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General-covariant evolution formalism for numerical relativity
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A general-covariant extension of Einstein’s field equations is considered with a view to numerical relativity
applications. The basic variables are taken to be the metric tensor and an additional four-vectorZm . Einstein’s
solutions are recovered when the additional four-vector vanishes, so that the energy and momentum constraints
amount to the covariant algebraic conditionZm50. The extended field equations can be supplemented by
suitable coordinate conditions in order to provide symmetric hyperbolic evolution systems: this is actually the
case for either harmonic coordinates or normal coordinates with harmonic slicing.
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I. INTRODUCTION

General covariance is a key feature of general relativ
At a first look, Einstein’s field equations can be understo
as a set of ten second order partial differential equations
the ten unknown metric coefficientsgmn :

Rmn58pS Tmn2
1

2
TgmnD . ~1!

However, in general relativity, like in many other field the
ries, physical solutions are given by an equivalence clas
field values, related to one another by gauge transformati
General covariance means that the gauge group in Einst
theory is that of the general~smooth! coordinate transforma
tions

ym5 f m~xn!. ~2!

Accordingly, the field equations~1! do not ~even may not!
provide enough information to determine the values of
ten unknown coefficientsgmn . On the other hand, in numer
cal applications we must deal with specific metric comp
nents. It follows that a numerical evolution system must
clude a specification of the coordinates as an extra ingred
in order to determine the four kinematical degrees of fr
dom. Fixing four of the ten metric coefficients, we choo
one specific expression forgmn out of the equivalence clas
representing the same physical solution. A general covar
evolution system would be incomplete and conversely
complete evolution system cannot preserve general cov
ance.

To be more specific, we will carefully distinguish evolu
tion systems, associated with a particular gauge choice, f
evolution formalisms. The latter can be defined as a se
equations that apply to an equivalence class of solutio
prior to a complete gauge specification. Following this w
we will be able to draw a line between general-covari
formalisms, where the equivalence class is defined by
full group of coordinate transformations~2! and partially co-
variant formalisms, where the equivalence class is define
any restricted subset of coordinate transformations. T
0556-2821/2003/67~10!/104005~5!/$20.00 67 1040
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means also, for instance, that different evolution systems
be obtained from the same evolution formalism, as we w
see in the following paragraphs.

A. General covariant formalisms

A good example of a general-covariant formalism is p
vided by recent numerical relativity works@1,2# based upon
a well known classical approach. The evolution formalism
given by the original field equations~1!, although the Donder
@3,4# expression of the Ricci tensor is used to write down
principal part, namely,

2hgmn1]mGn1]nGm5•••, ~3!

where the box symbol stands for the d’Alembert operator
functions and we have notedGm[grsGm

rs as usual. Genera
covariance is not lost in passing from Eqs.~1!–~3!, because
we only reordered the partial derivatives in the Ricci tens

It is obvious from a comparison between Eq.~3! and the
wave equation forgmn that we can obtain a symmetric hy
perbolic system imposing the well known harmonic coor
nate conditions@3,4#:

hxm52Gm50. ~4!

Although the first proofs of well posedness of the resulti
evolution system were well known@5,6#, the corresponding
proof for the initial-boundary problem, which is highly re
evant for numerical relativity applications, has been giv
recently@1,7,8#. Different evolution systems can be obtaine
from the general-covariant formalism~3! by modifying the
harmonic coordinate conditions~4! @9,10#. One can even add
arbitrary ‘‘gauge source’’ terms to the right-hand side of E
~4! to obtain a wide class of generalized harmonic evolut
systems@11#.

A different evolution formalism can be obtained by usin
the well known 311 decomposition@12,13#, where one con-
siders the space-time sliced byt5const hypersurfaces. Th
line element can be written as

ds252a2dt21g i j ~dxi1b idt!~dxj1b jdt!, ~5!
©2003 The American Physical Society05-1
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where the lapsea and the shiftb i represent the kinematica
degrees of freedom. The field equations~1! can then be
translated in terms of the three-dimensional geometry of
slices, namely,

~] t2Lb!g i j 522aKi j , ~6!

~] t2Lb!Ki j 52“ ia j1a@ (3)Ri j 22Ki j
2 1trK Ki j #, ~7!

(3)R2tr~K2!1~ trK !250, ~8!

“k~Kk
i2dk

i trK !50, ~9!

where we have restricted ourselves to the vacuum case
simplicity.

Let us notice that the coordinate gauge freedom is
limited in any way by translating the four-dimensional~4D!
field equations~1! into the 311 version~6!–~9!. The lapsea
and the shiftb i can take arbitrary values, so that the fo
gauge degrees of freedom are still at our disposal. Altho
general covariance is not manifest in the 311 equations
~6!–~9!, their solution space is still invariant under gene
coordinate transformations~2!, because it is equivalent to th
corresponding solution space of the 4D equations~1!. Con-
versely, in the 311 version~6!–~9!, it is manifestly clear
that one can evolve the dynamical degrees of freed
g i j (t,x

k) from any consistent set of initial dat
$g i j (0,xk),Ki j (0,xk)% using the evolution equations~6! and
~7!. The remaining ones~8!, ~9! can be interpreted as con
straints. This diversity in the evolution properties of both s
of equations is not obvious in the 4D version. To summari
both the 4D equations~1! and the 311 equations provide
equivalent general-covariant formalisms, although gen
covariance is apparent only in the 4D version, whereas
evolution properties are manifest only in the 311 version
~6!–~9!.

B. Extending solution space: taking constraints out

The 311 formalism ~6!–~9! is especially suited for nu
merical relativity applications. In this context, one usua
takes advantage of the fact that the energy and momen
constraints~8!, ~9! are first integrals of Eqs.~6!, ~7!. This
allows us to enforce the constraints~8!, ~9! on the initial and
boundary data only, or even to use them to monitor the
curacy of the time evolution. But the constraints are not
forced by the time evolution algorithm for interior point
which in its simplest form is based only on Eqs.~6!, ~7! ~free
evolution approach@14,15#!. This ‘‘unconstrained’’ evolution
formalism, although perfectly consistent@16,17#, does intro-
duce a strong discrimination between the two sets of eq
tions ~6!, ~7! and ~8!, ~9! that breaks the general covarian
of the 311 formalism.

To verify this, let us notice first that by replacing the fu
311 formalism~6!–~9! by the subset~6!, ~7!, we are actu-
ally extending the solution space so as to include constra
violating pairs$g i j ,Ki j %. Now, as the restricted set of equ
tions~6!, ~7! corresponds to the space components of Eq.~1!,
the extended space of solutions will be invariant only un
the restricted subset of coordinate transformations~2! that
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preserve the time slicing, namely,

t85h~ t !, ~10!

yi5 f i~xj ,t !.

This confirms that general covariance is broken in the unc
strained evolution formalisms.

Let us remark that the extension of the solution space
Eqs.~6!–~9! is a rule, not an exception, among the new fo
malisms arising after the seminal 1983 work of Choqu
Bruhat and Ruggeri@18#, which opened the door to the us
of arbitrary shift choices in hyperbolic evolution system
The bottom line is that the constraints~8!, ~9! contained in
the original 311 evolution formalism are at odds with hy
perbolicity to the intent that some extension is needed
order to modify the mathematical structure of the formalis
without losing the physical solutions. The easiest way
doing this is just taking the constraints~8!, ~9! out of the
system. This is the basic ingredient, although this cruc
point can be masked by other manipulations on the evolu
equations, such as taking an extra time derivative@18,19#, or
an extra space derivative@20#, or using the constraints to
modify the evolution equations~6!, ~7! @21–26#. The result-
ing formalisms, when supplemented with suitable coordin
conditions, provide hyperbolic evolution systems that can
used in numerical relativity applications. From our point
view, these formalisms can also be interpreted as provid
many nonequivalent ways of extending the solution space
Eqs.~6!–~9! with at least two related common features: co
straint equations~8!, ~9! are left out of the final evolution
formalism and general covariance is broken as a result, e
before a specific coordinate system is selected.

C. Extending solution space: extra dynamical fields

A completely different way of extending the solutio
space is to introduce extra dynamical fields, independen
the metric and its derivatives, into the evolution formalis
This alternative has been independently used by many
merical relativity groups in different ways@27–30#. The key
idea in these works was to introduce three supplemen
dynamical fields whose evolution equations were obtain
by using the momentum constraint~9!. As far as these works
were focused on numerical relativity applications@31–33#,
the supplementary quantities were introduced in anad hoc
way, breaking even the 311 covariance~10! of the formal-
ism. Only very recently@34# the same idea has been impl
mented in a way which is at least invariant under the
stricted subset of coordinate trasformations~10!: the extra
quantities are given by a three-dimensional ‘‘zero’’ vectorZi
which vanishes for Einstein’s solutions. During numeric
evolution, however, nonzero values ofZi arise due to trun-
cation errors and the resulting numerical codes actually d
with an extended set of solutions.

Even with this improvement, general covariance is s
broken for two different reasons. First of all, although t
momentum constraint~9! has been incorporated into the fo
malism as the right-hand side of the time evolution equat
for Zi , the energy constraint~8! is still taken out of the time
5-2
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evolution algorithm. It is obvious that the extension of so
tion space to ‘‘energy constraint violating’’ modes cannot
invariant under the general coordinate transformations~2!.
This reason alone could be easily overcome by procee
along the lines sketched in@36#, where every constraint is
incorporated into the system by adding an extra ‘‘Lagrang
multiplier’’ quantity: every extra quantity could then b
coupled with the previous ones in many different ways
that many more new arbitrary parameters will appear in
resulting evolution formalism. But this would just reinforc
the second cause of general-covariance breaking: the lac
covariance of the final set of extra quantities. If one wants
extend solution space by adding extra fields without break
general covariance, then this set of extra fields should
equivalent to some set of well defined space-time quantit
independent of the time slicing considered.

II. GENERAL COVARIANT EXTENDED EVOLUTION
FORMALISMS

A. The extended field equations

We propose to extend the field equations~1! in a general
covariant way by introducing an extra four-vectorZm , so
that the set of basic fields will consist of the pair$gmn ,Zm%.
The original field equations~1! will then be replaced by

Rmn1“mZn1“nZm58pS Tmn2
1

2
TgmnD . ~11!

The solutions of the Einstein’s solutions can be easily rec
nized among the extended set as those satisfying cond
@35#

Zm50, ~12!

so that the four-vectorZm will provide a simple way to moni-
tor the quality of numerical simulations or any other kind
approximation scheme. Notice that Eqs.~11! are of mixed
order: second order in the metric componentsgmn , but only
first order in the extra vector fieldZm . This means, in par-
ticular, that terms containing first derivatives ofZm belong to
the principal part and that they are then relevant to the ca
structure of the resulting evolution systems, as we will s
later.

In order to fully understand the evolution properties of t
extended equations, let us translate the manifestly cova
form ~11! into the 311 language~5!. The covariant four-
vector Zm will then be decomposed into its space comp
nentsZi and the normal component

Q[nmZm5aZ0, ~13!

wherenm is the unit normal to thet5const slices. The 4D
equations~11! can then be written in the equivalent form

~] t2Lb!g i j 522aKi j , ~14!

~] t2Lb!Ki j 52“ ia j1a@ (3)Ri j 1“ iZj

1“ jZi22Ki j
2 1~ trK22Q!Ki j #, ~15!
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~] t2Lb!Q5
a

2
@ (3)R1~ trK22Q!trK

2tr~K2!12“kZ
k22~ak /a!Zk#, ~16!

~] t2Lb!Zi5a@“k~Ki
k2d i

ktrK !1] iQ2~a i /a!Q22Ki
kZk#,

~17!

wherea i stands for] ia and we have restricted ourselves
the vacuum case again.

The evolution properties of the formalism are transpar
in the 311 version~14!–~17!. Only evolution equations ap
pear there, without constraints. One cannot omit any of
equations from~14!–~17! because all them are needed
evolve the extended set of ten dynamical fields$g i j ,Q,Zi%.
This means that general covariance will not be broken
numerical relativity applications because all the Eqs.~14!–
~17! must be used on equal footing in the main algorith
evolving the dynamical fields in time: there is no room le
for equation discrimination.

B. Recovering Einstein’s solutions

The algebraic condition~12! is useful to checka poste-
riori whether a given solution of the extended system~11! is
actually a solution of the Einstein’s field equations~1!. But it
is interesting as well to knowa priori the necessary and
sufficient condition for a given set of initial data to genera
a physical solution. In this sense, one can take the diverge
of the extended equations~11! to get, allowing for the con-
tracted Bianchi identities,

hZm1RmnZn50. ~18!

This homogeneous second order equation inZm ensures that
any deviation from the original Einstein equations~1! propa-
gates through light cones and also that a sufficient se
conditions for the initial data to provide physical solutions
given by

Zm~0,xi !50, ] tZm~0,xi !50, ~19!

where the second equation, allowing for Eqs.~16!, ~17!, rep-
resents imposing energy and momentum constraints~8!, ~9!
on the initial data.

This means that the algebraic constraint~12! by itself is
not a first integral of the extended system~11!. Equations~8!,
~9! appear here as auxiliary conditions so that the full set~8!,
~9!, ~12! is preserved by time evolution. From the practic
point of view, this means that one can take any set of c
sistent initial data of Einstein’s equations~1! and use it with
a zero initial value ofZm to get an initial data set for the
extended equations~11! that will generate precisely the sam
solution. The general-covariant gauge-independent equa
~18! can be then interpreted as a useful tool to understand
propagation of the initial constraints~19!.
5-3
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III. COORDINATE CONDITIONS AND SYMMETRIC
HYPERBOLIC EVOLUTION SYSTEMS

As stated in the Introduction, the evolution system is n
complete until one provides coordinate conditions to fix
four kinematical degrees of freedom. We will consider he
two different coordinate conditions leading to a symmet
hyperbolic evolution system. We will start in both cases fro
one of the two equivalent versions of the extended gene
covariant formalism~11!.

A. A 4D evolution system in harmonic coordinates

Let us use the Donder@3,4# expression of the Ricci tenso
to write down the principal part of Eq.~11!, namely,

2hgmn1]m~Gn12Zn!1]n~Gm12Zm!5••• . ~20!

It is obvious from a comparison with the wave equation
gmn that we can obtain a symmetric hyperbolic system

hgmn5••• , ~21!

provided that we kill the additional terms in Eq.~20! using
the following extension of the well known harmonic coord
nate conditions:

hxm52Gm52Zm. ~22!

The four-vectorZm can be interpreted in this context as a s
of ‘‘gauge source,’’ along the lines sketched in Ref.@11#.

Notice that, in contrast with the classical approach,
compatibility between the reduced system~21! and the coor-
dinate conditions~22! is not an issue in the present conte
because there are now 14 independent components o
fields$gmn ,Zm% to be determined by the 14 Eqs.~21!, ~22!. A
straightforward analysis in the 311 framework shows tha
this is actually the case: the lapse and shift evolution is p
vided by Eq.~22! and the evolution of the remaining te
degrees of freedom, including the four-vectorZm , is given
by Eq.~21!. Notice also that Eq.~22! actually coincides with
the classical harmonic coordinate condition~4! for physical
solutions, whereZm vanishes. This is why we talk abou
‘‘harmonic coordinates’’ to refer also to condition~22! in the
present context.

B. A 3¿1 evolution system with harmonic slicing

Harmonic coordinates are not flexible enough to be u
in most numerical relativity applications. A more suitab
choice is the ‘‘harmonic slicing,’’ in which the time coord
nate is again assumed to be a harmonic function, but
space coordinates are chosen so that the mixed compo
g0i vanish~normal coordinates!. We propose here to keep i
the extended case the time component of Eq.~22!, that is,

g0i50, hx052G052Z0, ~23!

which can be translated into the 311 language as

b i50, ] tln a52a~ trK22Q!. ~24!
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The principal part of Eqs.~15!–~17! can be written as

] tKi j 1]k@alk
i j #5••• , ~25!

] tZi1]k@a~dk
i~ trK2Q!2Kk

i !#5••• , ~26!

] tQ1]k@a~Dk2Ek2Zk!#5••• , ~27!

where we have noted

Ak[]k~ ln a!, Dki j[
1

2
]kg i j , ~28!

lk
i j 5Dk

i j 1
dk

i

2
~Aj1D j22Ej22Zj !, ~29!

1
dk

j

2
~Ai1Di22Ei22Zi !, ~30!

andDk5g i j Dki j , Ek5g i j Di jk .
One can get a fully first order system in the usual way,

considering bothAk and Dki j as independent additiona
quantities. Their evolution equations can be then easily
tained by differentiating Eqs.~14! and ~24!: namely,

] tAk1]k@a~ trK22Q!#50, ~31!

] tDki j1]k@aKi j #50. ~32!

The full set of basic independent quantities is then given
$a,g i j ,Ki j ,Q,Zi ,Ak ,Dki j% and the nontrivial principal par
of the corresponding evolution systems is given by E
~25!–~27!, ~31!,~32!.

The causal structure of the first order system~24!–~32! is
simpler than expected: one can easily check from either E
~20!, ~23! or ~24!–~32! that

] t~G i12Zi !5] t~2Ei2Di2Ai12Zi !5••• , ~33!

@the quantitiesG i here are just the space components of
quantitiesGm in Eq. ~20!# so that one readily identifies thre
eigenfields propagating along the normal lines. The
‘‘standing modes’’ are the only deviation of our system wi
respect to the wave equation pattern: all the remaining n
trivial eigenfields propagate along light cones. If we selec
specific space direction, along a given unit vectoruk , then
these light cone eigenfields are

Ki j 6ukl
k
i j , ~ trK22Q!6ukA

k. ~34!

A straightforward calculation shows then that the first ord
system ~24!–~27! is symmetric hyperbolic. The ‘‘symme
trizer’’ can be easily identified starting from quadrat
positive-definite ‘‘energy’’ functions which are conserved u
to lower order terms. One such ‘‘energy estimate’’ is pr
vided by
5-4
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E5Ki j Ki j 1lki jlki j1~ trK22Q!21AkAk

1~Gk12Zk!~Gk12Zk!. ~35!

We are currently working with finite difference algorithm
that can take advantage of the symmetric hyperbolicity of
system ~24!–~32! to increase the robustness of numeric
simulations. Our preliminary results indicate that expli
‘‘energy’’ expressions of the form~35! can be very useful to
devise stable boundary conditions, along the lines sketc
in Refs.@8,37#.
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