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General-covariant evolution formalism for numerical relativity
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A general-covariant extension of Einstein’s field equations is considered with a view to numerical relativity
applications. The basic variables are taken to be the metric tensor and an additional fouzyedamstein's
solutions are recovered when the additional four-vector vanishes, so that the energy and momentum constraints
amount to the covariant algebraic conditi@n=0. The extended field equations can be supplemented by
suitable coordinate conditions in order to provide symmetric hyperbolic evolution systems: this is actually the
case for either harmonic coordinates or normal coordinates with harmonic slicing.
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[. INTRODUCTION means also, for instance, that different evolution systems can
be obtained from the same evolution formalism, as we will
General covariance is a key feature of general relativitysee in the following paragraphs.
At a first look, Einstein’s field equations can be understood
as a set of ten second order partial differential equations on A. General covariant formalisms

the ten unknown metric coefficientg,, : ) o
A good example of a general-covariant formalism is pro-

1 vided by recent numerical relativity work&,2] based upon
Tu— ETQ,W)- (1) awell known classical approach. The evolution formalism is
given by the original field equatior{4), although the Donder
[3,4] expression of the Ricci tensor is used to write down the
cﬁrincipal part, namely,

R,,=8m

v

However, in general relativity, like in many other field theo-
ries, physical solutions are given by an equivalence class
field values, re_lated to one another by gauge trans_forr_natio_ns. ~0g,,+d,T,+d,T,=- -, 3)
General covariance means that the gauge group in Einstein’s

theory is that of the generé@mooth coordinate transforma-

tions where the box symbol stands for the d’Alembert operator on

functions and we have notdd'=g°“I'#,; as usual. General
covariance is not lost in passing from E@$)—(3), because
@ we onl i ivati i icci
y reordered the partial derivatives in the Ricci tensor.

: . : It is obvious from a comparison between E8) and the
Accordingly, the field equationel) do not (even may nat wave equation fog,,, that we can obtain a symmetric hy-

provide enough information to determine the values of the erbolic svstem imaosing the well known harmonic coordi-
ten unknown coefficientg,,, . On the other hand, in numeri- ﬁate cond)i(tion$3 4]_p 9
cal applications we must deal with specific metric compo- rE
nents. It follows that a numerical evolution system must in-
clude a specification of the coordinates as an extra ingredient
in order to determine the four kinematical degrees of free-
dom. Fixing four of the ten metric coefficients, we chooseAlthough the first proofs of well posedness of the resulting
one specific expression fa,,, out of the equivalence class evolution system were well knowf$,6], the corresponding
representing the same physical solution. A general covariadroof for the initial-boundary problem, which is highly rel-
evolution system would be incomplete and conversely, &vant for numerical relativity applications, has been given
complete evolution system cannot preserve general covariecently[1,7,8]. Different evolution systems can be obtained
ance. from the general-covariant formalisf8) by modifying the

To be more specific, we will carefully distinguish evolu- harmonic coordinate conditiortd) [9,10]. One can even add
tion systems, associated with a particular gauge choice, fror@rbitrary “gauge source” terms to the right-hand side of Eq.
evolution formalisms. The latter can be defined as a set of4) to obtain a wide class of generalized harmonic evolution
equations that apply to an equivalence class of solutionssystemg11].
prior to a complete gauge specification. Following this way, A different evolution formalism can be obtained by using
we will be able to draw a line between general-covarianthe well known 3+1 decompositioi12,13, where one con-
formalisms, where the equivalence class is defined by thgiders the space-time sliced by const hypersurfaces. The
full group of coordinate transformatiorig) and partially co- line element can be written as
variant formalisms, where the equivalence class is defined by
any restricted subset of coordinate transformations. This ds?= — a?dt?+ y;;(dX + g'dt)(dx! + gldt), (5)

yH= ().

Ox“=—T#=0. (4
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where the lapser and the shift8' represent the kinematical preserve the time slicing, namely,

degrees of freedom. The field equatiofly can then be

translated in terms of the three-dimensional geometry of the t'=h(t), (10
slices, namely,

y'=f(xt).
(3t_£g)')’ij:_2aKij ) (6) ) ) ) ) )
This confirms that general covariance is broken in the uncon-
(0= LpKij=—V,a;+ a[(3)Rij - 2Ki2j +UK K;il, (7) strained evolution formalisms.

Let us remark that the extension of the solution space of

GCIR—tr(K?) + (trK)?=0, (8) Egs.(6)—(9) is a rule, not an exception, among the new for-

malisms arising after the seminal 1983 work of Choquet-

V(KX — 8 trK)=0, 9) Bruhat and Ruggelfi18], which opened the door to the use

of arbitrary shift choices in hyperbolic evolution systems.

where we have restricted ourselves to the vacuum case fdte bottom line is that the constrain®), (9) contained in
simplicity. the original 3+1 evolution formalism are at odds with hy-

Let us notice that the coordinate gauge freedom is noperbolicity to the intent that some extension is needed in
limited in any way by translating the four-dimensiotdD)  order to modify the mathematical structure of the formalism
field equationgl) into the 3+ 1 version(6)—(9). The lapsex ~ without losing the physical solutions. The easiest way of
and the shiftg' can take arbitrary values, so that the four doing this is just taking the constrain(8), (9) out of the
gauge degrees of freedom are still at our disposal. Althougbystem. This is the basic ingredient, although this crucial
general covariance is not manifest in the-B equations point can be masked by other manipulations on the evolution
(6)—(9), their solution space is still invariant under generalequations, such as taking an extra time derivath&19, or
coordinate transformatior(®), because it is equivalent to the an extra space derivatii@0], or using the constraints to
corresponding solution space of the 4D equatiti)s Con-  modify the evolution equation®), (7) [21-26. The result-
versely, in the 3-1 version(6)—(9), it is manifestly clear ing formalisms, when supplemented with suitable coordinate
that one can evolve the dynamical degrees of freedonconditions, provide hyperbolic evolution systems that can be
yij(t,xk) from any consistent set of initial data used in numerical relativity applications. From our point of
{yij(o,x"),Kij(O,xk)} using the evolution equation®) and  view, these formalisms can also be interpreted as providing
(7). The remaining oneg8), (9) can be interpreted as con- many nonequivalent ways of extending the solution space of
straints. This diversity in the evolution properties of both setsEgs. (6)—(9) with at least two related common features: con-
of equations is not obvious in the 4D version. To summarizestraint equationg8), (9) are left out of the final evolution
both the 4D equation§l) and the 3-1 equations provide formalism and general covariance is broken as a result, even
equivalent general-covariant formalisms, although generdbefore a specific coordinate system is selected.
covariance is apparent only in the 4D version, whereas the
evolution properties are manifest only in the-3 version C. Extending solution space: extra dynamical fields

(6)—(9).

A completely different way of extending the solution
space is to introduce extra dynamical fields, independent of
the metric and its derivatives, into the evolution formalism.

The 3+ 1 formalism(6)—(9) is especially suited for nu- This alternative has been independently used by many nu-
merical relativity applications. In this context, one usually merical relativity groups in different way27-30. The key
takes advantage of the fact that the energy and momentuidea in these works was to introduce three supplementary
constraints(8), (9) are first integrals of Eq96), (7). This  dynamical fields whose evolution equations were obtained
allows us to enforce the constrairi®, (9) on the initial and by using the momentum constrai®. As far as these works
boundary data only, or even to use them to monitor the acwere focused on numerical relativity applicatiof&l—33,
curacy of the time evolution. But the constraints are not enthe supplementary quantities were introduced inadnhoc
forced by the time evolution algorithm for interior points, way, breaking even the-81 covariancg10) of the formal-
which in its simplest form is based only on E@8), (7) (free  ism. Only very recently34] the same idea has been imple-
evolution approachl4,15). This “unconstrained” evolution mented in a way which is at least invariant under the re-
formalism, although perfectly consistdrit6,17], does intro-  stricted subset of coordinate trasformatiqi$): the extra
duce a strong discrimination between the two sets of equaguantities are given by a three-dimensional “zero” veor
tions (6), (7) and(8), (9) that breaks the general covariance which vanishes for Einstein’s solutions. During numerical
of the 3+ 1 formalism. evolution, however, nonzero values of arise due to trun-

To verify this, let us notice first that by replacing the full cation errors and the resulting numerical codes actually deal
3+ 1 formalism(6)—(9) by the subset6), (7), we are actu- with an extended set of solutions.
ally extending the solution space so as to include constraint- Even with this improvement, general covariance is still
violating pairs{y;; ,Kj;}. Now, as the restricted set of equa- broken for two different reasons. First of all, although the
tions(6), (7) corresponds to the space components of(Eg. momentum constrain®) has been incorporated into the for-
the extended space of solutions will be invariant only undemalism as the right-hand side of the time evolution equation
the restricted subset of coordinate transformati@)sthat  for Z;, the energy constrairn8) is still taken out of the time

B. Extending solution space: taking constraints out
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evolution algorithm. It is obvious that the extension of solu-

o
tion space to “energy constraint violating” modes cannot be (ﬁt—ﬁﬁ)®=§[(3)R+(trK— 20)trK
invariant under the general coordinate transformati@s
This reason alone could be easily overcome by proceeding —tr(K?) + 2V, Z"=2(ay /2)Z¥], (16)

along the lines sketched ir86], where every constraint is
incorporated into the system by adding an extra “Lagrangian

multiplier” quantity: every extra quantity could then be (d—Lp)Zi=a[V(K{—8trK)+ 3,0 — (a;/a)® —2K{Z,],
coupled with the previous ones in many different ways so (17
that many more new arbitrary parameters will appear in the
resulting evolution formalism. But this would just reinforce
the second cause of general-covariance breaking: the lack
covariance of the final set of extra quantities. If one wants to
extend solution space by adding extra fields without breakin%
general covariance, then this set of extra fields should b
equivalent to some set of well defined space-time quantitie
independent of the time slicing considered.

ereq; stands forg;a and we have restricted ourselves to
e vacuum case again.
The evolution properties of the formalism are transparent
the 3+ 1 version(14)—(17). Only evolution equations ap-
ear there, without constraints. One cannot omit any of the
equations from(14)—(17) because all them are needed to
evolve the extended set of ten dynamical fielgg ,0,Z;}.
This means that general covariance will not be broken in
Il. GENERAL COVARIANT EXTENDED EVOLUTION numerical relativity applications because all the Edgl)—
FORMALISMS (17) must be used on equal footing in the main algorithm
A. The extended field equations evolving the dynamical fields in time: there is no room left

, . . for equation discrimination.
We propose to extend the field equatidfisin a general a

covariant way by introducing an extra four-vectdy,, so
that the set of basic fields will consist of the p@dr,,.Z,}. B. Recovering Einstein’s solutions

The original field equationél) will then be replaced by The algebraic conditiori12) is useful to checla poste-

riori whether a given solution of the extended systad) is
. (11 actually a solution of the Einstein’s field equatigqi$. But it
is interesting as well to knova priori the necessary and
sufficient condition for a given set of initial data to generate
physical solution. In this sense, one can take the divergence
the extended equatior{dl) to get, allowing for the con-
tracted Bianchi identities,

1
Ryt V,Z,+V,Z,= 877( o= 5T

The solutions of the Einstein’s solutions can be easily recog
nized among the extended set as those satisfying conditiozﬁf
[35] 0

2,=0, (12 0z,+R,,Z"=0. (18)

so that the four-vectaz,, will provide a simple way to moni-

tor the quality of numerical simulations or any other kind of Thjs homogeneous second order equatiod jrensures that
approximation scheme. Notice that Eq$1) are of mixed  any deviation from the original Einstein equatiai propa-
order: second order in the metric componeg)fs, but only  gates through light cones and also that a sufficient set of

first order in the extra vector field, . This means, in par-  conditions for the initial data to provide physical solutions is
ticular, that terms containing first derivativesf belongto  given by

the principal part and that they are then relevant to the causal

structure of the resulting evolution systems, as we will see _ _

|ater. ZM(O,XI):O, &tZM(O,XI):O, (19)
In order to fully understand the evolution properties of the

extended equations, let us translate the manifestly covariant . .
form (11) into the 3+1 language(5). The covariant four- where the second equation, allowing for EG5), (17), rep-

vector Z,, will then be decomposed into its space compo-resentS imposing energy and momentum constr&)is(9)

nentsZ; and the normal component on th? initial data. . . .
: This means that the algebraic constraih®) by itself is

O=n ZF=aZ° (13) not a first integral of the extended systéi). Equationg8),
# ’ (9) appear here as auxiliary conditions so that the full8gt
wheren,, is the unit normal to the=const slices. The 4D (9), (12) is preserved by time evolution. From the practical

equationg(11) can then be written in the equivalent form  point of view, this means that one can take any set of con-
sistent initial data of Einstein’s equatiofiy and use it with

(0= Lp)yij= —2aKj;, (14 a zero initial value ofZ, to get an initial data set for the
extended equationd1) that will generate precisely the same
(0= LpK;j= —Viaj+a[(3)Rij +V,iZ, solution. The general-covariant gauge-independent equation

5 (18) can be then interpreted as a useful tool to understand the
+V,Z = 2Kjj+(rK=20)K;;], (15  propagation of the initial constraint49).
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I1l. COORDINATE CONDITIONS AND SYMMETRIC The principal part of Eqs15)—(17) can be written as
HYPERBOLIC EVOLUTION SYSTEMS
. . . . k 1—
As stated in the Introduction, the evolution system is not oKij+ ol anS]=---, (25
complete until one provides coordinate conditions to fix the
four kinematical degrees of freedom. We will consider here OZi+ o a((trK—0)—KK)]=-- -, (26)

two different coordinate conditions leading to a symmetric
hyperbolic evolution system. We will start in both cases from
one of the two equivalent versions of the extended general-
covariant formalism(11).

30+, a(D¥—EK=Z]=" .., (27
where we have noted

A. A 4D evolution system in harmonic coordinates

1
Let us use the Dondé¢B,4] expression of the Ricci tensor A=d(Ina), Dyj= 5 Vi » (28)
to write down the principal part of Eq11), namely,
—0g,,+,T,+2Z,)+d (T ,+2Z,)=---. (20 &
™ O SR xki,-=Dkij+7'(Aj+Dj—2Ej—2zj), (29
It is obvious from a comparison with the wave equation for
9., that we can obtain a symmetric hyperbolic system

5ki
Dg,uvz"' ’ (21) +7(Ai+Di_2Ei_22i)r (30)

provided that we Kill the additional terms in EQO) using  gnq Dv=¥'Dyii, Ex=7'Di .
the following extension of the well known harmonic coordi-  one can gel'é a fully first order system in the usual way, by
hate conditions: considering bothA, and Dy;; as independent additional
Clxhe —TH—7H 22) quantities. Thelr e_vo_Iutlon equations cap be then easily ob-
tained by differentiating Eqg€14) and (24): namely,

The four-vectoiZ,, can be interpreted in this context as a sort

of “gauge source,” along the lines sketched in Rgfi]. Pt a(trK—20)]=0, (32)
Notice that, in contrast with the classical approach, the
compatibility between the reduced systé2d) and the coor- Dyij+ [ aK;;]=0. (32)

dinate conditiong22) is not an issue in the present context

because there are now 14 independent components of thihe full set of basic independent quantities is then given by
fields{g,,.Z,} to be determined by the 14 Ed21), (22). A {a, v .Kij ,0,Z; ,A,Dy;;} and the nontrivial principal part
straightforward analysis in the431 framework shows that of the corresponding evolution systems is given by Egs.
this is actually the case: the lapse and shift evolution is pro¢25)—(27), (31),(32).

vided by Eq.(22) and the evolution of the remaining ten  The causal structure of the first order syst@#)—(32) is
degrees of freedom, including the four-veciy, is given  simpler than expected: one can easily check from either Egs.
by Eq.(21). Notice also that Eq(22) actually coincides with  (20), (23) or (24)—(32) that

the classical harmonic coordinate conditi@h for physical

solution;, where'Z# vanishes. This is why we tal!< about 0(Ti+2Z))=0,(2E;—D;—A;+2Z)=---, (33
“harmonic coordinates” to refer also to conditid@?) in the
present context. [the quantitied”; here are just the space components of the
quantitiesI’, in Eq. (20)] so that one readily identifies three
B. A 3+1 evolution system with harmonic slicing eigenfields propagating along the normal lines. These

astanding modes” are the only deviation of our system with
fespect to the wave equation pattern: all the remaining non-
trivial eigenfields propagate along light cones. If we select a

Harmonic coordinates are not flexible enough to be use
in most numerical relativity applications. A more suitable
choice is the “harmonic slicing,” in which the time coordi- . A ) .
nate is again assumed to be a harmonic function, but th peC|f|9 space d|r('act|or_1, along a given unit veaier then
space coordinates are chosen so that the mixed compone 1§se light cone eigenfields are
doi vanish(normal coordinates We propose here to keep in

the extended case the time component of @8), that is, Kijzuk;,  (rK—-20)*uAk (34)
0 0 0 A straightforward calculation shows then that the first order
90i=0, [OxX"=-1"=2Z" (23 system (24)—(27) is symmetric hyperbolic. The “symme-

trizer” can be easily identified starting from quadratic
positive-definite “energy” functions which are conserved up
_ to lower order terms. One such “energy estimate” is pro-
B'=0, dlIna=—a(trKk—20). (24)  vided by

which can be translated into thet3 language as
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