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Magnetic extraction of black hole rotational energy: Method and results of general relativistic
magnetohydrodynamic simulations in Kerr space-time
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We present the complete numerical method of general relativistic magnetohydrodynamic simulations in Kerr
space-time, and then apply those techniques to the basic astrophysical problem of activity near a Kerr black
hole immersed in a plasma with a large-scale magnetic field. Our numerical results show that a torsional Alfven
wave is generated in the ergosphere of the Kerr black hole. This wave propagates outward along the magnetic
field lines, extracting rotational energy from the plasma in the ergosphere. If the magnetic field is strong
enough, the plasma energy in the ergosphere rapidly decreases and eventually becomes negative. When this
negative energy plasma is swallowed by the black hole, the total energy of the black hole decreases, spinning
it down. This energy extraction mechanism is similar to the “Penrose process,” in which the negative energy
also plays an important role. The difference between the two is the force that causes the redistribution of the
angular momentunfwhich is necessary to produce the negative eneigythe Penrose process, elementary
particle interactions cause the redistribution, while in the present case it is performed by magnetic tension.
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[. INTRODUCTION ergosphere increases. That is, rotational energy of the black

hole has been extracted and imparted to particle 1. It should

Relativistic jets are often ejected from active objects inbe noted that the propagation of material, energy, and infor-
the universe. Superluminal motion, for example, has beefation across the black hole horizon is only inward toward
observed not On|y from guasars and active ga|actic nuc|eﬁhe black hole. That is, causalit)_/ at the horizon !S one-way. In
(AGNs) [1,2], but also from binary systems in our Galaxy the Penrose process, the falling of a negative energy-at-
such as GRS1915105 and GRO J1655-4(B,4]. Recently infinity particle through the horizon transports energy out-
the most powerful explosions in the universe, gamma-ray¥ard, extracting black hole rotational energy and obeying
bursts(GRBS, have been explained by extremely high Lor- causality. Unfortunately_, this process is not directly appli-

entz factor jet$5]. It is believed that such relativistic jets are cable to astrophysmgl Jets for two reasons. In the Penrose

formed near the black hole. Furthermore, because it is ver§™©ceSS: the particle is accelerated in a direction perpendicu-

difficult for any black hole to be formed with exactly zero ar to the Kerr bIacklhoIe r_otation axis, creating.a distributic_)n
angular momentum, it is believed that most black holes ro-Of accelerated particles n the shape of a disk, not a Jet.
’ : Furthermore, the mechanism requires frequent relativistic
. ) Yission in the ergosphere in order to create the observed jets.
gest that most black holes rotate rapid}. Two kinds of — rpiqis ot astrophysically plausible, as it requires the accre-
energy are available for generating a jet from a rotating;o, of large amounts of fissionable material.
(.Kerr).black hole. One is the rotational energy of the accre-  pjandford and Znajek investigated magnetospheres of
tion disk around the black hole and the other is the rotationak err plack holes and derived a force-free, static solution for
energy Of the Kerr bIaCk hOle |tse|f In the |attel‘ case, |t iS thethe e|ectromagnetic f|e|E:B:| Their results show that electro-
complex interaction between the rotating black hole and thenagnetic energy is radiated from the black hole horizon di-
strongly magnetized plasma around it that creates the relativectly, and the generated power can be large enough to ex-
istic jet engine. In this process, magnetic extraction of blackplain observed astrophysical jets, if the magnetic field is
hole rotational energy is the fundamental driver. strong enough. However, if we consider the dynamics of
Extraction of Kerr black hole rotational energy was first magnetic extraction of Kerr black hole rotational energy, di-
proposed by Penrod€]. He considered relativistic particle rect energy radiation from the black hole appears to be in-
fission (0—1+2) in the black hole’s ergosphere. If the an- consistent with causality at the horizon. A similar argument,
gular momentum of particle 2 is opposite to that of the blackbut with respect to the flow critical points such as the mag-
hole, and large enough, then the energy-at-infinity of particlenetohydrodynamidMHD) fast point, and not the horizon
2 will be negative. And, because the total energy-at-infinityitself, was also presented j9]. We discuss the Blandford-
is conserved, the energy-at-infinity of particle 1 will be largerZnajek mechanism below, comparing it to our simulation
than that of the injected particle 0. When particleagth the  results, and show that it indeed satisfies causality at the ho-
negative energy-at-infinijyis swallowed by the black hole rizon.
and particle 1 is ejected, the total energy of the black hole To investigate the dynamics of electromagnetic extraction
decreases and the energy of the ejected particle outside tio¢ black hole rotational energy, we have performed general
relativistic magnetohydrodynami{G&GRMHD) simulations of
a rather simple system that involves a strong magnetic field,
*Electronic address: koidesin@ecs.toyama-u.ac.jp thin plasma, and a Kerr black hdl&0]. The purpose of this
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paper is to present the entire GRMHD numerical method in 1 P
Kerr space-time and, as an application, to show the details of ~ V,T#"=—= —(\/—=||g|[T*")+T%,T7"=0, (2)
magnetic energy extraction from a Kerr black hole. V=lgll ox

The reader will find the GRMHD equations in this paper B
are very similar to the non-relativistic MHD ones. Therefore, IuFntd Pyt hFL,=0, )
it is not that difficult to develop a GRMHD numerical code wv_ v

e V,LF—,U«OJ, (4)
by modifying a non-relativistic MHD code. Non-relativistic
MHD simulations have a long history, and various usefulwhere u is the magnetic permeability in a vacuufig] is
methods have been developed. Using the present form of the determinant of the matrix with elements, , ; ri\w
GRMHD equations in this paper, we are able to take advanE%gmf(_(ygw/@xmr 99 o | IXP+ 3G 5, 1 9X7) are the
tage of much of this excellent previous work. The most cru-Christoffel symbolsy, is the covariant derivativig4]. Here,
cial difference between GRMHD and non-relativistic MHD U” andJ”= (cp,,J*,J2,J%) are the four-velocity and electric
is the treatment of the displacement current. In nonfour-current density, respectivelyp{ is the electric charge
relativistic MHD, the latter is negligible, while even in the density; the general relativistic energy momentum tensor
special relativistic cases, it cannot be neglected. To calculat€”” is given by
the displacement current, we must calculate the time evolu-
tion of the electric field or extrapolate the electric field from wy wy LIV ERE VO 1 UVENK
. . . . T =pg +(eim+p)u u +F0'F -9 F F)xki

the previous variables. These are difficult to calculate with- 4
out significant numerical error. Therefore, in GRMHD, accu- )
rate calculation of the electric current densityis difficult v _—
while in non-relativistic MHDJ can be calcu}llated easily. v;/f;erAeF_"a I; thgnﬂeﬁgg?;g,nce% lezl(kg;reiggtfgjici%&
Here we use the conservation form of the GRMHD equa-ntanfial (4 L b e A
] ; “potential (. is the electro-static potentjalThe electric field
tions. In this case, we do not need to_ 9alc_u|ate the e_IectnE and the magnetic field3, are given byE,=cF, (i
current and displacement current explicitly if the electric re-—1 o 3) and B;=Fq, B,=Fa;, Bs=Fy,, respectively.
of the GRMHD equations that explicitly include the electric pressure, and proper internal energy densiy,=pc?
current density. _ _ _ +p/(I'-1), respectively, wher€ is the specific-heat ratio.

The organization of this paper is as follows: in Sec. Il we|n addition to the equations, we assume the infinite electric
present the basic equations of GRMHD in Kerr space-timeconductivity condition:

In Sec. lll, we illustrate the numerical method used in the )
simulations in this paper. The application of the numerical F.U"=0. (6)
method, the detailed mechanism of magnetohydrodynam|EJsing this condition, Eqs(1)—(3) close self-consistently.

extraction of Kerr blgck hole rotational energy, 1s shown InEquation(4) is used only to calculate the four-current density
Sec. IV. A summary is briefly presented in Sec. V. JH
We assume that the off-diagonal spatial elements of the
metricg,,, vanish:
II. BASIC EQUATIONS
A. Four-dimensional form of GRMHD equations 9;j =0 (i#]). @)

GRMHD numerical methods are required in order toHere Roman indicesi(j) run from 1 to 3. If we write
study the complex evolution of plasmas around a black hole. K2 _p2 ®)
This method is based on the general relativistic formulation Yoo o Gi =i
of the laws of particle number, energy-momentum, Maxwell
equations, and Ohm’s law with zero electrical resistance
(ideal MHD condition in curved space-timgl1-15. Here  then the scale of a small element in space-time is given by
we will neglect radiation cooling effects, electric resistivity,
plasma viscosity, and self-gravity in order to study the fun-  (d9)*=g,,dx*dx”

Jio=0oi= —h’wi/c, 9

damentals of the interaction of Kerr black hole, magnetic 3

§ H 01 2 (3 . .

fleld, lanzd , plasma.. The spacg—tlme,x &5 x ,x_) =—h§(cdt)2+2 [hiz(dx')Z—Zhizwidth].
=(ct,x*,x%,x”) is described by a metrig,,,, where the line =1

element,ds is given by @s)2=gwdx”dx”. Here, Greek (10

subscripts such ag or v run from 0 to 3, and is the speed
of light. The basic equations of GRMHD in four-dimensional When we define the lapse functian and “shift velocity”
space-time are (shift vectoy B' as

1 d 3 I hiw: 2
W _ vy — _ 2 =
V(U= S LTl =o, wm 3 (") 1
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. hjw, bottom: at the pole it touches the horizosry, and on the
p=", (12 i jusi - :
ca equatorial plane, the radiusiig. In the low rotation param
eter casea< 0.8, its shape is like an ellipsoid.
the line elemends is written as
3 C. 3+1 formalism of the GRMHD equations

(ds)?2=—a?(cdt)?+ Y, (hdxX—cBladt)2. (13 We present the 81 formalism of the GRMHD equations,
i=1 derived from the four-dimensional expressidi$—(4), and

(6). In order to express observed physical quantities, we will
use several different reference frames, as follows:

Laboratory frame
1 This is a global fixed frame, with the observer far from
g%=—- — (14)  the black hole. For astrophysics, a better name might be the
“observer-at-infinity” frame. For Kerr space-time, the coor-
dinates of the frame are given by Boyer-Lindquist coordi-
1 w; nates. In the laboratory frame we will write any contravariant
=g =" (19 vector asa®.

Local laboratory (LOLA) frame

1 While this is a very useful frame, there is no popular

gl=—-(8"-p8'8), (16)  terminology for it. The “LOLA" frame is fixed to the labo-
hih; ratory frame, but an observer in this frareeesevents lo-

cally only, that is, only those in the neighborhood of the

observer. In this framect,x!,x?x3), the line element is
written as

The determinantg| is given by+/—||g||= ah;h,h3, and the
contravariant metric is written explicitly as

where 8 is the Kronecker’ss symbol.

B. Kerr space-time

A Kerr black hole has two characteristic parameters: its
massM and its angular momentuth We often use the rota-
tion parametea=J/J .., Whered .= GM?/c is the angu-

lar momentum of a maximumly rotating black hole with \yherecdi= acdt d")'(i:hidxi_ Therefore. a covariant vec-

massM (G=6.67x10 ** Nm’/kg” is the gravitational con- or measured in the “LOLA’ frame is related ta* as
stan}. In the Boyer-Lindquist coordinatesx{ x*,x?,x%)

(ds)?=—(cdt)?+ >, (dX —cpB'dt)?, (19)

=(ct,r,0,¢), the metric of Kerr space-time is written as =aa’, a=ha. (20)
[ 2ry pX A ; ; - p »
ho=\/1— 2g . hy= T hz=\/§, hy= \/%sine, A covariant vector is expressed in the “LOLA” frame as
1 ~ 1 ~ 1
@ ap=—ay, &=1-4;. (21
2 o hi
2crgar

(18

w1=0p;=0, w3 Fiducial observer (FIDO) frame

This is a locally inertial frame. Using the coordinates of
where rzquM/c2 is the gravitational radiusA=r2—2rgr the frame €1,x%,%2,%%), the line element is
+(arg? S=r?+(arg?cosd, and A={r’+(ary?}?
—A(arg)?sinfé. Here, r, 6, and ¢ are the radial, co- ) - -
latitudinal, and azimuthal coordinates, respectively. In this (dg)"=—(cdy) +Z (dx)”, (22)
metric, the lapse function i&=AX/A. The radius of the
te_vent h%riz\(l)vn if‘H:rtg_(lJr V}_a ), \;\;}hicg iﬁ found E};dset-d' wherecdt=cdt, dx'=dx — g'cdt. This is the same metric
ing @=0. We sometimes also use the Schwarzschild radiu . . , . -
of the black holers—2GM/c2=2r as a unit of length in %}St:]heaﬁglfD'\gI‘:fr‘;"rfek'i Space-time. A contravariant veadr
this paper.

As it rotates, a black hole drags the space surrounding it. A0.T0 0 2T =0

This is called theframe-draggingeffect. Because of frame- a’=a’, a=a-ap 23
dragging, there exists a special region just outside the hole, . -~
called theergospherein which any matter, energy, and in- dnd the covariant vecta,, is
formation must rotate in the same direction as the black hole
rotation. The surface of the ergosphere is givenhgy:0, a=a,+ > Ba, a=a. (24)
that is,r =r,(1+ 1—a%cos6). In the ergosphere, the shift ‘
velocity c,B‘g is greater than the light speed. In the high ro- o . .
tation case §~1), the shape of the ergosphere surface igNote that, because the metric is Minkowskiafl= —a, and
like that of an apple, with a cusp-like dimple at the top anda'=4; .

A i
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Comoving frame 5 =p (42)
An observer in this frameides onthe gas or the plasma e e
and sees events locally. Quantities observed in this frame are 3i=7i —;)eC,Bi. 43)

often calledproper values because they depend only on the

nature of the gas or plasma itself. Any scalar quantity, Sucr\}vhereA is Lorentz factors! is three-velocitve is ener
as pressure or density, is measured in this frame. Y v Y€ 9y

The components of vectors and tensors measured in tH€NSity; andP' is momentum density. We usually will write
“LOLA" frame are given by Egs.(20) and (21). To trans- y= andp.=p,, omitting the hat.
form any tensog*” we can simply consider the product of ~ The relationship between the variables measured in the
vectors likea*b”. Here, we denote these components withFIDO frame is the same as that of special relativistic MHD

tilde. We find [16,17. Here, we summarize the relation
y=al°, (25) D=yp, (44)
~ h 1
v'==cU, (26) y= : (45)
Y i
~ 1-2 (v'/c)?
T00— ,,2T00 (27) i=1
1. ah; . ah; . 1 ~ 1 . .
Bi__Fio__ 'sio__ "T0i i— a2 )
Pl=Tl=—T"=—T7 (28) P Czhy v'+ Cz(E>< B)i, (46)
=‘|—ii:hihj-|-ij' (29 . | ’7 . B2 E2 i aa EiEj
. T =p5 +?’}/UU+ ?—}_E 5—BiBj_7.
Foi=—Fio a,_hiFOia (30 (47)
B2 E?
~ ~ 1 =hy*—p—Dci+—+—, 48
Fij=—Fij=p 5 Fii (3D =hrp 2 2c? 49
hih;
Jo 1 wherep is the relativistic enthalpy density=pc?+ I p/(I"
’[)e:?: E0,\]0, (32 —1)=e+p. Here, the magnetic fiel and the electric

field E are defined as

J=h,J". (33 A 1 .
Bi:Z EEIJkFJ‘k, (49)
We usually will use physical variables that are measured in ik
the FIDO frame, which, using Eq§23) and (24), are given R R
by Ei:CFiO' (50)
Y=7, (34)  The following relations hold:
D="%p, (35 Bi=B;, (50)
v'=v'-cp, (36) E=E+> eikcaiBy, (52)
K
+ Dc2= F00-F00
erre ' (37) where
ol 1 B
i _TF0_Pi_  piF00_pi_ 7 2 ~ 1 ...
Pi=_TO=P'— —pTO=P'-—(e+Dc?), (39 Bi=>) 5y, 53
K
il = Fii — giF0i _ giFi0y gigiFoo 39 L
B B Bﬁ ( ) Ei:CFiO' (54)
Fio=—Fo=Fio+>, Brlfijv (40) Using FIDO variables, we derive the following set of
i equations from the general relativistic conservation laws
o governing the plasma and from Maxwell equatidts—(4)
Fi=Fi, (41)  and(6):
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where a quantity with an asterisk is in the MKSA unit sys-

(9D 1 ah h2 3
e hahyhs 2 h—D( v'+cp)|, (55  tem.
|
. D. Vector form of the GRMHD equations
I
A %(TMCBJP)} We introduce the derivatives of arbitrary three-vector
at hihohs 5 gxi| h; fieldsa andb and an arbitrary scalar field measured by the
1 om FIDO frame:
AN Pl
~(e+De?) o —+afl —~ ; Ploji, (56 Sy 1 hah h3 N
3 (69
Je 1 ah1h2h3 2( A ! )
—=- Pl—Do'+ e 5
gt hihoh h; c.. 19
1h2hs T ox i (Vé)i=p (66)
13 i dX
o
2 Zpl_a__E Tl Tji (57 h P
i I X ij - N i 7 2K
(an)l_ < h1h2h3 €ijk (?Xj (hka )1 (67)
E|=—j’k €ijkv' By, (58 L B 55
[(b-V)a];=> e -G,ab+Gab|. (69
~ J J
IBi —h ik 2 a Kime gl & . _—
= = el —| ahy| Ex— € cp B | Using these definitions, most formulae of standard vector
ot hihohg 7% X I,m . . e
59) analysis can be used without modification except for the fol-
( lowing:
1 9 (hahohgs ) 60 <%><a>><6:(5.%>a—(%a>.5+[a,6], (69)
hafohs o | B o0 (60
|
where [(Va)-b]= E——bJ and [a,b]i=3G;(alb’
1 1 hihohs . j
Pe=2i c2 hihohg gy ( h; i)' (62) —a'bl). Furthermore, in the case of the relation

VX (axb)=(V-b)a+(b-V)a—(V-a)b—(a V)b,
C(hk< ék (70)
we will find it more useful to employ the following form:

1afzi hy .. d

a(J+p.cBH)+ — — ik —
(J'+pech') c2 dt  f% hihohg ™ 5x

| Ex 5 (Ax B o BVal (T, AR
+2 eamB < | | (62) [Vx(axb)],=(V-b)a —(V-a)b
2hi . al o 0 b’
where fln=2(G; T —G; T1), G;j=—(Lhih;)) + = b@ )" lm ) |
X(dh;lox)), andoy; = (h /h; )(aw /(9x') ThIS form for the
equation is called tha+1 form, because the derivatives with (71)

respect to time and space are separated compleit8]y ) R
Throughout this paper, we used normalized forms of the With the above derivatives of the three-vector and scalar

magnetic fieldB and electric fielcE, so thatB%/2 andE/2c?  [1€lds, the equations of GRMHIB5)-(62) can be re-written

present the magnetic and electric field energy density, rell their FIDO vector form

spectively. We also normalize the electric charge density oD A

and the electric current densitlyso that the Lorentz force = —V-[aD(\7+ ch)l, (72)
density is given byf, =p.E+JXB. The normalized vari- Jt

ables used here are related to variables in MKSA unit system |

; . oP ~ N N ~ ”
(Sl unit system as follows: — =V . [a(T+cBP)]- (e+Dc?)Va+ afy—P- o,

at

B & E e (63 79
E=—V-[a(czP—Dc2v+ecﬂ)]—(Va)-czP—T:o-,

pe=pops 3= \pod*, (64 (74)
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B . . . where R=D+e/c?, d=(I'—-1)D, u=(1-T/2)B%c?, f
-t =~ VX[a(E-cpxB)], (79 —p/c, b=Blc, ando=B-P/c2. Note that, in the absence
of the magnetic field, Eq. (80) reduces to the well-known
relativistic hydrodynamic one, derived by Duncan and

a(J+pcp)+ 1 Ezﬁx a| B+=pxE||, (769 Hugheg[20], and Eq.81) becomes a trivial equation. These
c? dt c algebraic equations are solved at each cell using a 2-variable
Newton-Raphson iteration method. The primitive variables
v.B=0 (77)  then are calculated easily from y, D, P, €, andB, using
1 y=1+X, (82
¢ _ (I'=1)[e—xDc?—(2—1/y*)B?2+ (cyl y)?/2]
. P= [TX(x+2)+1] '
E+VvXB=0, (79 (83
where B is three-vector with the componentg;, B P+ (V/v)B
=(pB1,B2,B3). These equations are very similar to the con- v= y/y) _ (84)
servative form of the non-relativistic MHD equations except D+{e+p+B%2y*+(cyly)?2}/c?

for the geometric factors and terms involving the lapse func-

tion « and the shift velocityB. Note that—c?V« corre-  This method is identical to that used in special relativistic
sponds to the gravitational force in the non-relativistic equaMHD simulations [16,17. Our numerical code has been
tions and thatc?a can be regarded as théspecifi  tested in both the special relativistic regif6,17] and in
gravitational potential. The termf.,, contains the centrifu- the general relativistic regim¢13], the latter using a
gal force. The terms involvingr arise from the shear of the Schwarzschild black hole. We also checked the code perfor-
space dragging itself. mance in a Kerr metric by computing circular orbits and
their stability inside and outside of the last stable ofBH].

IIl. NUMERICAL METHOD
IV. A SIMULATION OF MAGNETIC EXTRACTION

For our GRMHD simulations we use ttgmplified total OF ROTATIONAL ENERGY FROM A KERR

variation diminishing(TVD) method, which was developed BLACK HOLE
by Davis[19] for violent phenomena such as shodkee
Appendix D in[13]). This method is similar to the Lax- A. Initial and boundary conditions

Wendroff method with the addition of a diffusion term. In the To understand the basic physics of magnetic extraction of

simplified _method, in order to integrate the _time-dependenpotationm energy from a black hole, we have used GRMHD
conservation laws, we need only the maximum speed of; ations to investigate a simple system involving a large-
waves, not each eigenvector or eigenvalue of the coefficient ;o magnetic field, thin plasma, and nearly maximally-

matrix.of the Iineari;ed GRMHD. equations. . rotating Kerr black hole witha=0.99995. In this case, the
During the evolution of the difference equations, we Ob'black hole horizon radius isy=0.505¢. The plasma

tain only the quantitie®, P, e, andB directly at each step. around the hole is initialized with a uniform mass densigy
In order to proceed further, we must calculate the primitivejow pressurep,=0.06p,c%, and a specific-heat ratio df

variablesy, v, andp from the conserved quantitis, P, e, =5/3. The initial momentum of the plasma is zero every-

andB using Eqs.(44), (45), (46), and (48). To do this, we where, and the initial magnetic field is uniform and strong.

solve two nonlinear, simultaneous algebraic equations withts initial structure is given by the uniform and steady Wald
unknown variables= y— 1 andy= y(v- B)/c? solution[21] for a magnetic field in a vacuum. The electric

field is given by the ideal MHD conditiofi79). The vector

r 12 potential of the Wald solution is
X(x+2)|TRX+ (2I'R—d)x+T'R—d+u+ Ey2 B
0
A,=—(g,3t2ar.g,o0), (85
= (TX%4 2T x+ D) F2(x+ 1)2+ 20y + 20xy+b2y?], Heo2 o N
(80) whereBy, is a constant indicating the magnetic field strength.
In Boyer-Lindquist coordinatesx,x*,x?,x3) = (ct,r, 8, $),
[F(R— b2)x2+ (2I'R— 2T'b?— d)x+ TR—d + u— b2 this yields
r , & _g cos AjLZr(_l,r(r“—(arg)“) @6
+§y y=o(x+1)(I'x*+2I'x+ 1), (81) r=Bo JA 52 ,
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N A
By=—Bg Ksma

+2(arg)?coo(r?—(ary)?)}

t=1r1g

r—ry+ %{(err(arg)z)E

: (87)

z/rg

In the present simulation, we set B§=5.77/poc?. This is
a magnetic-field-dominated case, with Alfven velocity

=Bo/[po+{T'po/(I'—1)+B2}/c?]¥?=0.98% close to the
speed of ligh{ 36].

We perform simulations in the region 05&r<20rg
and 0.0k =< 7/2, with 211X 71 mesh points. We use a uni-
form mesh in the coordinates (Ing,¢) and assume axisym-
metry with respect to the-axis and reflection symmetry with
respect to the equatorial plane. The axisymmetric conditions

S

on thez-axis (9=0,7) are E
e o&ﬁ)roﬁﬁofwo(ko
A R T
aér . R o 0 15 2 A. .'10 15 20
WZO’ BHIO, B(b:O, R/rg
and the reflection symmetry conditions on the equatorial c 0.1 0.10 1.00
plane @@= m/2) are given by ~By/Bo
JD IP" . Ip¢ Jde FIG. 1. Time evolution of a simple system of large-scale strong
%=O, WZO’ Pi=0, WZO’ ﬁ=0, magnetic field, thin plasma, and a Kerr black hole in the region 0

<R=rsind<3rg and O<z=rcos¥<3rg. The gray-scale portion
~ shows the value of-B /B, and solid lines are poloidal magnetic
dBy ~ field lines(flux surfaceg The arrows show the poloidal component
' of the plasma velocity} as observed in the FIDO frame. The black
o S quarter-circle at the origin indicates the event horizon of the black
A radiative boundary condition is employedrat 0.5 sand  hole. The dashed line shows the inner boundary of the calculation
r=20rg: region atr=1.0Tr,. The dot-dashed lines show the boundary of
1 ‘1 the ergosphere.
ug T=ug+uit—uf, (88)
whereu is any conserved densityD( P, €, B). The super- “frame-dragg_ing dynamo’(or “frame-dragging() effect”)
scriptsn andn+ 1 indicate the time step numbers, and thel22,23. At t=6.53rs, this process has amplified thﬁ mgg-l
subscripts 0 and 1 show the boundary and its neighborinﬂet'c fle_ld to a value thgt is three times I_arger than t e initia
; ; magnetic field strength in the ergosphéfgy. 1d). The twist
mesh points, respectively. N .
of the magnetic field lines propagates outward along the

magnetic field lines against the infalling plasma flow as a
torsional Alfven wave(Figs. 1b, 1c, and 1d; see the expan-
Figure 1 shows the time evolution of this system of large-sion of the gray-white regionWe call this wave propagation
scale magnetic field, thin plasma, and Kerr black hole. Hereregion “Alfven wave region.” The production and propaga-
after, we will discuss the physics in the Boyer-Lindquist co-tion of a torsional Alfven wave also can occur in an accretion
ordinates(the laboratory frameexcept when noted. At disk in Kepler orbital rotation about a normal star if there is
=r15=rg/c, the plasma begins to fall rapidly toward the a large-scale magnetic fie]@4—29. The difference between
black hole, and the azimuthal component of the magneti@dlfven waves from an ergosphere and a magnetized accre-
field also begins to increase due to the azimuthal twisting ofion disk is that the former are caused by the frame-dragging
the magnetic field linegFig. 1b. In the ergosphere, the effect, while the latter are due to the rotation of the disk. In
plasma rotates in the same direction as the black hole due the disk case, if the rotation stops, no Alfven wave is pro-
the frame dragging effect. The magnetic field lines then areluced. However, independent of the state of the plasma, an
twisted azimuthally in the direction of the black hole rotation Alfven wave will be emitted from the ergosphere if the black
by the differential rotation of the plasma. This effect is simi- hole is rotating.
lar, in a broad sense, to the the dynamo effect cdllesffect To demonstrate this result more intuitively, we show in
of geomagnetic dynamo theory and therefore called théhree-dimensions the magnetospheric structure around the

B. Time evolution and three-dimensional view of the system
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R/rg

FIG. 3. The energy-at-infinity densitg”™ and the energy flux
densityS att=6.53rg. The dotted lines show the positive value of
e” and the solid lines show the non-positiyeero or negative
value. The arrows show the energy flux dens&tyThe black region
and dashed and dot-dashed lines are the same as Fig. 1.

ergy transport near a Kerr black hole are summarized in the
Appendix. Figure 3 shows the energy-at-infinity densty
and the energy flux densiyatt=6.53rg5. The figure shows
that there is a net energy flux out of the ergosphere along the
magnetic field lines. Integrating the energy flux densty
over the surface of a cylindeR=rsind<0.8g, —rg=z
=rcod=<rg, we found the net power isLy
=0.18@3r2c/ uo. This energy flux is so large that the total
energy-at-infinity densitg™ of the material and the field in
FIG. 2. Three-dimensional graphic of magnetic field linesthe ergosphere decreases quickly and has become decidedly
around a Kerr black hole at=6.53rs. The black sphere at the negative byt=6.53rs. The dotted lines show positive
center depicts the black hole. The transparent surface shaped like @mergy-at-infinity contours and solid lines show non-positive
apple outside the black hole is that of the ergosphere. The tubegero or negativevalues. When this net negative energy-at-
show the magnetic field lines. Four of these penetrate into the efinfinity is swallowed by the black hole, the net eneiggtal
gosphere and the two others do not. mass$ of the black hole decreases. Energy of the Kerr black
Kerr black hole att=6.53r (Fig. 2. The magnetic field hole, therefore, has been converted to electromagnetic field

lines are drawn so that they are parallel to the magnetic fiel§Er9Y Of. the Alfven wave. Wwe caII.th.e. region where the
observed in the laboratory frame at each point. At this timeplasma with the neigatlvg energy-at-lnfllnlty acpret:as toward
the black hole has rotated one cycle since the beginning otpe black hole_ the negative energy faI_Img region. .
the simulation. The magnetic field lines are slightly bent to- _NOte that, in Boyer-Lindquist coordinates, any material,
ward the black hole by the infalling plasma. Those field lines€"€rgy, and information outside the black hole horizon can
that penetrate the ergosphere surface are twisted strongly a#iot cross the horizon because of the time dilation effects
muthally in the same direction as the black hole rotationthere. However, in Fig. 3 it appears that the negative energy-
which those that do not penetrate it are twisted only weaklyat-infinity region extends all the way to the horizon. This is
The magnetic tension of the bent magnetic field decelerate3n artifact of the extrapolation of variables from the calcula-
the plasma in the ergosphere near the equatorial plane, inton boundary at =0.51rs. Physically this means only that
parting an angular momentum that is opposite to that of théhe negative energy-at-infinity region reaches to the calcula-
black hole. The importance of this effect is shown later.  tion boundary(the “stretched” horizon in our computation
Note also that the energy-at-infinity

C. Energy transport in the system

Next we shall discuss the details of energy transport in E“:f e”h;h,hzdx2dx?dx® (89
our example simulation. The basis theory and sense of en- ry<r<e
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FIG. 4. Similar to Fig. 3, but for the electromagnetic energy-at- FIG. 5. Similar to Fig. 3, but for the hydrodynamic energy-at-
infinity density ef,, and the electromagnetic energy flux density infinity densityeﬁyd and the hydrodynamic energy flux densgy.
Sem-
transported outward by the torsional Alfven wave produced
is conserved, because energy transport across the horizoniisthe ergosphere. Between the Alfven wave region and the
zero due to the time dilation in the Boyer-Lindquist coordi- negative energy falling region, hydrodynamic energy is
nates. We check this conserved quantity by integrating  transformed into magnetic energy. This is accomplished via
magnetic tension in the ergospheric equatorial pldig. 2).
Eo'\cl:f e”h;h,hsdx2dx2dx3 T_his t.ension aqcelerates thel plasma in the ergosphere in a
1.0Iry<r<20rg direction opposite to the rotation of the black hole. The shear
converts hydrodynamic energy of the plasma into electro-
and found that it is constant within the 0.2% accuracy. Tomagnetic free energy by increasing the strength of the azi-
compute the negative energy swallowed by the black holenuthal magnetic field component. This is the frame-dragging
directly, we should use other coordinates such as the Keridynamo effect, so we call the region in between the negative
Schild coordinate$30]. energy falling region and the Alfven wave region the
Figures 4 and 5 show, respectively, the electromagneti¢frame-dragging dynamo region.”
and hydrodynamic components of energy transportt at Using the same method we used to calculatg, we find
=6.5375. The hydrodynamic energy flux densify,q in  that the power of the Alfven wave emanating from the ergo-
Fig. 5 is directed toward the black hole everywhere except irsphere isLgy=0.258B2r2c/uo. Punsly and Coroniti esti-
the negativeey, 4 region near the ergospheric equator. Themated the electromagnetic power from their ergosphere wind
absolute value of the outward hydrodynamic energy fluxto be comparable to that coming directly from the rapidly
density on the equato® is much larger than that of the rotating black hole horizon due to the Blandford-Znajek
inward hydrodynamic energy flux, indicating that most of themechanism [8,9]: Lg,~ (7/4)a?B2r3c/uo. This yields
hydrodynamic power emanates from the vicinity of the hori-LBZNO_QBgrgc/MO for the present simulation which is
zon(see also Fig. 8 Furthermore, the hydrodynamic energy aimost the same as the value we obtained from our numeri-
there is more negative than even the electromagnetic energya| simulation. A better expression for the power is
so when the plasma crosses the horizon, it is the negatvie_ = (/4)(ac/v ) B2r2c/ uo, Which is valid when the in-
hydrodynamicenergy-at-infinity that will dominate the en- eja of the plasma is significant, the Alfven velocity is small
ergy extraction. Such energy transport occurs in the ”egat'V@ompared to the speed of light, where the effects of plasma

energy falling region. On the other hand, Fig. 4 shows thafufa)| js neglected. On the other hand, hydrodynamic energy
the energy flurom the ergosphers dominated by thelec- g yransportedtoward the black hole with a rate of only

tromagneti¢ not the hydrodynamic, component. That is, ~ —0.07B2r2c/ uo, which includes the inflow of the
there exists another region in the ergosphere, called the AR : 0 S¥/m0r

fven wave regionat r=0.6rg), where the outward electro- est mass energy.
magnetic energy flux is found. These two regions play dif-
ferent roles: plasma with negative hydrodynamic energy-at-
infinity directly extracts the rotational energy of the black  Our numerical results show that rotational energy of a

hole through the horizon, while electromagnetic energy iblack hole can be causally extracted by a strong, large-scale

D. Angular momentum redistribution
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magnetic field if and only if negative energies-at-infinity oc-

cur within the ergosphere. The energy-at-infinity density is

written as

e"=aetwyl (90
wheree= e+ Dc? is the total energy density observed in the
FIDO frame, and is the angular momentum densitf£gs.
(A4) and(A13) in the Appendi}. The lapse functiomr ande

are always positive. So, to obtain negative energies-at\:'

infinity, | must be negative and smaller thanve/ w , (When
w,, is positive. Now, because of time dilation at the horizon,
the total angular momentum outside the horizon

L= f Ih,h,hadxtdx2dx3 (91)
ry<r<o

must be conserved. Therefore, in order to obtain a suffi-

ciently negative local angular momentum denditythere

must be a redistribution of angular momentum in the ergo-

sphere. We checked the expected conservatidn lof inte-
gratingl and|l| over the calculation volume and found that

U Ih;h,hsdxtdx?dx®
1.0rpsr<20rg
=0.18

J [I|h;hohsdxtdx?dx®
10Ty =r=20rg

PHYSICAL REVIEW D67, 104010(2003

3.

e

R Yo [ naiadin i

¢,

N S s s s > > > > —>

~

N

A

0.5 -0

FIG. 6. Similar to Fig. 3, but for the angular momentum density
| and the angular momentum flux denshiy.

never escape the ergosphere, it subsequently will cross the
horizon(if we observe in the Kerr-Schild coordinaje®hen
negative energy plasma is swallowed by the black hole, the
net energy of the Kerr black hole decreases. Here, the infall

of gas with negative energy-at-infinity plays an essential role
att=6.53rg. This means that most of the positive and nega-in operating a causally-correct, black hole energy extraction
tive angular momenta cancel to better than 20%. mechanism. To obtain negative energy-at-infinity in the gas,

Figure 6 shows the total angular momentum derisitgd  a relativistic angular momentum in the ergosphepposite

its transport flux densityVl at t=6.53r5. The flux density to the black hole’s angular momentum is necessary. And,
shows that angular momentum is transported outwae® because the total angular momentum must be conserved, a
the Appendi¥. In the wide region around the ergosphere, the
angular momentum density is negative, while in the outer ANA g
region (aroundR=0.8 g, z=2.5¢) the angular momentum NN LT
density is positive. The redistribution of angular momentum
is caused by the electromagnetic fiékke Fig. 7, the elec-
tromagnetic angular momentum transport flux density,
Mgw), particularly by the magnetic tension. Note that the
negative angular momentuhnin the ergosphere is dominated
by the hydrodynamic componetgeel,q in Fig. 8). This is
consistent with the negative energy-at-infinity being domi-
nated by the hydrodynamic component, as noted earlier. Out,»
side the ergosphere, the hydrodynamic angular momentum is !*
negligible, and the positive angular momentdins domi-
nated by the electromagnetic component. This is also consis
tent with the energy transportation being due to the torsional
Alfven wave.

.0

1.

E. Discussion

Energy transport in the entire system, and the ultimate
extraction of black hole rotational energy by a large-scale
magnetic field, can be summarized as follows. Because o
the outward propagation of the electromagnetic free energy
(against the plasma inflowin the Alfven wave region, the FIG. 7. Similar to Fig. 3, but for the electromagnetic angular
energy-at-infinity in the ergosphere decreases to negativi@omentum densitygy, and the electromagnetic angular momentum
values. As material with negative energy-at-infinity canflux densityM gy.

0.

.0
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FIG. 8. Similar to Fig. 3, but for the hydrodynamic angular  FIG. 9. The Alfven surface (f=0%), indicated by the solid

momentum densityy,q and the hydrodynamic angular momentum |ine. The black region and dashed and dot-dashed lines are the same
flux densityMpq. as Fig. 1.

redistribution of the angular momentum is required. In thetremely strong magnetic field case corresponds to the force-
classic Penrose process an elementary particle reaction redfsee solution of Blandford-Znajek mechanisf8]. In this
tributes the angular momentum of particles into orbits withsituation the critical surface, like Alfven and fast surfaces, is
negative energy-at-infinity. Our simulation shows that thelocated at the horizon.
large-scale, strong magnetic field plays a role similar to par- We now will show the existence of a negative energy
ticle scattering. Therefore, we call this magnetic extractiorfalling region in the force-free solution ¢B]. Here we do
mechanism of black hole rotation energy the “magnetohy-not need to consider the frame-dragging dynamo region be-
drodynamic(MHD) Penrose procesg31-33. cause we can neglect the hydrodynamic energy-at-infinity in
In order to propagate the Alfven wave outward against thehe solution. When the system is in a steady state, and axi-
infalling plasma, the Alfven velocity should be larger than symmetric with respect to theaxis, the angular velocity of
the infall poloidal velocity of the plasmayP=+v?+v2  the magnetic field line€)g is constant along the magnetic

<5/§E \/(I§5+I§§)/[p+{l“p/(1“—1)+Bz}lcz]. This condi- ;qu su_rfaces[s]. The velocity of field lines in the FIDO
. . . frame is
tion delineates the volume we call the Alfven wave region,

and the boundary of that region, wherg=01% , is called the . hy .
Alfven surface. To extract the energy of the black hole, the VF:;(QF_‘%)QS’ (92)
Alfven wave region must be located in the ergosphere. The
same result was found in the steady-state thgdty. Figure  and the electric field is
9 shows the Alfven surface 8t 6.53rg. It is clearly located
very near the horizon, and the figure shows that, even in the E=—vexBP, (93
ergosphere, the Alfven wave propagates outwardly against
the plasma falling along the magnetic field lines. Note thatyhere ¢ is the azimuthal unit vector and® is the poloidal
some parts of the Alfven surface appear to actually touch thenagnetic field[18]. The electromagnetic energy-at-infinity
horizon. This again is an artifact due to the extrapolation of gq. (A9) in the Appendi} is

N

the physical variables from the calculation boundary. It

means only that the Alfven surface is located between the o
horizon atr=0.5055 and the calculation boundary at e°E°M=§
=0.5105. In the extremely strong magnetic fieldr ex-

tremely low inertia plasmacase, the Alfven velocity ap-

proaches the speed of light;y— c(B%/ pc?— ). Because :g(éP)Z
the plasma infall velocity is smaller than light speaﬂr (

<c), the conditionv(<v , is satisfied everywhere except at (94)
the horizon. In this case, the Alfven wave region spreads alll L
around the Kerr black hole except at the horizon. This exwherevy=cg andB"=|B"|-B,/|B,|.

vf

c

(ép)2|1+

8$+vﬁ
C
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The condition for obtaining negative electromagnetic energytion has not yet reached a steady state, so such a ratio should

at-infinity eg,,<0, then, is be investigated more fully with the longer-term simulations.
In the present simulation, we find energy transport out of
v8+0¢ v?®\2 B.\° the ergosphere, but no outflow of plasma. We believe that
F H H ¢ S . )
(—) —1-l =5 (95 this is due to the open magnetic field lines. Energy from the
¢ ¢ B ergosphere is transported outwardly and smoothly along the

open field lines before it is converted to kinetic energy of

i i b _ i iti . . )
Using the relationpy=h,w,/a, this condition becomes  pjasma outflow. If we consider closed magnetic field lines

o 2 > across the ergosphere, the energy from the ergosphere will be

alvij c By stored in closed magnetic flux tubes. The magnetic pressure
|Qd<——\/1-| —=| —| —= (96) . : :
hy vl v’BP of these flux tubes will increase, elongating the tubes verti-

cally (in the direction of thez-axis), and the plasma confined
Outside the ergosphere, the electromagnetic energy-aid the magnetic tube will be accelerated outward. The out-
infinity is always positive because{j|<c. In the steady flow will be pinched by the magnetic tension, and this
state case, if the rotational energy of the black hole is expinched plasma flow will become a relativistic jet.
tracted electromagnetically, the energy-at-infinity at the hori- At late times, the elongated magnetic flux tubes will pro-
zon should be negative. And, if the energy-at-infinity at theduce an anti-parallel magnetic field near the ergosphere. In
horizon is negative, a negative energy-at-infinity region musthis configuration, the electric resistivity will be important. If
exist around the black hole because of the continuity of théhe resistivity is small but finiténon-zerg, magnetic recon-
variables ¢|v¥], hy, clvd, and CB¢/uﬁI§P) at r=r,. nection will occur and release magnetic energy explosively,

Therefore, we can demonstrate the existence of a negatiFCelerating the plasma quickly. The accelerated plasma out-
energy falling region in the Blandford-Znajek mechanism byflow will be dwepted vertllcally_ and become a reIat|IV|st|c jet.
evaluating the electromagnetic energy-at-infinity at the hori-C10s€d magnetic field lines in the ergosphere will be pro-

zon. The magnetic field boundary condition at the horizonduced by a currentring in the vicinity of the black hole or by

: charge on the rotating black hole itsdli Kerr-Newman
(Eq. 3.15 off8]) yields black holg. In extreme dynamical events, such as a failed
c B, Qg0 supernova, the newly-formed black hole may have its own
T W (97)  electric charge. Relativistic jets in gamma-ray bursts may be
vy B H produced by such dynamical processes around Kerr-Newman

black holes. However, in this case, the self-gravity of the
plasma around the black hole will be significaf®@n the
other hand, disk self-gravity in AGN is usually negligible.

where Qpy=w4(ry) =al2ry is the angular velocity of the
black hole horizon. Then conditiof®6) at the horizon is

O 20,—0p) GRMHD simulations that include self-gravity will be an im-
|2l < VO204~ ). (98 portant tool for investigating relativistic numerical as-
Here, we usév | —o whenr—ry. This condition is iden-  FOnomy.

tical to Qg<Q,, which is an assumption implicit in the
Blandford-Znajek mechanism. Therefore, a region of nega-
tive electromagnetic energy-at-infinity exists in the In this paper, we presented the complete numerical
Blandford-Znajek process. method of GRMHD in Kerr space-time. We have applied our
In the Blandford-Znajek process, negative electromagGRMHD code to investigate the basic mechanism of the
netic energy-at-infinity plays an important role in extracting energy extraction from a Kerr black hole by a magnetic field,
the rotational energy of a black hole at the horizon in ain particular the simple system of a large-scale magnetic field
causal manner. In fact, we believe that the condition thaand thin plasma surrounding a Kerr black hole. Our numeri-
negative electromagnetic energy-at-infinity exists, B#), cal results show that the rotational energy of the Kerr black
is the same as the condition that the Blandford-Znajekhole can be extracted when the magnetic field is strong
mechanism is operating. We propose to define strictly thenough. The extracted energy is transported outward from
Blandford-Znajek mechanism as that black hole energy exthe ergosphere in a torsional Alfven wave. The electromag-
traction process that occurs by means of negadileetro-  netic power in this Alfven wave is almost the same as that
magneticenergy-at-infinity. And, correspondingly, we define produced by the Blandford-Znajek mechanig®]: Lgy
the MHD Penrose process, as the extraction process that op-(/4)a?B3r2c/ uo. [Note that the expressidngy= (7/4)
erates via negativeydrodynamiaenergy-at-infinity. Accord- X(azc/vA)Bgrﬁc/,uo is more appropriate when the Alfven
ing to our definitions, the both processes are found in theelocity is small compared with the speed of lighive call
present simulatior{Fig. 4 and Fig. % The contribution of  our mechanism the MHD Penrose process, because the nega-
the MHD Penrose process and the Blandford-Znajek mechajve energy-at-infinity plays an essential role just like Pen-
nism, respectively, can be evaluated from the hydrodynamigose process. The difference between the classical Penrose
and electromagnetic power radiationy,y and Ly, very  process and this one is just the force of the redistribution of
near the horizon. We evaluate these powers on a surfacethe angular momentum. The Penrose process uses particle
=0.6rg, 0.2r<0<0.87 and find that they are comparable fission (interactior), while the present mechanism uses mag-
att=6.53rs; Lj,J/Lpy=1.3. However, the present simula- netic

V. SUMMARY
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tension. We also discussed the relation between the MHD ) ri o
Penrose process and the Blandford-Znajek mechanism. The S=a|ac®P'+e"cp+ > acp Tl . (A5)
latter can be defined as the black hole rotational energy ex- J

traction mechanism that employs negatilectromagnetic  ngte that the energy-at-infinity must be positive everywhere

energy-at-infinity, while the MHD Penrose process is deﬁne%xcept in the ergosphere. These quantities can be divided
as one that employs negativeydrodynamic energy-at- i components as follows:

infinity. In the present numerical simulation, the both mecha-

nisms make roughly equal contributions to the energy extrac- e” = eﬁyd+ et (AB)
tion. When we consider the extremely strong magnetic field

(or small plasma inertjacase, the Alfven surface occurs at i_ o i

the horizon, and the Alfven wave region occupies the entire S = Shyat Sem A1)
region just outside of the horizon. The steady state of thigynere

case is identical to the force-free solution[8].
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APPENDIX: TRANSPORT EQUATIONS AROUND KERR where the subscripts “hyd” and "EM” indicate hydrody-
BLACK HOLE namic and electromagnetic components, respectively.

For the Killing vectorn”, we have the equation of angu-
This appendix presents the equations of energy and anglar momentum conservation
lar momentum conservation near a Kerr black hole. The Kill-
ing vectors for Kerr geometry arg”=(—1,0,0,0) and»” dl -
=(0,0,0,1). In general, any Killing vecta@” has an associ- g —V-M, (A12)
ated conservation law
wherel=aT%7,/c andM'=ah;T'" 7, are the angular mo-

1 J mentum density and the angular momentum flux density, re-

—Tall ax* V=gl T#"¢,)=0. (A1) spectively. Using the quantities measured in the FIDO frame,
we write
Usin = — (ah;h,h3)?, this equation becomes .

gllgll=~(ahshzhs) q = hyP°, (A13)

1% 1 17 .

g Ovg \— = iv and

(@160 =~ - 20— (ahihohaeT g,
(A2) Mi=ahs(T3+cp P?). (A14)

For the Killing vector x”, the law of energy conservation These variables also can be divided into hydrodynamic and
becomes electromagnetic components, denoted by the subscripts
“hyd” and “EM,” as follows:

ae” -

- V'S (A3) |=lpyatlem, (A15)
where e”=aT?"¢, is called energy-at-infinitydensity and M'=Miyq+ Mgy, (A16)
S'=cah;T""¢, is energy flux density. Here we also express
these quantities in the FIDO frame as where

- 2 pi = ha s /25 A17
e =a(6+DC)+2i wihP, (A4) ny=ha 5 v°0”, (A17)
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hy . .
lem=— (EXB)3, (A18)
c
. b .
Miye= ahs p5'3+§yzv'v3+c,8'?yzv3 , (A19)
o [(er B2\ .. EEs cB .
MEM—ah3 7"‘2_02 ) _BiB3_ CZ +?(EXB)3 .
(A20)
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JI€eMm
ot

—V-Sey—a(V+cph)-f., (A23)

ot

— —V-Mgy—hsf3, (A24)

wheref, = p,E+JIx B is the Lorentz force density. Subtract-
ing the both sides of the electromagnetic transport equations
(A23) and (A24) from the conservation equatiod3) and
(A12), respectively, we derive the hydrodynamic transport
equations of energy and angular momentum

We can see that the hydrodynamic energy-at-infinity and an-

gular momentum densitie6A8) and (A17) are similar to
those for a particle with the mass,

E*=amc®y+ wshsmyo?, (A21)
L=hsmyv?, (A22)
respectively [35]. Furthermore, noting that BZ/2

+E?/2c?)/c? and Ex B/c? correspond to the effective elec-
tromagnetic mass and momentum densities in the FID

frame, we also find a similarity between the electromagnetic

energy-at-infinity and angular momenf&qgs. (A9) and
(A18)] and those of one particliEgs. (A21) and (A22)].

&eﬁyd
ot

V- Syat a(V+ch)-fL, (A25)

ol hyd

=~V Myt hyf?.

(A26)

When we replace the suffixes “hyd” and “EM” by %" and
“ —" respectively, the transport equation of energy and an-

cgular momentum can be summarized as

oe%

= —V.S. *a(V+cp) f_, (A27)

Next we present the transport equations of electromag-

netic energy and momentum near a Kerr black hole. The

general relativistic Maxwell equatior(¥5)—(78) yield

(A28)
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