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Inflation and Ka hler stabilization of the dilaton
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The problems of attempting inflationary model building in a theory containing a dilaton are explained. In
particular, | study the shape of the dilaton potential today and during inflation, based on a weakly coupled
heterotic string model where corrections to thehka potential are assumed to be responsible for dilaton
stabilization. Although no specific model building is attempted, if the inflationary energy density is related to
the scale of gaugino condensation, then the dilaton may be stabilized close enough to today’s value that there
is no significant change in the grand unified theory scale coupling. This can occur in a very wide range of
models, and helps to provide some justification for the standard predictions of the spectral index. | explain how
this result can ultimately be traced to the supersymmetry structure of the theory.
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[. INTRODUCTION not inflating today, there is no reason to expect that this same
term is still important and so it does not necessarily play any
The problem of a runaway dilaton in theories arising frompart in dilaton stabilization today. How can we know whether
the low-energy limit of string theory has been widely dis- such a term would have provided a non-trivial dilaton mini-
cussed. The most frequently quoted mechanism for attemptaum at all, let alone one close to today’s value?
ing to stabilize the dilaton is via an effective potential gen- This issue is important for various reasons. Of course,
erated when some hidden sector gauge symmetry is driven t@rious cosmological implications of varying coupling con-
strong coupling. The gauginos charged under the strongtants have been widely discussed recently in, [48-16);
group condensd1,2], with vacuum expectation values however, here we will consider issues relating more to infla-
(VEVs) that depend on the string-scale coupling and henc¢ion. Firstly, we do not wish to exacerbate the Brustein-
provide an effective non-perturbative superpotential for theSteinhardt problem. For example, if we make the veryaai
dilaton. If more than one group has a gaugino condensate approximation that the effective dilaton potential instanta-
comparable scales as in the racetrack mo&#, or if non-  neously switched from its inflationary form to today’s form
perturbative string physics is accounted for as ithiéasta-  at the end of slow-roll inflatioth then we do not wish to have
bilization [5-9], then the dilaton may have a non-trivial to guide it to its new minimum again. Indeed, if this was
minimum in its scalar potential, as well as the supersymmeeriginally done using higher KK modes as [&2], then a
try preserving minimum at zero coupling. reheat temperature high enough to reexcite these would pre-
The question of why, during the cosmological evolution sumably also be high enough to generate all manner of dan-
of our Universe, we should expect the dilaton to be found ingerous relics. Of course, this is just the usual statement of the
the minimum at non-trivial coupling is also well knowh0]. ~ moduli problenm17] as applied to the dilaton field. However,
The minimum generated by the above mechanism is typiit is also important for a second, possibly more urgent reason
cally rather shallow, at least in comparison to the energies a$pecific to the dilator(at least in the weakly coupled het-
the very early universe. Generically one expects that, startingrotic theory. Inflationary model building concerns itself in
from an arbitrary value, the dilaton would either not ap-part with generating sufficiently flat potentials for slow roll
proach or else overshoot such a minimum and roll away tdo occur. A promising way to achieve this without unnatural
zero coupling. Possible solutions to this tend to invoke fric-tuning is to note that, in a globally supersymmetric theory,
tion in the dilaton’s equation of motion, generated eitherany potential that is tuned to be flat at tree level will remain
from cosmological expansiofill] or higher Kaluza—Klein so to all orders in perturbation theory so long as supersym-
(KK) modes of the dilaton that are expected to be present ahetry (SUSY) remains unbroken. After SUSY breaking,
high energied12]. Here | will concentrate on a different such a potential will become sloped due to quantum correc-
issue: how do we know that, throughout the evolution of thetions. In supergravitf SUGRA) there is also the difficulty
universe, the dilaton’s potential had a minimum located inthat gravitational interactions generate a mass for canonical
the same place as today? Since each term in the effectivaxalar fields of the same order as their potential:h@ob-
supergravity scalar potential couples to the dilaton, at eneem (see, e.g[18]). Suggested ways of overcoming the
gies in the early universe above the current dilaton masproblem include the use of non-canonical forms for the
(typically of order 10-100 Te)/ we may expect that the Kahler potential arising for fields well below the string scale
dilaton potential has a different form. For example, during[19,20, or identifying the slow-roll and string moduli fields
inflation we expect that some term in this scalar potentia[21,22, or perhaps by driving inflation via@ term[23,24.
dominated the energy density of the universe. Since we are

Lin this paper we make the assumption that the dilaton itself is not
*Email address: skinner@thphys.ox.ac.uk the inflaton.
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Assuming one or other of these is successful, then the slopghat ensures the dilaton potential has a minimum during in-
of the scalar potential will again depend on quantum correcflation. The key will be to assume that the scalar fields ac-
tions and it is here that the dilaton plays a crucial role. Ifquire VEVs which depend on the dilaton only via the con-
these quantum corrections are to be under reasonable caldlensate itself. This is a natural mechanism, being the hidden
lational control then we had better ensure that during inflaSector precursor to generation of visible sector SUSY break-
tion the dilaton is stabilized in the weak-coupling regime ofing masses. Additionally, in this picture the inflationary en-
some theory. Even assuming that it is, clearly the spectrfrdy density is always provided by the matteterms. This
index of primordial fluctuations,, will depend on the loca- IS @ standard assumption of much string-inspired inflationary
tion of the dilaton. This conclusion is true irrespective of anyModel building, but here it will follow from the above
renormalization of the coupling constants that must be acMechanism. Remarkably, the models which ha)/e energy den-
counted for in running down from the string scale to theSity compatible with the COBE boundv'<6.7¢"
inflationary scale. Therefore, if we wish inflationary model % 10'° GeV also tend to stabilize the dilaton close to today’s

building to be at all predictive, it is essential that we knowVvalue. This is true despite the many orders of magnitude
where the dilaton is stabilized during inflation. Even so, wedifference between the effective cosmological constants dur-
may still expect that there will be some degeneracynjn NG inflation and today. Similar ideas were pursued 2]
between different inflationary potentials and different dilatonWhere the authors allowed scalar field VEVs to be generated
minima. For exampleD-term inflation is often considered to PY vacuum shifting to cancel & term. However, the results

be ruled out, in part because the inflationary scale appeafi€re are more general, and in particular do not depend on any
incompatible with results from the Cosmic Background Ex-form for the Kehlgr corrections. Finally, the conclusions will
plorer (COBE) and because the model seems to require matdiscuss the obtained results and try to understand why they
ter field values above the Planck scale, rendering calculatiorf0!d. | argue that ultimately, this can be traced to the super-
unreliable. However, as has been noticedd6,26 each of ~ Symmetry structure of the higher dimensional theory.

these conclusions may be altered if the grand unified theory

(GUT) scale gauge coupling is different during inflation. Il. THE MODEL
With our present lack of knowledge about the form of the ) o
potential during inflation, together with a far from com-  In this paper | assume that, both today and during infla-

pletely satisfactory explanation of how to stabilize the dila-tion, the dilaton is stabilized through corrections to the
ton even today, let alone during less well-understood epoch&ahler potential. For convenience, we will work in the linear
it seems almost hopeless to attempt to resolve this situatiopPermultiplet formalism of7.8], although since this has
at present by anything other than very mode|-dependerﬁeen shown to be equivalent to the usual chiral formulation
statements. Nonetheless, we will see that some reasonaty Ref.[30], we expect the same results to hold there also. In
generic, natural mechanisms may provide significant help. this formalism, for each semi-simple hidden sector gauge
| will assume that the dilaton is stabilized via corrections9roup G, the gaugino condensate superfields,
to the Kaler potential, perhaps arising through non- ~Tr(W*W,), are identified with the chiral projections of
perturbative string physics. If these are to be relevant in théhe vector superfields as
field-theoretic regime, they should be described in thilka ,
potential by some functiog(1/ReS). Much previous work U,=—(D,D*-8R)V,
in the subject has concerned itself finding vacua that follow (2.1
from a specific choice of this function, such as those sug-
gested by Shenkdi35]. However, various forms are com-
monly discussed and there is even some debate as to whether ! ) )
any of them realistically represent the true form of string"Vith the overall vector superfiell=2,V, having the dila-
non-perturbative corrections. Here we will keep this functiont©" | as its lowest componerit=V|,_j_o. Compared to the
completely arbitrary, except to assume that its presence in thehiral formulation, we have roughly~1/(S+S). Consider-
Kahler potential is capable of providing an acceptable mini-ing for simplicity an orbifold compactification, the Keer
mum. In Sec. Il briefly review the model of Bitray, Gail-  potential is
lard and WU 7,8] which treats Kaler stabilization using the
linear multiplet formalism. Section Il follows the standard
path and considers the vacuum today. | will be less interested
here in particular examples, but rather will simply list the

usual constraints that the corrections to théhléapotential .« here | consider only untwisted chiral matter fields

must satisfy if they are to be capable of providing a phenom—q)AI . The functiong(V) is supposed to describe the contri-

enologically reasonable vacuum With’ 9.4 vanishiljg COSpution of string non-perturbative effects to théer poten-
mologlcal constant and_SUSY breaking-al. TeV. Having tial, and clearly this affects also the dilaton kinetic term. A
considered the properties of the present vacuum, Sec. | imple calculation shows this to be

returns to the full scalar potential and hence examines the

vacuum during inflation. Again | stress that we will not be ,
. o - . (Ig +1)

concerned with building specific inflationary models, but LiineticD ———— 3,1 91 (2.3

rather we will attempt to find a reasonable generic scheme .

U,=—(D*D,—8R)V,

K=|n(V)+g(V)—2I In Tﬁrf—; |2 (2.2
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where the prime denotes differentiation with respedt ithe  interpretation of the condensate scale as the energy at which
string non-perturbative effects also modify the string-scalehe logarithmic running ofr causes it to become strong. As
gauge coupling of the effective field theory: pointed out i 32] for the whole perturbative model to make
sense in the first place, we of course require that the theory
| started out from reasonably weak coupling, and so we as-

2ma= 1+1(1) @4 sume without further justificatiob,l<1 at all times.
) ) ) _ _ One practical advantage of 'Kier stabilization is that,
and in the 4D Einstein framé,is related tog via even in the presence of several condensing gauge groups, the
dg df physical properties of the vacuum are dominated by the con-
Ve =f(V)=V-=c, (2.5  densate coming frong. , the group with the largest beta
v dv function coefficiento, . The condensate scale, and grav-
with f(0)=g(0)=0 as required in the weak-coupling limit. 1N massm are then given by
The gaugino condensates are described by the Veneziano- Ao=(|u, |2)ve 2.9
Yankielowicz superpotentidl28,29, appropriately general- ¢ * '
ized to incorporate SUGRA as well as the presence of several b
gaugino condensates and/or gauge-invariant matter conden- m= T*<|u+|> (2.9

sates. There are also superpotentials for the matter fields and

terms describing quantum corrections to any possible uncon- .
. . . In reduced Planck units. So, as usual, the condensate plays
fined gauge groups. It is of course important to preserve th

modular invariance of the underlying string theory, and the role of an effective non-perturbative superpotential for

i K/2
Green-Schwarz counterterm is introduced to this énhds athe_r?]'la]fpn?+u+/4~¢ Wip- e is the effect |
assumed that the modular anomaly is completely cancelleg ntia(Ia fcl)??hg):ﬁgiisésllo'lr']h\i,;evvraegUIrrgslznte?{%ﬁecl\;\ée IZS:{; r?r po-
by this tern). The reader is referred to Refg,8] for details. the twisted sect : tter field p't' . b' thg 9 hat
Upon solving the equations of motion, the authors find the. < v oo Sectormatier ields, it 1s given by the somewha

following expression for the condensates=U,|y-7-0 : complicated form

(1+f) % e >l |2et)x+11B— >, oW J*
o e—— X -_— —
|ua|2=A2exr{ln(l)+g(l — 57 1+bE8| | 172 | - ¢A|07¢AI
a
IW — |2
be,—b +X ‘—+2 t,)B
£ 20 g T (e 0ebate % (5, TRB
a | |
b,u,e X2 1 2
2.6 ! KiZ——-~*= [
(2.6 +(lg’'+1)e 2 b W
Wheret|:T||9=;=0, X|Et|+t|_EA| ¢A||2 and 77(t|) |S the b u e—K/Z 2
Dedekind# function, which ensures that E¢R.6) is modu- _gei| (2.10
lar invariant. The constants, and b, are related to thgs 4

EuTctions for the condensing gauge grodp. In particular where£(t,) =[ 1/5(t,)](d7/dt,) andB, is defined by
8],

— IW —kreY+
bfiz(ca— =) cﬁ) 2.7 Bi= 2 I Ggy W by mh). 21D
8 3 A
Modular invariance of the scalar potential requires that, up to
whereC, and Cj are the quadratic Casimirs for the group a possible modular invariant function that would contain sin-
G, in the adjoint and matter represenations, respectivelyyularities, the superpotential has the form
This is 1/8r2 times the coefficient of the one-logp func-

tion for the coupling, and givelsE8:30/87-r2~O.38 whereas,

for typical choices of hidden sector groups and matter repre-
sentationg31], b,<0.1. The constant of proportionali#y?

in Eq. (2.6) again depends on the group structure, mattefor some powerp,' with Yukawa couplings,, that we will
representations and Yukawa couplings present in the entirgssume areO(1). For a cubic superpotential, we take
model; we allow this the fairly generous range 16-10* EA,pﬁ,\'=3 in each term.

(see[31]) though its value will not be crucial here. Notice  In comparison with the usual chiral formulation, the first
that the condensate depends on the dilaton explicitly throughine of Eq. (2.10 approximately corresponds to tfreterms

the exponentials of both the Kker potential and the inverse for the t,-moduli and matter fields, while the second line
of the string-scale gauge coupling, and implicitly throughcontains the dilatonF term together with the usual
any dilaton dependence of the matter field$a, —3eX|W)|? piece, bearing in mind the interpretation of the
=®p|p=7=0 Or t; moduli. This of course follows from the condensate as a non-perturbative contribution to the superpo-

W= c,IT % p(t))2eh' D (2.12
n Al
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tential. Notice also the factor involving 1/61bE8I) which 3bi|2
multiplies the moduli and mattét terms; this arises from the lg’+ 1>W (3.7
Green-Schwarz counterterm preserving modular invariance (1+b.1)
in the theory. for 1#1,, 0 as otherwise there would be a vacuum with
lower energy* Next consider the gauge coupling. Expanding
Ill. THE DILATON POTENTIAL TODAY f(l) aroundf(ly) gives
Following the standard assumptions, we assume that at 1 1 3bi

least one matter field in each term in the superpotential and cra s 5(1=1o)
its derivatives has zero VEV todaypr at least has a VEV 0 (1+b.lo)

<A.). Minimizing the remaining potential with respect to 1= (1=1g)"
t,, the moduli are found8] to be located at their self-dual +— 0
points wherd 4¢ Re(t;) +1]=0. This is in accordance with lo n!
the general result which states that these self-dual points are

always extrema of the scalar poten{iaB,34]. Such a stabi- Where the first and second order terms are evaluated explic-
lization of thet, moduli causes theiF terms to vanish and itly using Egs.(3.2) and (3.3. Equation(3.8) determines
accordingly in these models SUSY is broken by a nonhow the GUT scale coupling changes if the dilaton is located

vanishing dilatorF term. Thus the remaining scalar potential @way from its true minimum. What is important to notice is

d"f
din

: (3.9
=3

=1,

is that the first and second order terms always induce a negli-
gible change inx for b, || =1,/ <1, in other words through-
1\2 b2 |u, |2 out the entire “weakly-coupled” regime. Any significant

V=[(Ig’+1) 1+ _) — I (3.1 change in the GUT scale coupling is therefore traceable to

bl 16 the presence of large higher order derivatives in the expan-

) _ ) sion (3.8). Indeed, such terms can generically be present,
In order to obtain a phenomenologically viable model, wegj,ce Egs.(3.2—(3.4) do not restrict their magnitude. To

would now wish to impose that the dilaton is at the minimumparaphrase: itx does not change significantly during infla-

of its potential, in a vacuum with zero cosmological con-tion, then|l;~1,| is sufficiently small that higher order de-
stants and an acceptable values for the gauge coupling anfatives off are unimportant. We shall see if this is reason-
gravitino mass. This corresponds to the conditions able in the next section.
(1+b,%(Ig’'+1)—3b%12,_, =0 (3.2 IV. THE DILATON POTENTIAL DURING INFLATION
0
Let us now proceed to examine the dilaton potential dur-
, 6b? ing inflation. Since we do not know priori which term is
'+ (1+b.1)3 =0 3.3 responsible for inflation, at first sight this seems to require
* I=lg the somewhat daunting task of investigating the full scalar
potential(2.10. However the COBE bound requires
3
frr_ _180% <0 (3.4) Vi<6.7eV4% 10" Gev, (4.
(1+b.H*

1=lo with typical slow-roll parameters giving VY4~ 10'* GeV.

o . If we assume this energy density is provided by the VEVs of
where Eq.(3.2) corresponds to the vanishing of the remain-gome scalar field) as in hybrid inflation(see, e.g[21]),

ing scalar potential and Eq€.3), (3.4) ensure that the dila- then of course we requird,)<1 and thereforew

ton is at a minimum. Additionally, constraints on the GUT <dWI 9 for O(1) Yukawa counlinas. This simolifies the
scale coupling and SUSY breaking scales may be interprete&otentia(f’:[\(') @ piings. p

as requiring
ek u 2
| 1 V= 2|28+ 1)e M2t (be, b))
‘—‘ =ag=r= (3.5 1+bE8| ] 4 8
27 (1+f1) -1, 25 ,
X2, +(Ig’ +1)
A =10 GeV=m=1 TeV. (3.6 LY
. . . . u.b e K2 12
As mentioned in the Introduction, much previous work on x K ;( _)
these models has now specified particular fofmg., those 4 bl
of [35]) for the functionf(l) [and hence alsg(l)] so as to b.u.e K22
proceed to find viable examples. While it is certainly inter- S PN s (4.2
esting that this can be done in practice, here | shall pursue a 4
different route and examine the implications of the above————
constraints more generally. 20f course we also have=0 at|=0, the SUSY preserving,
Firstly, notice that Eq(3.2) implies uncoupled vacuum.
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For the theory to be under control, we must also haveand so the condensate is extremized at the self-dual points
|u,|<1 in reduced Planck units, but notice that we cannotwhere 4(t;) Ret;+1=0. Now, from Eq.(4.2) it is clear
simply neglect the condensate; until we know where the dithat these points also extremize the dilatorierm and the
laton is stabilized we do not know the condensate scale ilsr.upergravity—3|Wnp|2 term, as these only depend on the
comparison tadW/d¢,, (of course, as yet there are no ob- moduli via the condensate. Consider next the méaiterms.
servational constraints oA, during inflation. To proceed With a cubic superpotential of the forit2.12 and matter
further, in this paper | will make the fairly natural assump- VEVs (4.3) we have
tion that a typical scalar field acquires a VEV connected to
the condensate scale;, at whatever value this turns out to ﬂ
be3 A natural expectation would bigh,, ) A for some sca- dPa
lar field(s) ¢,,. However, there may be some fields which
acquire VEVs proportional to some other power of the con-Where|A, |?=|5 c,py'|? is a constant. Hence for the matter
densate scale, perhaps due to a global symmetry which ré& terms we find
stricts the way they appear in the superpotentale, e.g.

2
=|u+|“|AA.|231;II|n<tJ>|*4 (4.6

37]). For this reason, let us take a typical scalar VEV to be -K ﬂ % % ‘9_ w |*
[37]) yp e K(1+be,l) - DAEJ [atjxﬁ e b e
(I parl?yolu [P m(t)|~* (4.3

oW |? 1 dxg
where\ is any positive power and the Dedekimdfunction = 2 X| W T X Ot
is present to ensure the correct behavior under modular trans- Al Al LK Ko
formations(the condensate itself being invariar®f course, 1 ax
this is exactly the mechanism that generically provides + I+2§(IJ)(5\|]— )|+
SUSY breaking masses in the observable sector todik P
A.—m via gravity mediatioin Additionally, during inflation X | oW |2
this mechanism has the advantage of being able to provide a =A 2 x_J T

high inflationary energy scale in a consistent way. The point
is that in a string theory, all mass scales undgr(in par- e
ticular the inflationary scal¥*#) must be generated dynami- X (26t F ) 1]+ @.7
cally. A condensate or gauge-symmetry breaking scalar fielwhere the ellipses represent terms proportional to
VEV will only form if it is energetically permitted. This may g|u,|?/dt;. Hence the mattef terms are also minimized at
be inhibited in the presence of a large inflationary potentiathe self-dual points. Considering finally the modElterms,
from some other source, and so inflation would be in dangefrom Eqgs.(4.2) it is clear that these amot minimized at the
of preventing its own SUSY breaking caygé)]. Of course, self-dual points, but rather where&@,)x,+1=0. However,
it is not necessary for all the fields to acquire the same VEV&it the self-dual points the only remaining pieces of the
with the same powers; this will be discussed further later. moduli F terms are
At present, let us assume that all sums are restricted to their 5
dominant tern(s). Again, | have ignored the possibility of (bEg_b+) )
additional modular invariant functions in the VEVs, and A(1+Dbel) EI: é(t.)u+§A: | bail
O(few) numerical factors will not affect the argument. 8

Atfirst sight, it appears that there are now various cases t8jnce|u, |?<1 for the theory to be under control, it is clear
consider; depending o, with [u|*<1 we may consider that Eq.(4.8) is negligible compared to either the dilaton or
the dominant contribution t& to originate from either the matterF terms in Eq.(4.2) for generic scalar field VEVs of
matter, moduli or dilator terms during inflation. However, the form(4.3), irrespective of\. Hence the overall potential
let us consider the stabilization of the moduli. With the js minimized when 4¢(t,)Re(t;) + 1=0 and we may neglect
scalar VEVs as in Eq4.3) and using Eq(2.6) we have the moduli F terms henceforth. This approximation
will of course eventually cease to be valid as the universe

(4.9

2

15’|U+|2_ bg,— b, S £ﬁ+2§(t) .2 (4.4 evolves—the remaining small pieces from the modali
at; by T X dty o L ' terms will eventually destabilize the potential and drive
{|#n|?)—0 for at least one field in each term in the super-
_ e otential and its derivatives, as is the case in the true vacuum
 be, b+{2§(tJ)(tJ+tJ)+1 e foday
= . .
by X Let us now return to our primary goal—the stabilization

of the dilaton during inflation. We have seen that, whatever
(4.5 the value of\ the inflationary potential will be dominated by
either the matter or dilatoR terms. Witht,=e'™® these are

_)\(7|U+|2 D (| pail®

oty ’m X

3In [27,36 the authors followed an alternative route and obtained “it may further be shown that the points= e are minima,
the inflationary scale by vacuum shifting to canceD aerm. whereag,; =1 are saddle points of the potential; $88,34].
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eX . be b, 1?
V= U [P (79 B [An |2V B 02124 62 (1
Dby |+ 72 [Anl Vo o 1= 30215+ 60210(1i~1o)
le o dg)| (i=lp)"
—C—— an +
c1+bEBI|u+| +V, (4.9 2 g = (4.12)

lo

— iml6y|—8 2 ;
for Cll'—ln(e' )l EA"|A2'| /3 where with O.(l)?](ukfawa where | have used EgE3.2), (3.3) and(4.10 to evaluate the
couplings we expect£C=<10. In Eq.(4.9), Vo is the form ¢4, anq first order terms. In this equation, the derivatives
of the scalar potential today as given by E8.1), although i, yhe sum arglinear combinations ofthose in Eq.(3.8),
of caurse as yet we do not "”OV.V its yalue QUrlng |nf|at|on. evaluated at the same platel, and are therefore of the
As explained in the Introduction, if one is to justify the gane magnitude. Since the explicit terms on the left-hand
standard predictions of inflationary models whose SlOW'm"side(LHS) and right-hand sidéRHS) of Eq. (4.12 are much

par%me:etrs come t:‘rom ?ig?er—o;‘der, coypling—constar;t des'maller than those of E@3.8), it is clear that the difference
pendent terms in the potentigberhaps arising as quantum [li—1o| between the dilaton minima during inflation and to-

correction$ then it is necessary that the dilaton be stabilizedday will not cause a significant changedn Additionally, for

somewhere near to its value today. Here we do not attempt t& . e 4
. . . pical compactificationg31] the RHS of Eq.(4.11) is at
solve the Brustein-Steinhardt probldtt0] and explain how least 2/3 so this case smoothly overlaps with the previous

the dilaton dynamically se_ttled into this minimui@.g. r_ather one wherd — |, because of the presence\t§. We therefore
than the one at= O.Wh'Ch Is always prese)jtput we su_nply have the remarkable conclusion ttat VEVs of the form
try to ensure that if itan be solved before inflation, it will (4.3 will stabilize the dilaton at a value withr~ag. As

not arise again aﬁerwards. In order to achle\{e aminimum IrJexplained in the Introduction, this provides some justification

the dilaton potential close to the one toda)_/, It again appearg, - ihe ysyal predictions of inflationary model building.

Lhaﬁ there are tvr\]/()thsetpt?]rate Ct?gﬁs to conS|;:Jer.. F;IYGWayh Let us now investigate the dilaton mass. In comparing this
€ large enougn that the matlerterms are typically much -y, yne Hypple rate, it is of course important to consider the

smaller than thev, contribution (at values ofl #1,), and field D with canonical kinetic terms. Equatiaf2.3) shows
thereforeV, would then drivel — |, irrespective of the mat- - ihic is given by

ter term. Since we must have,|<1 for a sub-Planckian
condensate, this will occur whexr™1/2 as then the mattér 1 (lg"+1)

terms are typically suppressed compared tovhéerm. Sec- 29uD*D= T%' i (4.13
ondly, it may be that the matté&r term itself has a minimum

close tol =ly. To examine this case, consider the maker .4 hence we now define

terms. Using Egs(2.5) and(2.6), these are minimized when

b b.|2 1 d?v 1( dl )Zdzv 414
EgP+ =———| ==|=| — .
19"+ 21-1,= b )b 1) (15 7 Vap?| VD) a|
C(2M1+b. )b )(L4be )| | |
) Again using the approximatioh=1, and now considering
bE8b+| the case wherk<1/2 so that the matter term dominates in its
T 2n+b,l L (410 own right, we have
| 2 +b,l)? 4n+1
where in the second line | make the usual weak-coupling no~(g’)’ ( ;2') — (4.15
approximationQ:)Esli, b, l;<1. Comparison with Eq(3.7) bE8b+|i b.l;

shows that such a value can only exist if . . . : -
y and so in order to hold the dilaton in place at its minimum

be during inflation we require
KTS' (4.11)
6b o AN+Db I
o . (1g")']1> ———— be,b.l; (4.16
The point is that the function§1) andg(l) are supposed to "(2h+Dbl) 8

be determined by non-perturbative aspects of the underlying
string model. We have specified phenomenologically desirwhich is not unreasonable, given thatl;<1. By compari-
able properties in Sec. 1l but once these are fixed, we are ngon, ail =1, we have [g')’ ~6b? 1, but we may expect it to
free to retune the functions during inflatidfExpandinglg’ be significantly larger here as higher order curvature terms
aroundl =1, gives come into play.
Finally, consider the inflationary energy scale. The energy
density during inflation will always be of the order of the
SIn particular this is true if the, moduli are fixed at the same MmatterF terms. This is because either this term dominates in
place during inflation as today, evengfl)—g(l,t,), though it is  its own right(for A<1/2) orV, dominates and attempts to
not clear that this would allow such a stabilization. minimize itself atl =1, whereV,=0, with this minimization
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now leaving a residual piece of the order of the mager rivative terms in Eq.(3.8) will eventually cause significant
terms. This is in accordance with the standard assumptions @hanges inx. The presence of the “flattened slope” inis
inflationary model buildingd18,21], but here it emerges as precisely a consequence of the vanishing of the cosmological
the only residual term if typical scalars acquire VEVS as inconstant in today’s vacuum, as expressed(3t2)—(3.4).

Eqg. (4.3 and the moduli and dilaton are stabilized. Taking Why is this so? The question essentially asks why(thef)

li=1o as a crude approximation, we find the coupling should be the Ker potential for the dilaton.
This is of course just a consequence of the supersymmetry
|eg 1/4 ] i 1 . .
VA |u, | structure of the higher dimensional supergravity thed@y;
T 1+bg | =10 SUGRA requires a dilaton to complete its supermultip-
0

let structure, and supersymmetry then dictates how itdé¢a

potential and coupling to other fields are related, whatever
(4.17) frame is used. Now, the__condensate itself depends on the

dilaton only through the Klaer potential andx as in Eq.

(2.6). Of course, this must be so. Therefore it is clear that
where in the second line | have used E216) and neglected there will be a flattening of the condensate’s dilaton depen-
O(1) factors from the; moduli and Yukawa coupling terms. dence near today’s valdg [this is precisely what was tuned
This may be evaluated using E¢8.5), (3.6) once the full  in Egs.(3.2—(3.4)]. Hence, if we can find a way to make the
group structure, matter representations and Yukawa counflationary energy density depend on the condensate in
plings of the hidden sector are specified. However, it is clearoughly the same way as the residual form of the scalar po-
that a very wide range of inflationary scales are possibldential today, we should expect it to have a flattened depen-
using the general schenié.3). Purely as an example, a par- dence neat=1,. Such is the idea behind EG.3) and it is
ticularly natural choice might be to take~1, b, ~0.05 and  pleasing that this is a very natural expectation. Can we make
A =1/3 so that ¢,|=A.. This givesV~10** GeV, whichis  the inflationary dilaton minimurh; close enough tt, that

SRS llzex;{

8mab, |
0

comfortably compatible with the COBE bourtd.1). is unaffected? Equatio#.12 shows that the answer is yes,
because the same higher ordegarithmig derivatives that
V. CONCLUSIONS destabilizea also describe the difference between thand

lo. Clearly, this is because the corrections doand the

In this paper | have argued that the predictions for theKahler potential are related as in E@.5) which is simply a
spectral index of fluctuations, that follow from inflationary ~ consequence of supersymmetry. Now, both sides of Eg.
models usually assume that the GUT scale coupling was th@.12) are <1 and so we need to “mix in” far less of the
same during inflation as today. This could be false if thehigher order derivative terms in order to satisfy this com-
dilaton was stabilized at a different value during inflation, pared to the amount that would cause an appreciable varia-
and we could even lose all calculability if either the theorytion in «.
became strongly coupled or there was(non-trivial) dilaton Although this paper is written with hybrid inflation in
minimum. | have not addressed the complicated issue of whynind, such as commonly arises in string inspired construc-
we should expect the theory to have a weak-coupling detions, no attempt has been made to specify any inflationary
scription in the first placg¢12], but merely assumed that it model. In particular, | have not identified a slow-roll field, or
does. | have then shown that, if dilaton stabilization is due tahe slope of the potential down which it evolves and this
corrections to the Kialer potential 6,8], then during inflation  deserves some comment. Candidate slow-roll fields could
the dilaton will be stabilized at a value which causes negli-arise from a number of sources. Firstly, it is possible to imag-
gible change inx, provided the inflationary energy density ine that whatever the setup the conditi@h3) is not com-
arises from VEVs of the forn4.3). | do not claim that thisis  pletely stable, so the inflaton is some linear combination of
the only way of achieving such a result. Indeed#7,36]  the matter scalar fields. Secondly, we could assume that a
other mechanisms were proposed. Nor do | claim that it i3/EV of the form (4.3 is not in fact generic, with only cer-
not possible to achieve such results using racetrack modetain fields taking this form, others being driven to zero. In
[4] although perhaps the “competing condensates” makes ithis case, one could find a situation where ¢cambination
less likely. However, the scheme presented here is both natef the t; moduli is left undetermined by the dominant terms
ral and generic, relying on the same mechanism as is knowim the potential(see, e.g[21]) thus providing a slow-roll
to provide VEVS in the visible sector. Additionally, | have field. These issues have not been dealt with here. However,
not assumed any particular form for the non-perturbative corwe have shown that with E¢4.3) the dilaton and moduli are
rectiong(l), except to suppose that it can provide reasonableninimized so as to provide a constant energy density. What-
phenomenology today. Therefore it is perhaps worthwhile teever terms destabilize this and lead to the true vacuum must
see if we can understand these results on a slightly deepearise from terms in Eq(2.10 shown to be “negligible” in
level. comparison to those kept in E@L.9). Hence, they are bound

In the absence of any corrections to thehléa potential, to lead toslow roll, at least in the vicinity of the potential
we would finde rising asl, but Eq.(3.8) shows that correc- (4.9). The assumption here is that the VEY4.3) can be
tions of the form(2.4) lead to a flattening of this dependence, preserved in that form on a time scale comparable to, or
which is tuned to occur around the phenomenologically actarger than, the slow-roll time scale. The general theme here
ceptable value. Of course, dgleparts fromly, higher de- was not to build new inflationary models, but rather to try to
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provide some justification for the predictions of standardmore apparent. Finally, it is clearly important to try to pursue
ones[18], should they be implemented in a string context.these ideas into post-inflationary epochs so as to attempt to
With Kahler stabilization of the dilaton, this appears to bemake contact with apparent experimental resil&-16.

quite plausible. It would be interesting to know whether

racetrack models, or more exotic ideas, lead to the same

results. In _particula}r, it would be of great interest to kr_10w ACKNOWLEDGMENTS
whether this can raise models of gaugino condensation in the
strongly coupled heterotic M-theofy38], where the neces- | would like to thank Subir Sarkar, John March-Russell

sity of stabilizing the dilaton and moduli together becomesand Oscar Vives for very helpful conversations.
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