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Distinguishing among scalar field models of dark energy

Irit Maor* and Ram Brustein†

Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
~Received 18 September 2002; published 21 May 2003!

We show that various scalar field models of dark energy predict a degenerate luminosity distance history of
the Universe and thus cannot be distinguished by supernovae measurements alone. In particular, models with
a vanishing cosmological constant~the value of the potential at its minimum! are degenerate with models with
a positive or negative cosmological constant whose magnitude can be as large as the critical density. Adding
information from CMB anisotropy measurements does reduce the degeneracy somewhat but not significantly.
Our results indicate that a theoretical prior on the preferred form of the potential and the field’s initial
conditions may allow one to quantitatively estimate model parameters from the data. Without such a theoretical
prior only limited qualitative information on the form and parameters of the potential can be extracted, even
from very accurate data.
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I. INTRODUCTION

One of the standard methods of interpreting the grow
body of evidence from supernovae@1# and other measure
ments that the expansion of the Universe is accelerating
assume the existence of a dark energy component an
model it using scalar fields~for a recent review see Ref.@2#!.
This links the expansion history of the Universe to theor
of fundamental physics. For example, from this perspec
the value of the potential at its minimum is the cosmologi
constant~CC!. Since at this point there are many theoretic
ideas about the form of the potential but none that parti
larly stands out, it would have been helpful if the data fro
cosmological measurements, such as supernovae typ
cosmic microwave background~CMB! and various others
could provide hints about some generic features of the
tential.

Viable scalar field models of dark energy need to ha
potentials whose energy scale is about the critical den
;10212 eV4, and typical scalar field masses about t
Hubble massm;10233 eV. In such models typical scala
field variations are about the Planck scalemp;1019 GeV,
and typical time scales for such variations are about
Hubble time 1/H0;1018 sec. Whether, and how well, it i
possible to determine the parameters and form of the po
tials and the field’s dynamical history and future from da
beyond such qualitative estimates has been addressed p
ously @3–11#. Weller and Albrecht@5# concluded that some
potentials could be differentiated using SNAP-like data@12#.
They approximated the equation of state~EOS! of each of
the models, and showed by likelihood analysis that some
the models are distinguishable. Another approach is ‘‘rec
struction’’ @9–11#. Here one rewrites the potential as a fun
tion of the luminosity distance (dL) and its derivatives,
which are in turn functions of the redshift. The potential~and
not the EOS! is approximated by a fitting function, and st
tistically tested against a set of accuratedL measurements
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The efficiency of reconstruction depends on the accurac
knowing the values ofVm ~this is needed also when one fi
the EOS! andH0 ~this is needed only for reconstruction!. On
general grounds we expect that scalar field potentials are
distinguishable than their corresponding EOS, because
ferent potentials, with properly adjusted initial conditions f
the field can produce a very similar EOS.

In previous papers@13,14# we have found that supernova
~SN! measurements are limited as a probe of the dark ene
EOS wQ , due to degeneracies. Specifically, it was sho
that dL’s corresponding to two differentwQ’s are degenerate
if both EOS coincide at some point at a relatively low re
shift, z* ~see also Refs.@15# and @16#!. The purpose of the
present analysis is to explore the implications of this deg
eracy on the possibility to determine the scalar field pot
tial. For a given functional form of potential, we would lik
to quantify the amount by which the parameters of the
tential can be varied, and still be indistinguishable by ac
rate SN measurements. Our criteria for indistinguishabi
between two models is that their resultingdL’s differ at most
by 1% up to redshiftz52, in accordance with the antici
pated accuracy of future SN measurements. In addition,
would like to determine whether the functional form of th
potential can be distinguished or constrained by data.

We look for degeneracies among potentials using the
lowing procedure: For a given class of potentials, we cha
the parameters as well as the initial values of the field, w
the constraint thatwQ at z* remains unchanged. This resul
in models whosewQ cross atz* . We know from our previ-
ous analysis that in this case the models tend to be dege
ate. Then we evaluate numerically the differences in thedL’s
of the models to verify this.

There are additional sources of degeneracy that we do
consider here. In our procedure the value of the poten
energy and the value of the kinetic energy remain u
changed. Allowing changes in the potential that are comp
sated by changes in the initial conditions for the kinetic e
ergy will give another dimension of degeneracy. Variation
the value ofVm is yet another degree of freedom, as is r
laxing the assumption of a flat Universe and considering
effects of a clumpy Universe@17#. Additionally, the value of
©2003 The American Physical Society08-1
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I. MAOR AND R. BRUSTEIN PHYSICAL REVIEW D67, 103508 ~2003!
z* in different models can be shifted. We have found thatz*
varies slowly with the redshift depth of the data setzmax. The
dependence is approximately linearz* 5azmax1b ~see also
Ref. @18#!, a andb are model dependent buta is typically
small, about 0.2. And, finally, we have looked only at a cla
of simple potentials that have two independent paramet
Additional parameters in the potential yet again open up n
degrees of freedom, each of which increases the degene
of each of the parameters. Since we have found that this c
of simple potentials suffers from large degeneracies, we
no phenomenological justification for using more comp
potentials. If a theoretical prior about the form of the pote
tial and initial conditions can be motivated then some of t
degeneracy can be removed.

II. DEGENERACIES OF SCALAR FIELD POTENTIALS

We consider a flat Universe with nonrelativistic matt
~dark matter included! whose EOS iswm50, and a dark
energy component which we model by a canonically norm
ized and minimally coupled scalar field. Einstein’s equatio
for such a universe are the following:

H25k2S rmx31
1

2
x2H2f821V~f! D ~1!

xHH85
3k2

2
~rmx31x2H2f82! ~2!

x2H2f91~x2HH822xH2!f81
dV

df
50, ~3!

where x511z, k258p/3mp
2 , rm is the matter energy

density today, primes denote derivatives with respect tox,
and V is the potential of the scalar field. The scalar field
EOS (wQ) is given by

wQ5
pQ

rQ

5
x2H2f8222V

x2H2f8212V
. ~4!

We choose a model, and vary the parameters of the
tential Pi , as well as the values of the scalar field atz*
keeping its derivative constant:

f~z* !→f~z* !1df, ~5!

V→V1dV~Pi ,dPi ,df!, ~6!

df8~z* !5dH~z* !5drm50. ~7!

These variations result in variations in Eqs.~4! and ~1!:
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wQ1dwQ5
x2H2f8222~V1dV!

x2H2f8212~V1dV!

'wQ1F 2~11wQ!

x2H2f8212V
GdV1O~dV2! ~8!

H25k2S rmx31
1

2
x2H2f821~V~f!1dV! D .

~9!

In Eq. ~8!, we have kept terms up to first order indV, as-
suming it is small enough.

Since we know that if the values ofwQ(z* ) are equal for
two models then their luminosity-distance history is appro
mately degenerate, we explore part of the degeneracy in
rameter space by requiring thatdwQ(z* ) vanishes. In Eq.~8!
we ignore higher orders indV, so we simply require thatdV
vanishes to first order. On the other hand, even a small
viation from a spatially flat cosmology will be amplified b
the evolution of the solution. We therefore need to requ
that Eq.~9! holds exactly.

The two constraints we are imposing are then

dV~Pi ,dPi ,df!(1)50, ~10!

dV~Pi ,dPi ,df!(exact)50. ~11!

This set of variations and constraints is algebraic and
often be solved analytically. The analytical solution conne
any given model to a family of associated models, all
which have the samewQ at z* . The next step is to check
numerically how large are the allowed parameter variatio
such that different models in the family are indistinguisha
@25#.

Initial conditions are given atz* , but the evolution of
each of the models towardsz50 is different, and they end
up with a different value ofH0 ~Hubble parameter atx51,
z50). To ensure that all models have the same value ofH0
we rescale them:

H̃5
H

H0
, Vm5

r

H0
2mp

2
, f̃5

f

mp
, Ṽ5

V

H0
2mp

2
.

~12!

Equation ~1! can be reexpressed in terms of the resca
variables

H̃25Vmx31
1

2
x2H̃2f̃821Ṽ. ~13!

This means that although initially only the scalar field pote
tial energy is varied, eventually all quantities~exceptH0)
may vary between models. As we shall show later~Sec. III!,
it turns out that differences inVm are negligible. This result
is not surprising: as was shown in@14# ~see in particular Fig.
2!, this type of degeneracy characterizes models with fix
values ofVm . Families of models which are degenerate w
respect to SN measurements but have different values ofVm
8-2
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FIG. 1. Various quadratic potentials~shown on the left!, their resultingwQ ~middle!, and the relative difference indL ~right!. The
parameters of the potentials are listed in Table I.
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do not exhibit the enhanced resolution ofwQ(z* ). This
means that on top of the degeneracy that we will be exp
ing here, another dimension of degeneracy will open up o
the uncertainties inVm are taken into account. The metho
described here therefore exposes only part of the degene
among potentials.

III. DEGENERACIES AMONG SIMPLE POTENTIALS

We have analyzed various forms of potentials with tw
parameters. For all such potentials there are three inde
dent variations, two parameters and the initial condition
f. Enforcing the two constraints~10!,~11! results in a solu-
tion which is a curve in a three-dimensional space. Ob
ously the degeneracy is larger when more parameters
allowed.

One class of potentials we have looked at isV(f)
5 1

2 m2f21v0. This is one of the standard simple forms
potentials,m is the scalar field mass,v0 is the value of the
potential at the minimum~the CC!. As explained previously
we already have an order of magnitude estimates forv0 and
m, but we would like to know whether they can be det
mined in a more quantitative and conclusive way by the d
In particular we would like to know whether it is possible
distinguish models with a vanishing CC (v050) from mod-
els with a nonvanishing CC (v05” 0) @26#. For this class of
quadratic potentials the variation is given by

V1dV5
1

2
~m1dm!2~f1df!21~v01dv0!

5F1

2
m2f21v0G1@m2fdf1mf2dm1dv0#

1F1

2
~mdf1fdm!21dfdm~m1dm!~f1df!

2
1

2
dm2df2G . ~14!

The first bracket isV itself. The second bracket isdV(1)

which should vanish, and the last bracket isdV(exact)

2dV(1) which should vanish as well. The solution is a cur
in the (dv0 , dm, df) space. On this curve changes in t
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curvature and the height of the minimum of the potential
compensated by a change in the value off such that the
potential energy of the field is locally unchanged.

Figure 1 shows a variety of quadratic potentials on
left, their resultingwQ in the middle, and the relative differ
ence indL on the right. The parameters of the potentials a
listed in Table I. Notice that although the fiducial model h
a vanishing CC,v050, it is degenerate with models tha
have v0 of order unity in units of the critical density
(mp

2H0
2). The uncertainty inm is of order unity in units of the

present value of the Hubble parameterH0.
All the models have values ofVm which are within

60.01 from the value of the fiducial. This means that we
indeed exploring here the degeneracy due to the integra
lation betweendL andwQ , and not the degeneracy due to th
uncertainty inVm . As explained previously, this is a direc
consequence of our method.

Following the same procedure we have analyzed ot
popular classes of potentials with two parameters. Figur
shows similar results for an exponential potentialV
5Ae2Bf. For this specific potential only some of the sol
tions of Eqs.~10! and ~11! can be found analytically, henc
the degeneracy shown is a smaller than the full degener
as can be seen by the reduced range of allowed values ofA in
Table II. Figure 3 shows the results for an inverted quadra
potentialV52 1

2 m2f21v0 ~also see Table III!.
As can be seen from the figures, the deviation indL tends

to peak at low redshift, aboutz50.4. This results from the
following reason: consider two models whose EOS cross
z5z* . For redshiftsz,z* , the differentwQ of the models
imply different rates of expansion. The model whosewQ is
more negative will expand faster, making thedL’s of the two
models diverge. In the rangez.z* the trends reverse, mak
ing their dL’s converge. If this were the only source of d
generacy among models, it would have been useful to fo

TABLE I. Parameters of quadratic potential plotted in Fig. 1.

Solid ~fiducial! Dashed Dotted Dash-dotted

(m/H0)2 1.51 1.12 0.98 1.99
v0 /mp

2H0
2 0 20.86 0.20 0.47

Vm 0.30 0.31 0.29 0.29
8-3
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FIG. 2. Various exponential potentials~shown on the left!, their resultingwQ ~middle!, and the relative difference indL ~right!. The
parameters of the potentials are listed in Table II.
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2.
measurements in this range of redshiftsz;0.4. Unfortu-
nately a second degeneracy~due to the uncertainty inVm)
degrades the extra sensitivity in this region of redshifts.

So far we have analyzed the uncertainty in determina
of parameters under the assumption that the form of the
tential is known. Without a theoretical prior on the form
the ‘‘true’’ potential it is important to find whether differen
classes of potentials can be distinguished by the data al
We will present here only a representative example and
attempt a systematic analysis to expose the full degener

In Fig. 4 we show an example of four different degener
potentials. All models haveVm50.30. The potentials we
have used in this example areV5 1

2 m2f21v0 ~solid!, V
5Ae2Bf ~dotted!, V52 1

2 m2f21v0 ~dashed!, and V5a
1bf ~dash dotted!. The right panel shows that the relativ
differences in theirdL’s are less than one percent up toz
52. The left panel shows the potentials. Although the fu
tional forms of the potentials are very different and they
not have the same asymptotic behavior, they are neverthe
indistinguishable. This can be understood by observing
the patch of potential that was probed by the field during
relevant redshift range~marked in the figure by the shade
area! is rather small. In this patch, differences among
various potentials are marginal.

The fact that a small patch of the potential is actua
being probed justifies the use of a simple potential with
small number of parameters. A fast rolling field would ha
served as a better probe of the potential since it would h
covered a larger patch in a given redshift range, but
would have meant a more positivewQ which goes agains
the evidence of accelerated expansion. Another possible
to enlarge the size of the probed potential patch would h
been to measuredL over a larger redshift range. The diffi
culty here is that at deeper redshifts the contribution of d
energy to the total energy of the Universe is smaller, and
effects become harder to detect.

TABLE II. Parameters of exponential potential plotted in Fig.

Solid ~fiducial! Dashed Dotted

A/mp
2H0

2 4.43 4.13 4.12
mpB 1.78 2.40 1.36
Vm 0.30 0.30 0.29
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Our results may seem to disagree with those of Ref.@5#,
where it was shown that different forms of potentials cou
be distinguished using SNAP-like data alone, but we belie
that they are in fact in full agreement. Our interpretation
the results of Ref.@5# is that they depend on the choice
specific parameters and initial conditions for each of the
tentials that makes them distinguishable. This does not m
that for a given set of data, it will be possible to determi
that a specific class of potentials is preferred over anothe
is quite easy to construct counter examples by choosing
potentials to look similar in the relevant redshift patch.
representative example is shown in Fig. 5. The potentials
are used here are the pseudo Nambu-Goldstone boson p
tial V5M4@cos(f/f)11# @with M4/(mp

2H0
2)50.82 andf /mp

50.6] and the pure exponentialV5Ae2Bf @with
A/(mp

2H0
2)54.43 andmpB51.78].

IV. CONSIDERING CMB

An additional measurement that can possibly probe
dark energy EOS and the scalar field potential is that of
cosmic microwave background~CMB! anisotropy. This mea-
surement is expected to be improved with the upcoming
crowave Anisotropy Probe~MAP! and Planck missions.

We would like to show that under reasonable assum
tions, CMB measurements will not help to significantly co
strain the scalar field potential. The key reason is that
CMB can be thought of as providing one additional point
the Hubble diagram, with sensitivity that does not add s
nificant resolving power compared to accurate measurem
at lower redshifts. This can be motivated by a semianalyt
argument that we present at the end of this section.

Using the CMB measurements to probe scalar field m
els requires additional theoretical assumptions about the
lution in the range fromz;2 to z;1000 to impose the ob
vious constraint that the dark energy had negligible influe
on the geometry and expansion history of the universe ab
a redshift of a few~say,z52). For example, that the poten
tials are ‘‘tracker’’ potentials@19#.

Scalar field models that are not chosen as tracker mod
such as the toy models that we have used in the prev
sections, will give result that are in blatant contradiction w
observations. If the equations of motion are allowed
evolve backwards fromz;0.3 up toz;1000 without any
8-4
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FIG. 3. Various inverted quadratic potentials~shown on the left!, their resultingwQ ~middle!, and the relative difference indL ~right!. The
parameters of the potentials are listed in Table III.
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changes, the dark energy typically becomes dominant, w
wQ approaching 1. In order to to avoid such undesirable
observationally excluded behavior, the class of models ne
to be enlarged and more parameters need to be adde
accommodate the requirement that the effect of the sc
field component should have been negligible in the past.
example, considering an inverted quadratic potential,
needs to allow for a quartic term such that a minimum w
zero CC is available.

Instead of modifying the potential, we have chosen
other approach that mimics the essential feature of any
ceptable class of models: that the scalar field effects are
dominant until recently, when they do become the domin
energy component and reveal their dynamical nature. In
spirit of Ref.@14# we let the equations of motion evolve un
z52 ~the redshift range relevant to SN measurement!, and
for z.2 we change the EOS~and not the potential! by set-
ting wf[wQ(z.2)521 for all models. We then calculat
numerically the relative differences indL at z51000. This
approach is technically much simpler to implement a
study and has the advantage that the results are transpa
One expects that the details of the changes to the EOS~cut-
off! be unimportant, since this is done at a redshift when
dark energy density is already negligible.

We have checked whether the results depend on the
ticular way in which the EOS cutoff is implemented in se
eral ways and found, as expected, that for many cutoff p
cedures the results are quite robust. For example, we h
checked which value forwf is the least sensitive to the cuto
details. We have found that there is essentially no sensiti
for wf521, and the sensitivity grows as the value ofwf
becomes less negative. Forwf50, the cutoff details become
important. As an example, comparing two cutoffs for t
mass potential from Fig. 4 gives a relative difference of 0
for wf521, 0.2% for wf520.7, and 13% forwf50.

TABLE III. Parameters of inverted quadratic potentials plott
in Fig. 3.

Solid ~fiducial! Dashed Dotted Dash-dotted

(m/H0)2 1.51 1.88 0.98 1.08
v0 /mp

2H0
2 1.51 1.09 1.28 2.55

Vm 0.30 0.29 0.29 0.31
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These results are reasonable because the dark energy co
nent effectively disappears forwf,0, while for wf50 any
tampering with it is imprinted all the way to last scatterin
surface.

It is well known that the EOS cannot be determined us
CMB anisotropy data alone due to degeneracies. A thoro
analysis was done in Ref.@20#, who concluded that this de
generacy persists after combining CMB and SN measu
ments. In Ref.@14# it was shown that the inclusion of CMB
constraints in the analysis of the dark energy EOS does
prove the resolution somewhat, but not significantly.

In a simple minded estimate here, we would like to sh
that under reasonable assumptions, CMB measurements
not help to significantly constrain the potential either. Rath
than performing an extensive numerical search, as in R
@14,21#, we use a different strategy: we treat CMB measu
ments as effectively providing one additional point on t
Hubble diagram at the last scattering redshiftzls;1000 as
done also in Ref.@22#. The method cannot provide numer
cally accurate results, but it does highlight the theoreti
degeneracy that limits the ability of CMB measurements
constrain the parameters and functional form of the poten

Treating the CMB measurements as effectively one ad
tional point on the Hubble diagram at redshiftz;1000 can
be implemented in a simple way because the angular
tance and the luminosity distance are related to each o
dL5(11z)2dA . The observed angular size of any feature
the CMB u is related to its physical sized by the angular
distancedA to last scattering surfaceudA5d. The CMB
spectrum yields a series of acoustic peaks, located al n
5(np/S)dA , n being an integer, andS is the sound horizon
at last scattering surface. We are going to ignore uncert
ties in the sound horizonS, which depends on the compos
tion of the universe at last scattering surface. Additiona
the value ofH0 ~or h) is similar in all our models, by con-
struction.

To estimate the measurement accuracy of the CMB p
on the Hubble diagram we may treat the position of the fi
peak l 1, as a direct measurement of the angular distan
therefore the relative errors inl 1 and in the angular distanc
are equalD l 1 / l 15DdA /dA . The position of the first peak is
already measured rather well, to about 3% at the 1s level
~see, for example, Ref.@23#!. A recent analysis of fitting
CMB peaks with Gaussians@24# gives similar results. This is
8-5
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FIG. 4. Various potentials~left
panel! and their relativedL differ-
ences~right panel!. The potentials
we have used in this example ar
1
2 m2f21v0 ~solid!, Ae2Bf ~dot-
ted!, 2

1
2 m2f21v0 ~dashed!, and

a1bf ~dash dotted!. All models
haveVm50.30. The shaded are
in the figure on the left indicates
the region in which the field
moves in the relevant redshif
range 0<z<2.
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expected to be somewhat improved by MAP and Planck
we may expect eventually a 1s error in the subpercen
range.

Another way of estimating the accuracy of the CMB po
is to use the results of Ref.@14#, where it was shown that fo
models which have a linearwQ for z,2 andwQ5const from
z52 to last scattering surface, a derivative as large asw1
56 1

6 could not be distinguished at the 3s level, assuming
full sky coverage and cosmic variance limited measurem
This means that the most accurate CMB measurement
not distinguish models which lead to a difference of~11.6%,
23.2%! in their dL’s. Thus a 1s measurement error estima
in dL in the subpercent range seems reasonable.

According to the preceding discussion we may defi
models to be indistinguishable by the CMB if theirdL dif-
ference is less than a few percent atzls . We may check now
whether this imposes additional constraints on our mod
We find that it does, but not to a significant degree.

We find that the relative differences indL for our models
are within a few percent, in agreement with the semianal
argument that we present shortly. For the potentials show
Fig. 4, we findDdL /dL50% for the exponential potentia
20.4% for the inverted quadratic potential, and20.2% for
the linear potential. For the quadratic potential examples
Fig. 1 we find the followingdL differences from the fiducial
dashed: 0%, dot-dashed:20.3%, dotted:20.4%, for the
exponential potentials of Fig. 2 we find dashed: 0.3%, d
ted: 20.5%, and for the inverted quadratic potential of F
3 we find dashed:20.4%, dotted:20.4%, and dot-dashed
0.2%. As explained previously this is roughly at the limit
the CMB resolution.
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For most of the models we see that CMB is expected
further constrain the parameters if the form of the potentia
known. In general, the largerdL differences are for models
whose differences atz;2 are larger, in agreement with th
following semianalytic argument. Given the approximate n
ture of our measurement accuracy estimate, the large num
of additional sources of degeneracy that we have neglec
and the additional theoretical assumptions that go into
analysis with the CMB point added it is not possible, and
believe that it is not necessary to determine in a more qu
titative way the amount by which the degeneracy is reduc

We may estimate in a rough semianalytic way the relat
errors indL at z;1000 as follows. Luminosity distance a
11zls5xls'1000 for models with negligibleVQ(x.3) is
given by @14#

dL~xls!5xlsE
1

xls dx

H~x!

5xlsE
1

3 dx

H~x!
1xlsE

3

xls dx

H~x!

5
xls

3
dL~3!1

xls

H~3!
E

3

xls dx

H~x!/H~3!

5
xls

3
dL~3!1

xls

H~3!
E

3

xls dx

~x/3!3/2

5
xls

3
dL~3!12xlsS 1

A3
2

1

Axls
D S 33/2

H~3! D , ~15!
e

a
-

FIG. 5. Two potentials~shown
on the left!, and their relativedL

differences~right!. The potentials
we have used in this example ar
v5M4@cos(f/f)11# ~solid! and
Ae2Bf ~dashed!. Both models
haveVm50.30. The shaded are
in the left panel indicates the re
gion in which the field moves in
the relevant redshift range 0<z
<2.
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where we have setH0 to unity, and usedH(x)/H(3)
5(x/3)3/2 becauseVQ(x.3) is negligible.

The second term can be expressed in terms of the lu
nosity distance atx53 and its derivative

1

H~3!
5

d

dx S dL

x D
x53

~16!

so

dL~xls!.2
xls

3
dL~3!12xlsdL8~3!. ~17!

Now we would like to examine the difference indL(xls)
for two models. For a simple and rough error estimate,
may usedL8(3)5c1@dL(3)/3# and DdL8(3)5c2@DdL(3)/3#
with c1 , c2 numerical coefficients of order unity. So finall
we obtain

S DdL

dL
D

xls

.
2c221

2c121 S DdL

dL
D

x53

. ~18!

Note that the relativedL error atxls is independent ofxls .
Since we consider models whose maximal relative erro
z52 is one percent, they will have a relative error indL of
about a few percent atzls , depending on the values ofc1 and
c2. This estimate agrees with the numerical examples tha
have listed above.
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