inside and outside of the last stable orbit@35#.

IV. A SIMULATION OF MAGNETIC EXTRACTION
OF ROTATIONAL ENERGY FROM A KERR

BLACK HOLE

A. Initial and boundary conditions

To understand the basic physics of magnetic extraction
rotational energy from a black hole, we have used GRMH
simulations to investigate a simple system involving a lar
scale magnetic field, thin plasma, and nearly maxima
rotating Kerr black hole witha50.99995. In this case, the
black hole horizon radius isr H50.505r S. The plasma
around the hole is initialized with a uniform mass densityr0,
low pressurep050.06r0c2, and a specific-heat ratio ofG
55/3. The initial momentum of the plasma is zero eve
where, and the initial magnetic field is uniform and stron
Its initial structure is given by the uniform and steady Wa
solution @21# for a magnetic field in a vacuum. The electr
field is given by the ideal MHD condition~79!. The vector
potential of the Wald solution is

Am5
B0

2
~gm312arggm0!, ~85!

whereB0 is a constant indicating the magnetic field streng
In Boyer-Lindquist coordinates, (x0,x1,x2,x3)5(ct,r ,u,f),
this yields

B̂r5B0

cosu

AA
FD1

2r gr „r
42~arg!

4
…

S2 G , ~86!
0-6
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B̂u52B0AD

A
sinuF r 2r g1

r g

S2
$~r 21~arg!

2!S

12~arg!
2cos2u„r 22~arg!

2
…%G . ~87!

In the present simulation, we set asB055.77Ar0c2. This is
a magnetic-field-dominated case, with Alfven velocity,vA

5B0 /@r01$Gp0 /(G21)1B0
2%/c2#1/250.983c close to the

speed of light@36#.
We perform simulations in the region 0.51r S<r<20r S

and 0.01<u<p/2, with 211371 mesh points. We use a un
form mesh in the coordinates (logr,u,f) and assume axisym
metry with respect to thez-axis and reflection symmetry with
respect to the equatorial plane. The axisymmetric conditi
on thez-axis (u50,p) are

]D

]u
50,

] P̂r

]u
50, P̂u50, P̂f50,

]e

]u
50,

]B̂r

]u
50, B̂u50, B̂f50,

and the reflection symmetry conditions on the equato
plane (u5p/2) are given by

]D

]u
50,

] P̂r

]u
50, P̂u50,

] P̂f

]u
50,

]e

]u
50,

B̂r50,
]B̂u

]u
50, B̂f50.

A radiative boundary condition is employed atr 50.51r S and
r 520r S:

u0
n115u0

n1u1
n112u1

n , ~88!

whereu is any conserved density (D, P, e, B). The super-
scriptsn and n11 indicate the time step numbers, and t
subscripts 0 and 1 show the boundary and its neighbo
mesh points, respectively.

B. Time evolution and three-dimensional view of the system

Figure 1 shows the time evolution of this system of larg
scale magnetic field, thin plasma, and Kerr black hole. He
after, we will discuss the physics in the Boyer-Lindquist c
ordinates~the laboratory frame! except when noted. Att
5tS5r S/c, the plasma begins to fall rapidly toward th
black hole, and the azimuthal component of the magn
field also begins to increase due to the azimuthal twisting
the magnetic field lines~Fig. 1b!. In the ergosphere, th
plasma rotates in the same direction as the black hole du
the frame dragging effect. The magnetic field lines then
twisted azimuthally in the direction of the black hole rotati
by the differential rotation of the plasma. This effect is sim
lar, in a broad sense, to the the dynamo effect calledV effect
of geomagnetic dynamo theory and therefore called
10401
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‘‘frame-dragging dynamo’’~or ‘‘frame-draggingV effect’’!
@22,23#. At t56.53tS, this process has amplified the ma
netic field to a value that is three times larger than the ini
magnetic field strength in the ergosphere~Fig. 1d!. The twist
of the magnetic field lines propagates outward along
magnetic field lines against the infalling plasma flow as
torsional Alfven wave~Figs. 1b, 1c, and 1d; see the expa
sion of the gray-white region!. We call this wave propagation
region ‘‘Alfven wave region.’’ The production and propaga
tion of a torsional Alfven wave also can occur in an accret
disk in Kepler orbital rotation about a normal star if there
a large-scale magnetic field@24–29#. The difference between
Alfven waves from an ergosphere and a magnetized ac
tion disk is that the former are caused by the frame-dragg
effect, while the latter are due to the rotation of the disk.
the disk case, if the rotation stops, no Alfven wave is p
duced. However, independent of the state of the plasma
Alfven wave will be emitted from the ergosphere if the bla
hole is rotating.

To demonstrate this result more intuitively, we show
three-dimensions the magnetospheric structure around

FIG. 1. Time evolution of a simple system of large-scale stro
magnetic field, thin plasma, and a Kerr black hole in the region
<R[rsinu <3rS and 0<z[rcosu <3rS. The gray-scale portion
shows the value of2Bf /B0, and solid lines are poloidal magneti
field lines~flux surfaces!. The arrows show the poloidal compone

of the plasma velocityv̂ as observed in the FIDO frame. The blac
quarter-circle at the origin indicates the event horizon of the bl
hole. The dashed line shows the inner boundary of the calcula
region atr 51.01r H . The dot-dashed lines show the boundary
the ergosphere.
0-7
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SHINJI KOIDE PHYSICAL REVIEW D67, 104010 ~2003!
Kerr black hole att56.53tS ~Fig. 2!. The magnetic field
lines are drawn so that they are parallel to the magnetic fi
observed in the laboratory frame at each point. At this tim
the black hole has rotated one cycle since the beginnin
the simulation. The magnetic field lines are slightly bent
ward the black hole by the infalling plasma. Those field lin
that penetrate the ergosphere surface are twisted strongly
muthally in the same direction as the black hole rotati
which those that do not penetrate it are twisted only wea
The magnetic tension of the bent magnetic field deceler
the plasma in the ergosphere near the equatorial plane
parting an angular momentum that is opposite to that of
black hole. The importance of this effect is shown later.

C. Energy transport in the system

Next we shall discuss the details of energy transpor
our example simulation. The basis theory and sense of

FIG. 2. Three-dimensional graphic of magnetic field lin
around a Kerr black hole att56.53tS. The black sphere at the
center depicts the black hole. The transparent surface shaped li
apple outside the black hole is that of the ergosphere. The tu
show the magnetic field lines. Four of these penetrate into the
gosphere and the two others do not.
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ergy transport near a Kerr black hole are summarized in
Appendix. Figure 3 shows the energy-at-infinity densitye`

and the energy flux densityS at t56.53tS. The figure shows
that there is a net energy flux out of the ergosphere along
magnetic field lines. Integrating the energy flux densityS
over the surface of a cylinderR[rsinu <0.8r S, 2r S<z
[rcosu <rS, we found the net power is L tot

50.186B0
2r S

2c/m0. This energy flux is so large that the tot
energy-at-infinity densitye` of the material and the field in
the ergosphere decreases quickly and has become deci
negative by t56.53tS. The dotted lines show positive
energy-at-infinity contours and solid lines show non-posit
~zero or negative! values. When this net negative energy-a
infinity is swallowed by the black hole, the net energy~total
mass! of the black hole decreases. Energy of the Kerr bla
hole, therefore, has been converted to electromagnetic
energy of the Alfven wave. We call the region where t
plasma with the negative energy-at-infinity accretes tow
the black hole the ‘‘negative energy falling region.’’

Note that, in Boyer-Lindquist coordinates, any materi
energy, and information outside the black hole horizon c
not cross the horizon because of the time dilation effe
there. However, in Fig. 3 it appears that the negative ene
at-infinity region extends all the way to the horizon. This
an artifact of the extrapolation of variables from the calcu
tion boundary atr 50.51r S. Physically this means only tha
the negative energy-at-infinity region reaches to the calc
tion boundary~the ‘‘stretched’’ horizon in our computation!.
Note also that the energy-at-infinity

E`5E
r H,r ,`

e`h1h2h3dx2dx2dx3 ~89!

an
es
r-

FIG. 3. The energy-at-infinity densitye` and the energy flux
densityS at t56.53tS. The dotted lines show the positive value
e` and the solid lines show the non-positive~zero or negative!
value. The arrows show the energy flux densityS. The black region
and dashed and dot-dashed lines are the same as Fig. 1.
0-8
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is conserved, because energy transport across the horiz
zero due to the time dilation in the Boyer-Lindquist coord
nates. We check this conserved quantity by integrating

EN
`5E

1.01r H,r ,20r S

e`h1h2h3dx2dx2dx3

and found that it is constant within the 0.2% accuracy.
compute the negative energy swallowed by the black h
directly, we should use other coordinates such as the K
Schild coordinates@30#.

Figures 4 and 5 show, respectively, the electromagn
and hydrodynamic components of energy transport at
56.53 tS. The hydrodynamic energy flux densityShyd in
Fig. 5 is directed toward the black hole everywhere excep
the negativeehyd

` region near the ergospheric equator. T
absolute value of the outward hydrodynamic energy fl
density on the equatorS is much larger than that of th
inward hydrodynamic energy flux, indicating that most of t
hydrodynamic power emanates from the vicinity of the ho
zon ~see also Fig. 3!. Furthermore, the hydrodynamic energ
there is more negative than even the electromagnetic en
so when the plasma crosses the horizon, it is the nega
hydrodynamicenergy-at-infinity that will dominate the en
ergy extraction. Such energy transport occurs in the nega
energy falling region. On the other hand, Fig. 4 shows t
the energy fluxfrom the ergosphereis dominated by theelec-
tromagnetic, not the hydrodynamic, component. That
there exists another region in the ergosphere, called the
fven wave region~at r *0.6r S), where the outward electro
magnetic energy flux is found. These two regions play d
ferent roles: plasma with negative hydrodynamic energy
infinity directly extracts the rotational energy of the bla
hole through the horizon, while electromagnetic energy

FIG. 4. Similar to Fig. 3, but for the electromagnetic energy-
infinity density eEM

` and the electromagnetic energy flux dens
SEM.
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transported outward by the torsional Alfven wave produc
in the ergosphere. Between the Alfven wave region and
negative energy falling region, hydrodynamic energy
transformed into magnetic energy. This is accomplished
magnetic tension in the ergospheric equatorial plane~Fig. 2!.
This tension accelerates the plasma in the ergosphere
direction opposite to the rotation of the black hole. The sh
converts hydrodynamic energy of the plasma into elec
magnetic free energy by increasing the strength of the
muthal magnetic field component. This is the frame-dragg
dynamo effect, so we call the region in between the nega
energy falling region and the Alfven wave region th
‘‘frame-dragging dynamo region.’’

Using the same method we used to calculateL tot , we find
that the power of the Alfven wave emanating from the erg
sphere isLEM50.259B0

2r S
2c/m0. Punsly and Coroniti esti-

mated the electromagnetic power from their ergosphere w
to be comparable to that coming directly from the rapid
rotating black hole horizon due to the Blandford-Znaj
mechanism @8,9#: LBZ;(p/4)a2B0

2r H
2c/m0. This yields

LBZ;0.2B0
2r S

2c/m0 for the present simulation which i
almost the same as the value we obtained from our num
cal simulation. A better expression for the power
LEM5(p/4)(a2c/vA)B0

2r H
2c/m0, which is valid when the in-

ertia of the plasma is significant, the Alfven velocity is sm
compared to the speed of light, where the effects of plas
infall is neglected. On the other hand, hydrodynamic ene
is transportedtoward the black hole with a rate of only
Lhyd;20.073B0

2r S
2c/m0, which includes the inflow of the

rest mass energy.

D. Angular momentum redistribution

Our numerical results show that rotational energy o
black hole can be causally extracted by a strong, large-s

- FIG. 5. Similar to Fig. 3, but for the hydrodynamic energy-a
infinity densityehyd

` and the hydrodynamic energy flux densityShyd.
0-9
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SHINJI KOIDE PHYSICAL REVIEW D67, 104010 ~2003!
magnetic field if and only if negative energies-at-infinity o
cur within the ergosphere. The energy-at-infinity density
written as

e`5ae1vfl ~90!

wheree[e1Dc2 is the total energy density observed in t
FIDO frame, andl is the angular momentum density@Eqs.
~A4! and~A13! in the Appendix#. The lapse functiona ande
are always positive. So, to obtain negative energies
infinity, l must be negative and smaller than2ae/vf ~when
vf is positive!. Now, because of time dilation at the horizo
the total angular momentum outside the horizon

L5E
r H,r ,`

lh1h2h3dx1dx2dx3 ~91!

must be conserved. Therefore, in order to obtain a su
ciently negative local angular momentum densityl, there
must be a redistribution of angular momentum in the er
sphere. We checked the expected conservation ofL by inte-
grating l and u l u over the calculation volume and found th

U E
1.01r H<r<20r S

lh1h2h3dx1dx2dx3U
E

1.01r H<r<20r S

u l uh1h2h3dx1dx2dx3

50.18

at t56.53tS. This means that most of the positive and neg
tive angular momenta cancel to better than 20%.

Figure 6 shows the total angular momentum densityl and
its transport flux densityM at t56.53tS. The flux density
shows that angular momentum is transported outward~see
the Appendix!. In the wide region around the ergosphere,
angular momentum density is negative, while in the ou
region ~aroundR50.8r S, z52.5r S) the angular momentum
density is positive. The redistribution of angular momentu
is caused by the electromagnetic field~see Fig. 7, the elec
tromagnetic angular momentum transport flux dens
MEM), particularly by the magnetic tension. Note that t
negative angular momentuml in the ergosphere is dominate
by the hydrodynamic component~seel hyd in Fig. 8!. This is
consistent with the negative energy-at-infinity being dom
nated by the hydrodynamic component, as noted earlier. O
side the ergosphere, the hydrodynamic angular momentu
negligible, and the positive angular momentuml is domi-
nated by the electromagnetic component. This is also con
tent with the energy transportation being due to the torsio
Alfven wave.

E. Discussion

Energy transport in the entire system, and the ultim
extraction of black hole rotational energy by a large-sc
magnetic field, can be summarized as follows. Because
the outward propagation of the electromagnetic free ene
~against the plasma inflow! in the Alfven wave region, the
energy-at-infinity in the ergosphere decreases to nega
values. As material with negative energy-at-infinity c
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never escape the ergosphere, it subsequently will cross
horizon~if we observe in the Kerr-Schild coordinates!. When
negative energy plasma is swallowed by the black hole,
net energy of the Kerr black hole decreases. Here, the in
of gas with negative energy-at-infinity plays an essential r
in operating a causally-correct, black hole energy extract
mechanism. To obtain negative energy-at-infinity in the g
a relativistic angular momentum in the ergosphereopposite
to the black hole’s angular momentum is necessary. A
because the total angular momentum must be conserve

FIG. 6. Similar to Fig. 3, but for the angular momentum dens
l and the angular momentum flux densityM .

FIG. 7. Similar to Fig. 3, but for the electromagnetic angu
momentum densityl EM and the electromagnetic angular momentu
flux densityMEM.
0-10
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redistribution of the angular momentum is required. In t
classic Penrose process an elementary particle reaction r
tributes the angular momentum of particles into orbits w
negative energy-at-infinity. Our simulation shows that t
large-scale, strong magnetic field plays a role similar to p
ticle scattering. Therefore, we call this magnetic extract
mechanism of black hole rotation energy the ‘‘magneto
drodynamic~MHD! Penrose process’’@31–33#.

In order to propagate the Alfven wave outward against
infalling plasma, the Alfven velocity should be larger tha

the infall poloidal velocity of the plasma,v̂ f
p[Av̂ r

21 v̂u
2

, v̂A
p[A(B̂r

21B̂u
2)/@r1$Gp/(G21)1B2%/c2#. This condi-

tion delineates the volume we call the Alfven wave regio
and the boundary of that region, wherev̂ f

p5 v̂A
p , is called the

Alfven surface. To extract the energy of the black hole,
Alfven wave region must be located in the ergosphere. T
same result was found in the steady-state theory@31#. Figure
9 shows the Alfven surface att56.53tS. It is clearly located
very near the horizon, and the figure shows that, even in
ergosphere, the Alfven wave propagates outwardly aga
the plasma falling along the magnetic field lines. Note t
some parts of the Alfven surface appear to actually touch
horizon. This again is an artifact due to the extrapolation
the physical variables from the calculation boundary.
means only that the Alfven surface is located between
horizon at r H50.505r S and the calculation boundary atr
50.510r S. In the extremely strong magnetic field~or ex-
tremely low inertia plasma! case, the Alfven velocity ap
proaches the speed of light:v̂A→c(B2/rc2→`). Because
the plasma infall velocity is smaller than light speed (v̂ f

,c), the conditionv̂ f, v̂A is satisfied everywhere except
the horizon. In this case, the Alfven wave region spreads
around the Kerr black hole except at the horizon. This

FIG. 8. Similar to Fig. 3, but for the hydrodynamic angul
momentum densityl hyd and the hydrodynamic angular momentu
flux densityMhyd.
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tremely strong magnetic field case corresponds to the fo
free solution of Blandford-Znajek mechanism@8#. In this
situation the critical surface, like Alfven and fast surfaces
located at the horizon.

We now will show the existence of a negative ener
falling region in the force-free solution of@8#. Here we do
not need to consider the frame-dragging dynamo region
cause we can neglect the hydrodynamic energy-at-infinity
the solution. When the system is in a steady state, and
symmetric with respect to thez-axis, the angular velocity of
the magnetic field linesVF is constant along the magnet
flux surfaces@8#. The velocity of field lines in the FIDO
frame is

v̂F5
hf

a
~VF2vf!f̂, ~92!

and the electric field is

Ê52 v̂F3B̂P, ~93!

wheref̂ is the azimuthal unit vector andB̂P is the poloidal
magnetic field@18#. The electromagnetic energy-at-infinit
@Eq. ~A9! in the Appendix# is

eEM
` 5

a

2 F ~B̂P!2H 11S v̂F
f

c
D 2

12
v̂F

fvH
f

c2 J 1B̂f
2 G

5
a

2
~B̂P!2F S v̂F

f1vH
f

c
D 2

111S B̂f

B̂PD 2

2S vH
f

c D 2G ,

~94!

wherevH[cb and B̂P[uB̂Pu•B̂r /uB̂r u .

FIG. 9. The Alfven surface (v̂ f
p5 v̂A

p ), indicated by the solid
line. The black region and dashed and dot-dashed lines are the
as Fig. 1.
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The condition for obtaining negative electromagnetic ener
at-infinity eEM

` ,0, then, is

U v̂F
f1vH

f

c
U,AS vH

f

c D 2

212S B̂f

B̂PD 2

. ~95!

Using the relation,vH
f5hfvf /a, this condition becomes

uVFu,
auvH

fu
hf
A12S c

vH
fD 2

2S cB̂f

vH
fB̂PD 2

. ~96!

Outside the ergosphere, the electromagnetic energy
infinity is always positive becauseuvH

fu,c. In the steady
state case, if the rotational energy of the black hole is
tracted electromagnetically, the energy-at-infinity at the ho
zon should be negative. And, if the energy-at-infinity at t
horizon is negative, a negative energy-at-infinity region m
exist around the black hole because of the continuity of
variables (auvH

fu, hf , c/vH
f , and cB̂f /vH

fB̂P) at r>r H .
Therefore, we can demonstrate the existence of a nega
energy falling region in the Blandford-Znajek mechanism
evaluating the electromagnetic energy-at-infinity at the h
zon. The magnetic field boundary condition at the horiz
~Eq. 3.15 of@8#! yields

c

vH
f

B̂f

B̂P
5

VF2VH

VH
, ~97!

where VH[vf(r H)5a/2r H is the angular velocity of the
black hole horizon. Then condition~96! at the horizon is

uVFu,AVF~2VH2VF!. ~98!

Here, we useuvH
fu→` when r→r H . This condition is iden-

tical to VF,VH , which is an assumption implicit in the
Blandford-Znajek mechanism. Therefore, a region of ne
tive electromagnetic energy-at-infinity exists in th
Blandford-Znajek process.

In the Blandford-Znajek process, negative electrom
netic energy-at-infinity plays an important role in extracti
the rotational energy of a black hole at the horizon in
causal manner. In fact, we believe that the condition t
negative electromagnetic energy-at-infinity exists, Eq.~96!,
is the same as the condition that the Blandford-Zna
mechanism is operating. We propose to define strictly
Blandford-Znajek mechanism as that black hole energy
traction process that occurs by means of negativeelectro-
magneticenergy-at-infinity. And, correspondingly, we defin
the MHD Penrose process, as the extraction process tha
erates via negativehydrodynamicenergy-at-infinity. Accord-
ing to our definitions, the both processes are found in
present simulation~Fig. 4 and Fig. 5!. The contribution of
the MHD Penrose process and the Blandford-Znajek mec
nism, respectively, can be evaluated from the hydrodyna
and electromagnetic power radiation,Lhyd

H and LEM
H , very

near the horizon. We evaluate these powers on a surfar
50.6r S, 0.2p,u,0.8p and find that they are comparab
at t56.53tS; Lhyd

H /LEM
H 51.3. However, the present simula
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tion has not yet reached a steady state, so such a ratio sh
be investigated more fully with the longer-term simulation

In the present simulation, we find energy transport out
the ergosphere, but no outflow of plasma. We believe t
this is due to the open magnetic field lines. Energy from
ergosphere is transported outwardly and smoothly along
open field lines before it is converted to kinetic energy
plasma outflow. If we consider closed magnetic field lin
across the ergosphere, the energy from the ergosphere w
stored in closed magnetic flux tubes. The magnetic pres
of these flux tubes will increase, elongating the tubes ve
cally ~in the direction of thez-axis!, and the plasma confine
in the magnetic tube will be accelerated outward. The o
flow will be pinched by the magnetic tension, and th
pinched plasma flow will become a relativistic jet.

At late times, the elongated magnetic flux tubes will pr
duce an anti-parallel magnetic field near the ergosphere
this configuration, the electric resistivity will be important.
the resistivity is small but finite~non-zero!, magnetic recon-
nection will occur and release magnetic energy explosiv
accelerating the plasma quickly. The accelerated plasma
flow will be directed vertically and become a relativistic je
Closed magnetic field lines in the ergosphere will be p
duced by a current ring in the vicinity of the black hole or b
charge on the rotating black hole itself~a Kerr-Newman
black hole!. In extreme dynamical events, such as a fai
supernova, the newly-formed black hole may have its o
electric charge. Relativistic jets in gamma-ray bursts may
produced by such dynamical processes around Kerr-New
black holes. However, in this case, the self-gravity of t
plasma around the black hole will be significant.~On the
other hand, disk self-gravity in AGN is usually negligible!
GRMHD simulations that include self-gravity will be an im
portant tool for investigating relativistic numerical a
tronomy.

V. SUMMARY

In this paper, we presented the complete numer
method of GRMHD in Kerr space-time. We have applied o
GRMHD code to investigate the basic mechanism of
energy extraction from a Kerr black hole by a magnetic fie
in particular the simple system of a large-scale magnetic fi
and thin plasma surrounding a Kerr black hole. Our nume
cal results show that the rotational energy of the Kerr bla
hole can be extracted when the magnetic field is stro
enough. The extracted energy is transported outward f
the ergosphere in a torsional Alfven wave. The electrom
netic power in this Alfven wave is almost the same as t
produced by the Blandford-Znajek mechanism@8#: LEM

5(p/4)a2B0
2r H

2c/m0. @Note that the expressionLEM5(p/4)
3(a2c/vA)B0

2r H
2c/m0 is more appropriate when the Alfven

velocity is small compared with the speed of light.# We call
our mechanism the MHD Penrose process, because the n
tive energy-at-infinity plays an essential role just like Pe
rose process. The difference between the classical Pen
process and this one is just the force of the redistribution
the angular momentum. The Penrose process uses pa
fission~interaction!, while the present mechanism uses ma
netic
0-12
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tension. We also discussed the relation between the M
Penrose process and the Blandford-Znajek mechanism.
latter can be defined as the black hole rotational energy
traction mechanism that employs negativeelectromagnetic
energy-at-infinity, while the MHD Penrose process is defin
as one that employs negativehydrodynamic energy-at-
infinity. In the present numerical simulation, the both mec
nisms make roughly equal contributions to the energy ext
tion. When we consider the extremely strong magnetic fi
~or small plasma inertia! case, the Alfven surface occurs
the horizon, and the Alfven wave region occupies the en
region just outside of the horizon. The steady state of
case is identical to the force-free solution of@8#.
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APPENDIX: TRANSPORT EQUATIONS AROUND KERR
BLACK HOLE

This appendix presents the equations of energy and a
lar momentum conservation near a Kerr black hole. The K
ing vectors for Kerr geometry arexn5(21,0,0,0) andhn

5(0,0,0,1). In general, any Killing vectorjn has an associ
ated conservation law

1

A2igi

]

]xm
~A2igiTmnjn!50. ~A1!

Using igi52(ah1h2h3)2, this equation becomes

]

]t
~aT0njn!52

1

h1h2h3
(

i

]

]xi
~ah1h2h3cTinjn!.

~A2!

For the Killing vectorxn, the law of energy conservatio
becomes

]e`

]t
52¹̂•S, ~A3!

where e`[aT0njn is called energy-at-infinitydensity and
Si[cahiT

injn is energy flux density. Here we also expre
these quantities in the FIDO frame as

e`5a~e1Dc2!1(
i

v ihi P̂
i , ~A4!
10401
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Si5aFac2P̂i1e`cb i1(
j

acb j T̂i j G . ~A5!

Note that the energy-at-infinity must be positive everywh
except in the ergosphere. These quantities can be div
into components as follows:

e`5ehyd
` 1eEM

` , ~A6!

Si5Shyd
i 1SEM

i , ~A7!

where

ehyd
` 5a~hg22p!1(

i
v ihi

h

c2
g2v̂ i , ~A8!

eEM
` 5aS B̂2

2
1

Ê2

2c2D 1(
i

v ihi

1

c2
~Ê3B̂! i , ~A9!

Shyd
i 5a2hg2S 11(

j

cb j v̂ j

c2 D ~ v̂ i1cb i !, ~A10!

SEM
i 5a2F ~Ê2cb3B̂!3S B̂1cb3

Ê

c2D G i

, ~A11!

where the subscripts ‘‘hyd’’ and ‘‘EM’’ indicate hydrody
namic and electromagnetic components, respectively.

For the Killing vectorhn, we have the equation of angu
lar momentum conservation

] l

]t
52¹̂•M , ~A12!

wherel[aT0nhn /c andMi[ahiT
inhn are the angular mo-

mentum density and the angular momentum flux density,
spectively. Using the quantities measured in the FIDO fram
we write

l 5h3P̂3, ~A13!

and

Mi5ah3~ T̂i31cb i P̂3!. ~A14!

These variables also can be divided into hydrodynamic
electromagnetic components, denoted by the subsc
‘‘hyd’’ and ‘‘EM,’’ as follows:

l 5 l hyd1 l EM , ~A15!

Mi5Mhyd
i 1MEM

i , ~A16!

where

l hyd5h3

h

c2
g2v̂3, ~A17!
0-13
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l EM5
h3

c2
~Ê3B̂!3 , ~A18!

Mhyd
i 5ah3F pd i31

h

c2
g2v̂ i v̂31cb i

h

c2
g2v̂3G , ~A19!

MEM
i 5ah3F S B̂2

2
1

Ê2

2c2D d i32B̂i B̂32
Êi Ê3

c2
1

cb i

c2
~Ê3B̂!3G .

~A20!

We can see that the hydrodynamic energy-at-infinity and
gular momentum densities~A8! and ~A17! are similar to
those for a particle with the massm,

E`5amc2g1v3h3mg v̂f, ~A21!

L5h3mg v̂f, ~A22!

respectively @35#. Furthermore, noting that (B̂2/2
1Ê2/2c2)/c2 and Ê3B̂/c2 correspond to the effective elec
tromagnetic mass and momentum densities in the FI
frame, we also find a similarity between the electromagn
energy-at-infinity and angular momenta@Eqs. ~A9! and
~A18!# and those of one particle@Eqs.~A21! and ~A22!#.

Next we present the transport equations of electrom
netic energy and momentum near a Kerr black hole. T
general relativistic Maxwell equations~75!–~78! yield
J

ce

J

an

10401
n-

O
ic

g-
e

]eEM
`

]t
52¹̂•SEM2a~ v̂1cb!•fL , ~A23!

] l EM

]t
52¹̂•MEM2h3f L

3, ~A24!

wherefL5reÊ1 Ĵ3B̂ is the Lorentz force density. Subtrac
ing the both sides of the electromagnetic transport equat
~A23! and ~A24! from the conservation equations~A3! and
~A12!, respectively, we derive the hydrodynamic transp
equations of energy and angular momentum

]ehyd
`

]t
52¹̂•Shyd1a~ v̂1cb!•fL , ~A25!

] l hyd

]t
52¹̂•Mhyd1h3f L

3. ~A26!

When we replace the suffixes ‘‘hyd’’ and ‘‘EM’’ by ‘‘1’’ and
‘‘ 2’’ respectively, the transport equation of energy and a
gular momentum can be summarized as

]e6
`

]t
52¹̂•S66a~ v̂1cb!•fL , ~A27!

] l 6

]t
52¹̂•M66h3f L

3. ~A28!
tt.
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1v3L/mc2>a@11(L/mch3)2#1/21v3L/mc2[F(r ), where

the equal in the inequality corresponds tov̂ r50. The function
c2F(r ) is the effective gravitational potential. A circular orb
for a particle occurs when]F/]r 50. This condition gives the

orbital velocity of the particle, i.e. the Kepler velocity,ṽK
f

5cA@6(r g /r )1/22arg
2/r 2#/D1/2(r 32r g

3a2), where the posi-
tive sign corresponds to orbits that corotate with the black h
10401
r

e

and the negative sign to counter-rotating orbits. The velocity

the FIDO frame is given byv̂K
f5 ṽK

f2cbf. In the Schwarzs-
child black hole case (a50), the Kepler velocity is simply

v̂K56c/@2(r /r S21)#1/2. The particle orbit is unstable whe
]F/]r 50 and ]2F/]r 2,0 or ]LK /]r ,0, whereLK is the
angular momentum of the particle in the circular orbit,LK

5h3mv̂K
f/@12( v̂K

f/c)#1/2. The ‘‘last stable orbit’’ is deter-
mined by]LK /]r 50. For a Schwarzschild black hole the ra
dius of the last stable orbit is 3r S. For a maximally-rotating
Kerr black hole (a51), the radius of the corotating particl
orbit is 0.5r S5r g5r H and counter-rotating orbit is 4.5r S.

@36# Note: the velocity of the MHD fast mode is given byv f

5c@(B0
21Gp0)/(h01B0

2)#1/2, whereh05r0c21Gp0 /(G21)
is the relativistic enthalpy density.
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