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Fluctuations in the cosmic microwave background induced by cosmic strings:
Methods and formalism
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We present methods to compute maps of cosmic microwave background fluctuations from high resolution
cosmic string networks using a full Boltzmann code, on both large and small angular scales. The accuracy and
efficiency of these methods are discussed.
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I. INTRODUCTION

The potential role of cosmic strings and other topologi
defects in cosmology has been the subject of consider
interest for well over two decades~for a review see Ref.@1#!.
Perhaps the most exciting prospect would be the detectio
their distinct observational signatures in the cosmic mic
wave sky. Cosmic strings, for example, are expected to
ate linelike discontinuities in the cosmic microwave bac
ground ~CMB! temperature pattern, whereas other defe
such as global monopoles or textures create ‘‘hot spo
Their discovery would provide unprecedented informat
about the nature of unification in the early universe, wh
their absence from the CMB would significantly strength
constraints on a wide range of models.

To many, the publication of the BOOMERanG results@2#,
in particular, signaled the demise of topological defects
cosmology. Indeed, the detection of an acoustic peak aro
,.200 was seen as evidence that primordial adiabatic
turbations were the seeds for large-scale structure forma
a view that has been strengthened with the apparent res
tion of further peaks~see also@3–5#!. However, the presenc
of defects is not incompatible with inflation and pos
BOOMERanG analyses, such as Refs.@6,7#, concluded that
they could not be ruled out. Current data allow defects
play a significant~but subdominant! role in large-scale struc
ture formation. In this sense, it is of great importance
accurately characterize non-Gaussian signals from string
they are likely to provide the only direct method of detectio

In this paper we will detail the methods that we ha
developed to create full-sky and high resolution CMB ma
generated by cosmic defects or any other ‘‘causal’’ or ‘‘a
tive’’ sources. First, in Sec. II we detail the large set of p
turbation equations that have to be solved, following this
Sec. III with a discussion of the treatment of the source te
which distinguish this analysis from that for inflationa
fluctuations. In Sec. IV we then discuss efficient numeri
implementation of CMB map-making using the analogue
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Green’s function techniques, without which the proble
would not be tractable computationally. However, we co
plete this introduction by discussing previous work on co
mic defects and the CMB, pointing out its relationship to th
paper.

Some of the earliest work featured analytic results o
tained for simple string configurations@8–10#. Such exact
solutions are important for testing computational metho
However, although these analytic results are interesting,
merical simulations are essential to obtain accurate quan
tive predictions in more general contexts. The main dra
back of numerical results in this context is their limite
dynamic range, restricted by the light-crossing times of c
mic defect simulations. All-sky~large angle! CMB maps can
be generated and have been used to obtain the normaliz
of the power spectrum to the Cosmic Background Explo
~COBE!, but their angular resolution has been poor. On
other hand, small angle maps permit the very important ch
acterization of non-Gaussian signals due to defects. Gi
the prospect of high resolution all-sky observations from
Microwave Anisotropy Probe~MAP! and Planck satellites
ideally one would aim to compute all-sky defect maps
corresponding resolution, but computational resources
main insufficient for this task at present.

Probably the earliest attempt at computing realistic CM
patterns generated by defects was that of Bouchet, Ben
and Stebbins@11#. They employed a flat-space formalism
calculate the CMB temperatureDT/T in the direction n̂,
solving the metric perturbation equations using Green’s fu
tions G(k,t,t8) schematically as

DT

T
~ n̂,k,t !}E Gmn~ n̂,k,t,t8!Qmn~k,t8!dt8, ~1!

where Qmn is the energy-momentum tensor of cosm
strings. Their methods neglected many effects, notably
presence of baryons and the expansion of the Universe,
centrating solely on the integrated Sachs-Wolfe effect. P
Spergel, and Turok@12# computed all-sky maps~at COBE
resolution! produced by different global defects, including a
approximate treatment of cold dark matter~CDM!, baryons
and radiation and their work was extended on intermed
angular scales in Ref.@13#. COBE resolution maps generate
by local cosmic strings were presented in@14# using the

,
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Allen-Shellard~AS! string code@15#. The power spectrum
for this map was evaluated for,<20 ~using an ensemble o
192 realizations! and they inferred the string linear energ
density to beGm/c251.0520.20

10.3531026.
The most recent work on CMB fluctuations in the pre

ence of causal seeds have made use of full Boltzmann c
~see Sec. II!, thus including all the relevant physics~to first
order!. The AS string code was employed again in the f
Boltzmann analysis in Ref.@16#, in which power spectra
were computed from the brightness distribution, thus bypa
ing the maps. Power spectra were computed from sim
tions of different cosmological epochs and provided cl
evidence of the importance of vector and tensor mode
these models, as well as the apparent absence of stro
defined acoustic peaks.

An alternative line-of-sight approach was used in R
@17#, and also later in Refs.@18,19#, to calculate power spec
tra for global defects. Here, the idea was to use unequal
correlators~UETCs! of the defect energy-momentum tens
~approximated by an expansion in eigenvectors! as the
source for the perturbation power spectra. In principle,
method greatly extends the available dynamic range by
ploiting the scalability of the correlators during defect ev
lution. However, while scalability is approached asympto
cally in the radiation and matter eras, during the import
radiation-matter transition the UETCs must still be calc
lated from large simulations bridging this time period. T
line-of-sight method has also been used by@20,21# who em-
ployed an ensemble of toy model realizations of a str
network and averaged the power spectra. The line-of-s
method can be used to compute maps as well: Simatos
Perivaropoulos@22# modified it using a more general expa
sion of plane waves to accommodate for phase difference
a toy model for wiggly strings. However, while the method
phenomenologically interesting it was necessary to mak
number of assumptions about the string perturbation pha

It is important to note that none of these methods is p
fect, and in some sense, they are complimentary: The d
approach developed further here, solving the full Boltzma
equations on a three-dimensional grid, provides reliable h
resolution CMB maps. However, the UETC method with
greater dynamic range provides a more extensive view of
angular power spectrum.

II. COSMOLOGICAL PERTURBATIONS

In this section we shall derive the equations that desc
the evolution of first order perturbations in the metric and
energy-momentum tensor of matter fields in the presenc
causal seeds such as cosmic strings. The formalism us
similar to that of@12#, except here, the full Boltzmann equ
tion for relativistic matter~photons, neutrinos! is used. The
treatment of the Boltzmann distributions presented here
lows on from the approach used for scalar modes by@23#,
but is extended to vector and tensor modes. The treatme
photon polarization follows the approach used by@24# for
scalar and tensor modes, but is extended to vector mo
Similar, though not as general, methods were used by@18#,
10351
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where scalar and vector modes were treated in a gauge
variant formalism.

A. Scalar-vector-tensor decomposition

In this paper we will restrict ourselves to flat Friedman
Robertson-Walker~FRW! models because present cosm
defect simulations are restricted to these. However, this
significant simplification which enables us to expand all p
turbations in terms of Fourier modes. In Fourier space
tensor quantityTi j can be decomposed into scalarT,TS, vec-
tor Ti

V and tensor componentsTi j
T in the following way:

Ti j ~k!5
1

3
d i j T1S k̂i k̂i2

1

3
d i j DTS1~ k̂iTj

V1 k̂ jTi
V!1Ti j

T .

~2!

This is analogous to the manner in which vector quantit
can be decomposed into scalar and vector components:

Vi~k!5 k̂iV
S1Vi

V . ~3!

In the above, vector and tensor components are transve
that is, k̂iVi

V5 k̂iTi
V5 k̂i k̂ jTi j

T 50 and tensor components ar

in addition, tracelessTi
Ti 50. It is also useful to expres

vector components in an orthonormal basise1,e2 with
e13e25 k̂, so that

V5VSk̂1V1
Ve11V2

Ve2. ~4!

We can also construct a basis for the tensor components
of e1 ande2 by defining the following two matrices:

M 15e1^ e12e2^ e2

~5!
M 35e1^ e21e2^ e1.

Tensor components can then be written

Ti j
T 5T1

T ~M 1! i j 1T3
T ~M 3! i j . ~6!

B. Einstein equations

We define perturbations of the conformally flat FRW me
ric as

gmn5a2~h!~hmn1hmn!, ~7!

wherehmn is the Minkowski metric anduhmnu!1. We will
work in the synchronous gauge in whichh005h0i50. This
gauge is not completely specified. This will result in ext
‘‘constraint equations’’ from the Einstein equations, to ensu
that all degrees of freedom are specified. Perturbations in
energy-momentum tensor are given by

dT0
052dr1Q0

0

dTi
05~r1p!v i1Q i

0 ~8!

dTj
i 5dpd j

i 1pS j
i 1Q j

i ,
2-2
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whereQn
m is the energy momentum tensor of the causal s

source andSn
m contains the anisotropic stresses of relativis

matter. For the velocity terms,v i and Q0i , we use slightly
different variables to those defined in Sec. II A:

u5 ı̇ kvS, QD5 ı̇ kPS

~9!

v i
V5 ı̇ ṽ i

V , Pi
V5 ı̇ P̃i

V .

These new variables enable us to write the evolution eq
tion without explicit ı̇ ’s, which is easier to implement nu
merically, as will be discussed in Sec. IV.

The equations forhmn are then obtained by substitutin
Eqs.~7! and~8! into the Einstein equations, using the hom
geneous part for the background metric. The 00 andij com-
ponents of the equation

d~Rmn1Lgmn!58pGdS Tmn2
1

2
gmnTl

lD ~10!

then lead, to first order, after transforming to Fourier sp
and decomposing into SVT components, to the followi
equations of motion forh:

ḧ1
ȧ

a
ḣ528pG@a2~dr13dp!1Q001Q#,

ḧS12
ȧ

a
ḣS1

k2

3
h2516pG~a2pSS1QS!,

ḧi
V12

ȧ

a
ḣi

V516pG~a2pS i
V1Q i

V!, ~11!

ḧe
T12

ȧ

a
ḣe

T1k2he
T516pG~a2pSe

T1Qe
T!,

and the 00 and 0i components of the equation

dS Rmn2
1

2
Rgmn2LgmnD58pGdTmn ~12!

lead to the following constraint equations forh:

k2h213
ȧ

a
ḣ524pG~a2dr1Q00!,

k2ḣ2524pG@QD2a2~r1p!u#, ~13!

kḣi
V516pG@P̃i

V2a2~r1p!ṽ i
V#,

where i 51,2 and e51,3 and we have definedh25h
2hS.

Energy conservationTmn
;m50 leads to the following

equations of motion for matter and radiation perturbation
10351
ff
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ḋ52~11w!S u1
1

2
ḣD23

ȧ

a
~cs

22w!d,

u̇52
ȧ

a
~123cs

2!u1
cs

2

11w
k2d1

2

3

w

11w
k2SS, ~14!

v̇̃ i
V52

ȧ

a
~123cs

2!ṽ i
V2

w

11w
kS i

V ,

wherew5p/r, cs
25dp/dr is the sound speed squared a

d5dr/r. These equations are valid for uncoupled fluid
And covariant energy conservation with respect to the ba
groundQ um

mn leads to

Q̇0052
ȧ

a
~Q001Q!1QD ,

Q̇D522
ȧ

a
QD2

k2

3
~Q12QS!, ~15!

Ṗ̃i
V522

ȧ

a
P̃i

V1kQ i
V .

In what follows, we shall drop the tilde on the new variabl
to render the equations more legible.

C. Relativistic matter

To treat photon perturbations, we derive the equations
motion for the Stokes parameters, which describe polari
light: the intensityI, the orientation of the polarization el
lipse Q and U and the ratio of its principal axisV. It is
convenient to work with the perturbations normalized to t
average intensityI 05rg/4p:

I 5I 0~11D I !,
~16!

P5I 0DP ,

where P stands forQ, U or V. We start with the genera
transfer equations for polarized light:

Ḋ I51 ı̇ kmD I12ḣi j n̂i n̂ j5 ṫ~D I
S2D I14n̂•vb!,

ḊP1 ı̇ kmDP5 ṫ~DP
S2DP!, ~17!

wherem5n̂• k̂, ṫ5asTne is the differential Thompson cros
section,vb is the baryon velocity and theS denotes scattered
quantities as measured in the comoving frame and the ve
DP hasDQ , DU andDV as components. From the start, it
convenient to notice thatV is always uncoupled to the othe
parameters as it cannot be generated through Thompson
tering. So we can set it to zero without loss of generality. W
shall split the perturbations into scalar, vector and ten
parts:DX5DX

S1DX
V1DX

T , whereX5I , Q or U. The treat-
ment for massless neutrinos is identical to that for the int
sity of photons, except that all terms involvingṫ are zero.
2-3
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1. Scalar perturbations

For scalar modes,U is also uncoupled fromI andQ, and
hence can be set to zero. The contribution from the metri

n̂i n̂ j ḣi j
scalar5

ḣ

3
1S m22

1

3D ḣS ~18!

and the ‘‘polarization term’’ is given by

DP
SS~m!5

3

16E21

1

MS~m,m8!DP
S~m8!dm8, ~19!

where the relevant block of the ‘‘scattering matrix
MS(m,m8) is given by

S 32m822m213m2m82 12m8223m213m2m82

123m822m213m2m82 323m8223m213m2m82D .

~20!

To integrate out the angle dependence, we expand the
turbations in Legendre polynomials:

DX
S5(

,
~2 ı̇ !,~2,11!DX,

S P,~m!. ~21!

The equations then read

Ḋ I
S1 ı̇ km1

2

3
@ ḣ1~3m221!ḣS#

5 ṫFD I0
S 14mvb

S2D I
S2

1

2
P2~m!PSG ,

~22!

ḊQ
S1 ı̇ km5 ṫH 2DQ

S1F12
1

2
P2~m!GPSJ ,

wherePS5D I2
S 1DQ0

S 1DQ2
S .

2. Vector perturbations

Unlike scalar perturbations,U does not decouple fromI
and Q in the vector case, but this can be dealt with ve
easily. First we consider the contribution from the metric

n̂i n̂ j ḣi j
vector52mA12m2~ ḣ1

Vcosw1ḣ2
Vsinw!, ~23!

where cosw5n̂•e1 and sinw5n̂•e2. The polarization term is
given by
10351
is

er-

DP
VS~m!5

3

16pE A12m2A12m82MV~m,m8,q!

3DP
V~m8!dV8, ~24!

whereq5w82w, and the scattering matrixMV(m,m8,q) is
given by

S 2mm8cosq 2mm8cosq m sinq

2mm8cosq 2mm8cosq m sinq

22m8sinq 22m8sinq cosq
D . ~25!

Unlike the scalar case, there is a dependence on the
muthal angle. To eliminate it, we introduce new variab
defined as follows:

D I
V52 ı̇A12m2~D I

V1cosw1D I
V2sinw!,

DQ
V5mA12m2~DQ

V1cosw1DQ
V2sinw!, ~26!

DU
V5A12m2~2DU

V1sinw1DU
V2cosw!.

With these variables, the equations for each compone
decouple and depend only onm so that we can decompos
the new variables into Legendre polynomials. The equati
then read

Ḋ I
Vi1 ı̇ kmD I

Vi14 ı̇mḣi
V52 ṫ~D I

Vi24vbi
V 1 ı̇mPVi!,

ḊQ
Vi1 ı̇ kmDQ

Vi52 ṫ~DQ
Vi2PVi!, ~27!

DQ
Vi1DU

Vi50,

wherePVi5 3
10 D I1

Vi1 3
10 D I3

Vi1 13
20 DQ0

Vi 2 3
4 DQ2

Vi 1 6
35 DQ4

Vi .

3. Tensor perturbations

Again, the Stokes parameterU cannot be set to zero, bu
as with vector perturbations, we will show that can be trea
with Q. The metric term is

n̂i n̂ j ḣi j
tensor5~12m2!~ ḣ1

T cos 2w1ḣ3
T sin 2w!. ~28!

The polarization term is given by

DTS~m!5
3

32pE MT~m,m8,q!DT~m8!dV8, ~29!

where the scattering matrixMT(m,m8,q) is given by
S S2~m!S2~m8!cos 2q 2S2~m!S1~m8!cos 2q 2m8S2~m!sin 2q

2S1~m!S2~m8!cos 2q S1~m!S1~m8!cos 2q m8S1~m!sin 2q

2mS2~m8!sin 2q 22mS1~m8!sin 2q 2mm8cos 2q
D , ~30!
2-4
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whereS6(m)516m2.
As with the vector case, we can eliminate thew depen-

dence by making a change of variables. In the tensor c
these new variables are defined as follows:

D I
T5~12m2!~D I

T1cos 2w1D I
T3sin 2w!,

DQ
T 5~11m2!~DQ

T1cos 2w1DQ
T3sin 2w!, ~31!

DU
T 52m~2DU

T1sin 2w1DU
T3cos 2w!.

Exactly as for vectors, the equations for each polarizat
decouple and depend only onm so that we can expand them
in Legendre polynomials and carry out the integration. T
resulting equations are

Ḋ I
Te1 ı̇ kmD I

Te12ḣe
T52 ṫ~D I

Te1PTe!,

ḊQ
Te1 ı̇ kmDQ

Te52 ṫ~DQ
Te2PTe!, ~32!

DQ
Te1DU

Te50,

where PTe5 1
10 D I0

Te1 1
7 D I2

Te1 3
70 D I4

Te2 3
5 DQ0

Te 1 6
7 DQ2

Te 2 3
70 DQ4

Te

ande51 or 3.

4. Physical significance of moments

If we use the decomposition~21! and the recursion rela
tion

mP,~m!5
1

2,11
@,P,21~m!1~,11!P,11~m!#,

~33!

we obtain the following equations for the moments:

Ḋ I0
S 52kD I1

S 2
2

3
ḣ,

Ḋ I1
S 52

k

3
~2D I2

S 2D I0
S !2 ṫS D I1

S 2
4

3k
ubD ,

Ḋ I2
S 5

k

5
~2D I1

S 23D I3
S !2 ṫS D I2

S 2
1

10
PSD2

4

15
ḣS, ~34!

Ḋ I ,
S 5

2k

2,11
@,D I ,21

S 2~,11!D I ,11
S #2 ṫD I ,

S , ,.2,

ḊQ,
S 5

k

2,11
@,DQ,21

S 2~,11!DQ,11
S #

1 ṫF2DQ,
S 1PSS d,01

1

10
d,2D G ,
10351
e,
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Ḋ I0
Vi52kD I1

Vi2 ṫ~D I0
Vi14vbi

V !,

Ḋ I1
Vi5

k

3
~D I0

Vi22D I2
Vi!2

4

3
ḣi

V2 ṫ~D I1
Vi1PVi!,

Ḋ I ,
Vi5

k

2,11
@,D I ,21

Vi 2~,11!D I ,11
Vi #2 ṫD I ,

Vi, ,.1,

~35!

ḊQ
Vi,5

k

2,11
@,DQ,21

Vi 2~,11!DQ,11
Vi #2 ṫDQ,

Vi

1 ṫPVid0, ,

Ḋ I0
Te52kD I1

Te22ḣe
T2 ṫ~D I0

Te1PTe!,

Ḋ I ,
Te5

k

2,11
@,D I ,21

Te 2~,11!D I ,11
Te #

2 ṫD I ,
Te, ,.0, ~36!

ḊQ,
Te 5

k

2,11
@,DQ,21

Te 2~,11!DQ,11
Te #2 ṫDQ,

Te

2 ṫPTed,0 .

These moments are related to the energy momentum
sor of photons and~massless! neutrinos. First, let us conside
the energy density. We have that

dT0052dr52
r

4pE D IdV, ~37!

so that

d5D I0
S . ~38!

Second, the velocity perturbations

dT0i5~r1p!v i5
3p

4pE D I n̂idV, ~39!

which yields

u5
3

4
kD I1

S ,

v i
V5

1

4
~D I0

Vi1D I2
Vi!. ~40!

Finally we have the anisotropic stresses

dTi j 2
1

3
Tk

kd i j 5pS i j 5
3p

4pE D I S n̂i n̂i2
1

3
d i j DdV,

~41!

which yields
2-5
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SS523D I2
S ,

S i
V5

3

5
~D I1

Vi1D I3
Vi!, ~42!

Se
T5

2

5
D I0

Te1
4

7
D I2

Te1
6

35
D I4

Te .

We now have an open hierarchy of equations for all
components of the energy-momentum tensor. Numericall
has been found that truncating the expansion by simply
ting the,th moment to 0 propagates a sizable error back
the first moment. It has also been found@23# that the follow-
ing expression gives excellent results:

Ḋ,max
5kD,max212S ,max21

h
1 ṫ DD,max

, ~43!

where,max is the moment at which the series is truncate
The above expression is good for all photon and neutr
equation hierarchies.

D. Non-relativistic matter

For non-relativistic matter, it is not necessary to consi
a full phase space expansion, as all but the first few mom
are totally negligible. Our starting point will be the equatio
derived from the conservation of the energy-momentum t
sor ~14!.

CDM does not couple with other types of matter~except
gravitationally!, so we can immediately use the conservat
equations. Herew5cs

250. Also, in the~comoving! synchro-
nous gauge, CDM hasvc5S i j 50, so Eq.~14! simplifies to

ḋc52
ḣ

2
. ~44!

For baryons, these conservation equations~14! become

ḋb52S ub1
ḣ

2
D

u̇b52
ȧ

a
ub1cs

2k2db ~45!

v̇bi
V 52

ȧ

a
vbi

V ,

where we have used the fact thatw, cs
2!1. However, bary-

ons interact with photons through Thompson scattering.
we must correct the last two equations for momentum
change between the two fluids. The equations for phot
obtained in Sec. II C 4 read
10351
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u̇g5k2S 1

4
dg2

1

6
SSD1 ṫ~ub2ug!

v̇g i
V 5

k

4
Sg i

V 1 ṫ~vbi
V 2vg i

V !. ~46!

By comparing with the conservation equations withw

5cs
25 1

3 , we see that there is an extra drag termṫ(vb

2vg). Hence, for momentum to be conserved, we have
add the term (4rg/3rb) ṫ(vg2vb) to the previous two equa
tions, which then become

u̇b52
ȧ

a
ub1cs

2k2db1Rṫ~ug2ub!

~47!

v̇bi
V 52

ȧ

a
vbi

V 1Rṫ~vg i
V 2vbi

V !

where we have definedR54rg/3rb .

E. The Sachs-Wolfe formula

The temperature anisotropy formula is derived by cons
ering perturbations in the photon energyEg along the unper-
turbed pathXm5n̂mh. Here n̂ is the line of sight direction
~i.e. pointing in the direction opposite to the photon’s trave!.
For a proof see, e.g.@12,25#. In the synchronous gauge, th
temperature fluctuations are given by:

dT

T
5

dg

4
2vg•n̂2

1

2E ḣi j n̂i n̂ jdh. ~48!

The above formula was derived under the assumption
instantaneous recombination. To treat the finiteness of
surface of last-scattering, we integrate the expression for
temperature fluctuations over the probability of fre
streaming for a photon,e2tdt:

dT

T
5E

0

h0dT

T
ṫe2tdh

5E
0

h0F ṫe2tS dg

4
2vg•n̂D2

1

2
e2tḣi j n̂i n̂ j Gdh, ~49!

where the integrated Sachs-Wolfe~ISW! term was obtained
by integrating by parts and setting the surface term to z
because the visibility function is very sharply defined arou
the time of recombination and hence is utterly negligible
h50 or today.

The calculation of the thermal history of the universe f
an arbitrary set of cosmological parameters was achie
with an integrated package which will be described in mo
detail elsewhere@26#. The Friedmann equations were solve
simultaneously with the ionization rate equations for hyd
gen and helium. The results were compared for accur
againstRECFAST @27# for which the code provided an inde
pendent check@26#. These computations start very deep
the radiation era and end today in order to create high ac
2-6
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racy tables from which the relevant quantities for the Bol
mann evolution, such as the opacity and visibility functio
are later interpolated using a cubic spline.

III. COSMIC DEFECT SOURCE TERMS

The perturbation source terms in the Boltzmann evolut
are given by the Fourier transform of the cosmic def
energy-momentum tensor, decomposed into scalar, ve
and tensor components. The code can accept the en
momentum tensor of any set of ‘‘active’’ sources with app
priate initial conditions, whether these are cosmic strin
global defects or other more exotic phenomena. We h
experimented with inputting from global defect simulation
but the focus of our attention here is on local cosmic str
simulations which inherently can achieve far higher reso
tion and greater dynamic range.

The cosmic string simulations were performed using
AS code @15#, for which the methods employed and ke
results have been described in detail elsewhere. The str
are approximated by a two-dimensional worldsheet defi
by xs

m(s,t)5„t,xs(s,t)…, where the positionxs is a function
of the two coordinatess ~spacelike! and conformal timet in
an unperturbed FRW background. We can impose the co
tion that the velocityẋ is transverse to the tangent vect
xs8[dxs /ds along the string, that is,ẋs•xs850. The strings
are evolved by splitting the equations of motion for t
strings into their characteristic left- and right-moving mod
which are damped slightly by the expansion of the univer
The key points to note about the string network simulatio
are that above a minimum resolution, energy conservatio
accurately satisfied during the numerical evolution to with
a fraction of 1%, and over a dynamic range approaching
order of magnitude in conformal time~that is, several de-
cades in redshift!.

The energy-momentum tensor of the strings is given b

QmnA2g5msE ds~e ẋs
mẋs

n2e21xs8
mxs8

n!d (3)
„xs2xs

s~s!…,

~50!

where ms is the linear energy density of the string,e

5(x82/(12 ẋ2))1/2, and g is the determinant of the back

ground FRW metric (A2g5a4). All the components of
Qmn(x,h) were calculated at each point on the string n
work and then interpolated onto a high resolution grid. Sin
there is an implicit differentiation of the spatial distributio
of Eq. ~50! in the scalar-vector-tensor decomposition d
scribed in Sec. II A, the interpolation must be sufficien
smooth for the decomposition to remain well behav
Simple cloud-in-cell interpolation, for example, produc
poorly controlled results, so we chose a two step appro
with a higher order scheme. The first step was to use
triangular shaped cloud~TSC! interpolation involving the 27
nearest neighbor points of the string segment. The we
function is given by
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W3~x!5H 3

4
2x2, uxu,

1

2
,

1

2 S 3

2
2x2D 2

,
1

2
,uxu<

3

2
,

whereuxu is the distance between grid point and string in t
x direction. This weight function is multiplied by the appro
priate weights iny and z directions. The second step is t
smooth the result further by employing a Gaussian wind
function in Fourier space, that is, proportional
exp(2k2/kR

2) with kR
21 corresponding to about three gri

points; the discrete Fourier transform employed the NA
routineC06PXF. Energy-momentum conservation was close
monitored and maintained to within a fraction of one perc
by this process.

The smoothing from the interpolation and filtering lea
to an apparent loss of resolution, but this need not be imp
tant. A well-behaved decomposition can be obtained at v
high resolution on a larger grid and then used at lower re
lution for the Green’s function integration. We note also th
in Fourier space, the decomposed scalar, vector and te
parts of Eq.~50!, calculated as in Sec. II A, can be stored
only half the complex grid, because the Fourier transform
a real quantity satisfiesf (k)5 f * (2k); it is necessary to
treat only just over half of the grid, that is,i x ,i y
50,1, . . . ,N21 and i z50,1, . . . ,N/2 ~it is in fact possible
to use exactly half, but the relationship between compone
is more complicated@28#!.

Figure 1 illustrates the decomposed scalar, vector and
sor parts of Eq.~50! for a straight cosmic string calculated a
in Sec. II A. The scalarQ00 is localized in real space, but th
scalar and vector projection operators acting on the ten
componentsQ i j yields the apparently non-local resul
shown. This demonstrates that the decomposed compon
must be calculated and evolved with great care; the fi
temperature pattern must reflect the locality~or causality! of
the sources which generated them.

IV. NUMERICAL IMPLEMENTATION

The various evolution equations derived in Sec. II can
written as three systems~one for scalar, vector and tensor! of
the following form:

dy

dh
5A~k,h!y1q~k,h!, ~51!

wherey andq are vectors of dimensionnvar , the number of
equations to solve, andA is a real square matrix of the sam
order. The components ofy are the metric perturbation
CDM and baryon density contrasts and peculiar velocit
and photon and neutrino moments and those ofq are the
defect source terms. Given that there is a continuous co
bution at all times from these sources throughout space,
cannot simply solve this problem by projecting our initi
conditions forward to the present time with transfer functio
~as in inflation!. However, rather than directly solving th
2-7
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FIG. 1. Positive and negative isosurfaces of scalar, vector and tensor components in real space created from the decompos
energy-momentum tensor of a straight string. Clockwise from top leftQ00 ~positive!, QS ~positive center and negative sidelobes!, QT

1

~negative center and positive sidelobes! and QV
1 ~alternating negative and positive!. Also shown are contours in a plane transverse to

string.
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differential equations at every grid point, it is much mo
efficient to employ a Green’s function approach.

In order to take advantage of the fact that the evolut
equations depend only on the magnitude of the wave ve
and not its orientation, we proceed to solve Eq.~51! by con-
structing the fundamental matrixY of the system~e.g., see
@29#! which satisfies

d

dh
Y5AY,

~52!
Y~0!51,

where1 is the identity matrix. Now, given some initial con
ditions

y~0!5c, ~53!

the solution to Eq.~51! is

y~h!5Y~h!S c1E
0

h
Y21~h8!q~h8!dh8D . ~54!

The above equation reveals a similarity between the ma
Y21 and a Green’s function. However, the latter nomenc
10351
n
or

ix
-

ture is not strictly appropriate in this case, as one of the ba
properties of a Green’s function is undefined in a first ord
problem.

A. Constructing the matrices

Since the system~51! is first order, we need to reexpres
the metric equations in first order form~all the matter equa-
tions are already first order!. For the scalar metric equation
we use the two equations of motion, with the first constra
equation to replace thek2h2 term, to obtain the following
first order equations forḣ and ḣS:

dḣ

dh
52

ȧ

a
ḣ28pGa2~dr13dp!28pG~Q001Q!,

dḣS

dh
5

ȧ

a
~ ḣ22ḣS!18pGa2~2pSS2dr!

18pG~2QS2Q00!. ~55!

The vector metric equation of motion is already in a for
that is first order forḣV:

dḣV

dh
522

ȧ

a
ḣV116pGa2pSV116pGQV. ~56!
2-8
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FIG. 2. Time evolution of ele-
ments of the fundamental matrice
for h53hdec to 4hdec. These
particular diagonal elements ar
those associated with ISW effects
i.e. the time derivative of the met

ric terms: scalar traceḣ ~solid!,

anisotropic scalarḣS ~dot-dashed!,
which coincides with the vector

ḣV and tensorḣT ~dashed!. Also
illustrated is the CDM density
contrastdc ~dotted!. The confor-
mal time along the horizontal axis
is given in Mpc.
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For the tensor modes, we use the standard order reduc
by consideringhT and ḣT as separate variables:

dhT

dh
5ḣT,

~57!
dḣT

dh
522

ȧ

a
ḣT2k2hT116pGa2pST116pGQT.

To constructY, we numerically solve~52!, which involves
solving 3 times~scalar-vector-tensor! nvar systems ofnvar
coupled equations for a chosen numberM of the wave num-
bersk ~typically M;N for an N3 grid!. This contrasts with
solving 10 systems~real and imaginary parts of 1 scalar,
vectors and 2 tensors! of nvar equations forN3/2 wave vec-
tors k if we were to solve Eq.~51! directly at every grid
point. Hence this Green’s function approach represents a
duction of computing time by a factor of 5N2/3nvar . Since
nvar.40, this factor is more than 1000 for a 2563 box and
10 000 for a 10243 box. Of course, there are extra compu
tions involved: the inversion of the matrices~for which we
use the NAGF07ADF andF07ADJ FORTRANroutines! and the
actual integration of Eq.~54!, but this is insignificant com-
pared with the time taken to solve the extra equations
fact, this method is so efficient it is constrained by t
amount of memory~or disk space! required.

To numerically solve the perturbation equations, we u
DVERK.F, a sixth order Runge-KuttaFORTRAN routine. Figure
2 shows the time evolution for some diagonal elements
the fundamental matrices. Our Boltzmann code was ex
sively tested for inflationary scenarios and found to be
excellent agreement with publicly available codes@26#. The
matrix elements are computed fork50 to k51.8NDk/2 with
10351
n,
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n

e

f
n-
n

a spacing of 0.9Dk, whereDk is the simulation grid spacing
The value of 1.8 was chosen to be slightly higher than
maximum possible valueA3. This is to ensure that there i
no need to extrapolate the matrix elements. Thisk-spacing is
sufficiently dense for the elements of the matrices and th
inverses to be linearly interpolated for the appropriate va
of k at every simulation grid point~see Fig. 3!.

Since only a few components of the vectorq are non-zero
~two for scalars, one for vectors and one for tensors!, only
the corresponding rows ofY21 need to be stored. Also, sinc
only 10 quantities are needed to compute the SW inte
(dg , ug , vg

V , h, hS, hV and hT), only the corresponding
columns of Y need to be stored in principle. In practic
however, all componentsy need to be kept to allow the com
putations to be made in several stages. There are two rea
why we want to do this. The main reason is that, even tho
all the components of the fundamental matrices are well
haved at all times, the evolution results in different comp
nents having very large ratios. This results inY becoming
non-invertibleto machine precision. This happens more of
ten at early times and for scalar modes. The solution~54! is
then computed by

y~h!5Y( i )~h!Fy~h i !1E
h i

h i 11
Y( i )21~h8!q~h8!dh8G

h i,h,h i 11 , i 50,1, . . . ,nstage ~58!

y~h i 50!5c,

where the corresponding matricesY( i ) and Y( i )21 are com-
puted fromh i to h i 11. The second reason for wanting t
allow the possibility of running the computations in seve
2-9



g,

M. LANDRIAU AND E. P. S. SHELLARD PHYSICAL REVIEW D67, 103512 ~2003!
FIG. 3. Diagonal scalar matrix
elementsY11, Y11

21 and Y33 from
the late matter era correspondin

respectively toḣ ~continuous and
dashed lines! anddc ~dot dashed!.
The normalization is arbitrary and
the k scale is 1.831024 Mpc21.
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stages is more practical: this enables us to checkpoint
code in order to minimize the effects of a system crash.

B. Initial conditions

As our simulations start at a time much later than that
the phase transition that created the defects, we must sp
initial conditions that are consistent with a fully formed ne
work. In any case, the local string simulations used are ba
on an effective action and hence cannot be used to simu
the phase transition itself.

One of the nice things about the solution~54! is that it is
expressed as a sum of a term depending on the initial co
tions and a second one depending on the defect sources.
provides us with an easy way to assess the relative im
tance of the initial conditions and hence to see if our res
are sensitive or not to them.

One possible choice is to set all gradient terms and t
derivatives to zero in the constraint equations. This lead
the following initial conditions:

dc5db5
3

4
dg5

3

4
dn52

Q00

a2~r1p!
,

ub5ug5un5
QD

a2~r1p!
, ~59!

vb
V5vg

V5vn
V5

P V

a2~r1p!
,

the last line being valid for all three components. This cho
is consistent with setting the pseudo-energyt00 and pseudo-
momentat0i to zero, a set of initial conditions consiste
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with matching an instantaneous defect-forming phase tra
tion to a homogeneous initial state~see, for example,
@30,31#!.

C. Integration over the string energy-momentum tensor

The matrix elements are integrated over the ener
momentum tensor using the trapezoidal rule. The equat
being real and scalar, the same matrices are used for bot
real and imaginary parts as well as the two vector and
tensor components, so that the integration is repeated tw
for scalars, and four times for both vectors and tensors.

The grids of the quantities needed to compute the S
integral,dg , vg andhi j , are then completed at each timest
by complex conjugation and Fourier transformed back to r
space. They are then projected onto the end of the vec
n̂i(h2h0), where then̂i are the pixel directions, using th
inverse cloud-in-cell scheme:

f ~x,y,z!5wx$wy@wz f ~x1 ,y1 ,z1!1~12wz! f ~x1 ,y1 ,z2!#

1~12wy!@wz f ~x1 ,y2 ,z1!1~12wz!

3 f ~x1 ,y2 ,z2!#%1~12wx!$wy@wz f ~x2 ,y1 ,z1!

1~12wz! f ~x2 ,y1 ,z2!#1~12wy!

3@wz f ~x2 ,y2 ,z1!1~12wz! f ~x2 ,y2 ,z2!#%,
~60!

where the x1 ,x2 , . . . define the grid element and th
weights are given bywx512x1 and similarly for the other
two. The temperature fluctuations are then computed us
Eq. ~49!. This integration is also performed using the tra
ezoidal rule as the integrand varies very smoothly along e
line of sight.
2-10
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FIG. 4. Temperature disconti
nuity induced by a straight mov
ing string with an initial velocity
v50.9: total~top left!, scalar~top
right!, vector ~bottom left! and
tensor ~bottom right!. The color
scale is given in units ofD
58pGm/c2.
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V. TEST OF THE NUMERICS

In order to test the validity of our methods, we compa
the result of simulations with analytic results. One of t
difficult aspects of such comparisons is that analytic res
are mostly obtained for defect configurations~i! in
Minkowski space and~ii ! in the no matter approximation. In
an expanding Universe, with a complete treatment of ma
perturbations, these approximations would be relatively g
only in the late matter era and on scales much smaller t
the horizon.

A. Kaiser-Stebbins effect

To illustrate this, we consider an infinite straight strin
moving in a direction perpendicular to the line of sight. A
cording to@8#, this will produce a discontinuity in the tem
perature fluctuations. This calculation is done in the limit th
a plane wave of CMB radiation is propagating in the dire
tion of the observer. Objects behind the string receive a bo
towards the plane in which the string is moving because
the gravitational effect of its deficit angleD58pGm. This
means that the CMB photons that were behind the st
when they cross its plane will be blueshifted, so that th
will be hotter than those that were in front of the string. T
magnitude of the discontinuity is@9#
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T
58pGmvg, ~61!

wherev is the string velocity andg is the Lorentz factor.
This provides an excellent test of our map-making pip

line, particularly the vector modes, which cannot be co
pared with inflationary results such as is done for the sca
and tensors in Ref.@26#. However, in a realistic expandin
Universe, such as those studied in this dissertation, this e
is more complicated due to the presence of matter,
growth ~or decay! of SVT components, the curvature of th
microwave sky and the deceleration of the string. In additi
this idealized solution must be studied in a periodic box w
causal effects due to the limited dynamic range.

In the realization shown in Fig. 4, we minimized the
effects by considering photon propagation in the late U
verse with no cosmological constant, starting ath50.34h0
and ending ath50.41h0, on a square patch of sky o
3.2°33.2° through a box of comoving sizeL50.069h0. The
string was initially moving at a velocityv50.9, which had
redshifted tov50.825 as the photons crossed the plane
the string. These test simulations included no compensa
i.e. everything was set to zero initially. The temperature ju
measured from the average of the plateaus behind an
front of the string is approximately
2-11
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FIG. 5. CMB fluctuations
seeded by a single loop: total~top
left!, scalar ~top right!, vector
~bottom left! and tensor~bottom
right!.
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DT

T
.53Gm/c2, ~62!

whereas the theoretical flat-space, vacuum~no matter! pre-
diction for the given velocities should lie in the range

DT

T
.~37252!Gm/c2. ~63!

This is in good agreement with the expanding Unive
simulation, despite the additional physical effects involv
It appears that the effect of matter on the scalar and ve
modes slightly increases the anisotropies over the domi
flat-space ISW effect.

B. Loop anisotropies

In this section we show the results of small angular sc
simulations of string loops of radiusR50.5h. The size of
the horizon at thebeginningof the simulation is 0.5L where
L is the size of the box. The simulations end ath
'10hdec. Hence, we are dealing with large loops smal
than the horizon, but initially perturbed by Hubble dampin

The general loop solution in flat space can be expande
Fourier modes, with the gauge conditions yielding co
10351
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straints on the relationship between the different mod
These can be solved if only the first few harmonics are c
sidered. The Kibble-Turok solution@32# for a loop of length
L involves the first and third harmonics:

x~z,t !5
L

4p H ê1F ~12k!sins21
1

3
k sin 3s21sins1G

2ê2F ~12k!coss21
1

3
k cos 3s21cosw coss1G

2ê3@2k1/2~12k!1/2 coss21sinw coss1#J , ~64!

wheres65(2p/L)z6 are the left/right moving modes an
the êi are the Cartesian unit vectors.

Figure 5 shows the CMB fluctuations caused by a p
fectly circular loop (w5k50). The loop has an initial ra-
dius just below the angular scale of the patch shown in F
5. The loop begins stationary and then accelerates up
relativistic velocity as it collapses. At this point it is crosse
by the plane of CMB photons where a clear Kaiser-Stebb
discontinuity is evident; note that the amplitude of the te
perature increases from large to small radius as the velo
increases. There is a cancellation of the non-local scalar,
tor and tensor modes in the interior. By the time of phot
2-12
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FIG. 6. CMB fluctuations
seeded by a single~Kibble-Turok!
loop ~top left!: front view ~top
right!, side view~bottom left! and
top view ~bottom right!.
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crossing, causal effects related to the velocity accelera
have not had time to propagate to the center. During
period, the average velocity of a loop is^v&51/A2.

Next we consider a loop withw5p/3 andk51/2, which
does not possess the simple symmetries of the circular c
Its initial state is one of maximum radius and minimum v
locity from which it then shrinks, accelerates and begins
rotate and form cusps. Figure 6 illustrates the total anis
ropy pattern viewed from three different directions into t
box. In the top right corner, there are two things to no
when the photons first cross the loop, there is little effect
it is moving slowly, whereas there is a strong discontinu
later when the photons pass the front of the relativistica
collapsing loop. The bottom left corner shows a side view
the loop, while the bottom right shows a much more comp
anisotropy pattern as cusps form viewed from above.

VI. DISCUSSION

We have presented the full set of sourced evolution eq
tions with the Boltzmann hierarchy necessary to study
gravitational effects of cosmic defects on the CMB. We ha
10351
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se.
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focussed attention on using cosmic string simulations as
evolving causal source terms in these equations. We h
developed efficient numerical techniques for the Gree
function computation of high accuracy maps from the
string network simulations. We have also presented num
cal tests of the full pipeline. More quantitative results fro
extensive supercomputer simulations will be presented
@33,34#, featuring large-angle and small-angle maps, resp
tively.
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