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Electromagnetic response of a Gaussian beam to high-frequency relic gravitational
waves in quintessential inflationary models
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The maximal signal and peak of high-frequency relic gravitational waves~GW’s!, recently predicted by
quintessential inflationary models, may be firmly localized in the gigahertz region; the energy density of the
relic gravitons in critical units~i.e., h0

2VGW) is of the order of 1026, roughly eight orders of magnitude larger
than in ordinary inflationary models. This is just the best frequency band for the electromagnetic~e.m.!
response to high-frequency GW’s in smaller e.m. detecting systems. We consider the e.m. response of a
Gaussian beam passing through a static magnetic field to a high-frequency relic GW. It is found that under the
synchroresonance condition the first-order perturbative e.m. power fluxes will contain a ‘‘left circular wave’’
and a ‘‘right circular wave’’ around the symmetrical axis of the Gaussian beam, but the perturbative effects
produced by the states of1 polarization and3 polarization of the relic GW have different properties, and the
perturbations of their behavior are obviously different from those of the background e.m. fields in the local
regions. For a high-frequency relic GW with the typical parametersng51010 Hz, h510230 in quintessential
inflationary models, the corresponding perturbative photon flux passing through a region of 1022 m2 would be
expected to be 103 s21. This is the largest perturbative photon flux we recently analyzed and estimated using
the typical laboratory parameters. In addition, we also discuss the geometrical phase shift generated by high-
frequency relic GW’s in the Gaussian beam and estimate possible physical effects.

DOI: 10.1103/PhysRevD.67.104008 PACS number~s!: 04.30.Nk, 04.25.Nx, 04.30.Db, 04.80.Nn
he
a
o
to
ro
ns

c
d
fl

nd
ll

ly
en
d
n
c

i-
ef
e

ion
s,

-
the
O
r-
-

cy

a

igh-
ugh
a-
al

m.
be-

of
m to
cts

ers

ian-
ally

f the
I. INTRODUCTION

Relic gravitational waves~GW’s! are very important
sources for information on the very early Universe; t
physical behavior of the relic GW’s expresses the states
evolution of the early Universe. Either direct detection
indirect tests of the relic GW’s might provide new ways
observe our Universe. On the other hand, the expected p
erties of the relic GW’s, such as amplitudes, polarizatio
frequency band, energy densities, and spectra, etc., are
pendent on the concrete universe model. Thus the expe
features of the relic GW’s and the concrete universe mo
have a closed relation. In recent years, quintessential in
tionary models have been much discussed@1–5#, and some
astrophysical and cosmological observations seem to i
cate@1,5,6# that these models are explicit and observationa
acceptable. One important expectation@1,2# of the models is
that the maximal signal and peak of the relic GW’s are firm
localized in the GHz region, the corresponding energy d
sity of the relic gravitons is almost eight orders of magnitu
larger than in ordinary inflationary models, and the dime
sionless amplitude of the relic GW’s in the region can rea
up to roughly 10230 @1#. This is about five orders of magn
tude more than that of the standing GW discussed in R
@7– 9#. Moreover, because the resonant frequencies betw
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the GW’s and e.m. fields in some smaller e.m. detect
systems~e.g., microwave cavities, strong e.m. wave beam
and so on! @7–12#, are distributed just right in the GHz re
gion, the results offered new hopes for e.m. detection of
GW’s. @Note that the frequency band detected by VIRG
@13#, LIGO ~Laser Interferometer Gravitational Wave Obse
vatory! @14,15#, and LISA ~Laser Interferometer Space An
tenna! @16# are often distributed in the region of 10242104

Hz ~which is also the most promising detection frequen
band for the usual astronomical GW’s!; thus the e.m. re-
sponse to the high-frequency relic GW’s might provide
new detection window in the GHz band.#

In this paper, we shall study the e.m. response to a h
frequency relic GW by a Gaussian beam propagating thro
a static magnetic field. We consider it for the following re
sons.~1! Unlike the usual e.m. response to GW’s by an ide
planar e.m. wave@17#, the Gaussian beam is a realized e.
wave beam satisfying physical boundary conditions, and
cause of the special properties of the Gaussian function
the beam, the resonant response of the Gaussian bea
high-frequency GW’s has better space accumulation effe
~see Fig. 5 below! than that of a plane EM wave~see Fig. 7
in Ref. @8#!. ~2! In recent years, strong and ultrastrong las
and microwave beams have been generated@18–21# under
laboratory conditions, many of the beams have Gauss
type or quasi-Gaussian-type distributions, and they usu
have good monochromaticity in the GHz region.~3! The e.m.
response in the GHz band means that the dimensions o
©2003 The American Physical Society08-1
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e.m. system may be reduced to the typical laboratory
~e.g., the magnitude of a meter!; thus the requirements o
other parameters can be further relaxed.~4! Unlike the cavity
electrodynamical response to GW’s~in general, the detecting
cavities are closed systems for the normal e.m. modes st
inside the cavities!, a Gaussian beam propagating through
static e.m. field is an open system. In this case, the e
perturbations might have a more direct displaying effect,
though they have no energy accumulation effect in the ca
electrodynamical response. Therefore, the e.m. respons
Gaussian beams to GW’s and the e.m. detection of mi
wave cavities of GW’s have very strong complementarity
each other; this is also one of the motivations for this inv
tigation.

The basic plan of this paper is the following. In Sec. II w
present the usual form of the Gaussian beam in flat sp
time. In Sec. III we consider the e.m. response of a Gaus
beam passing through a static magnetic field to hi
frequency relic GW’s in the quintessential inflationary mo
els. It includes perturbation solutions of the electrodynam
equations in curved space-time, the first-order perturba
e.m. power fluxes~or in quantum language the perturbati
photon fluxes!. Moreover, we give numerical estimations
our results. In Sec. IV we discuss the possible geometr
phase shift produced by high-frequency relic GW’s. Our co
clusions are summarized in Sec. V.

II. A GAUSSIAN BEAM IN FLAT SPACE-TIME

It is well known that in flat space-time~i.e., when GW’s
are absent! the usual form of the fundamental Gaussian be
is @22#

c5
c0

A11~z/ f !2
expS 2

r 2

W2D expH i F ~kez2vet !2tan21
z

f

1
ker

2R
1dG J , ~1!
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where r 25x21y2, ke52p/le , f 5pW0
2/le , W5W0@1

1(z/ f )2#1/2, andR5z1 f 2/z. c0 is the maximal amplitude
of the electric~or magnetic! field of the Gaussian beam, i.e
the amplitude at the planez50, W0 is the minimum spot
size, namely, the spot radius at the planez50, andd is an
arbitrary phase factor.c satisfies the scalar Helmholtz equ
tion

¹2c1ke
2c50. ~2!

For a Gaussian beam in vacuum, we haveke
25ve

2m0e0,
whereve is the angular frequency of the Gaussian beam

Supposing that the electric field of the Gaussian beam
pointed along the direction of thex axis, that it is expressed
as Eq.~1!, and that a static magnetic field pointing along t
y axis is localized in the region2 l /2<z< l /2, then we have

E(0)5Ẽx
(0)5c, Ey

(0)5Ez
(0)50,

B(0)5B̂(0)5H B̂y
(0) ~2 l /2<z< l /2!,

0 ~z<2 l /2 and z> l /2!,
~3!

where the superscript 0 denotes the background e.m. fie
and the tilde and caret stand for the time-dependent
static fields, respectively. Using~we use mks units!

B̃(0)52
i

ve
¹3Ẽ(0), ~4!

and Eqs.~1! and~3!, we obtain the time-dependent e.m. fie
components in cylindrical polar coordinates as follows:
Ẽr
(0)5c cosf, Ẽf

(0)52c sin f, Ẽz
(0)50, ~5!

B̃r
(0)52

i

ve

]c

]z
sin f5H c0 sin f

ve@11~z/ f !2#1/2Fke1
ker

2~ f 22z2!

2~ f 21z2!2
2

f

f 21z2G1
ic0z sin f

vef 2@11~z/ f !2#3/2F12
2r 2

W0
2@11~z/ f !2#

G J
3expS 2

r 2

W2D expH i F ~kez2vet !2tan21
z

f
1

ker
2

2R
1dG J , ~6!

B̃f
(0)52

i

ve

]c

]z
cosf

5H c0 cosf

ve@11~z/ f !2#1/2Fke1
ker

2~ f 22z2!

2~ f 21z2!2
2

f

f 21z2G1
ic0z cosf

vef 2@11~z/ f !2#3/2F12
2r 2

W0
2@11~z/ f !2#

G J
3expS 2

r 2

W2D expH i F ~kez2vet !2tan21
z

f
1

ker
2

2R
1dG J , ~7!
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B̃z
(0)5

i

ve

]c

]y

52H c0ker sin f

ve@11~z/ f !2#1/2~z1 f 2/z!
1

i2c0r sin f

veW0
2@11~z/ f !2#3/2J expS 2

r 2

W2D expH i F ~kez2vet !2tan21
z

f
1

ker
2

2R
1dG J .

~8!
m
in
e

of
es
lu

t.
e

ia
he

ro

of

n-
-
nd
d-

or-
ry
’s

-
h-

n-
d-

SA

OD
e-

tors

he
ncy

is

al
ry.
ra-
With the help of Eq.~1! and Eqs.~5!–~8!, we can calcu-
late the power flux density of the Gaussian in flat space-ti
For high-frequency e.m. power fluxes, only the nonvanish
average values of these with respect to time have an obs
able effect. From Eqs.~1! and ~5!–~8!, one finds

^Sz
~0!

&5
1

m0
^Ẽx

(0)B̃y
(0)&

5
c0

2

2m0ve@11~z/ f !2#
Fke1

ker
2~ f 22z2!

2~ f 21z2!2

2
f

f 21z2GexpS 2
2r 2

W2 D , ~9!

^Sr
~0!

&5
1

m0
^Ẽf

(0)B̃z
(0)&

5
c0

2ker sin2 f

2m0ve@11~z/ f !2#~z1 f 2/z!
expS 2

2r 2

W2 D , ~10!

^Sf
~0!

&52
1

m0
^Ẽr

(0)B̃z
(0)&

5
c0

2ker sin~2f!

4m0ve@11~z/ f !2#~z1 f 2/z!
expS 2

2r 2

W2 D , ~11!

where^Sz
(0)

&, ^Sr
(0)

&, and^Sf
(0)

& represent the average values
the axial, radial, and tangential e.m. power flux densiti
respectively; the angular brackets denote the average va
with respect to time. We can see from Eqs.~9!–~11! that

^Sr
(0)

&z505^Sf
(0)

&z50 [ 0, ^Sz
(0)

&z505^Sz
(0)

&max, and u^Sz
(0)

&u

@ u^Sr
(0)

&u and u^Sf
(0)

&u in the region near the minimum spo
Thus, the propagation direction of the Gaussian beam is
actly parallel to thez axis only in the planez50. In the

region ofzÞ0, because of the nonvanishing^Sr
(0)

& and^Sf
(0)

&,
the Gaussian beam will be asymptotically spread asuzu in-
creases.

We will show that when the GW is present, the Gauss
beam will be perturbed by the GW. In particular, under t
synchroresonant condition~i.e., when the frequencyvg/2p
of the GW equalsve/2p of the Gaussian beam!, nonvanish-
ing first-order perturbative e.m. power fluxes can be p
10400
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duced, and their behavior is obviously different from that
the background e.m. fields in the local regions.

III. ELECTROMAGNETIC RESPONSE OF THE GAUSSIAN
BEAM TO A HIGH-FREQUENCY RELIC

GRAVITATIONAL WAVE

A. The high-frequency relic GW’s in quintessential
inflationary models

For the relic graviton spectrum in quintessential inflatio
ary models, recent analyses@1,2# seem to indicate that, un
like in ordinary inflationary models, the maximum signal a
peak are firmly localized in the GHz region, the correspon
ing energy density of the relic gravitons is almost eight
ders of magnitude larger than that in ordinary inflationa
models, and the dimensionless amplitude of the relic GW
in the GHz band can reach up to roughly 10230 @1#. Thus
smaller e.m. detection systems~not necessarily interferom
eters! may be suitable for the purpose of detecting hig
frequency relic GW’s.

In Fig. 1 one illustrates the relic graviton logarithmic e
ergy spectra expected for typical ordinary inflationary mo
els~curve I! and for quintessential inflationary models~curve
II !, respectively. The regions~1!, ~2!, ~3!, ~4!-1, ~4!-2, ~5!,
and ~6! represent the detection frequency bands for LI
@16#, LIGO @14,15#, resonant-mass detectors@23–25#, super-
conducting microwave cavities@10,11,38–40#, Gaussian
beams tuned to the GHz frequency band, and mini-ASTR
~miniastrodynamical space test of relativity using optical d
vices! @26#, respectively. Presently operating mass detec
include ALLEGEO @23#, EXPLORER @24#, AURIGA, and
NAUTILUS @25#. These detectors are often operating in t
kHz frequency band. For example, the operating freque
of the cryogenic resonant-mass detector EXPLORER
923 Hz @24#. Their sensitivity would be expected to bedh
;10219–10222 roughly for GW’s in the kHz band.

Giovannini @1# analyzed the relic GW’s in quintessenti
inflationary models within the framework of quantum theo
In this framework the Fourier expansion of the field ope
tors of the relic GW’s can be written as

m̂ %~xW ,h!5
1

~2p!3/2E d3kg@m̂ %~kg ,h!eikWg•xW

1m̂ %
* ~kg ,h!e2 ikWg•xW#,
8-3
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m̂ ^~xW ,h!5
1

~2p!3/2E d3kg@m̂ ^~kg ,h!eikWg•xW

1m̂ *̂ ~kg ,h!e2 ikWg•xW#, ~12!

where

m̂ %~kg ,h!5c %~kg ,h!â%~kg!,

m̂ ^~kg ,h!5c ^~kg ,h!â^~kg!, ~13!

% and ^ denote the1 and 3 polarization of the GW’s,
respectively,h is the conformal time, andâ%

* , â% and â*̂ ,

â^ represent the creation and annihilation operators of
above two physical polarization states. From the viewpo
of observation, the classical picture of Eq.~12! corresponds
to the amplitudes of the relic GW’s with the two states
polarization, namely,

h%~xW ,h!5
1

~2p!3/2E d3kgh%~kg ,h!eikWg•xW,

FIG. 1. Curves I and II represent the relic graviton logarithm
energy spectra~in critical units! expected in the usual ordinary in
flationary models and in the quintessential inflationary models,
spectively. The curves are taken from Ref.@1#. Here we illustrate
roughly the distribution for some detection frequency bands.
gion ~1! expresses the detection frequency band of LI
(;1024–1 Hz); region~2! is that of LIGO (;1 –104 Hz); region
~3!is that of the resonant-mass detectors (;103 Hz); region~4!-1 is
that of the difference-frequency resonant response of a microw
cavity (;103–104 Hz), region~4!-2 (;1082109 Hz) is that of the
fundamental resonant response of a microwave cavity; region~5! is
that of the Gaussian beams (;109–1011 Hz); and region~6! is that
of mini-ASTROD (;1026–1023 Hz). It can be seen that regio
~4!-2 coincides partly with the maximal signal and peak of the re
graviton energy spectra expected in quintessential inflationary m
els; the detection frequency band~5! of the Gaussian beam tuned
the GHz frequency region can be almost completely localized
this peak value region. For the relevant background in Fig. 1,
present a brief introduction in the Appendixes.~Appendix A: The
cavity electromagnetic response to GW’s. Appendix B: The dim
sionless amplitudeh and the power spectrumSh of the relic GW’s.
Appendix C: ASTROD. Appendix D: Noise problems.!
10400
e
t

f

h^~xW ,h!5
1

~2p!3/2E d3kgh^~kg ,h!eikWg•xW, ~14!

where the integration spreads over the whole frequency b
of the relic GW’s. However, if we hope to realize the res
nant response of a monochromatic Gaussian beam to
relic GW’s, it is necessary to let the frequency of the Gau
ian beam equal a certain frequency in the peak value reg
of the relic GW’s ~i.e., ve5vg). Fortunately, most strong
microwave beams~including the Gaussian beam! generated
by present technology are monochromatic or quasimo
chromatic; thus a relic GW resonant with the Gaussian be
need be only one monochromatic component satisfying
condition vg5ve in the relic GW frequency band. In thi
case the corresponding treatment can be greatly simpl
without excluding the essential physical features. Of cou
for the resonant response to the relic GW’s on the earth,
should use the intervals of laboratory time@i.e., cdt
5a(h)dh] and laboratory frequency@27#. Consequently, a
monochromatic circular polarized plane relic GW propag
ing along thez axis can be written as

h% 5hxx52hyy5A% exp~ ikaxa!5A% exp@ i ~kgz2vgt !#,

h^ 5hxy5hyx5 iA ^ exp~ ikaxa!5 iA ^ exp@ i ~kgz2vgt !#.

~15!

This is just the usual form of the GW in the TT gaug
Equation~15! can be viewed as the classical approximati
of Eqs.~12! and~13! under the monochromatic wave cond
tion.

Since the relic GW’s in the peak value region of the qui
essential inflationary models have very high frequency~the
GHz frequency band!, future measurements through micr
wave cavities or strong Gaussian beams may be usefu
particular, for the high-frequency relic GW’s of 109 Hz
<ng<1011 Hz ~these are the best peak frequency band
pected in the quintessential inflationary models!, using the
e.m. response of the Gaussian beam would be more sui
~see Fig. 1!.

B. The electromagnetic system in the high-frequency relic
gravitational wavefield

From Eq.~15!, the nonvanishing components of the me
ric tensor in Cartesian coordinates are given by

g00521, g115gxx511hxx511h% ,

g225gyy511hyy512h% ,

g125g215gxy5gyx5hxy5h^ , g335gzz51,

g00521, g115gxx512hxx512h% ,

g225gyy512hyy511h% ,

g125g215gxy5gyx52hxy52h^ , g335gzz51. ~16!
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With the help of Eqs.~3!–~8! and considering the perturba
tion produced by the weak GW field expressed as Eqs.~15!
and~16!, the components of the e.m. field tensor in Cartes
coordinates can be written as

F015F̃01
(0)1F̃01

(1)5
1

c
~Ẽx

(0)1Ẽx
(1)!5

1

c
~c1Ẽx

(1)!,

F025F̃02
(1)5

1

c
Ẽy

(1) , F035F̃03
(1)5

1

c
Ẽz

(1) ,

F125F̃12
(0)1F̃12

(1)52~B̃z
(0)1B̃z

(1)!52S i

v

]c

]y
1B̃z

(1)D ,

F135F̂13
(0)1F̃13

(0)1F̃13
(1)5B̂y

(0)1B̃y
(0)1B̃y

(1)

5B̂y
(0)2

i

v

]c

]z
1B̃y

(1) ,

F235F̃23
(1)5B̃x

(1) , ~17!

where F̂mn
(0) and F̃mn

(0) represent the background static ma

netic field B̂y
(0) and the background e.m. wavefield~the

Gaussian beam!, respectively, andF̃mn
(1) is the first-order per-

turbation to the background e.m. field in the presence of
GW. For nonvanishingFmn

(0) and Fmn
(1) , we have uF̃mn

(1)u
!uFmn

(0)u.
The e.m. response to the GW can be described by M

well equations in curved space-time, i.e.,

1

A2g

]

]xn
~A2g gmagnbFab!5m0Jm, ~18!

F [mn,a]50, ~19!

whereJm indicates the four-dimensional electric current de
sity. For the e.m. response in vacuum, because it has ne
a real four-dimensional electric current nor the equival
electric current caused by energy dissipation, such as Oh
losses in the cavity electrodynamical response or dielec
losses@10#, Jm50 in Eq. ~18!.

Unlike the interaction of a plane e.m. wave with a pla
GW ~according to the Einstein-Maxwell equations under
condition of a weak gravitational field, if both the plane G
and plane e.m. wave have the same propagation direc
then the perturbation by the GW of the e.m. wave vanis
@17#!, the electric and magnetic fields of the Gaussian be
are nonsymmetric@see Eqs.~1! and ~5!–~8!#. In this case,
using Eqs.~5!–~8! and ~18!,~19!, it can be shown that eve
for a plane GW propagating along the positivez direction, it
can produce a nonvanishing perturbative effect on the Ga
ian beam. In order to find the concrete form of the pertur
tion produced by the direct interaction of the GW with t
Gaussian beam, it is necessary to solve Eqs.~18! and~19! by
substituting Eqs.~1!, ~5!–~8!, ~15!, ~16!, and~17! into them,
which is often quite difficult. However, as shown in Ref
@8,17,28,29#, the orders of the amplitudes of the first-ord
10400
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perturbative electric and magnetic fields produced by the
rect interaction of the GW with the e.m. wave~e.g., plane
wave or Gaussian beam! are approximatelyhB̃(0)c and
hB̃(0), respectively, while those generated by the direct
teraction of the GW with the static magnetic field are a
proximately hB̂(0)c and hB̂(0), respectively. Thus corre
sponding amplitude ratio is abouthB̃(0)/hB̂(0). In our case,
we have chosenB̃(0);1023 T, B̂(0);10 T, i.e., their ratio is
only roughly 1024. Therefore, the former can be neglecte
In other words, the contribution of the Gaussian beam
mainly expressed in the coherent synchroresonance~i.e., ve

5vg) of it with the first-order perturbationF̃mn
(1) generated by

the direct interaction of the GW with the static fieldB̂y
(0) . In

this case, the process of solving Eqs.~18! and ~19! can be
greatly simplified, i.e., the static magnetic fieldB̂(0)5B̂y

(0)

can be seen as the unique background e.m. field in Eqs.~18!
and~19!. Under these circumstances, first we can solve E
~18! and~19! in region II (2 l /2<z< l /2, B̂(0)5B̂y

(0)) to find
the first-order perturbation solutions; and second, using
boundary conditions one can obtain the first-order pertur
tion solutions in region I (z<2 l /2, B̂(0)50) and region III
(z> l /2, B̂(0)50).

Introducing Eqs.~15!–~17! into Eqs. ~18!,~19!, and ne-
glecting high-order infinitely small quantities and the pertu
bative effect produced by the direct interaction of the G
with the Gaussian beam, Eqs.~18! and ~19! are reduced to

1

c2
Ẽx,t

(1)1B̃y,z
(1)5B̂y

(0)hxx,z ,

Ẽx,z
(1)1B̃y,t

(1)50, ~20!

1

c2
Ẽy,t

(1)1B̃x,z
(1)5B̂y

(0)hxy,z ,

Ẽy,z
(1)2B̃x,t

(1)50, ~21!

and

Ẽz,t
(1)5Ẽz,z

(1)50, B̃z,t
(1)5B̃z,z

(1)50, ~22!

where the commas in the subscripts denote partial der
tives. Using Eq.~15!, Eqs.~20!–~22! can also be expresse
as the following inhomogeneous hyperbolic-type equatio
respectively:

hẼx
(1)5Ẽx,zz

(1) 2
1

c2
Ẽx,tt

(1) 52A% B̂y
(0)kg

2c exp@ i ~kgz2vgt !#,

hB̃y
(1)5B̃y,zz

(1) 2
1

c2
B̃y,tt

(1) 52A% B̂y
(0)kg

2 exp@ i ~kgz2vgt !#,

~23!
8-5
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hẼy
(1)5Ẽy,zz

(1) 2
1

c2
Ẽy,tt

(1) 52 iA ^ B̂y
(0)kg

2 c exp@ i ~kgz2vgt !#,

hB̃x
(1)5B̃x,zz

(1) 2
1

c2
B̃x,tt

(1) 5 iA ^ B̂y
(0)kg

2 exp@ i ~kgz2vgt !#,

~24!

hẼz
(1)5hB̃z

(1)50, ~25!

whereh indicates the d’Alembertian. Obviously, every s
lution of Eq.~20! must satisfy Eq.~23!, and every solution of
Eq. ~21! must satisfy Eq.~24!, and it is easily seen from Eqs
~22! and~25! that a physically reasonable solution of them
only

Ẽz
(1)5B̃z

(1)50. ~26!

The general solutions of Eqs.~20!–~24! in region II
(2 l /2<z< l /2) are given by

Ẽx
(1)5

i

2
A% B̂y

(0)kgc~z1 l /2!exp@ i ~kgz2vgt !#

1b1 exp@ i ~kgz2vgt !#1c1 exp@ i ~kgz1vgt !#,

B̃y
(1)5

i

2
A% B̂y

(0)kg~z1 l /2!exp@ i ~kgz2vgt !#

1b2 exp@ i ~kgz2vgt !#1c2 exp@ i ~kgz1vgt !#,

~27!

Ẽy
(1)52

1

2
A^ B̂y

(0)kgc~z1 l /2!exp@ i ~kgz2vgt !#

1 ib3 exp@ i ~kgz2vgt !#1 ic3 exp@ i ~kgz1vgt !#,

B̃x
(1)5

1

2
A^ B̂y

(0)kg~z1 l /2!exp@ i ~kgz2vgt !#

1 ib4 exp@ i ~kgz2vgt !#1 ic4 exp@ i ~kgz1vgt !#.

~28!

The solutions, Eqs.~26!, ~27!, and~28!, show that perturba-
tive e.m. waves produced by a plane GW satisfying the
gauge must be transverse waves, and the background
magnetic field is perpendicular to the propagation direct
of the GW. The constants in Eqs.~27! and ~28! satisfy

b12cb252
1

2
A% B̂y

(0)c, c11cc250,

b31cb452
1

2
A^ B̂y

(0)c, c32cc450; ~29!

their concrete forms will be defined by the physical requi
ments and boundary conditions.

The solutions~26!–~28! have similar features to thos
found by a number of authors@28,29# previously, but as we
10400
T
atic
n

-

shall show, unlike previous work, our e.m. system is a p
sible scheme to display the first-order e.m. perturbations p
duced by the high-frequency relic GW’s~GHz region! inside
a typical laboratory size detector~not necessarily interferom
eters or e.m. cavities with giant dimensions!; a particularly
interesting feature of the first-order perturbation is the p
turbative effect in some special directions and some spe
regions.

It should be pointed out that in curved space-time o
local measurements made by an observer traveling in
world-line have definite observable meaning. These obs
able quantities are just the projections of the physical qu
tities as a tensor on tetrads of the observer’s world-line. T
tetrads consist of three spacelike mutually orthogonal vec
and a timelike vector directed along the four-velocity of t
observer; the latter is perpendicular to the former. We in
cate these witht (a)

m , where the index in parentheses numbe
the vectors and the other refers to the components of
tetrads in the chosen coordinates. Consequently, the qu
ties F (ab) measured by the observer are the tetrad com
nents of the e.m. field tensor, that is,

F (ab)5Fmnt (a)
m t (b)

n . ~30!

Obviously, for our e.m. system, the observer should be at
in the static magnetic field, i.e., only the zeroth componen
the four-velocity is nonvanishing. Thus, the tetradt (0)

m has
the form

t (0)
m 5~t (0)

0 ,0,0,0!. ~31!

Using Eq. ~16! and the orthonormality of the tetrad
gmnt (a)

m t (b)
n 5hab , neglecting high-order infinitely smal

quantities, it is always possible to get

t (0)
m 5~1,0,0,0!,

t (1)
m 5S 0,12

1

2
h% ,0,0D ,

t (2)
m 5S 0,2h^ ,11

1

2
h% ,0D ,

t (3)
m 5~0,0,0,1!. ~32!

Equation~32! indicates that the zeroth and third comp
nents of the tetrads coincide completely with the time anz
axes in the chosen coordinates, respectively. Furtherm
t (1)

m has only the projection on thex axis; thust (1)
m actually

points at thex axis. This means that the azimuthf in the
tetrads and that in the chosen coordinates are the same, w
the deviation oft (2)

m from they axis is only on the order of
h^ .

With the help of Eqs.~3!, ~4!, ~27!, ~28!, and ~32!, ne-
glecting high-order infinitely small quantities, we obtain
8-6
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E(x)5cF(01)5cFmnt (0)
m t (1)

n

5Ẽx
(0)1Ẽx

(1)2
1

2
hxxẼx

(0)

5c1Ẽx
(1)2

1

2
h%c,

E(y)5cF(02)5cFmnt (0)
m t (2)

n 5Ẽy
(1)2h^c,

E(z)5cF(03)5cFmnt (0)
m t (3)

n 50,

B(x)5F (32)5Fmnt (3)
m t (2)

n

5B̃x
(1)1hxy~B̂y

(0)1B̃y
(0)!

5B̃x
(1)1h^ S B̂y

(0)2
i

ve

]c

]z D ,

B(y)5F (13)5Fmnt (1)
m t (3)

n

5B̂y
(0)1B̃y

(0)1B̃y
(1)

5B̂y
(0)2

i

ve

]c

]z
1B̃y

(1) ,

B(z)5F (21)5Fmnt (2)
m t (1)

n 5B̃z
(0)5

i

ve

]c

]y
. ~33!

As we pointed out above, hereuhF̃mn
(0)u;AB̃(0), uF̃mn

(1)u
;AB̂y

(0) , and in our case,B̂(0);10 T,B̃(0);1023 T; thus

we haveuhF̃mn
(0)u/uF̃mn

(1)u 'B̃(0)/B̂y
(0)'1024, so that thehF̃mn

(0)

terms in Eq.~33! can be neglected again. In this case E
~33! can be further reduced to~in region II 2 l /2<z< l /2)

E(x)5c1Ẽx
(1)

5c1
i

2
A% B̂y

(0)kgc~z1 l /2!exp@ i ~kgz2vgt !#

1b1 exp@ i ~kgz2vgt !#

1c1 exp@ i ~kgz1vgt !#,

B(y)5B̂y
(0)2

i

ve

]c

]z
1B̃y

(1)

5B̂y
(0)2

i

ve

]c

]z
1

i

2
A% B̂y

(0)kg~z1 l /2!exp@ i ~kgz

2vgt !#1b2 exp@ i ~kgz2vgt !#

1c2 exp@ i ~kgz1vgt !#, ~34!

E(y)5Ẽy
(1)

52
1

2
A^ B̂y

(0)kgc~z1 l /2!exp@ i ~kgz2vgt !#

1 ib3 exp@ i ~kgz2vgt !#1 ic3 exp@ i ~kgz
10400
.

1vgt !#,

B(x)5B̃x
(1)1h^ B̂y

(0)

5
1

2
A^ B̂y

(0)kg~z1 l /2!exp@ i ~kgz2vgt !#

1 ib4 exp@ i ~kgz2vgt !#1 ic4 exp@ i ~kgz

1vgt !#1 iA ^ B̂y
(0) exp@ i ~kgz2vgt !#, ~35!

and

E(z)50,

B(z)5B̃z
(0)5

i

ve

]c

]y
. ~36!

C. The particular solutions satisfying boundary conditions

In fact, the perturbative parts in Eqs.~34!–~36! are the
general solutions of Eqs.~20!–~25! in region II (2 l /2<z
< l /2). We shall define the constants in Eqs.~34! and~35! to
give the corresponding particular solutions satisfying
boundary conditions.

Clearly, the perturbative e.m. fields in the regions I,
and III must satisfy the boundary conditions~the continuity
conditions!

~ F̃ (mn)I
(1) !z52 l /25~ F̃ (mn)II

(1) !z52 l /2 ,

~ F̃ (mn)II
(1) !z5 l /25~ F̃ (mn)III

(1) !z5 l /2 . ~37!

If one chooses the real part of the purely perturbat
fields in Eqs.~34! and ~35!, then we have

Ẽ(x)
(1)52

1

2
A% B̂y

(0)kgc~z1 l /2!sin~kgz2vgt !

1b1 cos~kgz2vgt !1c1 cos~kgz1vgt !,

B̃(y)
(1)52

1

2
A% B̂y

(0)kg~z1 l /2!sin~kgz2vgt !

1b2 cos~kgz2vgt !1c2 cos~kgz1vgt !, ~38!

Ẽ(y)
(1)52

1

2
A^ B̂y

(0)kgc~z1 l /2!cos~kgz2vgt !

2b3sin~kgz2vgt !2c3sin~kgz1vgt !,

B̃(x)
(1)5

1

2
A^ B̂y

(0)kg~z1 l /2!cos~kgz2vgt !

2b4sin~kgz2vgt !2c4sin~kgz1vgt !

2A^ B̂y
(0)sin~kgz2vgt !. ~39!

A physically reasonable requirement is that there is no
perturbative e.m. wave propagating along the negativez di-
rection in region III (z> l /2). Here we shall consider on
8-7
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more simple case, i.e., the perturbative e.m. wave in
negativez direction is also absent in region I (z<2 l /2). In
order to satisfy the boundary conditions Eq.~37! and the
above requirement, from Eqs.~29! and ~37!–~39!, one finds

b152
1

4
A% B̂y

(0)c, b25
1

4
A% B̂y

(0) , b35
1

4
A^ B̂y

(0)c,

b452
3

4
A^ B̂y

(0) ,

c15
1

4
A% B̂y

(0)c, c252
1

4
A% B̂y

(0) , c35
1

4
A^ B̂y

(0)c,

c45
1

4
A^ B̂y

(0) , ~40!

and

l 5nlg ~n is integer!. ~41!

In this case we have the perturbative e.m. fields in
above three regions as follows.

~a! Region I (z<2 l /2,B̂(0)50):

Ẽ(x)
(1)5cF̃(01)

(1) 5Ẽ(y)
(1)5cF̃(02)

(1) 50,

B̃(x)
(1)5F̃ (32)

(1) 5B̃(y)
(1)5F̃ (13)

(1) 50; ~42!

~b! region II (2 l /2<z< l /2,B̂(0)5B̂y
(0)):

Ẽ(x)
(1)52

1

2
A% B̂y

(0)kgc ~z1 l /2!sin~kgz2vgt !

2
1

2
A% B̂y

(0)c sin~kgz!sin~vgt !,

B̃(y)
(1)52

1

2
A% B̂y

(0)kg~z1 l /2!sin~kgz2vgt !

1
1

2
A% B̂y

(0)sin~kgz!sin~vgt !; ~43!

Ẽ(y)
(1)52

1

2
A^ B̂y

(0)kgc~z1 l /2!cos~kgz2vgt !

2
1

2
A^ B̂y

(0)c sin~kgz!cos~vgt !,

B̃(x)
(1)5

1

2
A^ B̂y

(0)kg~z1 l /2!cos~kgz2vgt !

2
1

2
A^ B̂y

(0) sin~kgz!cos~vgt !; ~44!

~c! region III (l /2<z< l 0 ,B̂(0)50):
10400
e

e

Ẽ(x)
(1)52

1

2
A% B̂y

(0)kgcl sin~kgz2vgt !,

B̃(y)
(1)52

1

2
A% B̂y

(0)kgl sin~kgz2vgt !, ~45!

Ẽ(y)
(1)52

1

2
A^ B̂y

(0)kgcl cos~kgz2vgt !,

B̃(x)
(1)5

1

2
A^ B̂y

(0)kgl cos~kgz2vgt !; ~46!

where l 0 is the size of the effective region in which th
second-order perturbative e.m. power fluxes, such
(1/m0)(Ẽ(x)

(1)B̃(y)
(1)), (1/m0)(Ẽ(y)

(1)B̃(x)
(1)), retain a plane wave

form. Notice that the power fluxes in region II contain pa
with a space accumulation effect, i.e., they depend upon
square of the interaction dimension. This is because
GW’s and e.m. waves have the same velocity, so that the
waves can generate an optimum coherent effect in the pr
gating direction. It is easy to show that, if we choose t
imaginary part of the purely perturbative fields in Eqs.~34!
and ~35!, we can obtain similar results, but Eq.~41! will be
replaced by

l 5~2n11!
lg

2
~n is an integer!. ~47!

Logi and Mickelson@29# used Feynman perturbation tec
niques to analyze the perturbative e.m. waves~photon fluxes!
produced by a weak GW~gravitons! passing through a stati
magnetic~or electrostatic! field, and found that perturbative
e.m. waves~photon fluxes! propagate only in the same and
the opposite propagation directions of the GW~gravitons!;
the latter is weaker than the former or is absent. Obviou
our results and the calculation by Logi and Mickelson a
consistent. However, due to the weakness of the interac
of the GW’s ~gravitons! with the e.m. fields~photons!, we
shall focus our attention on the first-order perturbative pow
fluxes produced by the coherent synchroresonance of
above perturbative e.m. fields with the background Gaus
beam, not only the second-order perturbative e
power fluxes themselves, such as (1/m0)(Ẽ(x)

(1)B̃(y)
(1))

and (1/m0)(Ẽ(y)
(1)B̃(x)

(1)).

D. The first-order perturbative electromagnetic power fluxes

The generic expression for the energy-momentum ten
of the e.m. fields in GW fields is given by

Tmn5
1

m0
S 2Fa

mFna1
1

4
gmnFabFabD . ~48!

BecauseFmn5Fmn
(0)1F̃mn

(1) and uF̃mn
(1)u!uFmn

(0)u for nonvan-

ishing Fmn
(0) and F̃mn

(1) , Tmn can be decomposed into

Tmn5T
~0!
mn1T

~1!
mn1T

~2!
mn , ~49!
8-8
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where T
(0)
mn is the energy-momentum tensor of the bac

ground e.m. field, andT
(1)
mn and T

(2)
mn represent first-and

second-order perturbations toT
(0)
mn in the presence of the GW

Using Eq.~16!, T
(0)
mn , T

(1)
mn , andT

(2)
mn can be written as

Tmn
~0!

5
1

m0
S 2Fa

m(0)Fna(0)1
1

4
hmnFab

(0)Fab(0)D , ~50!

Tmn
~1!

5
1

m0
F2~Fa

m(0)F̃na(1)1F̃a
m(1)Fna(0)!

1
1

4
hmn(F̃ab

(1)Fab(0)1Fab
(0)F̃ab(1))

2
1

4
hmnFab

(0)Fab(0)G , ~51!

Tmn
~2!

5
1

m0
F2F̃a

m(1)F̃na(1)1
1

4
hmnF̃ab

(1)F̃ab(1)

2
1

4
hmn~Fab

(0)F̃ab(1)1F̃ab
(1)Fab(0)!G . ~52!

For nonvanishingT
(0)
mn , T

(1)
mn , andT

(2)
mn , we have

uTmn
~0!

u@uTmn
~1!

u@uTmn
~2!

u. ~53!

Therefore, for the effect of the GW, we are interested inT
(1)
mn

but not inT
(0)
mn andT

(2)
mn . Nevertheless, it can be shown fro

Eqs.~1!, ~3!, ~5!–~8!, ~15!, ~42!–~46! and~52! that the aver-

age value ofT
(2)
00 with respect to time is always positive

Thus it expresses essentially the net increasing quantit
the energy density of the e.m. fields. In particular, un
resonant conditions, it should correspond to the reson
graviton-photon conversion at the quantum level@29–31#.

But becauseuT
(2)
mn u!uT

(1)
mn u for nonvanishingT

(1)
mn and T

(2)
mn ,

the second-order perturbations are often far below the
quirements for an observable effect. In this case it has o
theoretical interest. However, for some astrophysical sit
tions, it is possible to cause observable effects, because
large e.m. fields and very strong GW’s often occur simu
neously and these fields extend over a very large a
@32,33#.

By using Eqs.~1!, ~3!, ~5!–~8!, ~15!, ~42!–~46!, and~51!,
we obtain

Sr
~1!

5cT01
~1!

5
1

m0
~Ẽ(f)

(1) B̃(z)
(0)!52

1

m0
~Ẽ(x)

(1)B̃(z)
(0)!sin f

1
1

m0
~Ẽ(y)

(1)B̃(z)
(0)!cosf, ~54!
10400
-

of
r
nt

e-
ly
-
ry

-
a

Sf
~1!

5cT02
~1!

52
1

m0
~Ẽ(r )

(1)B̃(z)
(0)!52

1

m0
~Ẽ(x)

(1)B̃(z)
(0)!cosf

2
1

m0
~Ẽ(y)

(1)B̃(z)
(0)!sin f, ~55!

Sz
~1!

5cT03
~1!

5
1

m0
~Ẽ(x)

(0)B̃(y)
(1)!1

1

m0
~Ẽ(x)

(1)B̃(y)
(0)!, ~56!

whereSr
(1)

, Sf
(1)

, andSz
(1)

represent the first-order radial, tange
tial, and axial perturbative power flux densities, respective
As we have shown above, for high-frequency perturbat
power fluxes, only their nonvanishing average values w
respect to time have an observable effect. It is easily s
from Eqs.~1!, ~5!–~8!, and~42!–~46! that average values o
the perturbative power flux densities Eqs.~54!–~56! vanish
in the whole frequency range whereveÞvg . In other words,
only under the condition ofve5vg ~synchroresonance! do

Sr
(1)

, Sf
(1)

, and Sz
(1)

have nonvanishing average values with r
spect to time.

In the following we study only the tangential averag

power flux densitŷ Sf
(1)

&ve5vg
. Introducing Eqs.~1!, ~8!, and

~42!–~46! into Eq.~55!, and settingd5p/2 in Eq.~1! ~this is
always possible!, we have

^Sf
~1!

&ve5vg
5^S%

f
~1!

&ve5vg
1^S^

f
~1!

&ve5vg
, ~57!

where

^S%

f
~1!

&ve5vg
52

1

m0
^Ẽ(x)

(1)B̃(z)
(0)&cosf,

^S^

f
~1!

&ve5vg
52

1

m0
^Ẽ(y)

(1)B̃(z)
(0)&sin f. ~58!

^S%

f
(1)

&ve5vg
and ^S^

f
(1)

&ve5vg
represent the average values

the first-order tangential perturbative power flux densit
generated by the states of1 polarization and3 polarization
of the GW, Eq.~15!, respectively. Using Eqs.~1!, ~8!, ~42!–
~46!, ~57!, and ~58! and the boundary conditions@see Eqs.
~37! and ~41!#, one finds the following.

~a! Region I (z<2 l /2),

^S%

f
~1!

&ve5vg
5^S^

f
~1!

&ve5vg
50. ~59!

~b! Region II (2 l /2<z< l /2),
8-9
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^S%

f
~1!

&ve5vg
5H A% B̂y

(0)c0kgr ~z1 l /2!

8m0@11~z/ f !2#1/2~z1 f 2/z!
cosS tan21

z

f
2

kgr 2

2R D1
A% B̂y

(0)c0r ~z1 l /2!

4m0W0
2@11~z/ f !2#3/2

sinS tan21
z

f
2

kgr 2

2R D
2

A% B̂y
(0)c0r

8m0@11~z/ f !2#1/2~z1 f 2/z!
sin~kgz!cosS tan21

z

f
2

kgr 2

2R
2kgzD2

A% B̂y
(0)c0r

4m0kgW0
2@11~z/ f !2#3/2

sin~kgz!

3sinS tan21
z

f
2

kgr 2

2R
2kgzD J expS 2

r 2

W2D sin~2f!, ~60!

^S^

f
~1!

&ve5vg
5H A^ B̂y

(0)c0kgr ~z1 l /2!

4m0@11~z/ f !2#1/2~z1 f 2/z!
sinS kgr 2

2R
2tan21

z

f D1
A^ B̂y

(0)c0r ~z1 l /2!

2m0W0
2@11~z/ f !2#3/2

cosS kgr 2

2R
2tan21

z

f D
1

A^ B̂y
(0)c0r

4m0@11~z/ f !2#1/2~z1 f 2/z!
sin~kgz!sinS kgz2tan21

z

f
1

kgr 2

2R D1
A^ B̂y

(0)c0r

2m0kgW0
2@11~z/ f !2#3/2

sin~kgz!

3cosS kgz2tan21
z

f
1

kgr 2

2R D J expS 2
r 2

W2D sin2f. ~61!

~c! Region III (l /2<z< l 0),

^S%

f
~1!

&ve5vg
5H A% B̂y

(0)c0kglr

8m0@11~z/ f !2#1/2~z1 f 2/z!
cosS tan21

z

f
2

kgr 2

2R D1
A% B̂y

(0)c0lr

4m0W0
2@11~z/ f !2#3/2

sinS tan21
z

f
2

kgr 2

2R D J
3expS 2

r 2

W2D sin~2f!, ~62!

^S^

f
~1!

&ve5vg
5H A^ B̂y

(0)c0kglr

4m0@11~z/ f !2#1/2~z1 f 2/z!
sinS kgr 2

2R
2tan21

z

f D1
A^ B̂y

(0)c0lr

2m0W0
2@11~z/ f !2#3/2

cosS kgr 2

2R
2tan21

z

f D J
3expS 2

r 2

W2D sin2f. ~63!
ur
rre
Th

n

e
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nd
e

v

n

es
ar

ri-

g

.

n

-

f

In
It is easily shown that the nonvanishing first-order pert
bative power flux densities are much greater than co
sponding second-order perturbative power flux densities.
quantum picture of this process can be described as the
teraction of the photons with the gravitons in a backgrou
of virtual photons ~or virtual gravitons! as a ‘‘catalyst’’
@29,34#, which can greatly increase the interaction cross s
tion between the photons and gravitons. In other words
interaction may effectively change the physical behav
~e.g., propagation direction, distribution, polarization, a
phase! of the photons in the local regions; even if the n
increase of the photon number~the e.m. energy! of the entire
e.m. system approaches zero, such properties may be
useful to display very weak signals of GW’s.

Equations~60!–~63! show that because there are nonva

ishing S%

f
(1)

~which depend on the1 polarization state of the

GW! and S^

f
(1)

~which depend on the3 polarization state of
the GW!, the first-order tangential perturbative power flux
are expressed as a ‘‘left circular wave’’ and a ‘‘right circul
10400
-
-
e

in-
d

c-
e
r

t

ery

-

wave’’ in cylindrical polar coordinates around the symmet

cal axis of the Gaussian beam, but^S%

f
(1)

&ve5vg
and

^S^

f
(1)

&ve5vg
have a different physical behavior. By comparin

Eqs.~60!–~63! with Eqs.~9!–~11!, we can see the following

~a! ^S%

f
(1)

&ve5vg
and ^Sf

(0)

& have the same angular distributio

factor sin(2f), thus^S%

f
(1)

&ve5vg
will be swamped by the back

ground power flux̂ Sf
(0)

&; namely, in this casêS%

f
(1)

&ve5vg
has

no observable effect.~b! The angular distribution factor o

^S^

f
(1)

&ve5vg
is sin2 f; it is different from that of̂ Sf

(0)

&. There-

fore, ^S^

f
(1)

&ve5vg
, in principle, has an observable effect.

particular, at the surfacesf5p/2,3p/2, ^Sf
(0)

&[0, while

u^S^

f
(1)

&ve5vg
u5u^S^

f
(1)

&ve5vg
umax; this is satisfactory~although
8-10
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^Sr
(0)

& and ^S^

f
(1)

&ve5vg
have the same angular distribution fa

tor sin2f, the propagation direction of^Sr
(0)

& is perpendicular

to that of ^S^

f
(1)

&ve5vg
; thus ^Sr

(0)

& ~including ^Sz
(0)

&) has no es-
sential contribution in the purely tangential direction!.

Figure 2 gives the distribution of^S%

f
(1)

&ve5vg
on the plane

z5 l /25n/2lg (n is an integer! in cylindrical polar coordi-

nates, while Fig. 3 gives the distribution of^S^

f
(1)

&ve5vg
in the

planez50 in cylindrical polar coordinates.
From Eqs.~10!, ~11!, ~60!, and~61!, we can also see tha

^Sr
(0)

&5^Sf
(0)

&5^S%

f
(1)

&ve5vg
[0 in the planez50, while

^S^

f
~1!

&ve5vg
5

A^ B̂y
(0)c0lr

4m0W0
2

expS 2
r 2

W0
2D sin2 f. ~64!

In Table I we list the distribution of̂Sf
(0)

&, ^S%

f
(1)

&ve5vg
, and

^S^

f
(1)

&ve5vg
in some typical regions. Table I, Eqs.~60!–~63!,

and Figs. 2 and 3 show that the planez50 and the planes
f5p/2,3p/2 are the three most interesting regions. For

former, ^Sf
(0)

&5^Sr
(0)

&5^S%

f
(1)

&ve5vg
[0, but a nonvanishing

^S^

f
(1)

&ve5vg
exists; for the latter two,̂Sf

(0)

&5^S%

f
(0)

&ve5vg
[0,

but there is a nonzerôS^

f
(1)

&ve5vg
. This means that any non

vanishing tangential e.m. power flux in such regions w
express the pure electromagnetic-gravitational perturbati

E. Numerical estimations

If we describe the perturbation in the quantum langua
~photon flux!, the corresponding perturbative photon fluxnf

caused by^S^

f
(1)

&ve5vg
in the planef5p/2 ~we note that

FIG. 2. Distribution of̂ S%

f
(1)

&ve5vg
at the planez5 l /25n/2lg ~n

is integer! in the cylindrical polar coordinates. It has maxima atf
5p/4, 3p/4, 5p/4, and 7p/4, while it vanishes atf50, p/2, p and
3p/2. Here l 50.1 m, lg50.01 m andr 50.05 m, and the GW
propagates along thez axis.
10400
e

l
.

e

^S^

f
(1)

&ve5vg
is the unique nonvanishing power flux densi

passing through the plane! is given by

nf5
^u^

f
~1!

&ve5vg ,f5p/2

\ve

5
1

\ve
E

0

W0E
2 l /2

l 0
^S^

f
~1!

&ve5vg ,f5p/2dzdr, ~65!

where ^u^

f
(1)

&ve5vg,f5p/25*0
W0*

2 l /2
l 0 ^S^

f
(1)

&ve5vg ,f5p/2dzdr is
the total perturbative power flux passing through the pla
f5p/2 and\ is the Planck constant.

In order to give reasonable estimations, we choo
achievable values of the e.m. parameters in the presen
periments. ~1! c0533105 V m21 ~i.e., c0 /c51023 T),
the amplitude of the Gaussian beam. If the spot radiusW0 of
the Gaussian beam is limited to 0.05 m, the correspond

power can be estimated asP5*0
W0^Sz

(0)

&z502prdr'105 W
@see Eq.~9!#; this power is well within the reach of curren
technology @21,35#. For the Gaussian beam withne53
31010 Hz, this is equivalent to a photon fluxn(0) of 5
31027 s21 roughly.~2! B̂y

(0)530 T, the strength of the back
ground static magnetic field; this is the achievable strength
a stationary magnetic field under present experimental c
ditions @36#. ~3! A^ 510230, vg/2p5ng5331010 Hz, these
are the typical orders of magnitude expected quintesse
inflationary models @1#. Substituting Eqs. ~61!, ~63!,
and the above parameters into Eq.~65!, and setting
W050.05 m,l 50.1 m,l 050.3 m, we obtain nf'1.57
3103 s21 ~see Table II!. Up to now, this is the larges
perturbative photon flux in a series of results@7–9#. Re-
cently, we analyzed and estimated them under typical la

FIG. 3. Distribution of̂ S^

f
(1)

&ve5vg
in the planez50 in cylindri-

cal polar coordinates, It has maxima atf5p/2 and 3p/2, while it

vanishes atf50,p. Unlike Fig. 2,^S^

f
(1)

&ve5vg
at thez50 is com-

pletely ‘‘left-hand circular.’’ Herer 50.05 m,lg50.01 m, and the
GW propagates along thez axis.
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TABLE I. The distribution of^Sf
(0)

&, ^S%

f
(1)

&ve5vg
, and^S^

f
(1)

&ve5vg
in some typical regions.

Angular distribution Plane Planes Planes Planes
factor z50 f5p/4,5p/4 f53p/4,7p/4 f5p/2,3p/2

^Sf
~0!

& sin(2f) 0 u^Sf
~0!

&u5u^Sf
~0!

&umax, u^Sf
~0!

&u5u^Sf
~0!

&umax,
0

‘‘left circular’’ ‘‘right circular’’
propagation propagation

^S%

f
~1!

&ve5vg
sin(2f) 0

u^S%

f
~1!

&ve5vg
u5u^S%

f
~1!

&ve5vg
umax,

‘‘left circular’’
propagation

u^S%

f
~1!

&ve5vg
u5u^S%

f
~1!

&ve5vg
umax,

‘‘right circular’’
propagation

0

^Ŝf
~1!

&ve5vg
sin2 f u^Ŝf

~1!

&ve5vg
u There are There are u^Ŝf

~1!

&ve5vg
u

5u^Ŝf
~1!

&ve5vg
umax

nonvanishing values; nonvanishing values; 5u^Ŝf
~1!

&ve5vg
umax,

at f5p/2,3p/2 ‘‘left circular’’ ‘‘left circular’’ ‘‘left circular’’
propagation propagation propagation
o

e

-
al

ui

a
m

n

le

es
the

n
.,

ian
l

ratory parameter conditions. If the integration region
the radial coordinater in Eq. ~65! is moved toW0<r<r 0
~here W050.05 m, r 050.1 m), in the same way, th
corresponding perturbative photon fluxnf8 can be

estimated as nf8 5(1/\ve)*W0

r 0 *
2 l /2
l 0 ^S^

f
(1)

&ve5vg ,f5p/2dzdr

50.963103 s21'103 s21. Although thennf8 ,nf , it re-
tains basically the order of 103 s21, and because the ‘‘receiv
ing’’ plane of the tangential perturbative photon flux has
ready moved to the region outside the spot radiusW0 of the
Gaussian beam, it has a more realistic meaning to disting
and display the perturbative photon flux.

Figure 4 gives the rating curve between^S^

f
(1)

&ve5vg
and

^Sz
(0)

& in the planez50; herer is the radial coordinate.
Figure 5 gives the rating curve betweennf and the axis

coordinatez, and the relative parameters are chosen asne

5ng5vg/2p5331010 Hz, A^ 510230, B̂y
(0)530 T, c053

3105 V m21, l 50.1 m, l 050.3 m, andW050.05 m. Fig-
ure 5 shows thatnf has a good space accumulation effect
z increases. In fact, in addition to the third and fourth ter

in Eq. ~61!, the rest in the expression for^S^

f
(1)

&ve5vg
, Eq.
10400
f

-

sh

s
s

~61! and Eq.~63!, is all a slow enough variational function i

the z direction. This means that the value of^S^

f
(1)

&ve5vg
is

slowly variational and keeps its sign invariant in the who
region of the coherent resonance~here it is about the region

of 80lg , namely, 0.8 m!; thus ^S^

f
(1)

&ve5vg
are ‘‘left circu-

larly’’ propagated from2 l /2 to l 0.
Table II gives the tangential perturbative photon flux

and corresponding relevant parameters in three cases. In
first caseW0150.05 m, in the second caseW0250.02 m, in
the third caseW0350.1 m, but the background Gaussia
beam has the same power in the three cases, i.eP
'105 W. BecauseW03.W01.W02, c03,c01,c02. Table
II shows that the tangential perturbation in the Gauss
beam with largerW0 ~i.e., smalleru) has a better physica
effect than that in the Gaussian beam with smallerW0 ~i.e.,
larger u); here u is the spreading angle of the beam,u
5tan21(le /pW0)'le /pW0.

We emphasize that herenf}c0}AP @see Eqs.~61!, ~63!,
and ~65!; P is the power of the Gaussian beam#, and at the
same timenf}B̂y

(0) . Therefore, ifP is reduced to 103 W,
thennf'1.573102 s21; and even ifP is reduced to 10 W
TABLE II. The tangential perturbative photon fluxes and corresponding relevant parameters.

A ng (Hz) W0 (m) u ^u^

f
(1)

&ve5vg
~W! nf (s21)

10230 331010 0.05 6.3631022 3.11310220 1.573103

10230 331010 0.02 15.7831022 1.31310220 6.613102

10230 331010 0.10 3.1831022 3.14310220 1.583103
8-12
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~this is already a very relaxed requirement!, we still have
nf'1.57310 s21. Thus, if possible, increasingB̂y

(0) ~in this
way the number of the background real photons does
change! has a better physical effect than increasingP. Ac-
cording to the above discussion, we give some values for
powerP of the background Gaussian beam and correspo
ing parametersnf andnf8 ~see Table III!.

In particular, sincenf8 indicates the tangential perturbativ
photon flux passing through the ‘‘receiving’’ planef5p/2
(;1022 m2) outside the spot radiusW0 of the Gaussian
beam, the results provided a more realistic test scheme.

IV. GEOMETRICAL PHASE SHIFT PRODUCED BY HIGH-
FREQUENCY RELIC GRAVITATIONAL WAVES

Mitskievich and Nesterov@37# investigated the Berry’s
phase shift of a monochromatic e.m. wave beam in a pl
monochromatic GW field, and it was shown that~a! for par-
allel propagating GW and e.m. wave, the phase shift is
sent;~b! when the waves are mutually orthogonal, a nonv
nishing phase shift will be produced, and the phase shif

FIG. 4. Rating curve between̂S^

f
(1)

&ve5vg
and ^Sz

(0)

& in the plane
z50; herer is the radial coordinate andf5p/2 or 3p/2 in Eq.

~64!. It shows thatu^S^

f
(1)

&ve5vg
u5u^S^

f
(1)

&ve5vg
umax at r 5W0 /A2.

The background axial power flux density^Sz
(0)

& is a typical Gaussian

distribution, andu^Sz
(0)

&u@u^S^

f
(1)

&ve5vg
umax. However, because the

propagatoin direction of ^Sz
(0)

& is perpendicular to that of

^S^

f
(1)

&ve5vg
, ^Sz

(0)

& has no contribution in the purely tangential dire

tion. The shaded part expresses^S^

f
(1)

&ve5vg
. Here ne5ng5vg/2p

5331010 Hz, A^ 510230, B̂y
(0)530 T, c0533105 V m21, l

50.1 m, andW050.05 m.
10400
ot

e
d-

e

b-
-
is

proportional to the distance propagated by the e.m. wave@see
Eq. ~6! in Ref. @37##, i.e.,

Da5A~L2sin L!sin~L1d8!, ~66!

Here,

L52pL/lg5
L

c
vg , ~67!

A is the amplitude of the GW~e.g., A% or A^ ), L is the
distance between the observer and the reflecting system
the e.m. wave, andle5lg ,ve5vg ; L is also the interaction
dimension of the GW with the e.m. wave. IfL@1, from Eq.
~66!, we have

Da'AL sin~L1d8!, ~68!

namely, one obtains a linear increase of the phase s
Equations~67! and ~68! show that a large distanceL and
high frequencyvg will produce a better physical effect tha
that of a smallL and low frequencyvg .

As we have pointed out, unlike an ideal plane monoch
matic e.m. wave, the Gaussian beam is a realized e.m. w
beam satisfying physical boundary conditions, and we s
show that for a Gaussian beam with a small spreading an
the wave beam in the region near the symmetrical axis
be approximately seen as a quasiplane wave. In this case
possible to estimate the geometrical phase shift in the Ga
ian beam.

FIG. 5. Rating curve betweennf and the axial coordinatez, here

ne5ng5vg/2p5331010 Hz, A^ 510230, B̂y
(0)530 T, c053

3105 V m21, andW050.05 m. It shows that the purely tangenti
perturbative photon flux passing through the planef5p/2 with
1022m2 would be expected to be 1.573103 s21.

TABLE III. The power of the background Gaussian beam a
correspondingnf andnf8 .

P (W) nf (s21) nf8 (s21)

105 ;1.573103 ;103

103 ;1.573102 ;102

10 ;1.57310 ;10
8-13
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TABLE IV. The geometrical phase shift produced by GW’s in e.m. wave beams with the same frequencies.

A ng5ne (Hz) Waveform
Interaction

dimensionL ~m! L
Geometrical

phase shiftDa

~a! 10222 33103 Monochromatic 3.83108 2.43104 2.4310218

plane e.m. wave ~cislunar distance!
~b! 10230 331010 Gaussian beam 1 2.53102 2.5310228

~c! 10230 331010 Gaussian beam 38 2.43104 2.4310226

~d! 10230 331010 Gaussian beam 53109 3.131012 3.1310218

~LISA dimension!
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In order to simplify our analysis, we consider only th
real part of Eq.~1!. From Eq.~1! we have

Re~c!5 f 1~r ,z!cos~kez2vet !1 f 2~r ,z!sin~kez2vet !,
~69!

where

f 1~r ,z!5
c0

@11~z/ f !2#1/2
expS 2

r 2

W2D
3cosS tan21

z

f
2

kgr 2

2R
2d D , ~70!

f 2~r ,z!5
c0

@11~z/ f !2#1/2
expS 2

r 2

W2D
3sinS tan21

z

f
2

kgr 2

2R
2d D . ~71!

Equations~69!–~71! show that for a Gaussian beam with
small spreading angle, the deviation of the propagation
rection from thez axis in the region near the axis would b
very small, and for the high-frequency band, the functionsf 1
and f 2, Eqs.~70! and ~71!, will be slowly variational func-
tions in thez direction. In this case, the change of the Gau
ian beam in space-time mainly depends on the propaga
factors cos(kez2vet) and sin(kez2vet). In this sense it is just
characteristic of the plane wave. Therefore, for a GW pro
gating along they axis, because its propagation direction
perpendicular to thez axis, it would generate a phase sh
satisfying approximately Eq.~66! or Eq. ~68!. Notice that,
since in this case the propagation direction of the GW
parallel with the static magnetic fieldB̂y

(0) , whether from the
classical or the quantum theory of weak fields, the G
~gravitons! does not produce perturbative e.m. fields~photon
fluxes! in static magnetic fields@28,29#. Thus all the first-
order perturbations expressed as Eqs.~54!–~56! vanish.

It is interesting to compare the geometrical phase s
produced by the high-frequency relic GW ofng53
31010 Hz andA510230 in a Gaussian beam with the pha
shift generated by the expected astronomical GW ofng53
3103 Hz and A510222 in a plane monochromatic e.m
wave~see Table IV!. With the help of Eqs.~66!–~68!, we list
some typical parameters in Table IV.
10400
i-

-
on

-

s

ft

We can see from Table IV that scheme~a!has the typical
parameters of the expected astronomical GW’s@see the
analysis in Ref. @37# and Eqs. ~60!–~68!#, and L52.5
3104, Da52.4310218. This means that in this case a GW
of A510222 andng5103 Hz can be treated as an effectiv
magnitude of some 10218, but it needs an interaction dimen
sion of cislunar distance~i.e., the reflecting system of th
e.m. wave beam is placed on the surface of the moon!. For
scheme~d!, the phase shift may achieve the same order
magnitude as in scheme~a!, but it needs the interacting di
mension of LISA (;109 m), and it is necessary to constru
a very strong Gaussian beam with a small spreading ang
the microwave frequency band for LISA. This seems to
beyond the ability of presently conceived technology. Ne
ertheless, if the amplitude of the high-frequency relic G
(ng;1010 Hz) and the amplitude of the expected astronom
cal GW (ng;103 Hz) have the same order of magnitud
then the geometrical phase shiftDa produced by the former
will be seven orders of magnitude larger than that genera
by the latter.

V. CONCLUDING REMARKS

~1! For the relic GW’s predicted by quintessential infl
tionary models, since a large amount of the energy of
GW’s may be stored around the GHz band, using sma
e.m. systems~e.g., microwave cavities or the Gaussian be
discussed in this paper! for detection purposes seems pla
sible. In particular, the Gaussian beams can be considere
new possible candidates. For high-frequency relic GW’s w
typical order ofng51010 Hz, h510230 in the models, under
the condition of resonant response, the corresponding fi
order perturbative photon flux passing through the reg
1022 m would be expected to be 103 s21. This is the largest
perturbative photon flux we have recently analyzed and e
mated using typical laboratory parameters.

~2! In our e.m. system, the perturbative effects produc
by the 1 and 3 polarization states of the high-frequenc
relic GW have different physical behavior. In particula
since the first-order tangential perturbative photon flux p
duced by the3 polarization state of the relic GW is perpen
dicular to the background photon fluxes, it will be a uniq
nonvanishing photon flux passing through some spe
planes. Therefore any photon measured from such a ph
flux in the above special planes may be a signal of e
perturbation produced by the GW; this property may
8-14
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promising to further improve the e.m. response to the GW
~3! As for the geometrical phase shift produced by t

high-frequency relic GW, because of the excessive small
plitude of the relic GW, the phase shift is still below th
requirement for experimental observation. Thus the outlo
for such schemes may not be promising unless there
stronger high-frequency relic GW’s. But for the dimensio
of LISA ~of course, in this case it needs a very strong mic
wave beam!, it is possible to get an observable effect.

The relic GW’s are quite possibly the few windows fro
which we can look back at the early history of our Univers
while the high-frequency relic GW’s in the GHz band pr
dicted by quintessential inflationary models can possibly p
vide a new criterion to distinguish between the quintessen
inflationary and the ordinary inflationary models. As point
out by Ostriker and Sternhardt@5#, whatever the origin of
quintessence, its dynamism could solve the thorny prob
of fine-tuning our Universe. If we could display the signal
the high-frequency relic GW’s in the quintessential inflatio
ary models through the e.m. response or other mean
would not only provide incontrovertible evidence of the G
and quintessence, but also give us an extraordinary oppo
nity to look back at the early Universe. Therefore, if there
even a small chance that the signal of the high-freque
relic GW’s is detectable, then it is worth pursuing.
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APPENDIX A: THE CAVITY ELECTROMAGNETIC
RESPONSE TO GRAVITATIONAL WAVES

For the cavity electromagnetic response to GW’s, the b
detection state is the resonant response of the fundam
e.m. normal modes of the cavity to the GW’s, since in t
case it is possible to generate the maximal e.m. perturba
For resonant states~whether the background e.m. field stor
inside the cavity is only a static field or both the static ma
netic field and the normal modes!, the display condition at
the level of a quantum nondemolition measurement can
written as@10,11#

~hQ!2B2V

m0\ve
>1, ~A1!

whereQ is the quality factor of the cavity,V is its volume,
and B is the background static magnetic field. In order
satisfy the fundamental resonant condition, the estima
cavity dimensions should be comparable to the wavelen
of the GW. However, the dimensions cannot be too big. T
is because constructing a superconducting cavity with typ
dimension l>100 m may be unrealistic under the prese
experimental conditions. The low-frequency nature of
10400
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usual astronomical GW’s seems to greatly limit the pertur
tive effects in the cavity’s fundamental e.m. normal mod
For the high-frequency GW’s in the GHz band, the cor
sponding resonant condition can be relaxed, but the ca
size cannot be excessively small, even if the conditiol
>lg can be satisfied, since in this case the cavity can
store enough e.m. energy to generate an observable pe
bation. If GW’s detected by the cavity have excessively h
frequency, e.g.,ng5ne.109 Hz, we can see from Eq.~A1!
that the requirements for the other parameters will be a
challenge. For instance, if one hopes to detect a hi
frequency relic GW withh510230 andng5109 Hz in quint-
essential inflationary models, we needQ51012, B530 T
andV5100 m3 at least; then the corresponding signal acc
mulation time will be t'Q/ve'103 s. If h510230, ng
5108 Hz, we needQ51012, B530 T andV510 m3 ~i.e.,
the typical dimension of the cavity will bel;2.2 m) at least,
then t'Q/ve'104 s. Increasing the quality factorQ and
using squeezed quantum states may be a promising dire
@11#. For the former, the requirements on the other para
eters can be further relaxed; for the latter, the signal accu
lation time could be decreased. Therefore, for the fundam
tal resonant response, a suitable size of the cavity may b
the magnitude of a meter, the corresponding resonant
quency band should be 108 Hz,ng,109 Hz roughly @the
region ~4!-2 in Fig. 1#. In order to detect GW’s of 108 Hz
,ng,109 Hz, the thermal noise must bekT,hng which
corresponds toT<1023 K ~see Appendix D!.

Moreover, the resonant difference-frequency schem
suggested in Refs.@38,39# can be used as e.m. detectors f
high-frequency GW’s. The detector consists of two identi
high-frequency cavities~e.g., two coupled spherical cavitie
as discussed in the recent paper@39#!. When the GW fre-
quencyng equals the frequency differenceun12n2u of the
two cavity modes~i.e., ng5un12n2u, andn1 , n2@ng), then
the detector can get maximal e.m. energy transfer. Follow
@39# we learn that the sensitivity of the e.m. detector wou
be expected to bedh;10220210222 for GW’s in the 103

2104 Hz frequency band@the region~4!-1 in Fig. 1#. If this
e.m. detector is advanced, it might detect GW’s in the G
band. Reference@40# reported an e.m. detection scheme f
high-frequency GW’s by the interaction between a GW a
the polarization vector of an e.m. wave in repeated circuits
a closed loop. In this scheme, because of the linearly cu
lative effect of the rotation of the polarization vector of th
e.m. wave, the expected sensitivity can reach up todh
;10218210219 for GW’s of 1082109 Hz @the region~4!-2
in Fig. 1#. The above two schemes@39,40# are both sensitive
to the polarization of the incoming GW signal. Although th
sensitivity of the above e.m. detectors is still below the
quirements for an observable effect of the high-frequen
relic GW’s, advanced e.m. detector schemes would be pr
ising.

APPENDIX B: THE DIMENSIONLESS AMPLITUDE h
AND THE POWER SPECTRUM Sh OF THE

HIGH-FREQUENCY RELIC GRAVITATIONAL WAVES

The relation between the logarithmic energy spectr
VGW and the power spectrumSh of the relic GW given by
8-15
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Ref. @1# @see Eq.~A18! in Ref. @1## is

VGW~n,h0!5
4p2

3H0
2
ng

3Sh~n,h0!, ~B1!

whereH0 is the present value of the Hubble constant, i
H053.24310218 s21. From Eq.~B1!, one finds@1#

Sh~n,h0!'8310237VGW~n,h0!
~Hz!2

ng
3

. ~B2!

In the peak region of the logarithmic energy spectrum
the relic GW in the quintessential inflationary mode
VGW'531026 @1#. Thus, for the relic GW ofng5109 Hz,
we haveSh'4310269 s; for the relic GW ofng51010 Hz,
one findsSh'4310272 s.

For continuous GW’s, the dimensionless amplitudeh can
be estimated roughly as

h'~ShDng!1/2, ~B3!

whereDng is the corresponding bandwidth. According to t
estimation in Ref.@1# ~see Fig. 2 in Ref.@1# or Fig. 1 in this
paper!, the bandwidth in the high-frequency peak region
about Dng'1011–109 Hz'1011 Hz. Thus, from Eq.~B3!,
we have

h'10229–10230 ~ for the relic GW ofng5109 Hz!,

h'10230–10231 ~ for the relic GW ofng51010Hz!.
~B4!

The above results and orders of magnitude estimate
Ref. @1# are basically consistent. In this paper we have c
senh;10230. Of course, these estimations are only appro
mate average effects. In fact, because of the uncertaint
some relative cosmological parameters@1,2# in certain re-
gions, it is possible to cause small deviations to the ab
estimations.

APPENDIX C: MINIASTRODYNAMICAL SPACE TEST
OF RELATIVITY USING OPTICAL DEVICES

„MINI-ASTROD …

Mini-ASTROD is a new cooperative project~China, Ger-
many, etc.! @26#. The basic scheme of the mini-ASTROD
to use two-way laser interferometric ranging and laser pu
ranging between the mini-ASTROD spacecraft in the so
system and deep space laser stations on Earth to improv
precision of solar-system dynamics, solar-system consta
and ephemera, to measure relativistic gravity effects, to
the fundamental laws of space-time more precisely, to
prove the measurement of the time rate of change of
gravitational constant, and to detect low-frequency GW
(;1026–1023 Hz).

The follow-up scheme of the mini-ASTROD is ASTRO
@41#, i.e., the mini-ASTROD is a down-scaled version of t
ASTROD. Both LISA and mini-ASTROD are all space d
tection projects, but there are some differences in their st
objectives; the detection frequency band of the GW’s for
10400
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mini-ASTROD will be moved to 1026 Hz ~see Fig. 1!. With
optical methods, the mini-ASTROD should achieve the sa
sensitivity as LISA @26#. Thus, the mini-ASTROD@26#,
ASTROD @41#, and LISA have a certain complementarity.

APPENDIX D: NOISE PROBLEMS

The noise problems of e.m. detection systems have b
extensively discussed and reviewed@1,10,35,38,39#; here we
will give only a brief review of problems relevant to the e.m
detection of high-frequency GW’s~especially the e.m. re
sponse of a Gaussian beam!.

The thermal noise is one of the fundamental sources
limitation of the detection sensitivity@38,39#. Unlike in the
usual mechanical detectors, the frequencies of the e.m.
tems resonant with the high-frequency GW’s in the G
band are often much higher than those of the usual envi
ment noise~e.g., mechanical, seismic, and others!. Thus e.m.
detection systems are easier to shield from external e
noise~e.g., using Faraday cages! than are mechanical detec
tion systems from mechanical vibration. For the e.m.
sponse of microwave cavities to high-frequency GW’s, t
noise problem can be more conveniently treated by con
ering the relevant quantum character@35#. For a supercon-
ducting cavity at a temperatureT5T0, if the background
e.m. field is only a static magnetic or static electric field, t
display condition can be given by Eq.~A1!, while then the
cavity vacuum contains thermal photons with an ene
spectrum given by the Plank formula:

un~n!5
8pn2

c3

hn

exp~hn/KT0!21
, ~D1!

whereun and n are the energy density and the photon fr
quency, respectively, whilek is the Boltzmann constant. I
the cavity is cooled down toT051 mK, according to the
Wien law, the energy density has a maximum atnm55.87
3107 Hz ~i.e., lm'3 m; the corresponding photon densi
is about 1028 cm23). For the perturbative photons produce
by high-frequency GW’s ofng533109 Hz under resonan
conditions, we havene5ng ~i.e.,l50.1 m), which is higher
than nm ~i.e., ne'30nm). Therefore, the crucial paramete
for the thermal noise is the selected frequency and not
total background photon number; namely, in this case,
thermal noise can be effectively suppressed as long as
detector can select the right frequency.

For the e.m. response of a Gaussian beam in the h
frequency region ofne5ng5331010 Hz, because the fre
quencies of the usual environmental noise are much lo
thanne , it cannot have an essential influence on the per
bative photon flux; while for possible external e.m. noi
sources, using a Faraday cage would be very useful. O
the e.m. system~the Gaussian beam and the static magne
field! is isolated from the outside world by the Faraday ca
possible noise sources would be the remaining thermal p
tons and self-background action. However, because of
‘‘random motion’’ of the remaining thermal photons and th
specific distribution of the photon fluxes in the e.m. syst
~as we discussed earlier!, the influence of such noise on th
8-16
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highly ‘‘directional’’ propagated perturbative photon fluxe
would be effectively suppressed in the local regions. The
fore, the key parameters for the noise problems are the
lected perturbative photon fluxes~e.g.,nf and nf8 ) passing
through special planes~e.g., planesf5p/2 and 3p/2) and
not all the background photons. Moreover, low-temperat
D

r-

10400
-
e-

e

vacuum operation might effectively reduce the frequency
the remaining thermal photons and avoid dielectric dissi
tion. If the frequencynm of the remaining thermal photons i
much lower than that of the perturbative photon fluxes, i
nm!ne , then the above two kinds of photons will be mo
easily distinguished.
um

to

.m.
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