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Dimensional regularization for A/=1 supersymmetric sigma models and the worldline formalism
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We generalize the worldline formalism to include spin 1/2 fields coupled to gravity. To this purpose we first
extend dimensional regularization to supersymmetric nonlinear sigma models in one dimension. We consider a
finite propagation time and find that dimensional regularization is a manifestly supersymmetric regularization
scheme, since the classically supersymmetric action does not need any counterterm to preserve worldline
supersymmetry. We apply this regularization scheme to the worldline description of Dirac fermions coupled to
gravity. We first compute the trace anomaly of a Dirac fermion in 4 dimensions, providing an additional check
on the regularization with finite propagation time. Then we come to the main topic and consider the one-loop
effective action for a Dirac field in a gravitational background. We describe how to represent this effective
action as a worldline path integral and compute explicitly the one- and two-point correlation functions, i.e. the
spin 1/2 particle contribution to the graviton tadpole and graviton self-energy. These results are presented for
the general case of a massive fermion. It is interesting to note that in the worldline formalism the coupling to
gravity can be described entirely in terms of the metric, avoiding the introduction of a vielbein. Consequently,
the fermion-graviton vertices are always linear in the graviton, just like the standard coupling of fermions to

gauge fields.
DOI: 10.1103/PhysRevD.67.104009 PACS nunifer04.62+v
[. INTRODUCTION The quantum mechanical calculation of chiral anomalies can

be extended to trace anomaligs9]. However, in the latter

One dimensional supersymmetric nonlinear sigma modelsase the details of how to define the path integral is essential
are useful to describe in first quantization the propagation ofince one-loogin target spacetrace anomalies correspond
Fermionic particles in a curved background. In fact, it is wellto higher-loop calculations on the worldline, namely the one-
known that\/=1 supersymmetric sigma models describe theloop trace anomaly ifD dimensions is given by ®/2+1
worldline dynamics of a spinning particlé]. Mastering the loop calculation on the worldline. Several regularization
path integral quantization of such models provides a usefuichemes have been developed for this purpose: mode regu-
tool for treating spin 1/2 particles coupled to gravity. Thelarization (MR) [8-10], time slicing (TS) [11,12, and di-
purpose of this paper is twofold. We first extend dimensionamensional regularizatiofDR) [13,14]. The DR regulariza-
regularization to supersymmetric sigma models with finitetion was developed after the results of Réf5] which dealt
propagation(prope) time. Then, with this regularization with the nonlinear sigma model in the infinite propagation
scheme at hand, we generalize the worldline formalism taime limit.! The first objective of this paper is to extend
include spin 1/2 fields coupled to gravity. This extends thedimensional regularization to include fermionic fields on the
scalar particle case treated in REZ]. The resulting Feyn- worldline and treat supersymmetric nonlinear sigma models.
man rules are simpler than the standard ones obtained frolvorldline fermions coupled to gravity give rise to nésu-
the second quantized action. In particular, the fermionperficially) divergent Feynman diagrams, other than those
graviton vertices can always be taken linear in the gravitorassociated to the coupling of gravity with the bosonic coor-
field, a fact which seems to point once more to unexpectedinates. Hence one may priori expect additional counter-
perturbative relations between gravity and gauge theories, aerms to arise. In fact, in time slicing, the inclusion of the

reviewed in Ref[3]. fermionic fields brings in additional noncovariant counter-
Path integrals for supersymmetric sigma models in oneerms of ordeB?: they are proportional tgf‘”l“,ﬁpl"‘;A if one

dimension were originally used for deriving formulas for in- yses fermions with curved target space indices, or
dex theorems and chiral anomaligs-6]. However, for ob- g””wﬂabwyab if one uses fermions with flat space indices
taining those results the details of how to properly define an@i12]. Note that such counterterms only arise at two loops,
regulate the path integrals at higher loops were not necessaahd thus they do not affect the calculation of the chiral
Due to the worldline supersymmetry the chiral anomalies ar@nomalies, but should be included if one wants to check with
seen as a topological quantity, the Witten ind@k which is TS that there are no higher order correctionszifil7]. We
independent of3, the propagation time in the sigma model. are going to show that in dimensional regularization no extra

Thus a semiclassical approximatiomhich consists in calcu-  counterterms arise. This implies that dimensional regulariza-
lating a few determinantglready gives the complete results.

IRecently, Kleinert and Chervyakdi6] have also analyzed non-

*Email address: bastianelli@bo.infn.it linear sigma models for finite propagation time, discussing how DR
"Email address: corradini@bo.infn.it defines products of distributions, and finding results for the Feyn-
*Email address: zirotti@bo.infn.it man rules which agree with those obtained in R&8].
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tion manifestly preserves supersymmetry. In fact the bosoniceader uninterested in the details of the DR regularization
part produces a coupling to the scalar curvature with thescheme may jump directly to it. Section V contains our con-
precise coefficient required by supersymmetry. We describelusions. Conventions and useful formulas are collected in
how to use both flat target space indices and curved ones, fthe Appendix. We work with a Euclidean time both on the
the fermionic fields. Using curved indices will bring in a new worldline and in target space. The latter is assumed to have
set of bosonic “ghost” fields, in the same fashion of Refs.€ven dimension®.
[8,9].

Having at hand a simple and reliable regularization!l. DIMENSIONAL REGULARIZATION WITH FERMIONS
scheme for supersymmetric sigma models, we turn to the

worldline formalism. As a warm up, we first compute the of fermionic path integrals obtained by extending the method

trace anomaly for a Dirac fermion in 4 dimensions. We Ob'presented in Ref13] for bosonic models. We shall discuss
tain the expected result, providing a further test on our apt_~.". o . e .
plication oth)he DR schemg. Then ?/ve come to the core of OEFXp“CItIy path integrals for Majorana fermions on a circle

paper: the generalization of the worldline formalism to in- with antiperiodic boundary conditior®&BC's), as these are

clude spin 1/2 particles counled to aravity. Many sim Iifica_the only boundary conditions that will be directly needed in
. P P up gravity. y P the applications to trace anomalies and effective action cal-
tions are known to occur in the worldline path integral for-

; : . : culations. Our strategy will be as follows: we first set up the
mulation of guantum f'?lq theoriQF ), Wh.'Ch for this very rules of dimensional regularization for fermions following
reason provides an efficient and alternative method for com:

uting Fevaman diaarams. This method has quite a long hi Ref. [13], then we require that a two-loop computation with
For gr’ootgd in Ref[(iJS] Léter it was develo gd further% DR reproduces known results, and precisely those obtained
Y: o P y by a path integral with time slicinfl2] (or equivalently by

viewing it as the particle limit of string theofy19], and then : d
discussed directly as the first quantization of point particlesheat kernel method6)). This requirement plays the role of

) . a standard(in QFT) renormalization condition, and fixes

e e e ey fance and fof a the DR oo couterte due o e
~-ons. Since counterterms are due to ultraviolet effects, the

string inspired rules with gravity were presented in Refs%frared vacuum structure and the relat.ed bo.undary and'_
‘tions on the fields should not matter in their evaluation.

[23,24,3. i
Here we consider the case of the one-loop effective actiorT herefore one expects that the same counterterm should ap

: T o ply to fermionic path integral with periodic boundary condi-
for_g Dr:rac fermion in a graV|tat|ona|1(Ijlpackgr(?lu_nd. Wel dvi'/'tions (PBC’s) as well. No higher-loop contributions to the
scribe how to represent it as a worldline path integral. counterterm are expected as the model is super-
compute explicitly the one- and two-point correlation func- renormalizable, just as in the purely bosonic case
tions, i.e. the spin 1/2 particle contribution to the graviton Let us cons'ider the path integral quantizationiof e
tadpole and graviton self-energy. These results are presente:d1 supersymmetric model written in terms of Majorana fer-
for the general case of a massive fermion. In our calculation;nions with flat target space indices
we use the DR scheme constructed in the previous sections. '
The other known scheme explicitly developed to include
worldline fermions(time slicing[12]) can be used as well, zzf DxDaDbDcDye S, (1)

but lack of manifest covariance makes its use more compli-

In this section we describe the dimensional regularization

cated. It is interesting to note that in the worldline formalism

the coupling to gravity can be described entirely in terms of S= EfldT
the metric, avoiding the introduction of a vielbein. The Blo
fermion-graviton vertices are always linear in the metric
field, just like the standard coupling of fermions to gauge
fields are linear in the gauge potential. This fact seems to
point once more to the unexpected perturbative relations be-
tween gravity and gauge theor_les encoded in Fhe so-_called +VCT(X)+VéT(X)]) )
Kawai-Lewellen-Tye(KLT) relations[25], as reviewed in

Ref. [3].

The paper is organized as follows. In Sec. Il we introducevhere as usual we have scaled the propagation groat of
dimensional regularization applied to the worldline Majoranathe action. The propagation tim@will be considered as the
fermions and to supersymmetric sigma models. We mainigxpansion parameter for a perturbative evaluation the
consider antiperiodic boundary conditiofwhich break su- loop counting parametgrin the action we have included)
persymmetry, but also briefly discuss periodic boundary the bosonica” and fermionicb*,c# ghost fields which ex-
conditions. In Sec. Il we apply DR to compute the traceponentiate the nontrivial path integral measuiig;the coun-
anomaly of a Dirac field in 4 dimensions with quantum me-tertermVc which arises in the chosen regularization scheme
chanics. Then in Sec. IV we describe the worldline formal-from the bosonic sector and which is fixed in order to pro-
ism with Dirac fields coupled to gravity and compute explic-duce a quantum Hamiltonian without nonminimal coupling
itly the spin 1/2 particle contribution to the graviton tadpole to the scalar curvaturg; (iii ) the additional counterterivig;
and graviton self-energy. This is the main section, and thevhich may arise from the fermionic sector; atd) the po-

1 .
ng(x)(x“x“r a*a’+b*c?)

1 S
+ S el X0, 2 (X) Y1+ BAV(X)
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tential V=R which is required to have a supersymmetricwhereQ=1xR is the region of integration containing the
guantum Hamiltonian as given by the square of the supeffinite intervall =[0,1], y* are the gamma matrices th+ 1
symmetry charge. dimensions satisfying y*,y#}=26#, and t*=(r,t) with
The action is classically supersymmetric if all the poten-«=0,1, ... d and with boldface indicating vectors in the
tial terms multiplied byg? are set to zergthe ghosts can be extrad dimensions. Here we assume that we can first con-
trivially eliminated by using their algebraic equations of mo- tinue to those Euclidean integer dimensions where Majorana
tion). Supersymmetry may be broken by boundary condifermions can be defined. The Majorana conjugate is defined
tions, e.g. periodic for the bosons and antiperiodic for theyy = C.. with a suitable charge conjugation matfix.
(s, ere e asume nlberidc bountany NS a4~ — 4. Ths can b acheved o e
' mple in 2 dimension3lt realizes the basic requirement for

rana fermions realize the Dirac gamma matrices in a pat@e Majorana fermions of tha/=1 supersymmetric model

integral context, and ABC’s compute the trace over the Dira(f/vhich must have a nonvanishing coupli YR =
matrices. For simplicity we consider a target space with even g PiNG,.an

1 b, a ;
dimensiond, and thus the curved indicgs v, . .. and the @ ap P The' actu.al detal'ls of h'ow to repres@; and
flat space indices. b both run from 1 td the gamma matrices id+1 dimensions are not important,
Or?e mav ex Iic’itl, .c.o'm ute by time slicin .the transition & the most important thing for the rules which define the DR
amplitude f)Z)r gF())ing >f/rom tﬁe baé/kground pogbm at timet scheme for fermions is to keep track of how derivatives are
—0 back to the same point, at a later timet=3 using going to be contracted in higher dimensions. Apart from the

ABC’s for the Maiorana fermions. In the two-loon anoroxi- above requirements, no additional Dirac algebra on the
; . Jor . ' P app gamma matricesy® in d+1 dimensions is needed. With
mation this calculation gives

these rules one can recognize from the act®nthe propa-
gators and vertices i+ 1 dimensions, and thus rewrite
2072 B ) those Feynman diagrams which are ambiguous in one di-
(27)PP 1- Z;R“LO(IB )] @ mension directly ind+ 1 dimensions.
The bosonic and ghost propagators are as usual and re-
L . ported in Sec. 2 of the Appendix. The fermionic fields with
where the trace on the left-hand side is only over the Dira BC's on the worldline,(1)= — ¢2(0), can beexpanded

matrices, and where in half integer modes

Z=tr(xole”#|xo) =

| 1 .1 ,
H=--VV=-5V2+_-R (4) A= > YRe i (6)
2 2 8 rezriz

is the supersymmetric Hamiltonian of té=1 model[one  and have the following unregulated propagator:

can normalize the supersymmetric chargeCas(i/\/2)Y, . . )

so thatH = Q?]. Note that there is an explicit coupling to the (Y1) (o)) = BOPAp(T— ),

scalar curvature in Ed4), thus one needs to use a potential

V=3R in the action together with the time slicing counter-

termsVys=— R+ 39T, I', andVis=#%0""0, % ap

(see Ref[12]; later on we will derive once more this value

of Vig as wel). Our conventions for the curvature tensors Note that the Fourier sum defining the functiang for the

can be found in Sec. 1 of the Appendix. antiperiodic fermions is conditionally convergent fo# o,
Now we want to reproduce E@3) in dimensional regu- and yields

larization with a path integral over Majorana fermions. This

will unambiguously fix the additional countertervt,; due 1

to the fermions. Note that in dimensional regularization the Apr(1—0)=5e(7=0) (8)

potential V= 3R cancels exactly with the countertertpg

=~ 3R coming from the bosonfL3]. where e(x)= 6(x)— 6(—x) is the sign function[with the

o e bt oo T ko o ylUec(0) 0, obtained by symmetically summing e Fou
grapns. ginp . Y. 9 rier serie$. The functionA ¢ satisfies
dimensionally continue the various Feynman graphs we ex-

tend the action in Eq(2) from 1 to d+1 dimensions as

1 :
A _ — _ eZWIT(T*IT). 7
Ar(T=0) rE;uz 2qrir @)

follows: I App(T—0)=Op(7—0) €)
1 1 where ,(7— o) is the Dirac’s delta on functions with anti-
S= ,EJ dd+1t(ng(ﬁaxﬂﬁaxua#aubﬂcy) periodic boundary conditions
Q
1 2 . . : s o 1
+ = 9 P49 X w 2 D)+ B2V 5 In Euclidean 2 dimensions one can chogée= o, y?=¢" and
VaY " (Jat™+ dux"w, oy + B Vor ©) C.=1. Recall thatC.. are defined byC. y*C; =+ y*T.

104009-3



BASTIANELLI, CORRADINI, AND ZIROTTI PHYSICAL REVIEW D 67, 104009 (2003

_ the regularization due to the extra dimensions is taking
on(T—0)= r ;1/2 e?mr(r=), (100 place® By using partial integration one casts the various loop
) integrals in a form which can be computed by sending first
The dimensionally regulated propagator obtained by adding— 0. At this stage one can us€=1, and no extra factors
a numberd of extra infinite coordinates is derived from Eq. arise from the Dirac algebra id+1 dimensions. This pro-
(5) and reads cedure will be exemplified in the subsequent calculations.
_ Having specified how to compute the ambiguous Feynman
(VA1) yP(s)) = BS™PApR(L,S) (1)  graphs by continuation 6+ 1 dimensions the DR scheme is
now complete.
Now we are ready to perform the two-loop calculation in
ddk the A/=1 nonlinear sigma model using DR. The bosonic
App(t,8)= _iJ vertices together with the ghostg,and Vi give the stan-
(2m)° dard contribution, as for example in RdéR]. The overall
normalization of the fermionic path integral gives the extra
% 27”7 +k- 7/ Q27 (7= o) gik-(t-9) factor 222 which equals the number of components of a
reZi12 (2mr)2+k?2 Dirac fermion in a target space of even dimensi@nsThis
already produces the full expected result in B).
(12) Thus the sum of the additional fermion graphs arising
from the cubic vertex contained in AS
=f édT(l/Zﬂ)k“wﬂale/alﬁb and the contribution from the
extra counterternVj,, must vanish at two loops. The cubic
vertex arise by evaluating the spin connection at the back-
— 0 (ts), 13 ground pointx, and readsAS3:(1/2,8)@#abfédry”z/;a¢/b,
wherey* denotes the quantum fluctuations around the back-
The latter are the basic relations which will be used in thedround pointxg with vanishing boundary conditions at
application of DR to fermions. They keep track of which =0.1. Using Wick contractionésee Appendix Sec. 2 for the
derivative can be contracted to which vertex to produce th&xplicit form of the bosonic propagators with vanishing Di-
d+1 delta function. This delta function is only to be used infichlet boundary conditionswe identify the following non-
d+1 dimensions, as we assume that only in such a situatiottivial contribution to<e*S ) (other graphs vanish trivially

where the function

satisfies

Jd Jd 5
Y ataAAF(t S)= &SBAAF(I,S)Y =Oa(7—0) % (t—s)

1 1 1 2 1 1
5(885)°) = Lo = S(=2) () (=) [ dr [ do *D(r,0) A ar(r,0)]?
2 i 2 20 o Jo
(14
|
where dotted lines represent fermions. As usual, we denote
with a left/right dot the derivative with respect to the first/ 2f J’ Ap(t,9)tr{[ y* 9 Aar(t,5) 1Y Ape(s,t)}
second variable. Using DR this contribution is regulated by
o 2 [ [ 8,09 09 P ur(s0]
f de do A (1,0)[Asp(T,0)]?
0 0
=2 f Ap(tOUTYPAR(E,D)]
—>_J' f oA (6, Y Apr(t,5) YPAAR(S,1)]
1
(19 2 f d7A"(7,7)Axp(0)=0 (16)
0

where aA,;(t,s)E(a/&t“)(ﬁ/asﬁ)A(t,s) (note the minus

sign obtained in exchangirigands in the last propagator; it 3ye are not able to show this in full generality, and at this stage
IS th_e USl_Ja| minus sign arising fo.r fermionic logp®/e can  this rule is taken as an assumption. One way to prove it explicitly
partially integrated, without picking boundary terms and would be to compute all integrals arising in perturbation theory at
obtain arbitraryd and check the location of the poles.
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becauseA or(0)=3€(0)=0 (and y°=1 atd=0). As this The zero modes)3 of the free kinetic operatord() are
example shows, the Dirac gamma matricesiinl dimen- treated separately, and the unregulated propagator in the sec-
sions are just a bookkeeping device to keep track where on@r of periodic functions orthogonal to the zero mode reads
can use the Green equati¢h3). Actually, the vanishing of

this graph is achieved already before removing the regular- (') ¢'°(0)) =B Ape(T—0),

izationd—0 by using symmetric integration in the momen-
tum space representation &f(t,t).

_ — 2min(t— o)
Thus no contributions arise from the fermions at ordér Ape(7=0) go 2min € '
and this fixes 21
(21
Vi o=0. 17) where ' ?(7) = ¢(7) — 5. The functionA ¢ satisfies
A App(t—0)=0p(7—0)—1 (22

This is exactly what one expects to preserve supersymmetry,
as the counterteri/p is exactly canceled by the extra po- with §p(7— o) the Dirac delta on periodic functions. Its con-
tential termV= 3R needed to have the correct coupling to tinuum limit can be obtained by summing up the Fourier
the scalar curvature in the Hamiltonigd). Thus dimen- series and readdor (7—o) e[ —1,1])

sional regularization without any counterterm preserves the
supersymmetry of the classicaf=1 action

1
APF(T—O'):EE(T—O')—(T—O'). (23

1r 1 oo 1 . .
S= Ef dr(igﬂ,,x“x"ﬂL El//a( YA+ x“wﬂabz/;b) (18  The dimensionally regulated propagator is instead
0

(P20 P'°(9)) =B Npe(t,S) (24
since the amount of the curvature coupling brought in by DR _
is of the exact amount to render the quantum Hamiltolan Where the function

supersymmetric. g
To compare with TS, we can compute again the Feynman Apg(t,s)= _if d“k
graph(14), but now using the TS rules. According to Ref. P (2m)4
[12] we must use thah*(7,0)=1—-8(r,0), and integrate
the delta function even if it acts on discontinuous functions. 2mny’+k- y 2min(r— o) ik- (t-9
;r\isdelta function is ineffective ag(0)=0, but the rest X 2 (2mn)2+ K2 € €
(25)
1 1 1 2 111 o fi
. 2 —Z(_o|_— _ 3 - satisfies
S((AS)2)(TS)= 5 2>(Zﬁwuab) (-8 a7 a0y
J
B
B aAPF(t s)=—-5Apr(t,9)y
= 16(@uan)” (19 K o8

=[6p(7—0)—1]8%t—95). (26

This is canceled by using an extra counterteMis  Even if one uses PBC's, one does not expect additional coun-
16(“’,uab) which at this order contributes with a term terterms in DR, as mentioned earlier. It could be interesting
— BV1s evaluated at the background poig. Thus as ex- to check in DR the expected independence of the super-

pected we recover the countertekfiag found in Ref.[12]. trace which computes the Witten index, i.e. the chiral
To summarize, we have proven that DR extended to feranomaly. This is given by the path integral with periodic

mions does not require additional counterterms on top oboundary conditions for both bosons and fermigas-6].
those described in Reff13]. In addition, supersymmetry re- The treatment of the bosonic zero modes is known to be
quires that no counterterms should be added at all to theomewhat delicate as a total derivative term may appear at

classical sigma model action. higher loops[2,27]. However it should be possible to do a

manifestly supersymmetric computation using superfields,
and one could thus check if these total derivative terms sur-

vive in the supersymmetric case and, in case they do, study
We present here some comments on the case of Majoranfeir meaningd'

fermions with PBC's. The mode expansionyf( ) has now
only integer modes,

A. Periodic boundary conditions

“In a very recent paper, Kleinert and Chervya@8] have dis-
YA(7)= 2 lﬂa 2minT. (20) cussed how to avoid these total derivative terms which appear using
naively the bosonic string inspired propagators.
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B. Curved indices It is clear that supersymmetry is not broken by the boundary
It is interesting to consider as well the case of fermionsconditions if one uses PBC's. Then the effects of the ghosts
with curved target space indices. This should be equivalerffa"C€! by themselves: the ghosts have the same boundary
to the case of fermions with flat target space indices: it is jusfPnditions and can be eliminated altogether from the path
a change of integration variables in the path integral. How./nt€gral
ever it is an useful exercise to work out, as some formulas
will become simpler. The classical/=1 supersymmetric

; ; ; 1
sigma model is now written as deta Tx(7)1 ) =1
o<1:[<1 9, [X(7)] o<1:[<1 Vdetg,, [x(7)]
(32)

1 1 o A
5= 5 | ar 50000+ AT OTE 00 0T)
Blo 2 One can recognize that the potential divergences arising in

(27) the bosonicxx contractions are canceled by the fermionic

The fermionic term could also be written more compactlyw’ contractio_ns, Wh”e the rema_inin_g UV ambiguities are
. : oo ,_ -, treated by dimensional regularization as usual. In this

using ~ the  covariant  derivative D{d7)y"=¢"  gcheme it should be simpler for example to test that the Wit-

+x'T',(X)”. Note that the action is now expressed inten index (i.e. the gravitational contribution to the chiral

terms of the metric and Christoffel connection only, andanomaly for a spin 1/2 fie)ddoes not get higher order con-

there is no need of introducing the vielbein and spin connectriputions in worldline loops, and is thy8 independent.

tion. If one uses ABC's the ghosts have different boundary con-

The treatment of the bosonic part goes on unchanged. F@jitions. Hence their cancellation is not complete, and they
the fermionic part we can derive the correct path integralnust be kept in the action.

measure by taking into account the Jacobian for the change

of variables from the free measure with flat indices
I1l. TRACE ANOMALY FOR ASPIN 1 /2 FIELD

IN 4 DIMENSIONS

Dy?=D[e*,(x)y*]=Det '[e?,(x)]Dy* As a further test on the DR scheme applied to fermions,

we compute the trace anomaly for a spin 1/2 fields in 4
dimensions. This anomaly is given k) extending the for-
mula(3) to include the three-loop correctigarder 32 inside
the round bracket (i) settingD=4; (iii) picking up the
8lrder,8° term [8]; and (iv) including an overall minus sign

the Grassmann nature of the integration variables. This extr, hich takes care of the fermionic nature of the target space
op. The bosonic part has been computed already in DR

factor arising in the measure can be exponentiated using_. Ri | dinaté Ref.[14]
bosonic ghostax*(7) with the same boundary condition of sing lémann normal coordinatésee Ret. , use ¢

the fermions(ABC’s or PBC’9 and it leads to the followin — 4 an_d recall our conventions_ on the scalar curvatur_e re-
extra term ii( the ghost actit?n' g ported in Appendix Sec.)1 Multiplied by 2°72 (the addi-

tional normalization due the worldline ABC Majorana fermi-

(28)

1
——— | Dy*.
0s1_r[<1 detg,,,[x(7)] v

Note the inverse functional determinant appearing because

ons it reads
xtra_l 1d E (X) Mmoo v (29)
gh _,30 ng,uv ata”. oA
Zbosztr<xo|e |X0>bos
One can check that the counterterms of dimensional regular- o2 5 5
ization are left unchanged. The full quantum action for the _ 2 B £R+ B R24 B—(RZ
N=1 supersymmetric sigma model now reads (273)P"2 24 1152 720" HAP
BZ
11 1 » —RL)— 4—80V2R+O(ﬁ3))- (33
S= —f d7=g,,(X){x*x"+a*a”+b#c”
Blo 27#

We have now to include the fermionic contributions. On top

F YT () PP+ atat) (300 of Riemann normal coordinates we may use a Fock-
? Schwinger gauge for the spin connectian, ,n(Xo+Y)
and appears in the path integral as = %y”Rwab(xo)Jr ... with y* the Riemann normal coordi-

nates around the background poijf. Then the leading
quartic vertex S,¢=(1/4B)R,,apfsd7y*y" ¥4 which
originates from the spin connection produces the following

_ -S
z—f DxDaDbDcDyDae S, 3D 3100p diagram:

104009-6
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Gsr)y= €)= -2r

where all functionsA and A 5 are functions ofr and o in

this precise order[recall that A, is antisymmetric,

Apr(7,0)=—App(o,7)].
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1 gl
i,,ab/dT/da (A° A - AN AL L
o Jo
(34)

This is the correct trace anomaly for a Dirac fermion in 4
dimensions once we include the minus sign due to the target
space fermionic loop.

Now we regulate this graph in DR as followthe second

contribution in Eq.(34) does not need regularization and
could be directly computed at=0, but we carry it along

anyway]
1 1
f drj do("A"A—"AA)AS,
0 0

o [ AN SO

X VBAAF(SJ)]

[ [ame

=2 [ [ A=y B 19V Bar (0]

d
2( VQWAAF(I,S)> YPAAp(s,1)
\ ,
S s

:O_ZJ j DA — YA (1,8) YPA 4 5(5,0)]
1 1
—>—2J de do"AATAS,
0 0
1 1 1
—ZJ de do’AA —
0 0 4

-l

1
24

where we have integrated by parts thederivative in,A g,

=2 (35

which then produces a delta function when acting on fermi-
ons (“equations of motion termsJ. This delta function is

IV. ONE-LOOP EFFECTIVE ACTION FOR A DIRAC
FIELD IN A GRAVITATIONAL BACKGROUND

It is known that, for a wide class of field theories, the
one-loop effective action and the relati-point vertex
functions can be computed using one-dimensional path inte-
grals[21,22. Two of us have presented in R¢2] the ex-
tension of this formalism to include a gravitational back-
ground, considering the simplest case of a scalar field. The
extension of DR to worldline fermions allows us to do the
same for a Dirac field. We will get an expression for the
effective action from which we derive explicitly the one- and
two-point correlation functions, namely the contribution to
the tadpole and self-energy of the graviton. We perform this
program considering both flat and curved indices for the
worldline Majorana fermions. The use of flat indices pro-

duces an effective actiohi[e, ,] which is naturally a func-
tional of the vielbein. The use of curved indices produces
instead an effective actiohi[ g,,, ] which is naturally a func-
tional of the metric. Local Lorentz invariance guarantees that

I'le,,]=T[9,.(€a,)]. In the following we shall discuss
both cases. As we shall see, the simplest set up is to use
curved indices: in this case the sigma model couples linearly
to the metric fluctuations ,,=g,,—46,,, and the effective
N-point vertices for the metric are obtained by integrating
over the proper time the quantum averagéajraviton ver-

tex operators.

A. The worldline formalism

Let us consider the one-loop effective action obtained by
guantizing a Dirac fieldV coupled to gravity through the

integrated ind+ 1 dimensions and gives a vanishing contri- VielP€iNe€a

bution sinceA ,£(0)=0. The remaining terms are then com-

puted atd— 0. Thus
1 B2
<_2(S4,f)2> = :

~ 2gaRCuab- (36)

This fermionic contribution must now be added to the terms
inside the round bracket of E¢B3). SettingD=4 one rec-

ognizes the following anomaly:

101, 7 1,
Zlgo-term= 72| 288R~ Taz0"une” 1807
! V2R 3
“120 ) 37

S[\If,\l_f,eau]=f dPxe® (Y +m)¥ (38)
wheree=dete?,,, w,,p, is the spin connection, and
V=%V, V,=d,+ Zwﬂabyayb. (39

The effective action depends on the background vielbein

field e, and formally reads as [e Ieaul
=[DYDVe SV el = Det(V +m)]
I'[e,,]=—log De(V+m). (40)
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For a Dirac field one does not expect anomalibe Euclid- 11
ean effective action is realand one can exploit standard Sgh[X,a,b,C]:f d7 7 9u(X)(a%a"+b%c”). (49
arguments to write 0

One may also compute the effective action directly as a func-

I'[e,,]=—log[ Det( ¥ + m)Det — ¥ +m)]*2 tional of the metric. This is achieved by using the sigma
1 model written in terms of the Majorana fermions with curved
=~ ZTrlog(— Y2+ m?) indices. The corresponding formula is
2

1 (=dT
= —— M ma—SIXH 90,
I19.] Zfo T PBCDX ABCDlﬂ © :

1
_Z . (41 (46)

=——Trlog| —V2+ 1R+m2
2 4

In this formula we recognize the logarithm of an opera’torWIth
which up the mass term is proportional to the supersymmet- 1 1 oo :
ric Hamiltonian(4). Thus we can immediately write down a SXH, 59,0 ]= fo dT(ﬁgw(X)(X”X” Ul
path integral representation for the effective action in terms
of a proper time as

+ ATy OOXMP) + T | (47)
F _ 1 de D u D a 7S[X#’wa;ea ] . . . .
[€a,]= 2 0 T bBC X ABC e . Note that the covariant fermionic measure now contains the
(42) new bosonic ghost*
where pyr=bye [[ o
0<r<1 ydetg,,[X(7)]
.o fld 1 vy L
. — _ — extr
S, yea,u] 0 T 4Tg,uv(X)X X AT Val =DyH é D e~ Sgh qx,a] (48)
ABC
1. a b i
7X@ an(X) Y7 +Tm?|. (43  with
xtr ! 1

The subscripts PBC and ABC remind of the boundary con- Sgh X a]= fo d7 47 9us(X) e’ (49

dition at =0,1, periodic for the bosonic coordinate’( )

and antiperiodic for the fermionic oneg'(7): these bound-  The fermionic term in the actiod7) may be written using
ary conditions have to be imposed to obtain the trace in Ethe covariant derivative ag,,,y*(D/d7)¢", making mani-
(41). We have used a rescaled proper tifive 3/2 with re-  fest its geometrical meaning. However, one can write the
spect to the previous sections to agree with standard normathyristoffel connection directly in terms of the metric and,

added any counterterm since we are going to use dimengction simplifies to

sional regularization to compute the path inte§raDf

course, the covariant measure in E4R) contains the ghost 1 1 . .
fields S[X“,W‘;QW]:L dr EQW(X)(X“X“F Prpt)
1 .
Dxt=Dx* [[ detg, [x(7)] — =3, g2 () Y+ TME | (50)
0<7<1 " 4T Om

which shows that there is only a linear coupling to the back-
groundg,,,(x). To summarize, we have two options for rep-

resenting the effective action in the worldline formalism, and
we will consider both of them.

The next step is to discuss how to treat the boundary
conditions. Due to the translational invariance of the result-
SPresumably, this final action can be obtained also by gauge ﬁxin%qg propagators, W.e adopt the ;trlng !nsplred option: One.
the locally supersymmetric formulation of the spinning particle ac- .Xpan.ds the qurdlnate fields with periodic boundary condi-

ns into Fourier modes and then separates the zero mode

tion [29,30, at least in the massless case, as the correspondintéO )
: L= [idrx*(r) from the quantum fluctuationsy*(r)

ghosts decouple from the background geometry and can be ignoretio —J o q . ) o Sy

8 et us recall that other regularization scherfmsch as time slic-  =X“(7) —Xg . The latter have an invertible kinetic term and

ing [12]) require additional noncovariant counterterms. the integration over the constants zero maglés performed

:DxM3§ Da“Db#Dcte Ssnl*abcl (44
PBC

where
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separately. For the alternative option of using Dirichlet
boundary conditions, see a discussion in R2f. Other op-
tions for treating the zero modes can be found in Refs.
[31,22.
These subtleties do not arise for the anticommuting vari- FIG. 1. Graviton tadpole.
ablesy® as the boundary conditions are now antiperiodic and

the kinetic term has no zero mode. All these propagators argng then picks up the terms linear in eadﬁ: this gives

collected in Sec. 3 of the Appendix. directly theN-point function in momentum space,
For later convenience, it is useful to introduce the follow-
ing notations: Fercen (1) . (N) pagugs-ansn
F(pl ----- pN)_gallU‘l 8aN“Nr(p1 ----- PN) (57)
S\T

T 211 aNBN
(Xq0 - Xy) 5ealMl(X1)' o 5eaNMN(XN)

) [the tilde symbol can be dropped by removing the momen-

€0 =0ay tum delta functions as in E¢53)].
(51 In the following sections we are going to compute the
one- and two-point correlation functions. We will employ the
AL SNT worldline “string inspired” propagators together with dimen-
(Xgy - Xp) 59#1%()(1)' . ‘SgMNvN(XN) o sional regularization on the worldling@nd in target spage
v nv

(52 B. One- and two-point functions from F[ea ul

and the corresponding Fourier transform for the vielbein ver-  The one-point vertex function can be depicted by the

tex functions: Feynman diagram of Fig. 1 where the external line refers to
c0 o a e a the vielbein. It gives the Dirac particle contribution to the
Lot N =(2mP 8% (py+ ..+ py) It N cosmological constant. The recipe just outlined tells that the

term in the effective action linear ig,,, and withc,, ex-
pressed as a single plane wave, produces

= | dx, ... dx.ePXit - FIPNXNALAL  ANAN
f 1 N (Xl ’’’’’ XN)

—  L1(=dT _ 207 5 1
(53) (p)—EJO ?e WJ d Xo E
plus a similar one for the metric vertex functions. The cor-
relation functions obtained by varying the vielbein are sym-
metric under the interchange of indices belonging to the
same couple as a consequence of local Lorentz invariance.
Notice also that after restricting these vertices to flat space +<y“w;1a)b(xo+y))(¢a¢/;b>}, (59
there is no intrinsic difference between curved and flat indi-

ces. ForN=1,2, and usingT[eap]=F[gW(eap)] together  where the superscript an'®) denotes the part linear &y, ,

1 L. .
xf dr{(2e(,,)(y*y"+a*a’+brc")e'P ot)
0

ab
with the relationg,,, = 5abeaﬂeby, one finds and round brackets aroﬁnd indices denote symmetrization
normalized to 1.
FW:EFW (54) It can be immediately noted that the contribution of the
)" 2" (%) spin connection term vanishes, being proportional to

wﬂabaabAAF(O)zo. Therefore everything proceeds as in the

scalar field cas€2], and the one-point function reads

1 15w
o =gl oy "= gl 02720%(x=y) (55)

v 2\D/2
¢ pore? () r(—§). (59)

oy
where we indicate with underline and overline a normalized () 2 (4m)PP

symmetrization.

Following a standard technique, one can obtain the vertexjearly it diverges for even target space dimensidrand
functions directly in momentum spa¢22]. Let us describe enormalization is needed.

it for the effective actiorl’[e, ,]. One consideri_‘[eaﬂ] as Let us now discuss the two-point vertex function. We set
a power series irt,,=e€,,— d,, (note that this definition
induces a relative expression for the metrg,,=J,, Cau(x):sglﬂ)eipl-us(ai)eipz-& (60)

+C,,+C,,+Ca,C5, Wherec,,=c,,55), takes thec term
as a sum of plane waves of given polarizatiofisur polar-  One sees that there are two kinds of contributions, illustrated
ization tensors include the gravitational coupling congtant py the Feynman graphs in Figs. 2 and 3, which we denote as
N AT#"B and A, #**# respectively.
CaM(X)IE egl)teipi-x, (56) In the _flrst one th_ere is _Just one vertex. It is simple to
i=1 compute it, being quite similar to the tadpole. It reads
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where square brackets around indices denote antisymmetri-
zation normalized to 1. This third term produces the follow-
ing contribution:

e~ m T
0 32T3 (47TT)D/2(

; 1
—1 p”’8§a2)] +i SM[apb]

=dT . 2P
FIG. 2. One-vertex graph for graviton self-energy.

fore, _L{7AT per 2% (o 1 Cipes® ) (—ip @ + _ d
Al (pj_ p2)= E 0 ?e (47TT)D/2 d XO - H Ip[agb]p,)( Ipps[cd] Iep[de] Ip[ng]p) T
1 . . l . . - o X .
X f dr{(Cca,co(y y"+a*a’+brc)) X f0d0<e'p YyryRyP(r)e” P YyPyly(a)). (64)
0
+{y*w (Z)b(xo+Y)><¢a¢b>}|m| (61  After performing Wick contractions, the second line of this

expression becomes

Wherew(z) is the part of the spin connection quadratic in the 1 1
Cau fleld the prescription m.Iimultilinearn refers to the two (52529 — 5ad5b6)(2T)3f de do{8***A*(7— o)
different polarization tensors. The contribution from the spin 0 0

connection term vanishes for the same reason as before. We
are then left with the bosonic contribution, which gives

2D/2 (mZ)D/Z D
TivaB — £ sua gy subgva -
Alr(p p) 4 (6 6 s )(47T)D/2 ( 2)

+2TpAp? A2(1— o) te 2TP A= IA2 (7—g),  (65)

where Ay(7—o0)=A(7—0)—A(0), and needs worldline
regularization. Following the rules of dimensional regular-
ization we write the last line of the above expression as we
(62 would have done starting from the action in-#l dimen-
sions,

where, according to the notatidd3), we have factored out

(2m)°P8°(p1+p,) and usedp=p;=—p,. J' f _ _ _
The two-vertex graph of Fig. 3 produces {078 p(1=9) +2Tp"p A (t=5) JA(L =)}

—2Tp2A(t— w
3 1 (=dT _, 20P X @ 2TP 8olt=9 12 A o (t—8) YPAAR(t—9) ] (66)
réig2 _— A MT

e S —
Zpip) 2) T (47T)P"? and perform an integration by parts on theindex of the
first term, as already explained in Eq46) and(35), to get

J’dDXO<1U dT( 1 o )(y“y tata” the following result:
uv

1 p“pf\ (1 1)\2 2 2
2 — T2 sme— _ 2| @ TP(r—7)
> | 2Tp(5 p2>f0d7<7' 2)6 .

m.l. (67)
Three kinds of contributions are included in the previous-srgr?b;%n:: 'g'gg Y%??ngAmtz%ﬁL CS;: etﬁgr?gsuljﬁdin?j ge—
expression{i) the square of the bosonic part which yields a(64) ives ' P ' 9 9
term proportional to the contribution of a scalar figttbn- 9
minimally coupled withé=1/4, already computed in Ref. 1 oDR2
[2]); (ii) the mixed terms of the product which are zero, again sWg(2) = (

being proportional taw ,,,6*°A A(0); (iii) the square of the Curfabg (4)b"2
fermionic term which contains

+btc?)+ iwwm PRyP
47

D _
_ E) p2[( P2) D/2—-1

_ (mZ) D/2— 1]Sétvaﬁ (68)
2
oD (xo+y)=D (—i +i whereP? andS, are defined below. Collecting all terms, we
@pab(Xo™Y) 2’ Puetdn i utaPe find for the two-vertex part of the self-energy

—ip[asg])ﬂ)eipi'(XOer) (63) 2D/2

D
Azr(p,p>=2(4—w)m(1“( - 5){(m2)D’2(R1— R,)

@Q,Qw +[(P2)PP—(m?)P2(S,+$S,)}

1 D )
+ ZF( 1- 5) p?(P?)P"2 132] : (69)

FIG. 3. Two-vertex graph for graviton self-energy.
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Consequently, the full graviton self-energy obtained by sum-
ming Eqgs.(62) and(69) reads

o 2D/2 1
_ _ - 202l p _ "R _q _
Lip—p= 2(477)[)/2[ F( 2 (m) (Rl 2 Ra=S; SZ) FIG. 4. Graviton tadpole.
1 C. One- and two-point functions from I'[g,,,,
H(POP(S,+S,) +—r(1——) oo - o
4 2 In this section we describe the calculation of the one- and
two-point functions employing curved indices for the world-
X p2(p2)D/2152J (70) line Majorana fermions. As already explained in Secs. Il B
and IV A, the total action including the ghost fields is given

where, as in Ref.2], we have suppressed tensor indices, ancPy
used the following basis of dimensionless tensors with the 1 1 o )
required symmetry properties: S= fo dr [ﬁgw(x)(x“x“r ata’+b#c’+ Yt + ata?)

R;lwaﬁ: aluvgaﬁ, 1 _
= 27 %19 (X) PPN TP | (75
Ry P= gra5vh+ 5P 57,

1 Cl_earl_y, there are no vertices with two or more gravitons in
R;B,wozﬁ: F(&”“p”pﬁﬁL Saprph+ sHPprpe this picture. Using

N
h(X)=0,,(X) = 8,,= >, el ePi (76)

+8"Pptp?),

1
Ry "F= —5 (8" p*pP+ 5*Fptp”),
P with the gravitational coupling constant included into the
polarization tensors, one gets the following general expres-

R,(Susz: %p#pypapg_ (71) sion for theN-point effective vertices:
p
N
For simplicity we have introduced the manifestly transverse lfxd_Tesz 20 _ i § IT fldr,v(i)(f)
combinations 20 T (4xT)P2\ 4T \i=i Jo '
MAY anf (77)
S**F=R,— R4+ Rs= ( oMY — p—zp—) ( 5P — p_’;), (72) _
p P where the graviton vertex operatdf’ () is given by
vaB_ _ P | R i (= ) (Seier v v o v
SY*P=R,— R+ 2Rs=2| S¢*— ——|| 8¥F— VU(7)=¢€,,(x¥x"+a*a”+b*c"+ y* ¢+ a*a
p? p? "
(73) —ipi g xt ) () elPiX, (78)

and defined . . .
The explicit calculations of the one- and two-point vertex

- 1 A . functions—depicted in Figs. 4 and 5, respectively—give the
(P9)"= Jo drm*+p?(r— 7)1, (74 same results previously obtained from the coupling to the
vielbein[after using relation$54) and(55)]. Note that exter-

Further details may be found in Sec. 4 of the Appendix. nal lines in Figs. 4 and 5 now refer to metric fluctuations. Let

The final results for the one- and two-point functions, US describe briefly these calculations. .
Egs. (59 and (70), satisfy the gravitational Ward identities !N the one-point function the connection tefhe. the last
(see Appendix Sec.)50f course, one may now extract the term inside the round brackets of the vertex operéai® |

divergent part and renormalize these functions in the chose?i0€S not contribute, and the remaining terms lead to the same

spacetime dimensiors. worldline integral obtained previously,

"If one is interested in odd dimensions, then there is no divergence
at one loop, but the formulas should be modified by substituting
2P2_,2[P21 tg account for the correct number of components of a
Dirac spinor. Herd D/2] denotes the integer part &f/2. FIG. 5. Graviton self-energy.
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V. CONCLUSIONS

1
dr("A°+ A, —ALr— A 0
fo 4 gn~ Aar~ Aagn (0) We have extended the worldline formalism to include fer-

1 mionic fields coupled to gravity. To achieve this task we have
:f dr("A"+Ag)(0)=1. (79 found it l_JsefuI to_study dimensional regularization on super-
0 symmetric worldline sigma models. We have shown that di-
mensional regularization preserves worldline supersymmetry

In fact, the propagator of the extra ghost field in that no counterterms need to be added to the classical
, , action to maintain supersymmetry. This is in contrast to the
(a*(m)a"(0))=2T " " Apgn(T—0) (80)  time slicing regularization scheme, previously used for su-

persymmetric sigma models, which required specific coun-
terterms to restore supersymmetry. Of course, final physical
results are independent of the regularization scheme adopted.
We have applied this set up to describe quantum properties
. . . of a Dirac fermion coupled to gravity. Then, we have de-
giinccglr?)[\),\g;?tgf(;r;sgt)a;e;qpﬁf?ggt;g()aﬁdeﬁ (;(f) talenf:\:vmgl;]os cribed the one-loop effective action for a Dirac fermion
) ' . o . oupled to gravity in the worldline formalism, and computed
a* which cancels a contraction arising from t#€y” term.  the corresponding one- and two-point functions, namely the
The final answer is one-loop fermionic contribution to the cosmological constant
v [ 2\DI2 and graviton self-energy. We have seen that one can use a
D/25_ (m) ( _ E (82) formulation either in terms of the vielbein or in terms of the
4 (44)P7 2 metric, the latter being much simpler as the coupling to grav-
ity is linear (and it avoids the introduction of the local Lor-
As one might have expected, this result-i2P’ times the  entz symmetry related to a choice of the vielheiFhe com-
contribution of a scalar fielf2]: the minus sign is the usual putations are rather simple and demonstrate the efficiency of
one due to a fermionic loop, whileP? is the number of the worldline formalism in computing Feynman graphs even
degrees of freedom of a Dirac fermion in eM@mlimensions.  in the presence of gravitational fields. Our conclusion is that
Let us now look at the two-point function. It correspondsone can be confident and address more complicated pro-
to the single diagram of Fig. 5, as in this scheme all verticesesses using the worldline method. In particular, mixed
are linear in the graviton field. Again one may note that thephoton-graviton amplitudes are under styag].
a* ghosts cancel all Wick contractions arising from the
term of the vertex operatorgnotice that AppAje= ACKNOWLEDGMENTS

—Appd,4=0). Thus only two nonvanishing contributions
survive: one from the square of the kinetic term of the

where

Apgh(7=0)="App(7—0)=6p(T— ) (81)

I'oy=

We would like to thank Christian Schubert for useful dis-
cussions and comments. We also thank the EC Commission

bosonic sectofi.e. ~(5<2+a2+b<_:)2]; the other, transverse, for financial support via the FP5 Grant HPRN-CT-2002-
from the square of the connection term. The final result is gg305.

2D/2 D
[F( _ E)[(mz)D/Z(Rl_RZ_Sl_SZ) APPENDIX

I‘(DV—P):8(47T)|:)/2
1. Covariant derivatives and curvature tensors

2\DP2 1 ( D) The covariant derivative for a vector with curved indices
+(P ) (51+SZ)]+ 4F 1 2 iS VNVVZI?MVV_’_F;)\V}\’ Wh.ereF;)\:%ng(a-ﬂg)\p'k a)\gMp
—3d,9,,) is the usual Christoffel connection. The corre-
X p2( P2)D/2—1SZ]_ (83) sponding curvatures are defined by
[V ’VV]V)\:R/LV}\[)(I‘)VP' R,U.V: R)\M)\V(F),
This expression satisfies the expected gravitational Ward
identities(for details see Sec. 5 of the AppengdiXhe gravi- R=R*,>0 on spheres. (A1)
ton self-energy due to a massless fermion has been already
computed in Ref[32], and agrees with the massless limit of The covariant derivative of a vector with flat indices is
this general resuft. V,Ve=4,V3+w,2 VP, wherew,?, is the spin connection
satisfying the “vielbein postulateV,(I",w)e*,=0. The cor-
responding curvature is
8A similar result for a massive scalar field with minimal coupling
to the scalar curvature can be found in R8B] and agrees with the [V. V,]ve= Rwab(a))vb. (A2)
worldline result{2]. A calculation with standard Feynman rules for
the scalar has been recently reported again in Rdi. It may be = These curvatures are related by
noticed how the worldline computation produces simpler and more
compact expressions. R. (D)=R,, p(w)e*e°,. (A3)
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2. Propagators for bosons and related ghosts with vanishing
Dirichlet boundary conditions

For quantum fields that vanish at=0,1, we have the
following propagators:

(YM(n)y"(o))y=—B*"A(1,0),

(a*(r)a"(o))=B""Agn(T,0),

(b*(m)c"(0))=—2B6""Agn(7,0)
(A4)

with Green function\ andA gy, satisfying vanishing Dirich-
let boundary conditions

©

A(r,0)= E

2 .
2 —Wsm(rrmr)sm(wmcr)

=(r—1ob(r—0o)+(oc—1)760(c—1),

= 21 2 sin wmr)sin(rmo)

Agn(7,0)
="A(7,0)=68(7,0) (A5)

where 6(7— o) is the standard step function adr,o) is

the Dirac’s delta function which vanishes at the boundarie
7,0=0,1. These functions are not translationally invariant.

Their extensions tol+ 1 dimensions read

ts)f

(27T)d

sin(m7)sin(7mao)e’ (=9,

M1 (7rm)2+ k2

(AB)

2 2 sin(#m7)sin(wmo) e’k (=9

Agn(t,s)= f

=38(1,0)8%(t—9)=

7T)d

59 (t,s). (A7)
Note that the function\(t,s) satisfies the relatiofGreen’s
equation

(A8)

9*9,A(1,8)=Agy(t,5)=8"(t,s).

The d—0 limits of these propagators reproduce the unregu-

lated expressions.

3. The “string inspired” propagators

PHYSICAL REVIEW D67, 104009 (2003
XE()=Xb+yH(7),

1
Xy = fo drx*(7),

yH(m)= 2 yher ™ (A9)
n#0
and the path integration measure becomes
D ! dPx,D (A10)
x=————d"x,Dy.
(aqT)o2" Y

The kinetic term for the quantum bosonic fielg§is invert-
ible and the corresponding free path integral is normalized to
unity,

f Dye /a7 (14NY> Z (A11)

The value of the free fermionic path integral defines implic-
itly its measure. Using flat indices it reads

f Dapae—fédT(l’zWai”a:tr(l)=2D’2. (A12)
ABC

Jhe propagators for the free fields are

(YU(1)y"(o))=—2Ts*"A(T—0),
(a¥(m)a’(o))=2T*" Agp(T—0),
(b*(m)c"(0))=—4T""Agn(7— ),

(AN Y(0))=2T6 A pp(7-0),

(A13)
whereA, Ay, andA g are given by
A(T— 0.) [ 2 1 e27Tin(T—0')
“o 47°n?
B 1 1 ) 1
Slr—ol-5(r— 0 3,
Agh(T_ 0_): 2 eZﬂ'in(T—U)
n=—ow
= 8p(7—0), (A14)
1
A _ — _e277|r(7' o)
ar(T=0)= rezr 12 2mir
B 1
= EG(T_ o)

The propagators we used in the worldline formalism are
the “string inspired” ones. More specifically, on the circle and satisfy”"A=Ag,— 1= 8p—1,a,=055, Wheresp and 5,
the free kinetic term fox* is proportional tog”> and has a are the Dirac delta functions on the space of periodic and
zero mode. Thus one splits antiperiodic functions o0,1], respectively. All these free
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propagators are translationally invariant and have a well dek is useful for the comparison with Ref32] to note that

fined parity under t—o)—(o—1).

When using curved indices for the Majorana fermiarts
there appears an extra set of bosonic ghastsTheir propa-
gators with ABC's are

(P ()" (o)) =2T " Ape(7—0),
(a*(1)a"(0))=2T " Apgr(T— 0)
(A15)
where
Apgh(T—0)= 2 (= =5, (r—0). (Al6)

reZ+1/2
Clearly "App(7— 0) = Apgn(7— 0) = Sa(7— 0).

4. Recursive formula for some worldline integrals

In the calculation of one-particle irreducib{(&Pl) corre-

lim (P?)*=(p?)*B(x+1, x+1).

m2—0

(A22)

Here we have used the hypergeometric functjen and the
Euler beta functiorB.

5. Ward identities

A test for our results on one- and two-point functions is
provided by the Ward identities due to general coordinate
and local Lorentz invariances. Local Lorentz symmetry

e?, =A% (x) eP . With arbitrary antisymmetric local , 5(x)
implies that

orle] A2 (x)eP (x)=0 (A23)
52 ,(x) b ”
which  shows that the induces stress tensdr,,

lation functions via the worldline formalism described in —(1/e)(5F[e]/5ea")eaV is symmetric. General coordmate

Sec. IV A one needs integrals of the form

1 n 12
An:J’ dT( T— E eprz(Tifz):j
0 2 —12

dXXnesz(xzflM)_

(A17)

It is not difficult to prove the following recursive relations:

Aon+1=0,

1 1 2(n—1)
AZnZszHE) _(zn_l)AZ(nl)}

(A18)

and express all integrals in terms Af.
Recalling the definition of the gamma function

I'(x)= f:dTTK*le*T (A19)

one can obtain the following result for the proper time inte-

gration of A,

fdTT’X’le’mZTAozF(—x)(PZ)X (A20)
0
where we have defined

1

(PZ)XEJ drm?+p?(r— )]
0
3 p?
=(m?)*F,| —x,1; ik (A21)

invariance leads instead to the conservation law for the in-
duced energy-momentum tensor,

oo L sTle]
" oe(x) se? (x)

(A24)

Taking functional derivatives of this last expression produces
Ward identities that must be satisfied by the one- and two-
point functions,

(A25)

Purfpva5+ pﬂ(5VBF {6+ 8" T{g) —p'T g =0.
(A26)

It is easy to check that Eq§59) and (70) do indeed satisfy
the latter, while the former is rather straightforwam*& 0
due to momentum conservations

Alternatively, one can derive equivalent Ward identities
for the effective action” expressed as a functional of the
metric and obtaifequivalently, one may use relatiof&4)
and (55)]

Pul(p)= (A27)

PLG )+ 5 p//-( 3"PL{g)+ 6" T () — 5 pVF(O)— 0.
(A29)

Also in this case it is simple to verify that E82) and(83)
satisfy these Ward identities.
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