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We present methods to compute maps of cosmic microwave background fluctuations from high resolution
cosmic string networks using a full Boltzmann code, on both large and small angular scales. The accuracy and
efficiency of these methods are discussed.
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[. INTRODUCTION Green’'s function techniques, without which the problem
would not be tractable computationally. However, we com-
The potential role of cosmic strings and other topologicalplete this introduction by discussing previous work on cos-
defects in cosmology has been the subject of considerabl@ic defects and the CMB, pointing out its relationship to this
interest for well over two decadéfor a review see Refl)). paper.
Perhaps the most exciting prospect would be the detection of Some of the earliest work featured analytic results ob-
their distinct observational signatures in the cosmic microfained for simple string configuratiori§—10. Such exact
wave sky. Cosmic strings, for example, are expected to cresolutions are important for testing computatl_onal mgthods.
ate linelike discontinuities in the cosmic microwave back-However, although these analytic results are interesting, nu-
ground (CMB) temperature pattern, whereas other defect@er'cal s_lm_ulathns are essential to obtain accurate quantita-
such as global monopoles or textures create “hot spots.t've predlctlons_m more gef‘era'. contexts. '_I'he main d_raw-
Their discovery would provide unprecedented informationbale O.f numerical r_esults N th|s_ context Is the|r limited
T . . _dynamic range, restricted by the light-crossing times of cos-
about the nature of unification in the early universe, while

. L mic defect simulations. All-skylarge angl¢ CMB maps can
their apsence from the CMB would significantly strengthenbe generated and have been used to obtain the normalization
constraints on a wide range of models.

Ce of the power spectrum to the Cosmic Background Explorer
~ Tomany, the publication of the BOOMERanG resill§  (coBp), but their angular resolution has been poor. On the
in particular, signaled the der_nlse of topologK_:aI defects inyiher hand, small angle maps permit the very important char-
cosmology. Indeed, the detection of an acoustic peak aroungkterization of non-Gaussian signals due to defects. Given
€=200 was seen as evidence that primordial adiabatic pethe prospect of high resolution all-sky observations from the
turbations were the seeds for large-scale structure formatiomicrowave Anisotropy ProbéMAP) and Planck satellites,

a view that has been strengthened with the apparent resoligeally one would aim to compute all-sky defect maps of
tion of further peakgsee als¢3-5|). However, the presence corresponding resolution, but computational resources re-
of defects is not incompatible with inflation and post- main insufficient for this task at present.

BOOMERanG analyses, such as R¢&7], concluded that Probably the earliest attempt at computing realistic CMB
they could not be ruled out. Current data allow defects topatterns generated by defects was that of Bouchet, Bennett
play a significantbut subdominantrole in large-scale struc- and Stebbing11]. They employed a flat-space formalism to

ture formation. In this sense, it is of great importance toca|cylate the CMB temperaturaT/T in the directionn,

accurately characterize non-Gaussian signals from strings, agying the metric perturbation equations using Green’s func-
they are likely to provide the only direct method of deteCt'O”-tionsG(k t,t') schematically as

In this paper we will detail the methods that we have
developed to create full-sky and high resolution CMB maps
generated by cosmic defects or any other “causal” or “ac- —(ﬁ,k,t)ocJ G,,(nktt)0e kt)dt, )
tive” sources. First, in Sec. Il we detail the large set of per- T r r
turbation equations that have to be solved, following this in
Sec. Il with a discussion of the treatment of the source termsvhere © ,, is the energy-momentum tensor of cosmic
which distinguish this analysis from that for inflationary strings. Their methods neglected many effects, notably the
fluctuations. In Sec. IV we then discuss efficient numericalpresence of baryons and the expansion of the Universe, con-
implementation of CMB map-making using the analogue ofcentrating solely on the integrated Sachs-Wolfe effect. Pen,
Spergel, and Turok12] computed all-sky mapgat COBE
resolution produced by different global defects, including an
*Current address: Laboratoire de I'Atemteur Linaire, IN2P3-  approximate treatment of cold dark matt€@DM), baryons
CNRS et UniversiteParis-Sud, B.P. 34, 91898 Orsay Cedex, and radiation and their work was extended on intermediate
France. Electronic address: landriau@Ilal.in2p3.fr angular scales in Ref13]. COBE resolution maps generated
"Electronic address: E.P.S.Shellard@damtp.cam.ac.uk by local cosmic strings were presented [itd] using the
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Allen-Shellard (AS) string code[15]. The power spectrum where scalar and vector modes were treated in a gauge in-
for this map was evaluated fdr<20 (using an ensemble of variant formalism.

192 realizationsand they inferred the string linear energy

density to beGu/c?=1.05"335x 1076, A. Scalar-vector-tensor decomposition

The most recent work on CMB fluctuations in the pres- |, this paper we will restrict ourselves to flat Friedmann-
ence of causal se_eds have made use of full BoIt_zmann COd‘?&)bertson-Walker(FRW) models because present cosmic
(see Sec. )| thus including all the relevant physi¢® first  gefect simulations are restricted to these. However, this is a
orde). The AS string code was employed again in the full significant simplification which enables us to expand all per-
Boltzmann analysis in Refl16], in which power spectra turbations in terms of Fourier modes. In Fourier space, a
were computed from the brightness distribution, thus bypassensor quantityf; ; can be decomposed into scalais, vec-
ing the maps. Power spectra were computed from simulator TiV and tensor componen’ﬂ'sTj in the following way:
tions of different cosmological epochs and provided clear
evidence of the importance of vector and tensor modes in 1 ~a 1 S, VDV T
these models, as well as the apparent absence of stronegTiJ’(k): §5ijT+ kiki— §5ij T (KT KT+ Tjj -
defined acoustic peaks. 2

An alternative line-of-sight approach was used in Ref.

[17], and also later in Ref$18,19,, to calculate power spec- This is analogous to the manner in which vector quantities
tra for global defects. Here, the idea was to use unequal timean be decomposed into scalar and vector components:
correlators(UETCs9 of the defect energy-momentum tensor .

(approximated by an expansion in eigenvedtoas the Vi(k) =k V3+ VY. ()]
source for the perturbation power spectra. In principle, the

method greatly extends the available dynamic range by exn the above, vector and tensor components are transverse;
ploiting the scalability of the correlators during defect evo-that is, k;Vy'=kT=kik; T{;=0 and tensor components are,
lution. However, while scalability is approached asymptoti-in addition, traceless[i=0. It is also useful to express

cally in the radiation and matter eras, during the importan{,ector components in an orthonormal basige, with
radiation-matter transition the UETCs must still be calcu-e ><e2—I2 so that
1 — Ry

lated from large simulations bridging this time period. The
line-of-sight method has also been used 29,21] who em-
ployed an ensemble of toy model realizations of a string

network and averaged the power spectra. Thg line-of-Sighfye can also construct a basis for the tensor components out
met.hod can be used fo compute maps as well: Simatos ang e, ande, by defining the following two matrices:
Perivaropoulo$22] modified it using a more general expan-

V=VS%+Ve+ Ve, 4

sion of plane waves to accommodate for phase differences in M,=eRe 606
a toy model for wiggly strings. However, while the method is (5)
phenomenologically interesting it was necessary to make a M, =e®e+eae,.

number of assumptions about the string perturbation phases.
It is important to note that none of these methods is perTensor components can then be written

fect, and in some sense, they are complimentary: The direct

approach developed further here, solving the full Boltzmann TE=TLM )i+ TL(M)j; . (6)

equations on a three-dimensional grid, provides reliable high

resolution CMB maps. However, the UETC method with a

greater dynamic range provides a more extensive view of the ] )
angular power spectrum. We define perturbations of the conformally flat FRW met-

ric as

B. Einstein equations

2
=a +h,,), 7
Il. COSMOLOGICAL PERTURBATIONS G (D 7+ M) ™

In this section we shall derive the equations that describ¥"here_ My 1S the Minkowski metr_ic andh,”|<1. We Wi_”
work in the synchronous gauge in whitly;=hy;=0. This

the evolution of first order perturbations in the metric and the i - 00 )
auge is not completely specified. This will result in extra

energy-momentum tensor of matter fields in the presence é? X S . . .
causal seeds such as cosmic strings. The formalism used gonstraint equations” from the Einstein equations, to ensure

similar to that of 12], except here, the full Boltzmann equa- that all degrees of freedom are specified. Perturbations in the
tion for relativistic matter(photons, neutrindsis used. The €N€rgy-momentum tensor are given by

treatment of the Boltzmann distributions presented here fol-
lows on from the approach used for scalar modeg 28},

but is extended to vector and tensor modes. The treatment of

6Ty=—6p+ 09

0_ 0
photon polarization follows the approach used [@#] for STi=(p+pvit 0, ®)
scalar and tensor modes, but is extended to vector modes. : i : :

Similar, though not as general, methods were use@18y; oT;=dpoj+pj+ 0,
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where®? is the energy momentum tensor of the causal stiff _ 1. a
source an& * contains the anisotropic stresses of relativistic o=— (1+W)( 0+ Eh) - 35(C§—W) d,
matter. For the velocity terms,, and ©®;, we use slightly
different variables to those defined in Sec. Il A: A 2 5
, , 'a=——(1—3c§)0 k25+§1—k225 (14)
6=1kvS, Op=1kPS a +
9 -
V_ 7V V __ PV
vi=lvi, Pi=1P. vI =——(1 3cd)vY —mkEV

These new variables enable us to write the evolution equa-

tion without epr|C|t| s, which is easier to implement nu-
merically, as will be discussed in Sec. IV.

The equations foh,,, are then obtained by substituting
Egs.(7) and(8) into the Einstein equations, using the homo-
geneous part for the background metric. The 00 iarmdm-

wherew=p/p, c = 8pl 5p is the sound speed squared and

6= 6plp. These equations are valid for uncoupled fluids.

And covariant energy conservation with respect to the back-
ground®f,” leads to

ts of th ti : a
ponents of the equation @00:_5(@00+@)+@D,
N .
6(R,,TAQ,,)=8mG6| T,,— Eg;wa (10 . a k2
D=—25®D—§(®+2®S), (15)

then lead, to first order, after transforming to Fourier space
and decomposing into SVT components, to the following oy a., v
equations of motion foh: Pl=—2_Pr+kOy.

. a. 5 In what follows, we shall drop the tilde on the new variables

h+ Zh=—87G[a%(5p+35p)+ B+ O], to render the equations more legible.

2 C. Relativistic matter
hS+ 25h8+ gh_zl&TG(aZpESJF 0°%), To treat photon perturbations, we derive the equations of

motion for the Stokes parameters, which describe polarized
light: the intensityl, the orientation of the polarization el-

i a, li d U and the ratio of its principal axi¥. It is
V5% v_ 2.5V @V pse Q an princip
h Jr2ah' 167G(a’p%i +07), (D convenient to work with the perturbations normalized to the
average intensity,= p, /4
Lo _
hi+2_h{+k?h[=167G(a’p%]+0]), I=lo(1+A),

(16)
P=1oAp,
and the 00 and iOcomponents of the equation
where P stands forQ, U or V. We start with the general
1 transfer equations for polarized light:
1 RW—ERg,”—Ag,” =8mGdT,, (12
Ay=+1kuA, +2h,]n nJ T(A —A+4n-v),

lead to the following constraint equations far . . .
Ap+ikpdp=7(AF—Ap), (17)

a. n

k?h™+ 3;h= 247G (a%8p+ 0 ), whereu=n-k, r=aotn, is the differential Thompson cross
section,v,, is the baryon velocity and thg denotes scattered
guantities as measured in the comoving frame and the vector

k?h™=247G[Op—a%(p+p)b], (13} Ap hasAq, Ay andAy as components. From the start, it is
convenient to notice that is always uncoupled to the other
k'hiV: 1677(;[73?/_ a’(p+ p);i\/], parameters as it cannot be generated through Thompson scat-

tering. So we can set it to zero without loss of generality. We
wherei=1,2 ande=+,x and we have defineth - =h  shall split the perturbations into scalar, vector and tensor
—hS parts: Ay=A3+AY+Ay, whereX=1, Q or U. The treat-
Energy conservatiorT”.,=0 leads to the following ment for massless neutrinos is identical to that for the inten-
equations of motion for matter and radiation perturbations: sity of photons, except that all terms involvingare zero.

103512-3



M. LANDRIAU AND E. P. S. SHELLARD PHYSICAL REVIEW D67, 103512 (2003

1. Scalar perturbations

A (w)= M 2T MY ()

For scalar modeg) is also uncoupled frorh and Q, and
hence can be set to zero. The contribution from the metric is

Ap(p)dQ, (24)
h 1)\. —_— H \Y ’ H
~ o fscalar_ 2 S whered= ¢’ — ¢, and the scattering matrid ¥ (u, ', 9) is
+ —_——
L 3)h 18 given by

and the “polarization term” is given by 2uu'coSY 2uup'cosd  wsind
3 (1 2up'cosy 2uu’cost  usind |, (25)

AF(w)=1g)  MNmpHAR(RHAR', (19 “ou'sin®  —2u'sin®  cosd

» Unlike the scalar case, there is a dependence on the azi-
muthal angle. To eliminate it, we introduce new variables
defined as follows:

AY=—1J1— u?(AY*cosp+A)?sing),

where the relevant block of the “scattering matrix
MS(w, ') is given by

B_M,Z_/L2+3/L2/‘L’2 l_,LL 3M2+3M2 12

1_3M/2_M2+3M2M/2 3— 31““,2 3M2+3M2 /2(20)

§=mN1—p2(Ad'cosp+Adsing), (26)

To integrate out the angle dependence, we expand the per-
turbations in Legendre polynomials: A\lj: \/1——;L2(—A\Lﬂlsin<p+A\LjZCOScp).

. With these variables, the equations for each components

S_ Y4 S )
AX_; (=) (2€+ 1A% Pe(n). (22) decouple and depend only @n so that we can decompose
the new variables into Legendre polynomials. The equations

The equations then read then read

o 2 _ AV kA4 41 uhV= — AV 40V 41 oIV
AIS+|kM+§[h+(3M2_1)hS] A7+ ikuA [+ 41 ph; (A~ Avp; H1pdl),

_ 1 A+ 1kuAg=—r(AG -1V, 27
=7/ Afp+duoy— AP Epz(M)HS :
(22 Agrab=0,
AS+iku=r —AZ+|1 2(#)} S] wherelT"'= A+ 5013+ B Ao~ $Age+ 55404

3. Tensor perturbations

S_ S
wherelIS= A%+ A5, +Ag, Again, the Stokes parametercannot be set to zero, but,

2. Veector perturbations as with vector pe_rturbatio_ns, we will show that can be treated
: with Q. The metric term is
Unlike scalar perturbations) does not decouple frorh . . )
and Q in the vector case, but this can be dealt with very ninjh{*"°'= (1—u?)(hlcos 2p+hlsin2p). (29

easily. First we consider the contribution from the metric: o o
The polarization term is given by

nnih2eeo'= 2, \1— u2(hycose+hysing), (23
a AT ()= 3o MT(, ', 9)AT(")dQ’, (29

where cosp=n-e; and sing=n-e,. The polarization term is
given by where the scattering matrid "(u,u’,9) is given by

S_(w)S_(n')cos2) —S_(w)S,(u')cos2) —u'S_(u)sin29
=S, (p)S-_(u')cos2) S (u)S;(u')cos2d  p'Si(u)sin29 |, (30)
2uS_(u')sin 29 —2uS, (u')sin 29 2up'cos 29
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Wherest(/_l,):li/.l,z. AIVOi:_kA T(A +4Ub)
As with the vector case, we can eliminate thedepen- !
dence by making a change of variables. In the tensor case, K
these new variables are defined as follows: A= §(A|V0i A - —hV— (A +TIV),

Al=(1—u?) (Al cos 20+ A "sin2¢),

A= g LA = (DAY - 7AY, €>1,
=(1+u?) (A cos 20+ AL sin 2¢), (31) (35)

Al=2p(— Al sin2p+A[*cos 2p). Vi k - i
UT2p(~ Ay sin2et Ay cos 2p) A= 5 [EAG 1= (E+D)AG, 4] - AL

Exactly as for vectors, the equations for each polarization

T
decouple and depend only gnso that we can expand them + 711" 6o,
in Legendre polynomials and carry out the integration. The - .
resulting equations are Alg= —kA 2h - T(A C+IITe),
ATe | | Te WT_ Te Te \ Te
A| +Ik,lLA| +2h6— T(A| +11'°), Ar€:2€+1[€AI€ N (€+1)AI€+1
AT +TkpAL =~ 7(AL—T1T), (32) —7Aff,  €>0, (36
ATE+ ATE: 0, : Te k . €
v AGe= 5 LEAGI -1~ ((+1)Ag 1]~ 7Ag;
where IT7¢= A5+ 7 A5+ A~ 3AG+H A0~ A5 S
ande=+ or X. — 1 5¢0.

These moments are related to the energy momentum ten-
sor of photons an@imasslessneutrinos. First, let us consider

If we use the decompositiof21) and the recursion rela- the energy density. We have that
tion

4. Physical significance of moments

p
5Too:_5pz_ﬂj AdQ, (37

1

mP ()= m[€P€—l(M)+(€+ 1Pera(p)],

(33) so that
_AS

we obtain the following equations for the moments: 0=Ap- (38)
Second, the velocity perturbations
. 2.
Afo=—kAR—3h,
SToi=(p+p)v J’Am dQ, (39

. k .
A|81:_§(2A|82_A|So)_7'<A|81_ which yields

4
k™)

3
— —kAS
k . 1 4. 4 -1
A=z (247-3A%) - T< AR— —10H5) - S (39

1 o
k vy’ =7(Ajg+AR). (40
ASy=———[CAS,_ —(€+D)AT ] 7AT, €>2,

+ . . .
2t+1 Finally we have the anisotropic stresses
. k 1 3p ~~ 1
A(SM 2€+1[€AQ€ 1 (€+1)Ag(+1] 5Tij_§TE5ij:pEij:Ej A,(nini—gﬁij>dﬂ,
(41
S
£~ A I diot 02 ” which yields
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35=-3A3, : 1 1 .
. 6,=K? 70, Z35| +7(6,-0,)
E}’=§(AY£+A,V§ : (42) AV SRV
5 in:ZEyi"_T(vbi_in)- (46)
6 By comparing with the conservation equations with

ET:EATG'FEATG'F_ATG )
€ 510 7712 T 3574 =c2=1%, we see that there is an extra drag temtv,

—v,). Hence, for momentum to be conserved, we have to
We now have an open hierarchy of equations for all theadd the term (4./3py) 7(v,—v,,) to the previous two equa-
p y q ¥ SPb v~ Ub
components of the energy-momentum tensor. Numerically, itions, which then become
has been found that truncating the expansion by simply set-

ting the £th moment to O propagates a sizable error back to . a 20 2 )
the first moment. It has also been foui8] that the follow- Op=— 7 Ot Ck*p+ R7(60,— 0)
ing expression gives excellent results: 47)
: a :
: Chax—1 U?n/i:_gvgiJrRT(U\;i_Ugi)
Aemax: kAemax_l_ 7 tT Aemax’ (43)

where we have define@=4p,/3py,.
where{ .4 iS the moment at which the series is truncated.

The above expression is good for all photon and neutrino E. The Sachs-Wolfe formula
equation hierarchies. The temperature anisotropy formula is derived by consid-
ering perturbations in the photon eneigy along the unper-
D. Non-relativistic matter turbed pathX*=n*». Heren is the line of sight direction

r(i.e. pointing in the direction opposite to the photon’s travel

For non-relativistic matter, it is not necessary to conside ; roof 412,25, In th nchron th
a full phase space expansion, as all but the first few momen{é0 a proot see, €. o € synchronous gauge, the

are totally negligible. Our starting point will be the equations emperature fluctuations are given by:

derived from the conservation of the energy-momentum ten- ST 6 1. .

sor (14). ?:Zy—vy-n—z hy;nin;d 7. (48)
CDM does not couple with other types of mattexcept

gravitationally, SO we can immediately use the conservation s ahove formula was derived under the assumption of

equations. Here/=c;=0. Also, in the(comoving synchro-  jnqtantaneous recombination. To treat the finiteness of the

hous gauge, CDM hag.=X;=0, so Eq.(14) simplifies to  gyrface of last-scattering, we integrate the expression for the

temperature fluctuations over the probability of free-

5o=— E (44) streaming for a photore™ "dr:
Cc 2 o
5T_f7705T. .
For baryons, these conservation equatiti® become T Jo T e a7
. 7]0._757, ~ 1_T.A,\
5 0+h = . e 7| V|- 5e hijnin;|d»n, (49
b= bT 5
2

where the integrated Sachs-Wolf#&W) term was obtained
by integrating by parts and setting the surface term to zero

6= — a Op+ c§k25b (45) because the visibility function is very sharply defined around
a the time of recombination and hence is utterly negligible at
7n=0 or today.
) a The calculation of the thermal history of the universe for
v¥i= avgi, an arbitrary set of cosmological parameters was achieved

with an integrated package which will be described in more

detail elsewher¢26]. The Friedmann equations were solved
where we have used the fact that c2<1. However, bary-  simultaneously with the ionization rate equations for hydro-
ons interact with photons through Thompson scattering. Sgen and helium. The results were compared for accuracy
we must correct the last two equations for momentum exagainstRECFAST[27] for which the code provided an inde-
change between the two fluids. The equations for photonpendent check26]. These computations start very deep in
obtained in Sec. Il C 4 read the radiation era and end today in order to create high accu-
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racy tables from which the relevant quantities for the Boltz- 3, 1
mann evolution, such as the opacity and visibility function, 275 |X|<§.
are later interpolated using a cubic spline. W3(x) =

Ill. COSMIC DEFECT SOURCE TERMS

The perturbation source terms in the Boltzmann evolutiot?here|X| is the distance between grid point and string in the
are given by the Fourier transform of the cosmic defect direction. This weight function is multiplied by the appro-
energy-momentum tensor, decomposed into scalar, vectd¥iate weights iny and z directions. The second step is to
and tensor components. The code can accept the energyM0oth the result further by employing a Gaussian window
momentum tensor of any set of “active” sources with appro-TUnction In  Fourier  space, that is, proportional to
priate initial conditions, whether these are cosmic strings€XP(—k7k3) with kg corresponding to about three grid
global defects or other more exotic phenomena. We havB0ints; the discrete Fourier transform employed the NAG
experimented with inputting from global defect simulations, Foutine CosPxr: Energy-momentum conservation was closely
but the focus of our attention here is on local cosmic stringnonitored and maintained to within a fraction of one percent
simulations which inherently can achieve far higher resolu®Yy this process. _ _ o
tion and greater dynamic range. The smoothing from the interpolation and filtering leads

The cosmic string simulations were performed using thel® @an apparent loss of resolution, but this need not be impor-
AS code[15], for which the methods employed and key tant. A well-behaved decomposition can be obtained at very
results have been described in detail elsewhere. The strindgdgh resolution on a larger grid and then used at lower reso-
are approximated by a two-dimensional worldsheet definecHtion fqr the Green'’s function integration. We note also that,
by X“(c,t) = (t,xs(0,t)), where the positio, is a function N Fourier space, the decomposed scalar, vector and tensor
of the two coordinates (spaceliké and conformal time in ~ Parts of Eq(50), calculated as in Sec. Il A, can be stored on
an unperturbed FRW background. We can impose the condPnly half the complex grid, because the Fourier transform of

. o a real quantity satisfieg(k)=f*(—k); it is necessary to
tion that the velocityx is transverse to the tangent vector treat only just over half of the grid, that isiyi,

x;=dxs/do along the string, that is¢s-x;=0. The strings =0,1,...N—1 andi,=0,1, ... N/2 (it is in fact possible

are evolved by splitting the equations of motion for theis yse exactly half, but the relationship between components
strings into their characteristic left- and right-moving modes,is more complicated28)).

which are damped slightly by the expansion of the universe. gigyre 1 illustrates the decomposed scalar, vector and ten-
The key points to note about the string network simulationssor parts of Eq(50) for a straight cosmic string calculated as
are that above a minimum resolution, energy conservation ig, sec. || A. The scala® o is localized in real space, but the
accurately satisfied during the numerical evolution to withingcaiar and vector projection operators acting on the tensor
a fraction of 1%, and over a dynamic range approaching aBomponents®;; yields the apparently non-local results
order of magnitude in conformal timghat is, several de- ghown. This demonstrates that the decomposed components
cades in redshift S must be calculated and evolved with great care; the final
The energy-momentum tensor of the strings is given by emperature pattern must reflect the locality causality of
the sources which generated them.

®‘“’\/—g=usf do(extxs—e % x") o (x7—xZ(0)), IV. NUMERICAL IMPLEMENTATION

(50 The various evolution equations derived in Sec. Il can be

written as three systentene for scalar, vector and tensof

where u. is the linear energy density of the string, the following form:

=(x"?/(1-x?))Y2 andg is the determinant of the back- dy

ground FRW metric ({(—g=a*). All the components of — = A(k, p)y+q(k, 7), (51)
0,.(x,7) were calculated at each point on the string net- dy

work and then interpolated onto a high resolution grid. Since

there is an implicit differentiation of the spatial distribution wherey andq are vectors of dimensiom,,,, the number of

of Eq. (50) in the scalar-vector-tensor decomposition de-equations to solve, and is a real square matrix of the same
scribed in Sec. Il A, the interpolation must be sufficiently order. The components of are the metric perturbation,
smooth for the decomposition to remain well behavedCDM and baryon density contrasts and peculiar velocities
Simple cloud-in-cell interpolation, for example, producedand photon and neutrino moments and thoseyaire the
poorly controlled results, so we chose a two step approactiefect source terms. Given that there is a continuous contri-
with a higher order scheme. The first step was to use thbution at all times from these sources throughout space, we
triangular shaped clou@SC) interpolation involving the 27 cannot simply solve this problem by projecting our initial
nearest neighbor points of the string segment. The weightonditions forward to the present time with transfer functions
function is given by (as in inflation. However, rather than directly solving the
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FIG. 1. Positive and negative isosurfaces of scalar, vector and tensor components in real space created from the decomposition of the
energy-momentum tensor of a straight string. Clockwise from top@gft (positive, ® (positive center and negative sidelohe®;
(negative center and positive sidelopesd ®\1, (alternating negative and positivéAlso shown are contours in a plane transverse to the
string.

differential equations at every grid point, it is much moreture is not strictly appropriate in this case, as one of the basic

efficient to employ a Green'’s function approach. properties of a Green’s function is undefined in a first order
In order to take advantage of the fact that the evolutiorproblem.

equations depend only on the magnitude of the wave vector

and not its orientation, we proceed to solve Egjl) by con- A. Constructing the matrices
structing the fundamental matrixX of the system(e.g., see . -
[29]) which satisfies Since the systenbl) is first order, we need to reexpress

the metric equations in first order forfall the matter equa-
tions are already first order-or the scalar metric equations,

iy: AY, we use the two equations of motion, with the first constraint
dz equation to replace thk®h~ term, to obtain the following
(52)  first order equations fon andhS:
Y(0)=1, _
dh a. )
wherel is the identity matrix. Now, given some initial con- dn h—87Ga’(op+3p) —87G(Oge+ 0),
ditions
dhs_a hS 2 S
y(0)=c, (53 E=a(h—2h )+8mGa“(2pX>— 8p)
the solution to Eq(51) is +87G(205—0 ). (55
_y JnY_l , Ndn' 54 The vector metric equation of motion is already in a form
y(m=Y(n)| et 0 (n)a(n)dn" | (B4 ot first order foiV:
W )
The above equation reveals a similarity between the matrix ﬂ_ LAy 2 <V v
Y~1 and a Green’s function. However, the latter nomencla- dy 2ah T16mGa’px T+ 16mGO” (56
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15 T T T T I

FIG. 2. Time evolution of ele-
ments of the fundamental matrices
for »=3ngec 10 4mgec- These
particular diagonal elements are
those associated with ISW effects,
i.e. the time derivative of the met-
ric terms: scalar tracéd (solid),

anisotropic scalan® (dot-dashel

\ ! \ ! \ which coincides with the vector
, / \ hY and tensorh” (dashedl Also

\ i \ \ illustrated is the CDM density

\ ! \ \ contrast 8, (dotted. The confor-

! ! ! / \ mal time along the horizontal axis

is given in Mpc.

05

_1 1 1 1 1 1
700 750 800 850 900 950 1000

For the tensor modes, we use the standard order reductioa,spacing of 0.8k, whereAKk is the simulation grid spacing.

by consideringh” andh” as separate variables: The value of 1.8 was chosen to be slightly higher than the
maximum possible valug3. This is to ensure that there is
dh’ . no need to extrapolate the matrix elements. Kaépacing is
_ hT .. . .
dz ' sufficiently dense for the elements of the matrices and their

(57) inverses to be linearly interpolated for the appropriate value
- of k at every simulation grid poinfsee Fig. 3.
= ZEhT_ k2hT+ 167Ga2p3 T+ 167GOT. Since only a few components of the vectpare non-zero
a (two for scalars, one for vectors and one for tengoosly
the corresponding rows &f ! need to be stored. Also, since
To constructY, we numerically solvé52), which involves  only 10 quantities are needed to compute the SW integral
solving 3 times(scalar-vector-tenspm,,,, systems off, o, (5, 6, U\y/, h, hS, hV and hT), only the corresponding
coupled equations for a chosen numbeof the wave num-  cojumns of Y need to be stored in principle. In practice,
bersk (typically M~N for an N grid). This contrasts with however, all componentsneed to be kept to allow the com-
solving 10 systemsreal and imaginary parts of 1 scalar, 2 pytations to be made in several stages. There are two reasons
vectors and 2 tensorsf n,, equations foiN%/2 wave vec-  \yhy we want to do this. The main reason is that, even though
tors k if we were to solve Eq(51) directly at every grid g the components of the fundamental matrices are well be-
point. Hence this Green’s function approach represents a r@raved at all times, the evolution results in different compo-
duction of computing time by a factor of\§/3n,.,. Since  nents having very large ratios. This results¥rbecoming
Nyar=40, this factor is more than 1000 for a 2860x and  non-invertibleto machine precisionThis happens more of-
10000 for a 102&box. Of course, there are extra computa-ten at early times and for scalar modes. The solut®? is
tions involved: the inversion of the matricé®r which we  then computed by
use the NAGFo7ADF and FO7ADJ FORTRANroutineg and the
actual integration of Eq(54), but this is insignificant com- _ M1
pared with the time taken to solve the extra equations. In  ¥( W)ZY(')(W)[V( 77i)+f YOy )a(y ) dy'
fact, this method is so efficient it is constrained by the i
amount of memonyor disk spacgrequired.

dhT
dn

To numerically solve the perturbation equations, we use n<n<%i+1, 1=0,1, ... Nstage (58)
DVERK.F, a sixth order Runge-KutteoRTRAN routine. Figure
2 shows the time evolution for some diagonal elements of Y(7mi=0)=C¢,

the fundamental matrices. Our Boltzmann code was exten-

sively tested for inflationary scenarios and found to be inwhere the corresponding matric¥§) and Y =1 are com-
excellent agreement with publicly available cod2§]. The  puted from#; to #%;,,. The second reason for wanting to
matrix elements are computed o0 tok=1.8NAk/2 with  allow the possibility of running the computations in several
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FIG. 3. Diagonal scalar matrix
elementsYy;, Y;;* and Y5 from
the late matter era corresponding,
respectively toh (continuous and
. dashed lingsand &, (dot dashed
The normalization is arbitrary and
thek scale is 1.& 10~ % Mpc™ L.
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stages is more practical: this enables us to checkpoint theith matching an instantaneous defect-forming phase transi-
code in order to minimize the effects of a system crash. tion to a homogeneous initial statesee, for example,
[30,31).

B. Initial conditions

As our simulations start at a time much later than that of ~ C. Integration over the string energy-momentum tensor
the phase transition that created the defects, we must specify The matrix elements are integrated over the energy-
initial conditions that are consistent with a fully formed net- ,,omentum tensor using the trapezoidal rule. The equations
work. In any case, the local string simulations used are basegeing real and scalar, the same matrices are used for both the
on an effective action and hence cannot be used to simulaiga| and imaginary parts as well as the two vector and two
the phase transition itself. . . . tensor components, so that the integration is repeated twice

One of the nice things about the solutitB¥) is that itis  for scalars, and four times for both vectors and tensors.
expressed as a sum of a term depending on the initial condi- The grids of the quantities needed to compute the SW

tions and a second one depending on the defect sources. Thigegral, 5 v, andh;; , are then completed at each timestep

. . . . 7 'y ,
provides us with an easy way to assess the relative impoky complex conjugation and Fourier transformed back to real

tance of the initial conditions and hence to see if our resultgpace. They are then projected onto the end of the vectors

are sensitive or not to them. ~ A . . . .
: - . . ni(n—ng), where then; are the pixel directions, using the
One possible choice is to set all gradient terms and t'mernverse cloud-in-cell scheme:

derivatives to zero in the constraint equations. This leads to

the following initial conditions: F(,Y,2) =W Wy [W, F(x1,Y1,20) + (L= W) f(X1,Y1,22)]
3.3 S +(L=wy)[w, f(X1,y2,21) +(1—w,)
5(:: 5b: 25},225,,: YN
a“(p+p) XF(X1,Y2,22) I} + (L —w){wy[w, f(X5,y1,21)
0p T(1-w)f(x2,y1,22) ]+ (1—wy)
ab: 0'}/: 0,,: 2 ’ (59)
a’(p+p) X[w, f(X2,Y2,21) +(1=wW)f(X2,Y2,22) 1},
(60)

\%

pV=pV=pV= P where the x;,X,, ... define the grid element and the

O Y 2(p+p) weights are given byv,=1—x, and similarly for the other

two. The temperature fluctuations are then computed using
the last line being valid for all three components. This choiceEq. (49). This integration is also performed using the trap-
is consistent with setting the pseudo-energyand pseudo- ezoidal rule as the integrand varies very smoothly along each
momentary to zero, a set of initial conditions consistent line of sight.
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-1.3

v=0.9: total(top left), scalar(top
right), vector (bottom lefy and
tensor (bottom righy. The color
scale is given in units ofA
=87Gulc?.

FIG. 4. Temperature disconti-
nuity induced by a straight mov-
ing string with an initial velocity

2.6

V. TEST OF THE NUMERICS AT

—=87nG , 61
In order to test the validity of our methods, we compare T TEReyY (61

the result of simulations with analytic results. One of the ) . ) .
difficult aspects of such comparisons is that analytic resulty’herev is the string velocity and is the Lorentz factor. -
are mostly obtained for defect configurationg) in  This provides an excellent test of our map-making pipe-
Minkowski space andii) in the no matter approximation. In line, particularly the vector modes, which cannot be com-
an expanding Universe, with a complete treatment of mattePared with inflationary results such as is done for the scalars
perturbations, these approximations would be relatively goo@nd tensors in Re{.26]. However, in a realistic expanding
0n|y in the late matter era and on scales much smaller thaHniVerse, such as those studied in this dissertation, this effect
the horizon. is more complicated due to the presence of matter, the
growth (or decay of SVT components, the curvature of the
microwave sky and the deceleration of the string. In addition,
this idealized solution must be studied in a periodic box with
To illustrate this, we consider an infinite straight string causal effects due to the limited dynamic range.
moving in a direction perpendicular to the line of sight. Ac- In the realization shown in Fig. 4, we minimized these
cording to[8], this will produce a discontinuity in the tem- effects by considering photon propagation in the late Uni-
perature fluctuations. This calculation is done in the limit thatverse with no cosmological constant, startingzat 0.347,
a plane wave of CMB radiation is propagating in the direc-and ending aty=0.41n,, on a square patch of sky of
tion of the observer. Objects behind the string receive a boos.2°x 3.2° through a box of comoving site=0.069;,. The
towards the plane in which the string is moving because ostring was initially moving at a velocity =0.9, which had
the gravitational effect of its deficit angle=87Gu. This  redshifted tov =0.825 as the photons crossed the plane of
means that the CMB photons that were behind the stringhe string. These test simulations included no compensation,
when they cross its plane will be blueshifted, so that theyi.e. everything was set to zero initially. The temperature jump
will be hotter than those that were in front of the string. Themeasured from the average of the plateaus behind and in
magnitude of the discontinuity 9] front of the string is approximately

A. Kaiser-Stebbins effect

103512-11



M. LANDRIAU AND E. P. S. SHELLARD PHYSICAL REVIEW D67, 103512 (2003
FIG. 5. CMB fluctuations
seeded by a single loop: totdbp

left), scalar (top right), vector
(bottom lefd and tensor(bottom

right).
AT ) straints on the relationship between the different modes.
5 =93Gulct, (62 These can be solved if only the first few harmonics are con-

sidered. The Kibble-Turok solutior82] for a loop of length

. L involves the first and third harmonics:
whereas the theoretical flat-space, vacuuma mattey pre-
diction for the given velocities should lie in the range

1
(1-k)sino_+ §Ksin 3o0_+sino,

L [~
X(gvt): E[el

AT ,
— =(37-52Gpu/c’. (63)
3

A 1
- ez{ (1—k)coSo_+ =k COS 3r_ +COSp COSo .

This is in good agreement with the expanding Universe . " 1o .
simulation, despite the additional physical effects involved. —&[2k7(1— k)" coso_+singcosa, ], (64)
It appears that the effect of matter on the scalar and vector

modes slightly increases the anisotropies over the dominant _ ]
flat-space ISW effect. whereo . =(2x/L){. are the left/right moving modes and

thee are the Cartesian unit vectors.

Figure 5 shows the CMB fluctuations caused by a per-
fectly circular loop p=«=0). The loop has an initial ra-

In this section we show the results of small angular scalelius just below the angular scale of the patch shown in Fig.
simulations of string loops of radiu=0.57. The size of 5. The loop begins stationary and then accelerates up to a
the horizon at théeginningof the simulation is 0.6 where  relativistic velocity as it collapses. At this point it is crossed
L is the size of the box. The simulations end @t by the plane of CMB photons where a clear Kaiser-Stebbins
~107n4ec.- Hence, we are dealing with large loops smallerdiscontinuity is evident; note that the amplitude of the tem-
than the horizon, but initially perturbed by Hubble damping.perature increases from large to small radius as the velocity

The general loop solution in flat space can be expanded imcreases. There is a cancellation of the non-local scalar, vec-
Fourier modes, with the gauge conditions yielding con-tor and tensor modes in the interior. By the time of photon

B. Loop anisotropies

103512-12
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FIG. 6. CMB fluctuations
seeded by a singléibble-Turok)
loop (top leff): front view (top
right), side view(bottom lefy and
top view (bottom righy.

]
&

crossing, causal effects related to the velocity acceleratiofocussed attention on using cosmic string simulations as the
have not had time to propagate to the center. During onevolving causal source terms in these equations. We have
period, the average velocity of a Ioop(is)=1/\/§, developed efficient numerical techniques for the Green’s
Next we consider a loop witp= 7/3 andx=1/2, which  function computation of high accuracy maps from these
does not possess the simple symmetries of the circular cas#lying network simulations. We have also presented numeri-
Its initial state is one of maximum radius and minimum ve-cal tests of the full pipeline. More quantitative results from
locity from which it then shrinks, accelerates and begins teextensive supercomputer simulations will be presented in
rotate and form cusps. Figure 6 illustrates the total anisotF33,34], featuring large-angle and small-angle maps, respec-
ropy pattern viewed from three different directions into thetively.
box. In the top right corner, there are two things to note:
yvhen the_ photons first cross the I0(_)p, there is Iit_tle eff_ect_ as ACKNOWLEDGMENTS
it is moving slowly, whereas there is a strong discontinuity
later when the photons pass the front of the relativistically We are grateful for useful discussions with Gareth Amery,
collapsing loop. The bottom left corner shows a side view ofRichard Battye, Martin Bucher, Carlos Martins and Proty
the loop, while the bottom right shows a much more compleXWu. M.L. acknowledges the support of the FCAR Fund; the
anisotropy pattern as cusps form viewed from above. Cambridge Commonwealth Trust; ORS; Peterhouse; the Ca-
nadian Centennial Scholarship Fund; and the Cambridge
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VI. DISCUSSION
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