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Inflation and Kä hler stabilization of the dilaton

David Skinner*
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 6 February 2003; published 19 May 2003!

The problems of attempting inflationary model building in a theory containing a dilaton are explained. In
particular, I study the shape of the dilaton potential today and during inflation, based on a weakly coupled
heterotic string model where corrections to the Ka¨hler potential are assumed to be responsible for dilaton
stabilization. Although no specific model building is attempted, if the inflationary energy density is related to
the scale of gaugino condensation, then the dilaton may be stabilized close enough to today’s value that there
is no significant change in the grand unified theory scale coupling. This can occur in a very wide range of
models, and helps to provide some justification for the standard predictions of the spectral index. I explain how
this result can ultimately be traced to the supersymmetry structure of the theory.
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I. INTRODUCTION

The problem of a runaway dilaton in theories arising fro
the low-energy limit of string theory has been widely d
cussed. The most frequently quoted mechanism for attem
ing to stabilize the dilaton is via an effective potential ge
erated when some hidden sector gauge symmetry is drive
strong coupling. The gauginos charged under the str
group condense@1,2#, with vacuum expectation value
~VEVs! that depend on the string-scale coupling and he
provide an effective non-perturbative superpotential for
dilaton. If more than one group has a gaugino condensa
comparable scales as in the racetrack models@3,4#, or if non-
perturbative string physics is accounted for as in Ka¨hler sta-
bilization @5–9#, then the dilaton may have a non-trivia
minimum in its scalar potential, as well as the supersymm
try preserving minimum at zero coupling.

The question of why, during the cosmological evoluti
of our Universe, we should expect the dilaton to be found
the minimum at non-trivial coupling is also well known@10#.
The minimum generated by the above mechanism is t
cally rather shallow, at least in comparison to the energie
the very early universe. Generically one expects that, star
from an arbitrary value, the dilaton would either not a
proach or else overshoot such a minimum and roll away
zero coupling. Possible solutions to this tend to invoke fr
tion in the dilaton’s equation of motion, generated eith
from cosmological expansion@11# or higher Kaluza–Klein
~KK ! modes of the dilaton that are expected to be presen
high energies@12#. Here I will concentrate on a differen
issue: how do we know that, throughout the evolution of
universe, the dilaton’s potential had a minimum located
the same place as today? Since each term in the effe
supergravity scalar potential couples to the dilaton, at e
gies in the early universe above the current dilaton m
~typically of order 10–100 TeV!, we may expect that the
dilaton potential has a different form. For example, duri
inflation we expect that some term in this scalar poten
dominated the energy density of the universe. Since we
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not inflating today, there is no reason to expect that this sa
term is still important and so it does not necessarily play a
part in dilaton stabilization today. How can we know wheth
such a term would have provided a non-trivial dilaton min
mum at all, let alone one close to today’s value?

This issue is important for various reasons. Of cour
various cosmological implications of varying coupling co
stants have been widely discussed recently in, e.g.@13–16#;
however, here we will consider issues relating more to in
tion. Firstly, we do not wish to exacerbate the Bruste
Steinhardt problem. For example, if we make the very na¨ve
approximation that the effective dilaton potential instan
neously switched from its inflationary form to today’s for
at the end of slow-roll inflation,1 then we do not wish to have
to guide it to its new minimum again. Indeed, if this wa
originally done using higher KK modes as in@12#, then a
reheat temperature high enough to reexcite these would
sumably also be high enough to generate all manner of d
gerous relics. Of course, this is just the usual statement of
moduli problem@17# as applied to the dilaton field. Howeve
it is also important for a second, possibly more urgent rea
specific to the dilaton~at least in the weakly coupled he
erotic theory!. Inflationary model building concerns itself i
part with generating sufficiently flat potentials for slow ro
to occur. A promising way to achieve this without unnatu
tuning is to note that, in a globally supersymmetric theo
any potential that is tuned to be flat at tree level will rema
so to all orders in perturbation theory so long as supers
metry ~SUSY! remains unbroken. After SUSY breaking
such a potential will become sloped due to quantum corr
tions. In supergravity~SUGRA! there is also the difficulty
that gravitational interactions generate a mass for canon
scalar fields of the same order as their potential: theh prob-
lem ~see, e.g.@18#!. Suggested ways of overcoming theh
problem include the use of non-canonical forms for t
Kähler potential arising for fields well below the string sca
@19,20#, or identifying the slow-roll and string moduli field
@21,22#, or perhaps by driving inflation via aD term @23,24#.

1In this paper we make the assumption that the dilaton itself is
the inflaton.
©2003 The American Physical Society06-1
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Assuming one or other of these is successful, then the s
of the scalar potential will again depend on quantum corr
tions and it is here that the dilaton plays a crucial role.
these quantum corrections are to be under reasonable c
lational control then we had better ensure that during in
tion the dilaton is stabilized in the weak-coupling regime
some theory. Even assuming that it is, clearly the spec
index of primordial fluctuationsnk will depend on the loca-
tion of the dilaton. This conclusion is true irrespective of a
renormalization of the coupling constants that must be
counted for in running down from the string scale to t
inflationary scale. Therefore, if we wish inflationary mod
building to be at all predictive, it is essential that we kno
where the dilaton is stabilized during inflation. Even so,
may still expect that there will be some degeneracy innk
between different inflationary potentials and different dilat
minima. For example,D-term inflation is often considered t
be ruled out, in part because the inflationary scale app
incompatible with results from the Cosmic Background E
plorer ~COBE! and because the model seems to require m
ter field values above the Planck scale, rendering calculat
unreliable. However, as has been noticed in@25,26# each of
these conclusions may be altered if the grand unified the
~GUT! scale gauge coupling is different during inflatio
With our present lack of knowledge about the form of t
potential during inflation, together with a far from com
pletely satisfactory explanation of how to stabilize the di
ton even today, let alone during less well-understood epo
it seems almost hopeless to attempt to resolve this situa
at present by anything other than very model-depend
statements. Nonetheless, we will see that some reason
generic, natural mechanisms may provide significant hel

I will assume that the dilaton is stabilized via correctio
to the Kähler potential, perhaps arising through no
perturbative string physics. If these are to be relevant in
field-theoretic regime, they should be described in the Ka¨hler
potential by some functiong(1/ReS). Much previous work
in the subject has concerned itself finding vacua that foll
from a specific choice of this function, such as those s
gested by Shenker@35#. However, various forms are com
monly discussed and there is even some debate as to wh
any of them realistically represent the true form of stri
non-perturbative corrections. Here we will keep this functi
completely arbitrary, except to assume that its presence in
Kähler potential is capable of providing an acceptable m
mum. In Sec. III briefly review the model of Bine´truy, Gail-
lard and Wu@7,8# which treats Ka¨hler stabilization using the
linear multiplet formalism. Section III follows the standa
path and considers the vacuum today. I will be less intere
here in particular examples, but rather will simply list th
usual constraints that the corrections to the Ka¨hler potential
must satisfy if they are to be capable of providing a pheno
enologically reasonable vacuum with, e.g. a vanishing c
mological constant and SUSY breaking at;1 TeV. Having
considered the properties of the present vacuum, Sec
returns to the full scalar potential and hence examines
vacuum during inflation. Again I stress that we will not b
concerned with building specific inflationary models, b
rather we will attempt to find a reasonable generic sche
10350
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that ensures the dilaton potential has a minimum during
flation. The key will be to assume that the scalar fields
quire VEVs which depend on the dilaton only via the co
densate itself. This is a natural mechanism, being the hid
sector precursor to generation of visible sector SUSY bre
ing masses. Additionally, in this picture the inflationary e
ergy density is always provided by the matterF terms. This
is a standard assumption of much string-inspired inflation
model building, but here it will follow from the above
mechanism. Remarkably, the models which have energy d
sity compatible with the COBE boundV1/4<6.7e1.4

31016 GeV also tend to stabilize the dilaton close to toda
value. This is true despite the many orders of magnitu
difference between the effective cosmological constants d
ing inflation and today. Similar ideas were pursued in@27#
where the authors allowed scalar field VEVs to be genera
by vacuum shifting to cancel aD term. However, the results
here are more general, and in particular do not depend on
form for the Kähler corrections. Finally, the conclusions wi
discuss the obtained results and try to understand why
hold. I argue that ultimately, this can be traced to the sup
symmetry structure of the higher dimensional theory.

II. THE MODEL

In this paper I assume that, both today and during in
tion, the dilaton is stabilized through corrections to t
Kähler potential. For convenience, we will work in the line
supermultiplet formalism of@7,8#, although since this has
been shown to be equivalent to the usual chiral formulat
in Ref. @30#, we expect the same results to hold there also
this formalism, for each semi-simple hidden sector gau
group Ga the gaugino condensate superfieldsUa
;Tr(WaWa)a are identified with the chiral projections o
the vector superfields as

Ua52~DȧD ȧ28R!Va

~2.1!

Ūa52~D aDa28R̄!Va

with the overall vector superfieldV5(aVa having the dila-
ton l as its lowest component:l 5Vuu5 ū50. Compared to the
chiral formulation, we have roughlyl'1/(S1S̄). Consider-
ing for simplicity an orbifold compactification, the Ka¨hler
potential is

K5 ln~V!1g~V!2(
I

lnS TI1T̄I2(
A

uFAIu2D ~2.2!

where here I consider only untwisted chiral matter fie
FAI . The functiong(V) is supposed to describe the cont
bution of string non-perturbative effects to the Ka¨hler poten-
tial, and clearly this affects also the dilaton kinetic term.
simple calculation shows this to be

Lkinetic.
~ lg811!

4l 2
]ml ]ml ~2.3!
6-2
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INFLATION AND KÄ HLER STABILIZATION OF THE DILATON PHYSICAL REVIEW D 67, 103506 ~2003!
where the prime denotes differentiation with respect tol. The
string non-perturbative effects also modify the string-sc
gauge coupling of the effective field theory:

2pa5
l

11 f ~ l !
~2.4!

and in the 4D Einstein frame,f is related tog via

V
dg

dV
5 f ~V!2V

d f

dV
, ~2.5!

with f (0)5g(0)50 as required in the weak-coupling limi
The gaugino condensates are described by the Venez

Yankielowicz superpotential@28,29#, appropriately general
ized to incorporate SUGRA as well as the presence of sev
gaugino condensates and/or gauge-invariant matter con
sates. There are also superpotentials for the matter fields
terms describing quantum corrections to any possible unc
fined gauge groups. It is of course important to preserve
modular invariance of the underlying string theory, and
Green-Schwarz counterterm is introduced to this end~it is
assumed that the modular anomaly is completely cance
by this term!. The reader is referred to Refs.@7,8# for details.

Upon solving the equations of motion, the authors find
following expression for the condensatesua5Uauu5 ū50 :

uuau25A2expF ln~ l !1g~ l !2
~11 f !

bal

1
bE8

2ba

ba
(

I
ln xI G)

I
uh~ t I !u4(bE8

2ba)/ba,

~2.6!

where t I5TI uu5 ū50 , xI[t I1 t̄ I2(AufAIu2 and h(t I) is the
Dedekindh function, which ensures that Eq.~2.6! is modu-
lar invariant. The constantsba and ba8 are related to theb
functions for the condensing gauge groupGa . In particular
@8#,

ba5
1

8p2 S Ca2
1

3 (
A

Ca
AD ~2.7!

whereCa and Ca
A are the quadratic Casimirs for the grou

Ga in the adjoint and matter represenations, respectiv
This is 1/8p2 times the coefficient of the one-loopb func-
tion for the coupling, and givesbE8

530/8p2'0.38 whereas,
for typical choices of hidden sector groups and matter rep
sentations@31#, ba<0.1. The constant of proportionalityA2

in Eq. ~2.6! again depends on the group structure, ma
representations and Yukawa couplings present in the e
model; we allow this the fairly generous range 1024 – 104

~see@31#! though its value will not be crucial here. Notic
that the condensate depends on the dilaton explicitly thro
the exponentials of both the Ka¨hler potential and the invers
of the string-scale gauge coupling, and implicitly throu
any dilaton dependence of the matter fieldsfAI
5FAIuu5 ū50 or t I moduli. This of course follows from the
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interpretation of the condensate scale as the energy at w
the logarithmic running ofa causes it to become strong. A
pointed out in@32# for the whole perturbative model to mak
sense in the first place, we of course require that the the
started out from reasonably weak coupling, and so we
sume without further justificationbal<1 at all times.

One practical advantage of Ka¨hler stabilization is that,
even in the presence of several condensing gauge groups
physical properties of the vacuum are dominated by the c
densate coming fromG1 , the group with the largest bet
function coefficientb1 . The condensate scaleLc and grav-
itino massm̃ are then given by

Lc5^uu1u2&1/6 ~2.8!

m̃5
b1

4
^uu1u& ~2.9!

in reduced Planck units. So, as usual, the condensate p
the role of an effective non-perturbative superpotential
the dilatonb1u1/4;eK/2Wnp.

The final expression we require is the effective scalar
tential for the model. This was presented in@27#. Neglecting
the twisted sector matter fields, it is given by the somew
complicated form

V5
eK

11bE8
l (

I
FU@2j~ t I !xI11#BI2(

A
fAI

]W

]fAI
U2

1xI(
A

U ]W

]fAI
12j~ t I !BIf̄AIU2G

1~ lg811!eKUb1u1e2K/2

4 S 11
1

b1l D2WU2

23eKUb1u1e2K/2

4
2WU2

~2.10!

wherej(t I)5@1/h(t I)#(dh/dtI) andBI is defined by

BI5(
A

fAI

]W

]fAI
2W2e2K/2

u1

4
~bE8

2b1!. ~2.11!

Modular invariance of the scalar potential requires that, up
a possible modular invariant function that would contain s
gularities, the superpotential has the form

W5(
n

cn)
AI

f
AI

pn
AI

h~ t I !
2(pn

AI
21) ~2.12!

for some powerspn
AI with Yukawa couplingscn that we will

assume areO(1). For a cubic superpotential, we tak
(AIpn

AI53 in each termn.
In comparison with the usual chiral formulation, the fir

line of Eq. ~2.10! approximately corresponds to theF terms
for the t I-moduli and matter fields, while the second lin
contains the dilatonF term together with the usua
23eKuWu2 piece, bearing in mind the interpretation of th
condensate as a non-perturbative contribution to the supe
6-3
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DAVID SKINNER PHYSICAL REVIEW D 67, 103506 ~2003!
tential. Notice also the factor involving 1/(11bE8
l ) which

multiplies the moduli and matterF terms; this arises from the
Green-Schwarz counterterm preserving modular invaria
in the theory.

III. THE DILATON POTENTIAL TODAY

Following the standard assumptions, we assume tha
least one matter field in each term in the superpotential
its derivatives has zero VEV today~or at least has a VEV
!Lc). Minimizing the remaining potential with respect t
t I , the moduli are found@8# to be located at their self-dua
points where@4j Re(t I)11#50. This is in accordance with
the general result which states that these self-dual points
always extrema of the scalar potential@33,34#. Such a stabi-
lization of thet I moduli causes theirF terms to vanish and
accordingly in these models SUSY is broken by a no
vanishing dilatonF term. Thus the remaining scalar potent
is

V5F ~ lg811!S 11
1

b1l D
2

23Gb1
2 uu1u2

16
. ~3.1!

In order to obtain a phenomenologically viable model,
would now wish to impose that the dilaton is at the minimu
of its potential, in a vacuum with zero cosmological co
stants and an acceptable values for the gauge coupling
gravitino mass. This corresponds to the conditions

~11b1l !2~ lg811!23b1
2 l 2u l 5 l 0

50 ~3.2!

f 91U 6b1
2

~11b1l !3U
l 5 l 0

50 ~3.3!

f-2U 18b1
3

~11b1l !4U
l 5 l 0

,0 ~3.4!

where Eq.~3.2! corresponds to the vanishing of the rema
ing scalar potential and Eqs.~3.3!, ~3.4! ensure that the dila
ton is at a minimum. Additionally, constraints on the GU
scale coupling and SUSY breaking scales may be interpr
as requiring

U l

2p~11 f !
U

l 5 l 0

5a05
1

25
~3.5!

Lc51013 GeV⇒m̃51 TeV. ~3.6!

As mentioned in the Introduction, much previous work
these models has now specified particular forms~e.g., those
of @35#! for the functionf ( l ) @and hence alsog( l )] so as to
proceed to find viable examples. While it is certainly inte
esting that this can be done in practice, here I shall purs
different route and examine the implications of the abo
constraints more generally.

Firstly, notice that Eq.~3.2! implies
10350
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3b1

2 l 2

~11b1l !2
~3.7!

for lÞ l 0 , 0 as otherwise there would be a vacuum w
lower energy.2 Next consider the gauge coupling. Expandi
f ( l ) aroundf ( l 0) gives

1

2pa
5

1

2pa0
2

3b1
2

~11b1l 0!2
~ l 2 l 0!

1
1

l 0
(
n53

` Udnf

dln
U

l 5 l 0

~ l 2 l 0!n

n!
, ~3.8!

where the first and second order terms are evaluated ex
itly using Eqs. ~3.2! and ~3.3!. Equation ~3.8! determines
how the GUT scale coupling changes if the dilaton is loca
away from its true minimum. What is important to notice
that the first and second order terms always induce a ne
gible change ina for b1u l 2 l 0u!1, in other words through-
out the entire ‘‘weakly-coupled’’ regime. Any significan
change in the GUT scale coupling is therefore traceable
the presence of large higher order derivatives in the exp
sion ~3.8!. Indeed, such terms can generically be prese
since Eqs.~3.2!–~3.4! do not restrict their magnitude. To
paraphrase: ifa does not change significantly during infla
tion, thenu l i2 l 0u is sufficiently small that higher order de
rivatives of f are unimportant. We shall see if this is reaso
able in the next section.

IV. THE DILATON POTENTIAL DURING INFLATION

Let us now proceed to examine the dilaton potential d
ing inflation. Since we do not knowa priori which term is
responsible for inflation, at first sight this seems to requ
the somewhat daunting task of investigating the full sca
potential~2.10!. However the COBE bound requires

V1/4<6.7e1/431016 GeV, ~4.1!

with typical slow-roll parameterse giving V1/4'1014 GeV.
If we assume this energy density is provided by the VEVs
some scalar field~s! as in hybrid inflation~see, e.g.@21#!,
then of course we requirêfAI&!1 and thereforeW
!]W/]fAI for O~1! Yukawa couplings. This simplifies the
potential to

V5
eK

11bE8
l (

I
F ~2jxI11!e2K/2

u1

4
~bE8

2b1!U2

1xI(
A

U ]W

]fAI
U2G1~ lg811!

3eKUu1b1e2K/2

4 S 11
1

b1l D U
2

23eKUb1u1e2K/2

4 U2

. ~4.2!

2Of course we also haveV50 at l 50, the SUSY preserving
uncoupled vacuum.
6-4
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INFLATION AND KÄ HLER STABILIZATION OF THE DILATON PHYSICAL REVIEW D 67, 103506 ~2003!
For the theory to be under control, we must also ha
uu1u!1 in reduced Planck units, but notice that we can
simply neglect the condensate; until we know where the
laton is stabilized we do not know the condensate scal
comparison to]W/]fAI ~of course, as yet there are no o
servational constraints onLc during inflation!. To proceed
further, in this paper I will make the fairly natural assum
tion that a typical scalar field acquires a VEV connected
the condensate scaleLc , at whatever value this turns out t
be.3 A natural expectation would bêfAI&}Lc for some sca-
lar field~s! fAI . However, there may be some fields whi
acquire VEVs proportional to some other power of the co
densate scale, perhaps due to a global symmetry which
stricts the way they appear in the superpotential~see, e.g.
@37#!. For this reason, let us take a typical scalar VEV to

^ufAIu2&}uu1u2luh~ t I !u24 ~4.3!

wherel is any positive power and the Dedekindh function
is present to ensure the correct behavior under modular tr
formations~the condensate itself being invariant!. Of course,
this is exactly the mechanism that generically provid
SUSY breaking masses in the observable sector today~with
Lc→m̃ via gravity mediation!. Additionally, during inflation
this mechanism has the advantage of being able to provi
high inflationary energy scale in a consistent way. The po
is that in a string theory, all mass scales underms ~in par-
ticular the inflationary scaleV1/4) must be generated dynam
cally. A condensate or gauge-symmetry breaking scalar fi
VEV will only form if it is energetically permitted. This may
be inhibited in the presence of a large inflationary poten
from some other source, and so inflation would be in dan
of preventing its own SUSY breaking cause@19#. Of course,
it is not necessary for all the fields to acquire the same VE
with the same powersl; this will be discussed further late
At present, let us assume that all sums are restricted to
dominant term~s!. Again, I have ignored the possibility o
additional modular invariant functions in the VEVs, an
O~few! numerical factors will not affect the argument.

At first sight, it appears that there are now various case
consider; depending onl, with uu1u2!1 we may consider
the dominant contribution toV to originate from either the
matter, moduli or dilatonF terms during inflation. However
let us consider the stabilization of thet I moduli. With the
scalar VEVs as in Eq.~4.3! and using Eq.~2.6! we have

]uu1u2

]tJ
5

bE8
2b1

b1
F(

I

1

xI

]xI

]tJ
12j~ tJ!G uu1u2 ~4.4!

5
bE8

2b1

b1
F2j~ tJ!~ tJ1 t̄ J!11

xJ
uu1u2

2l
]uu1u2

]tJ
(
AI

^ufAIu2&
xI

G ~4.5!

3In @27,36# the authors followed an alternative route and obtain
the inflationary scale by vacuum shifting to cancel aD term.
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and so the condensate is extremized at the self-dual po
where 4j(tJ) RetJ1150. Now, from Eq.~4.2! it is clear
that these points also extremize the dilatonF term and the
supergravity23uWnpu2 term, as these only depend on th
moduli via the condensate. Consider next the matterF terms.
With a cubic superpotential of the form~2.12! and matter
VEVs ~4.3! we have

U ]W

]fAI
U2

5uu1u4luAAIu2)
JÞI

uh~ tJ!u24 ~4.6!

whereuAAIu25u(ncnpn
AIu2 is a constant. Hence for the matte

F terms we find

e2K~11bE8
l !

]V

]tJ
.(

A,I
F]K

]tJ
xI1

]xI

]tJ
1xI

]

]tJ
GU ]W

]fAI
U2

5(
A,I

xIU ]W

]fAI
U2F(

K
2

1

xK

]xK

]tJ

1
1

xI

]xI

]tJ
12j~ tJ!~d I

J21!G1•••

5 (
A,IÞJ

2
xI

xJ
U ]W

]fAI
U2

3@2j~ tJ!~ tJ1 t̄ J!11#1••• ~4.7!

where the ellipses represent terms proportional
]uu1u2/]tJ . Hence the matterF terms are also minimized a
the self-dual points. Considering finally the moduliF terms,
from Eqs.~4.2! it is clear that these arenot minimized at the
self-dual points, but rather where 2j(t I)xI1150. However,
at the self-dual points the only remaining pieces of t
moduli F terms are

~bE8
2b1!2

4~11bE8
l ! (

I
Uj~ t I !u1(

A
ufAIu2U

2

. ~4.8!

Sinceuu1u2!1 for the theory to be under control, it is clea
that Eq.~4.8! is negligible compared to either the dilaton
matterF terms in Eq.~4.2! for generic scalar field VEVs of
the form~4.3!, irrespective ofl. Hence the overall potentia
is minimized4 when 4j(t I)Re(t I)1150 and we may neglec
the moduli F terms henceforth. This approximatio
will of course eventually cease to be valid as the unive
evolves—the remaining small pieces from the moduliF
terms will eventually destabilize the potential and dri
^ufAIu2&→0 for at least one field in each term in the supe
potential and its derivatives, as is the case in the true vacu
today.

Let us now return to our primary goal—the stabilizatio
of the dilaton during inflation. We have seen that, whate
the value ofl the inflationary potential will be dominated b
either the matter or dilatonF terms. Witht I5eip/6 these are

d 4It may further be shown that the pointst I5eip/6 are minima,
whereast I51 are saddle points of the potential; see@33,34#.
6-5
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V5
eK

11bE8
l
uu1u4luh~eip/6!u28(

A,I
uAAIu21V0

5C
leg

11bE8
l
uu1u4l1V0 ~4.9!

for C5uh(eip/6)u28(A,I uAAIu2/3 where with O~1!Yukawa
couplings we expect 1<C<10. In Eq.~4.9!, V0 is the form
of the scalar potential today as given by Eq.~3.1!, although
of course as yet we do not know its value during inflation

As explained in the Introduction, if one is to justify th
standard predictions of inflationary models whose slow-
parameters come from higher-order, coupling-constant
pendent terms in the potential~perhaps arising as quantu
corrections! then it is necessary that the dilaton be stabiliz
somewhere near to its value today. Here we do not attem
solve the Brustein-Steinhardt problem@10# and explain how
the dilaton dynamically settled into this minimum~e.g. rather
than the one atl 50 which is always present!, but we simply
try to ensure that if itcan be solved before inflation, it will
not arise again afterwards. In order to achieve a minimum
the dilaton potential close to the one today, it again appe
that there are two separate cases to consider. Firstly,l may
be large enough that the matterF terms are typically much
smaller than theV0 contribution ~at values oflÞ l 0), and
thereforeV0 would then drivel→ l 0 irrespective of the mat-
ter term. Since we must haveuu1u!1 for a sub-Planckian
condensate, this will occur whenl.1/2 as then the matterF
terms are typically suppressed compared to theV0 term. Sec-
ondly, it may be that the matterF term itself has a minimum
close tol 5 l 0. To examine this case, consider the matteF
terms. Using Eqs.~2.5! and~2.6!, these are minimized whe

lg811u l 5 l i
5

bE8
b1l 2

~2l~11b1l !1b1l !~11bE8
l !U

l 5 l i

'
bE8

b1l 2

2l1b1l
U

l 5 l i

, ~4.10!

where in the second line I make the usual weak-coup
approximationsbE8

l i , b1l i!1. Comparison with Eq.~3.7!
shows that such a value can only exist if

l,
bE8

6b1
. ~4.11!

The point is that the functionsf ( l ) andg( l ) are supposed to
be determined by non-perturbative aspects of the underl
string model. We have specified phenomenologically de
able properties in Sec. III but once these are fixed, we are
free to retune the functions during inflation.5 Expandinglg8
aroundl 5 l 0 gives

5In particular this is true if thet I moduli are fixed at the sam
place during inflation as today, even ifg( l )→g( l ,t I), though it is
not clear that this would allow such a stabilization.
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e-
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to
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bE8
b1l i

2

2l1b1l i
53b1

2 l 0
216b1

2 l 0~ l i2 l 0!

1 (
n52

`
dn~ lg8!

dln
U

l 0

~ l i2 l 0!n

n!
~4.12!

where I have used Eqs.~3.2!, ~3.3! and~4.10! to evaluate the
zeroth and first order terms. In this equation, the derivati
in the sum are~linear combinations of! those in Eq.~3.8!,
evaluated at the same placel 5 l 0 and are therefore of the
same magnitude. Since the explicit terms on the left-ha
side~LHS! and right-hand side~RHS! of Eq. ~4.12! are much
smaller than those of Eq.~3.8!, it is clear that the difference
u l i2 l 0u between the dilaton minima during inflation and t
day will not cause a significant change ina. Additionally, for
typical compactifications@31# the RHS of Eq.~4.11! is at
least 2/3 so this case smoothly overlaps with the previ
one wherel→ l 0 because of the presence ofV0. We therefore
have the remarkable conclusion thatall VEVs of the form
~4.3! will stabilize the dilaton at a value witha'a0. As
explained in the Introduction, this provides some justificati
for the usual predictions of inflationary model building.

Let us now investigate the dilaton mass. In comparing t
to the Hubble rate, it is of course important to consider
field D with canonical kinetic terms. Equation~2.3! shows
that this is given by

1

4
]mD]mD5

~ lg811!

4l 2
]ml ]ml ~4.13!

and hence we now define

hD[
1

V

d2V

dD2U
l i

5
1

V S dl

dDD 2d2V

dl2
U

l i

. ~4.14!

Again using the approximationl i5 l 0 and now considering
the case wherel ,1/2 so that the matter term dominates in
own right, we have

hD'~ lg8!8
~2l1b1l i !

2

bE8
b1

2 l i
2

2
4l11

b1l i
~4.15!

and so in order to hold the dilaton in place at its minimu
during inflation we require

~ lg8!8u l i
@

4l1b1l i

~2l1b1l i !
2

bE8
b1l i ~4.16!

which is not unreasonable, given thatb1l i!1. By compari-
son, atl 5 l 0 we have (lg8)8'6b1

2 l 0 but we may expect it to
be significantly larger here as higher order curvature te
come into play.

Finally, consider the inflationary energy scale. The ene
density during inflation will always be of the order of th
matterF terms. This is because either this term dominates
its own right ~for l,1/2) or V0 dominates and attempts t
minimize itself atl 5 l 0 whereV050, with this minimization
6-6
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now leaving a residual piece of the order of the matteF
terms. This is in accordance with the standard assumption
inflationary model building@18,21#, but here it emerges a
the only residual term if typical scalars acquire VEVs as
Eq. ~4.3! and the moduli and dilaton are stabilized. Taki
l i5 l 0 as a crude approximation, we find

V1/4'uu1ulS leg

11bE8
l D

l 0

1/4

'uu1ul1 1/2A2 1/2 expF 1

8pab1
G

l 0

~4.17!

where in the second line I have used Eq.~2.6! and neglected
O(1) factors from thet I moduli and Yukawa coupling terms
This may be evaluated using Eqs.~3.5!, ~3.6! once the full
group structure, matter representations and Yukawa c
plings of the hidden sector are specified. However, it is cl
that a very wide range of inflationary scales are poss
using the general scheme~4.3!. Purely as an example, a pa
ticularly natural choice might be to takeA'1, b1'0.05 and
l51/3 so thatufAIu}Lc . This givesV'1014 GeV, which is
comfortably compatible with the COBE bound~4.1!.

V. CONCLUSIONS

In this paper I have argued that the predictions for
spectral index of fluctuationsnk that follow from inflationary
models usually assume that the GUT scale coupling was
same during inflation as today. This could be false if t
dilaton was stabilized at a different value during inflatio
and we could even lose all calculability if either the theo
became strongly coupled or there was no~non-trivial! dilaton
minimum. I have not addressed the complicated issue of w
we should expect the theory to have a weak-coupling
scription in the first place@12#, but merely assumed that
does. I have then shown that, if dilaton stabilization is due
corrections to the Ka¨hler potential@6,8#, then during inflation
the dilaton will be stabilized at a value which causes ne
gible change ina, provided the inflationary energy densi
arises from VEVs of the form~4.3!. I do not claim that this is
the only way of achieving such a result. Indeed in@27,36#
other mechanisms were proposed. Nor do I claim that i
not possible to achieve such results using racetrack mo
@4# although perhaps the ‘‘competing condensates’’ make
less likely. However, the scheme presented here is both n
ral and generic, relying on the same mechanism as is kn
to provide VEVS in the visible sector. Additionally, I hav
not assumed any particular form for the non-perturbative c
rectiong( l ), except to suppose that it can provide reasona
phenomenology today. Therefore it is perhaps worthwhile
see if we can understand these results on a slightly de
level.

In the absence of any corrections to the Ka¨hler potential,
we would finda rising asl, but Eq.~3.8! shows that correc-
tions of the form~2.4! lead to a flattening of this dependenc
which is tuned to occur around the phenomenologically
ceptable value. Of course, asl departs froml 0, higher de-
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rivative terms in Eq.~3.8! will eventually cause significan
changes ina. The presence of the ‘‘flattened slope’’ ina is
precisely a consequence of the vanishing of the cosmolog
constant in today’s vacuum, as expressed in~3.2!–~3.4!.
Why is this so? The question essentially asks why the~ln of!
the coupling should be the Ka¨hler potential for the dilaton.
This is of course just a consequence of the supersymm
structure of the higher dimensional supergravity theory;D
510 SUGRA requires a dilaton to complete its supermult
let structure, and supersymmetry then dictates how its Ka¨hler
potential and coupling to other fields are related, whate
frame is used. Now, the condensate itself depends on
dilaton only through the Ka¨hler potential anda as in Eq.
~2.6!. Of course, this must be so. Therefore it is clear th
there will be a flattening of the condensate’s dilaton dep
dence near today’s valuel 0 @this is precisely what was tune
in Eqs.~3.2!–~3.4!#. Hence, if we can find a way to make th
inflationary energy density depend on the condensate
roughly the same way as the residual form of the scalar
tential today, we should expect it to have a flattened dep
dence nearl 5 l 0. Such is the idea behind Eq.~4.3! and it is
pleasing that this is a very natural expectation. Can we m
the inflationary dilaton minimuml i close enough tol 0 thata
is unaffected? Equation~4.12! shows that the answer is ye
because the same higher order~logarithmic! derivatives that
destabilizea also describe the difference between thel i and
l 0. Clearly, this is because the corrections toa and the
Kähler potential are related as in Eq.~2.5! which is simply a
consequence of supersymmetry. Now, both sides of
~4.12! are !1 and so we need to ‘‘mix in’’ far less of the
higher order derivative terms in order to satisfy this co
pared to the amount that would cause an appreciable va
tion in a.

Although this paper is written with hybrid inflation in
mind, such as commonly arises in string inspired constr
tions, no attempt has been made to specify any inflation
model. In particular, I have not identified a slow-roll field, o
the slope of the potential down which it evolves and th
deserves some comment. Candidate slow-roll fields co
arise from a number of sources. Firstly, it is possible to im
ine that whatever the setup the condition~4.3! is not com-
pletely stable, so the inflaton is some linear combination
the matter scalar fields. Secondly, we could assume th
VEV of the form ~4.3! is not in fact generic, with only cer-
tain fields taking this form, others being driven to zero.
this case, one could find a situation where one~combination!
of the t I moduli is left undetermined by the dominant term
in the potential~see, e.g.@21#! thus providing a slow-roll
field. These issues have not been dealt with here. Howe
we have shown that with Eq.~4.3! the dilaton and moduli are
minimized so as to provide a constant energy density. Wh
ever terms destabilize this and lead to the true vacuum m
arise from terms in Eq.~2.10! shown to be ‘‘negligible’’ in
comparison to those kept in Eq.~4.9!. Hence, they are bound
to lead toslow roll, at least in the vicinity of the potentia
~4.9!. The assumption here is that the VEVs~4.3! can be
preserved in that form on a time scale comparable to,
larger than, the slow-roll time scale. The general theme h
was not to build new inflationary models, but rather to try
6-7
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provide some justification for the predictions of standa
ones@18#, should they be implemented in a string conte
With Kähler stabilization of the dilaton, this appears to
quite plausible. It would be interesting to know wheth
racetrack models, or more exotic ideas, lead to the s
results. In particular, it would be of great interest to kno
whether this can raise models of gaugino condensation in
strongly coupled heterotic M-theory@38#, where the neces
sity of stabilizing the dilaton and moduli together becom
tt

el,

10350
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more apparent. Finally, it is clearly important to try to purs
these ideas into post-inflationary epochs so as to attemp
make contact with apparent experimental results@13–16#.

ACKNOWLEDGMENTS

I would like to thank Subir Sarkar, John March-Russ
and Oscar Vives for very helpful conversations.
D.

D

ys.

iros,

. B

y
I

@1# S. Ferrara, L. Girardello, and H. P. Nilles, Phys. Lett.125B,
457 ~1983!.

@2# M. Dine, R. Rohm, N. Seiberg, and E. Witten, Phys. Le
156B, 55 ~1985!.

@3# B. de Carlos, J. A. Casas, and C. Mun˜oz, Nucl. Phys.B399,
623 ~1993!.

@4# B. de Carlos, J. A. Casas, and C. Mun˜oz, Phys. Lett. B299,
234 ~1993!.

@5# J. A. Casas, Phys. Lett. B384, 103 ~1996!.
@6# T. Banks and M. Dine, Phys. Rev. D50, 7454~1994!.
@7# P. Binétruy, M. K. Gaillard, and Y. Y. Wu, Nucl. Phys.B481,

109 ~1996!.
@8# P. Binétruy, M. K. Gaillard, and Y. Y. Wu, Nucl. Phys.B493,

27 ~1997!.
@9# T. Barreiro, B. de Carlos, and E. J. Copeland, Phys. Rev. D57,

7354 ~1998!.
@10# R. Brustein and P. J. Steinhardt, Phys. Lett. B302, 196~1993!.
@11# T. Barreiro, B. de Carlos, and E. J. Copeland, Phys. Rev. D58,

083513~1998!.
@12# M. Dine, Phys. Lett. B482, 213 ~2000!.
@13# J. K. Webbet al., Phys. Rev. Lett.87, 091301~2001!.
@14# T. Banks, M. Dine, and M. R. Douglas, Phys. Rev. Lett.88,

131301~2002!.
@15# J. P. Uzan, hep-ph/0205340.
@16# J. N. Bahcall, C. L. Steinhardt, and D. Schleg

astro-ph/0301507.
@17# T. Banks, D. B. Kaplan, and A. E. Nelson, Phys. Rev. D49,

779 ~1994!.
@18# D. H. Lyth and A. Riotto, Phys. Rep.314, 1 ~1999!.
@19# G. G. Ross and S. Sarkar, Nucl. Phys.B461, 597 ~1996!.
.

@20# J. A. Adams, G. G. Ross, and S. Sarkar, Phys. Lett. B391, 271
~1997!.

@21# E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart, and
Wands, Phys. Rev. D49, 6410~1994!.

@22# T. Barreiro and B. de Carlos, J. High Energy Phys.03, 020
~2000!.

@23# P. Binétruy and G. R. Dvali, Phys. Lett. B388, 241 ~1996!.
@24# E. Halyo, Phys. Lett. B387, 43 ~1996!.
@25# D. H. Lyth and A. Riotto, Phys. Lett. B412, 28 ~1997!.
@26# S. F. King and A. Riotto, Phys. Lett. B442, 68 ~1998!.
@27# M. K. Gaillard, D. H. Lyth, and H. Murayama, Phys. Rev.

58, 123505~1998!.
@28# G. Veneziano and S. Yankielowicz, Phys. Lett.113B, 231

~1982!.
@29# S. Ferrara, N. Magnoli, T. R. Taylor, and G. Veneziano, Ph

Lett. B 245, 409 ~1990!.
@30# C. P. Burgess, J. P. Derendinger, F. Quevedo, and M. Qu

Phys. Lett. B348, 428 ~1995!.
@31# M. K. Gaillard and B. D. Nelson, Nucl. Phys.B571, 3 ~2000!.
@32# M. Dine and Y. Shirman, Phys. Rev. D63, 046005~2001!.
@33# A. D. Shapere and F. Wilczek, Nucl. Phys.B320, 669 ~1989!.
@34# A. Font, L. E. Ibanez, D. Lust, and F. Quevedo, Phys. Lett

245, 401 ~1990!.
@35# S. H. Shenker, inRandom Surfaces and Quantum Gravit,

edited by O. Alvarez, E. Marinari, and P. Windey, NATO AS
Ser., Ser. B Vol. 262~Plenum, New York, 1992!.

@36# M. J. Cai and M. K. Gaillard, Phys. Rev. D62, 047901~2000!.
@37# G. G. Ross and O. Vives, hep-ph/0211279.
@38# A. Lukas, B. A. Ovrut, and D. Waldram, Phys. Rev. D57, 7529

~1998!.
6-8


