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Distinguishing among scalar field models of dark energy
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We show that various scalar field models of dark energy predict a degenerate luminosity distance history of
the Universe and thus cannot be distinguished by supernovae measurements alone. In particular, models with
a vanishing cosmological constditie value of the potential at its minimyrare degenerate with models with
a positive or negative cosmological constant whose magnitude can be as large as the critical density. Adding
information from CMB anisotropy measurements does reduce the degeneracy somewhat but not significantly.
Our results indicate that a theoretical prior on the preferred form of the potential and the field’s initial
conditions may allow one to quantitatively estimate model parameters from the data. Without such a theoretical
prior only limited qualitative information on the form and parameters of the potential can be extracted, even
from very accurate data.
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[. INTRODUCTION The efficiency of reconstruction depends on the accuracy of
knowing the values of), (this is needed also when one fits
One of the standard methods of interpreting the growinghe EOS andH, (this is needed only for reconstructjoi©n
body of evidence from supernov#&] and other measure- general grounds we expect that scalar field potentials are less
ments that the expansion of the Universe is accelerating is tdistinguishable than their corresponding EOS, because dif-
assume the existence of a dark energy component and ferent potentials, with properly adjusted initial conditions for
model it using scalar fielddor a recent review see Rd2]). the field can produce a very similar EOS.
This links the expansion history of the Universe to theories In previous papergl3,14] we have found that supernovae
of fundamental physics. For example, from this perspectivéd SN) measurements are limited as a probe of the dark energy
the value of the potential at its minimum is the cosmologicalEOS wq, due to degeneracies. Specifically, it was shown
constantCC). Since at this point there are many theoreticalthatd, 's corresponding to two differeg’s are degenerate
ideas about the form of the potential but none that particuif both EOS coincide at some point at a relatively low red-
larly stands out, it would have been helpful if the data fromshift, z* (see also Refd.15] and[16]). The purpose of the
cosmological measurements, such as supernovae type Igresent analysis is to explore the implications of this degen-
cosmic microwave backgroun@CMB) and various others, eracy on the possibility to determine the scalar field poten-
could provide hints about some generic features of the patial. For a given functional form of potential, we would like
tential. to quantify the amount by which the parameters of the po-
Viable scalar field models of dark energy need to haveential can be varied, and still be indistinguishable by accu-
potentials whose energy scale is about the critical densityate SN measurements. Our criteria for indistinguishability
~10 2 eV*, and typical scalar field masses about thebetween two models is that their resultidgs differ at most
Hubble massm~10" 2 eV. In such models typical scalar by 1% up to redshifz=2, in accordance with the antici-
field variations are about the Planck scafg~ 10" GevV, pated accuracy of future SN measurements. In addition, we
and typical time scales for such variations are about thevould like to determine whether the functional form of the
Hubble time 1H,~10™ sec. Whether, and how well, it is potential can be distinguished or constrained by data.
possible to determine the parameters and form of the poten- We look for degeneracies among potentials using the fol-
tials and the field’s dynamical history and future from datalowing procedure: For a given class of potentials, we change
beyond such qualitative estimates has been addressed prethe parameters as well as the initial values of the field, with
ously [3-11]. Weller and Albrech{5] concluded that some the constraint thatvg at z* remains unchanged. This results
potentials could be differentiated using SNAP-like ddt2]. in models whosev, cross atz*. We know from our previ-
They approximated the equation of stdE09 of each of ous analysis that in this case the models tend to be degener-
the models, and showed by likelihood analysis that some céte. Then we evaluate numerically the differences indifie
the models are distinguishable. Another approach is “reconef the models to verify this.
struction” [9—11]. Here one rewrites the potential as a func- There are additional sources of degeneracy that we do not
tion of the luminosity distanced() and its derivatives, consider here. In our procedure the value of the potential
which are in turn functions of the redshift. The poten(aid  energy and the value of the kinetic energy remain un-
not the EO$ is approximated by a fitting function, and sta- changed. Allowing changes in the potential that are compen-
tistically tested against a set of accurale measurements. sated by changes in the initial conditions for the kinetic en-
ergy will give another dimension of degeneracy. Variation in
the value ofQ),, is yet another degree of freedom, as is re-
*Email address: irrit@bsumail.bgu.ac.il laxing the assumption of a flat Universe and considering the
TEmail address: ramyb@bgumail.bgu.ac.il effects of a clumpy Universgl7]. Additionally, the value of
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z* in different models can be shifted. We have found t@tat X2H2¢'2—2(V+ 8V)

varies slowly with the redshift depth of the data Bgt,. The Wo+ oWg= ————

dependence is approximately linedr= .z, 8 (see also XH ¢ “+2(V+6V)

Ref.[18]), @« and 8 are model dependent but is typically

small, about 0.2. And, finally, we have looked only at a class ~ W+ 2(1+wg) SV +0O(8V?) ®)
of simple potentials that have two independent parameters. © x?H2¢'2+ 2V

Additional parameters in the potential yet again open up new

degrees of freedom, each of which increases the degeneracy s R

of each of the parameters. Since we have found that this class H= &% pnX°+ 5X"HTG" "+ (V(¢) +6V) |.

of simple potentials suffers from large degeneracies, we see (9)

no phenomenological justification for using more complex

potentials. If a theoretical prior about the form of the poten-In Eq. (8), we have kept terms up to first order &V, as-

tial and initial conditions can be motivated then some of thissuming it is small enough.

degeneracy can be removed. Since we know that if the values @fy(z*) are equal for

two models then their luminosity-distance history is approxi-
mately degenerate, we explore part of the degeneracy in pa-
rameter space by requiring théo(z*) vanishes. In Eq(8)

We consider a flat Universe with nonrelativistic matterwe ignore higher orders iaV, so we simply require thatV
(dark matter includedwhose EOS isw,,=0, and a dark vanishes to first order. On the other hand, even a small de-
energy component which we model by a canonically normalviation from a spatially flat cosmology will be amplified by
ized and minimally coupled scalar field. Einstein’s equationghe evolution of the solution. We therefore need to require
for such a universe are the following: that Eq.(9) holds exactly.

The two constraints we are imposing are then

II. DEGENERACIES OF SCALAR FIELD POTENTIALS

1
H2= 12| pa+ 5 X2H?$ 24V (¢) (1) 8V(P;,6P;,5¢4) =0, (10)
SV(P;,8P;,8¢)(&aV=0, (11
3k?
XHH'= T(me3+X2H2¢'2) (2)  This set of variations and constraints is algebraic and can

often be solved analytically. The analytical solution connects
any given model to a family of associated models, all of

12 un i 5, dV which have the same/g at z*. The next step is to check
XH7¢"+ (X*HH' —2xH%) ¢’ + @—0, (3 numerically how large are the allowed parameter variations
such that different models in the family are indistinguishable

where x=1+2z, K2:87T/3m'2), pm IS the matter energy
density today, primes denote derivatives with respect,to
andV is the potential of the scalar field. The scalar field’s
EOS (o) is given by

Initial conditions are given ag*, but the evolution of
each of the models towards=0 is different, and they end
up with a different value oH, (Hubble parameter at=1,
z=0). To ensure that all models have the same valud pf
we rescale them:

w _Po
Q™ . ~ H ~ - \Y
PQ H:H_’ Qm:—Hf 5 d’:mi’ v:—H2 5-
X2H2'2— 2V 0 oMp P oMy
AR S (4) (12
X?H2¢'2+2V . .
Equation (1) can be reexpressed in terms of the rescaled
We choose a model, and vary the parameters of the pov_arlables
tential P;, as well as the values of the scalar field it 1
keeping its derivative constant: H2=Qx3+ §x2ﬁ2$’2+v. (13
H(Z*)— p(Z") + 6, (5)  This means that although initially only the scalar field poten-
tial energy is varied, eventually all quantitiésxceptH)
V—\V+8V(P;, 8P, ,5¢), () ~ may vary between models. As we shall show ld&ec. 1),

it turns out that differences i, are negligible. This result
is not surprising: as was shown|ib4] (see in particular Fig.

0¢'(z")=6H(z*) = 6pm=0. (@) 2), this type of degeneracy characterizes models with fixed
values of(),,. Families of models which are degenerate with
These variations result in variations in E¢4) and (1): respect to SN measurements but have different valuék,pf
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FIG. 1. Various quadratic potentialshown on the left their resultingwg (middle), and the relative difference id, (right). The
parameters of the potentials are listed in Table I.

do not exhibit the enhanced resolution wi(z*). This  curvature and the height of the minimum of the potential are
means that on top of the degeneracy that we will be exploreompensated by a change in the valuedofuch that the
ing here, another dimension of degeneracy will open up oncpotential energy of the field is locally unchanged.

the uncertainties if),, are taken into account. The method  Figure 1 shows a variety of quadratic potentials on the
described here therefore exposes only part of the degeneralwft, their resultingw, in the middle, and the relative differ-

among potentials. ence ind_ on the right. The parameters of the potentials are
listed in Table I. Notice that although the fiducial model has
IIl. DEGENERACIES AMONG SIMPLE POTENTIALS a VaniShing CC,UOIO, it is degenerate with models that

have vy of order unity in units of the critical density
We have analyzed various forms of potentials with two(mZHg). The uncertainty imis of order unity in units of the
parameters. For all such potentials there are three indepegresent value of the Hubble parameky.
dent variations, two parameters and the initial condition for || the models have values of),, which are within
¢. Enforcing the two constraintd.0),(11) results in a solu-  +0,01 from the value of the fiducial. This means that we are
tion which is a curve in a three-dimensional space. Obviindeed exploring here the degeneracy due to the integral re-
ously the degeneracy is larger when more parameters afgtion betweer, andwg, and not the degeneracy due to the

allowed. _ uncertainty inQ,,. As explained previously, this is a direct
One class of potentials we have looked atVi§¢)  consequence of our method

—1m242 i i ; . )

=32M°¢"+v,. This is one of the standard simple forms of  Following the same procedure we have analyzed other

potentials,m is the scalar field mass,, is the value of the  popylar classes of potentials with two parameters. Figure 2
potential at the minimungthe CQ. As explained previously spows similar results for an exponential potenti|

we already have an order of magnitude estimates§omnd = Ae B¢, For this specific potential only some of the solu-
m, but we would like to know whether they can be deter-tijons of Egs.(10) and (11) can be found analytically, hence
mined in a more quantitative and conclusive way by the datage degeneracy shown is a smaller than the full degeneracy,

distinguish models with a vanishing C@d=0) from mod-  Taple II. Figure 3 shows the results for an inverted quadratic
els with a nonvanishing CCv# 0) [26]. For this class of potentialV=— im2¢2+ v, (also see Table IjI

quadratic potentials the variation is given by As can be seen from the figures, the deviatiod,irtends
1 to peak at low redshift, abowt=0.4. This results from the
_ 2 2 following reason: consider two models whose EOS cross at
Vi oV= g (mtom(t o)+ (vot dvo) z=z7*. For redshiftsz<z*, the differentwq of the models
imply different rates of expansion. The model whagg is
_ [Emz¢2+vo +[M2hSd+mp2em+ u,] more neg.ative will expand faster, making tthes of the two
2 models diverge. In the range>z* the trends reverse, mak-
1 ing theird,’s converge. If this were the only source of de-
+ §(m6¢+ HSM)2+ SpSm(m+ Sm)(p+ 5) generacy among models, it would have been useful to focus
1 TABLE |. Parameters of quadratic potential plotted in Fig. 1.
- §5m25¢2 . (14)
Solid (fiducial) Dashed Dotted Dash-dotted
The first bracket isV itself. The second bracket V™Y (m/H,)2 1.51 1.12 0.98 1.99
which should vanish, and the last bracket &/ /men2 0 ~0.86  0.20 0.47
— 8V which should vanish as well. The solution is a curveq 0.30 0.31 0.29 0.29

in the (6vy, om, &¢) space. On this curve changes in the
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FIG. 2. Various exponential potentialshown on the lejt their resultingwg (middle), and the relative difference id, (right). The
parameters of the potentials are listed in Table II.

measurements in this range of redshifts 0.4. Unfortu- Our results may seem to disagree with those of R&f.
nately a second degenera@ue to the uncertainty it} where it was shown that different forms of potentials could
degrades the extra sensitivity in this region of redshifts.  be distinguished using SNAP-like data alone, but we believe

So far we have analyzed the uncertainty in determinatiorthat they are in fact in full agreement. Our interpretation of
of parameters under the assumption that the form of the pdhe results of Ref[5] is that they depend on the choice of
tential is known. Without a theoretical prior on the form of specific parameters and initial conditions for each of the po-
the “true” potential it is important to find whether different tentials that makes them distinguishable. This does not mean
classes of potentials can be distinguished by the data alonthat for a given set of data, it will be possible to determine
We will present here only a representative example and ndhat a specific class of potentials is preferred over another. It
attempt a systematic analysis to expose the full degeneracis quite easy to construct counter examples by choosing the

In Fig. 4 we show an example of four different degeneratepotentials to look similar in the relevant redshift patch. A
potentials. All models havé),,=0.30. The potentials we representative example is shown in Fig. 5. The potentials that
have used in this example aké=3im?¢>+uv, (solid, V  are used here are the pseudo Nambu-Goldstone boson poten-
=Ae B¢ (dotted, V=—3m?¢?+v, (dasheti and V=a tial V=M*[cos/f)+1] [with M*/(mjH§)=0.82 andf/m,
+b¢ (dash dottef] The right panel shows that the relative =0.6] and the pure exponentiaV=Ae B¢ [with
differences in theird_'s are less than one percent up zo A/(m§H§)=4.43 andm,B=1.78].
=2. The left panel shows the potentials. Although the func-
tional forms of the potentials are very different and they do
not have the same asymptotic behavior, they are nevertheless
indistinguishable. This can be understood by observing that an additional measurement that can possibly probe the
the patch of potential that was probed by the field during thejark energy EOS and the scalar field potential is that of the
relevant redshift rangeémarked in the figure by the shaded ¢osmic microwave backgrou@MB) anisotropy. This mea-
areg is rather small. In this patch, differences among thesyrement is expected to be improved with the upcoming Mi-
various potentials are marginal. crowave Anisotropy ProbéVIAP) and Planck missions.

The fact that a small patch of the potential is actually e would like to show that under reasonable assump-
being probed justifies the use of a simple potential with &jons, CMB measurements will not help to significantly con-
small number of parameters. A fast rolling field would havesyrain the scalar field potential. The key reason is that the
served as a better probe of the potential since it would haveB can be thought of as providing one additional point on
covered a larger patch in a given redshift range, but thighe Hubble diagram, with sensitivity that does not add sig-
would have meant a more positivé, which goes against pjficant resolving power compared to accurate measurements
the evidence of accelerated expansion. Another possible wayt jower redshifts. This can be motivated by a semianalytical
to enlarge the size of the probed potential patch would havgrgument that we present at the end of this section.
been to measurd, over a larger redshift range. The diffi-  ysing the CMB measurements to probe scalar field mod-
culty here is that at deeper redshifts the contribution of darlg|s requires additional theoretical assumptions about the evo-
energy to the total energy of the Universe is smaller, and it§tion in the range fronz~2 to z~1000 to impose the ob-
effects become harder to detect. vious constraint that the dark energy had negligible influence
on the geometry and expansion history of the universe above
a redshift of a few(say,z=2). For example, that the poten-
tials are “tracker” potentialg19].

IV. CONSIDERING CMB

TABLE Il. Parameters of exponential potential plotted in Fig. 2.

Solid (fiducia Dashed Dotted Scalar field models that are not chosen as tracker models,
AIm2H3 4.43 4.13 4.12 such as the toy models that we have used in the previous
m,B 1.78 2.40 1.36 sections, will give result that are in blatant contradiction with
Qn 0.30 0.30 0.29 observations. If the equations of motion are allowed to

evolve backwards fronz~0.3 up toz~1000 without any
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FIG. 3. Various inverted quadratic potentigown on the lejt their resultingwg (middle), and the relative difference i (right). The
parameters of the potentials are listed in Table III.

changes, the dark energy typically becomes dominant, witifhese results are reasonable because the dark energy compo-
Wq approaching 1. In order to to avoid such undesirable anagient effectively disappears fav;<0, while forw;=0 any
observationally excluded behavior, the class of models needampering with it is imprinted all the way to last scattering
to be enlarged and more parameters need to be added 4grface.
accommodate the requirement that the effect of the scalar |t is well known that the EOS cannot be determined using
field component should have been negligible in the past. FogmB anisotropy data alone due to degeneracies. A thorough
example, considering an inverted quadratic potential, ON@nalysis was done in Ref20], who concluded that this de-
needs to allow for a quartic term such that a minimum Withgeneracy persists after combining CMB and SN measure-
zero CC is available. _ ments. In Ref[14] it was shown that the inclusion of CMB
Instead of modifying the potential, we have chosen an¢gnstraints in the analysis of the dark energy EOS does im-
other approach that mimics the essential feature of any aGrove the resolution somewhat, but not significantly.
ceptable class of models: that the scalar field effects are sub- |, 5 simple minded estimate here, we would like to show
dominant until recently, when they do become the dominanfhat ynder reasonable assumptions, CMB measurements will
energy component and reveal their dynamical nature. In thgot help to significantly constrain the potential either. Rather
spirit of Ref.[14]_ we let the equations of motion evolve until than performing an extensive numerical search, as in Refs.
z=2 (the redshift range relevant to SN measuremesitd  [14 21], we use a different strategy: we treat CMB measure-
for z>2 we change the EOf&nd not the potentiaby set-  ments as effectively providing one additional point on the
ting wi=wq(z>2)=—1 for all models. We then calculate Hypple diagram at the last scattering redshjft- 1000 as
numerically the relative differences o at z=1000. This  done also in Ref[22]. The method cannot provide numeri-
approach is technically much simpler to implement andcally accurate results, but it does highlight the theoretical
study and has the advantage that the results are transparegégeneracy that limits the ability of CMB measurements to
One expects that the details of the changes to the 808 ¢onstrain the parameters and functional form of the potential.
off) be unimportant, since this is done at a redshift when the - Treating the CMB measurements as effectively one addi-
dark energy density is already negligible. tional point on the Hubble diagram at redshift 1000 can
~ We have checked whether the results depend on the page implemented in a simple way because the angular dis-
ticular way in which the EOS cutoff is implemented in sev- tance and the luminosity distance are related to each other
eral ways and found, as expected, that for many cutoff Prog, = (1+2)2d, . The observed angular size of any feature in
cedures the results are quite robust. For example, we hayge CMB 6 is related to its physical size by the angular
checked which value fow; is the least sensitive to the cutoff distanced, to last scattering surfacéd,=d. The CMB
details. We have found that there is essentially no sensitivitgpectrum yields a series of acoustic peaks, locatet}, at
for wi=—1, and the sensitivity grows as the valuewf  —(nz/S)d,, n being an integer, an8is the sound horizon
becomes less negative. ReF=0, the cutoff details become ¢ |ast scattering surface. We are going to ignore uncertain-
important. As an example, comparing two cutoffs for theties in the sound horizo, which depends on the composi-
mass potential from Fig. 4 gives a relative difference of 0%tjon of the universe at last scattering surface. Additionally,
for wi=—1, 0.2% forw;=-0.7, and 13% forw;=0.  the value ofH, (or h) is similar in all our models, by con-
struction.

TABLE Ill. Parameters of inverted quadratic potentials plotted To estimate the measurement accuracy of the CMB point

in Fig. 3. on the Hubble diagram we may treat the position of the first
Solid (fiducia) Dashed Dotted  Dash-dotted peakl,, as a dire_ct measurement_of the angular_distance,
therefore the relative errors In and in the angular distance
(m/Hp)? 1.51 1.88 0.98 1.08 are equalAl,/l;=Ad,/d,. The position of the first peak is
vo/miH3 1.51 1.09 1.28 2.55 already measured rather well, to about 3% at thelével
O 0.30 0.29 0.29 0.31 (see, for example, Ref.23]). A recent analysis of fitting

CMB peaks with Gaussiari24] gives similar results. This is
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FIG. 4. Various potentialfleft
pane) and their relatived, differ-
ences(right pane). The potentials
we have used in this example are
im?¢p?+v, (solid), Ae B¢ (dot-
ted), —3m?¢?+v, (dashed, and
,,,,,,,,,,,,,,,,,, a+b¢ (dash dotted All models
------- haveQ,,=0.30. The shaded area
S in the figure on the left indicates
T the region in which the field
moves in the relevant redshift
3 1 2 3 range Gsz<2.
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expected to be somewhat improved by MAP and Planck, so For most of the models we see that CMB is expected to
we may expect eventually adl error in the subpercent further constrain the parameters if the form of the potential is
range. known. In general, the larget, differences are for models
Another way of estimating the accuracy of the CMB pointwhose differences a~2 are larger, in agreement with the
is to use the results of Rdfl4], where it was shown that for following semianalytic argument. Given the approximate na-
models which have a lineavg for z<2 andwg=const from  ture of our measurement accuracy estimate, the large number
z=2 to last scattering surface, a derivative as largavas of additional sources of degeneracy that we have neglected,
==+ could not be distinguished at ther3evel, assuming and the additional theoretical assumptions that go into the
full sky coverage and cosmic variance limited measurementnalysis with the CMB point added it is not possible, and we
This means that the most accurate CMB measurements dwelieve that it is not necessary to determine in a more quan-
not distinguish models which lead to a difference 6f..6%, titative way the amount by which the degeneracy is reduced.
—3.2% in theird,'s. Thus a Ir measurement error estimate ~ \We may estimate in a rough semianalytic way the relative
in d_ in the subpercent range seems reasonable. errors ind_ at z~1000 as follows. Luminosity distance at
According to the preceding discussion we may definel +zs=x;s~1000 for models with negligiblé€)o(x>3) is
models to be indistinguishable by the CMB if theif dif-  given by[14]
ference is less than a few percenzgt We may check now

whether this imposes additional constraints on our models. d B xs dx
We find that it does, but not to a significant degree. L(X1s) =Xis L A
We find that the relative differences @) for our models
are within a few percent, in agreement with the semianalytic B 3 dx xs dx
argument that we present shortly. For the potentials shown in X'SL H(x) +X|5L H(x)

Fig. 4, we findAd, /d_. =0% for the exponential potential,

—0.4% for the inverted quadratic potential, arnd.2% for Xis Xis [ %is dx
the linear potential. For the quadratic potential examples in - ?dL(?’HH(g) L H(x)/H(3)
Fig. 1 we find the followingd, differences from the fiducial,

dashed: 0%, dot-dashed:0.3%, dotted:—0.4%, for the Is Xis [%s dX
exponential potentials of Fig. 2 we find dashed: 0.3%, dot- = ?dL(3)+H(3) ,

312
ted: —0.5%, and for the inverted quadratic potential of Fig. (x/3)
3 we find dashed:-0.4%, dotted:—0.4%, and dot-dashed: X 1 1 38312
0.2%. As explained previously this is roughly at the limit of = ﬁdL(3)+2x,S ——— (—) (15
the CMB resolution. 3 V3 xis) \H(3)
2 1
FIG. 5. Two potentialgshown
on the lef}, and their relatived,
differences(right). The potentials
_§ we have used in this example are
34 g, v=M?*cos@/f)+1] (solid) and
> & Ae B¢ (dashed Both models
* have (,,=0.30. The shaded area
in the left panel indicates the re-
gion in which the field moves in
the relevant redshift range <Oz
0 -1 <2.
=3 1 2 3
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where we have seH, to unity, and usedH(x)/H(3) We conclude that once physically reasonable constraints
= (x/3)%? becausedq(x>3) is negligible. are imposed on the potential, CMB measurements do not
The second term can be expressed in terms of the lumiignificantly constrain the parameter space of the potentials,
nosity distance at=3 and its derivative although they are expected to reduce it somewhat. Our
simple minded analysis strengthens the case first made in
1 d/d, Ref.[20] where it was shown that only some average EOS

%: dx| x , (16) can be measured, and agrees with REf8,22.

x=

V. CONCLUSIONS
SO

We have found that it is not possible to obtain precise
__Xis , guantitative estimates for parameters of scalar field models
dL(xs)= = 77du(3) +2X50.(3). @D of dark energy from data alone beyond the obvious order of
magnitude estimates. This is due to theoretical degeneracies,
Now we would like to examine the difference dh () which would persist even with expected future data from the
for two models. For a simple and rough error estimate, wamost accurate SN and CMB measurements.

may used, (3)=c[d_(3)/3] and Ad|(3)=c,[Ad,(3)/3] Theoretical prior knowledge or assumptions on the form
with ¢;, ¢, numerical coefficients of order unity. So finally of the potential and the field's initial conditioripreferably
we obtain leaving a total of just two free parametgrsay allow a more

quantitative determination. For example, assuming that the
field is at rest at the bottom of the potential is equivalent to

having a pure cosmological constant. In this case the magni-
tude of the cosmological constant can be determined with
accurate data to within a few percent.

(Ad,_ 19

dy

2C2_1 AdL
C2c-1ld )

Note that the relativel, error atxs is independent oK.
Since we consider models whose maximal relative error at
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