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Gravitational lensing by a charged black hole of string theory

A. Bhadra*
High Energy and Cosmic Ray Research Centre, University of North Bengal, Siliguri 734430, India

~Received 6 February 2003; published 27 May 2003!

We study gravitational lensing by the Gibbons-Maeda-Garfinkle-Horowitz-Strominger~GMGHS! charged
black hole of heterotic string theory and obtain the angular position and magnification of the relativistic
images. Modeling the supermassive central object of the galaxy as a GMGHS black hole, we estimate the
numerical values of different strong-lensing parameters. We find that there is no significant string effect present
in the lensing observables in the strong-gravity scenario.
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I. INTRODUCTION

Superstring theory appears as the most promising ave
to unify gravity with all other fundamental interactions
nature. Although the scattering amplitudes of the graviton
string theory differ considerably from those of pure gravi
still, expanding the string amplitudes about low moment
scales, one can produce an effective action for gravity
includes the Einstein action as the leading term. The cor
tion factors consist of Planck-scale terms in the form of n
vanishing four-loopb functions @1#. When theb functions
are set to zero, the effective field theory admits black h
solutions which can have different qualitative propert
from those of general relativity@2#. It is thus of great interes
to investigate theoretically the possible stringy effects in
physical observation. But very little has been discussed
the literature in this direction so far. Gegenberg@3# showed
that static spherically symmetric solutions of string theory
four dimensions do not lead to string effects in weak-fie
observations. Rotating charged black hole solutions@4# of
heterotic string theory also do not produce any considera
string effect in a Sagnac-like experiment@5#. Thus one has to
look for a strong-gravity scenario where a significant con
bution of string is expected. The phenomenon of grav
tional lensing may provide one such situation, when the l
is a compact object such as a black hole or a neutron st

Owing to the highly nonlinear character of the Einste
field equations, the theory of gravitational lensing was p
marily developed in the weak-field thin-lens approximati
@6#. Although these approximations are sufficiently accur
to discuss any physical observation up to today, but with
indication that many nearby galaxies, including our gala
host supermassive central black holes@7#, the possibility has
developed of studying lensing phenomena in the stro
gravity regime which demands a full treatment of lensi
theory to any order of approximation. The development
lensing theory in the strong-field regime started recently w
the work of Frittelli, Kling, and Newman@8# and that of
Virbhadra and Ellis@9#. The former authors provided an ex
act lens equation without reference to the background sp
time. They also noticed that the strong-field thin-lens a
proximation ~without any small angle approximation! can
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describe lensing satisfactorily even at small impact para
eters. On the other hand, Virbhadra and Ellis@9# studied
lensing due to the Schwarzschild black hole in an asympt
cally flat background by numerical techniques. They show
that while propagating near the black hole horizon light ra
take several turns around the lens before reaching the
server, and as a result apart from primary and second
images a set of infinite images~what the authors termed rela
tivistic images! on both sides of the optic axis will be pro
duced. These relativistic images are the main signature
strong-field lensing but unless the source is almost perfe
aligned with the lens and the observer, these images wil
very faint as a result of high demagnification. Bozzaet al.
@10# developed an analytical technique for obtaining the
flection angle in the strong-field situation and showed t
the deflection angle diverges logarithmically as light ra
approach the photon sphere of a Schwarzschild black h
The strong lensing due to the Reissner-Nordstro¨m ~RN!
space-time was investigated in@11#, and in other work Virb-
hadra and Ellis@12# studied lensing by naked singularitie
Very recently, Bozza@13# extended the analytical theory o
strong lensing for a general class of static spherically sy
metric metrics and showed that the logarithmic divergence
the deflection angle at the photon sphere is a common fea
of such space-times. The Gibbons-Maeda-Garfink
Horowitz-Strominger~GMGHS! black hole is a member o
this class due to its symmetries, and hence the analy
technique developed in@13# is applicable to this metric.

Following the method of@13#, in the present work we
wish to study gravitational lensing due to a charged bla
hole @2# of heterotic string theory with the aim of examinin
the possible string effects in a strong-field observation.
get a clear idea of the string contribution, we compare
estimated observable lensing quantities due to a cha
string black hole with those due to a charged black hole
general relativity.

The paper is organized as follows. The charged black h
solution of string theory is reconsidered in Sec. II, and
Sec. III lensing due to a charged string black hole is p
sented. By modeling the supermassive central object of
galaxy as a GMGHS black hole, an estimation of obser
tional strong-lensing parameters will be given in Sec.
along with the similar estimation when the lens is rep
sented by a RN black hole. A discussion of the results
given in Sec. V.
©2003 The American Physical Society09-1
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II. THE GMGHS BLACK HOLE

The low energy effective action of the heterotic stri
theory in four dimensions is given by~in this paper we
choose Planck units such thatG5c5\51)

A5E d4xA2ge2fS 2R1
1

12
HmnrHmnr

2Gmn]mf]nf1
1

8
FmnFmn D , ~1!

where R is the Ricci scalar,Gmn is the metric that arises
naturally in thes model,Fmn[]mAn2]nAm is the Maxwell
field associated with a U(1) subgroup ofE83E8 , f is the
dilaton field, and

Hmnr[]mBnr1]nBrm1]rBmn2@V3~A!#mnr , ~2!

whereBmn is the antisymmetric tensor gauge field and

@V3~A!#mnr[
1

4
~AmFnr1AnFrm1ArFmn! ~3!

is the gauge Chern-Simons term. It is to be noted that
massless fields arising from compactification have not b
included in the effective action. Only a U~1! component of
the full set of non-Abelian gauge fields present in the the
has been considered above, and consequently the c
sponding solutions carry a U~1! charge only. AssumingHmnr

to be zero, the above action in the conformal Einstein fra
becomes

A5E d4xA2g@2R12~¹f!21e22fF2#, ~4!

where the Einstein frame metricgmn is related to Gmn

through the relation

gmn5e2fGmn . ~5!

The above theory has charged static black hole solutions@2#
given by the following field configuration:

ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr2

1r 2S 12
Q2e22f0

Mr DdV2, ~6!

e22f5e22f0S 12
Q2e22f0

Mr D , ~7!

and

F5Q sinu du`df. ~8!

f0 is the asymptotic constant value of the dilaton field. T
metric ~6!, which is often called a Gibbons-Maeda
Garfinkle-Horowitz-Strominger black hole, describes a bla
hole of massM and chargeQ when the ratioQ/M is small.
Otherwise it exhibits a naked singularity. Similar behavior
also shown by the RN solution of the Einstein-Maxw
theory, which is given by
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ds252S 12
2M

r
1

Q2

r 2 D dt21S 12
2M

r
1

Q2

r 2 D 21

dr2

1r 2 dV2. ~9!

However, the transition between the black hole and na
singularity for the GMGHS solutions occurs atQ2

52e2f0M2 whereas the same occurs atQ25M2 for the RN
solutions. Another important difference is that there is
inner horizon in the GMGHS class of solutions. The Haw
ing temperature of the GMGHS black hole is

TH5
1

8pMef0
, ~10!

which is independent of charge. This is again different fro
the RN black hole for which the Hawking temperature
given by

TH5
AM22Q2

2p~M1AM22Q2!2
. ~11!

All these facts show that the charged black hole solutions
string theory and general relativity are qualitatively differe

III. LENSING DUE TO THE CHARGED STRING
BLACK HOLE

We consider the lens geometry as follows. A light r
from a source~S! is deflected by a lens~L! of massM and
reaches an observer (O). The background spacetime is take
asymptotically flat, and both the source and the observer
placed in the flat space-time. The line joining the lens and
observer (OL) is taken as the optic axis for this configur
tion. b andu are the angular position of the source and t
image with respect to the optic axis, respectively. The d
tances between observer and lens, lens and source, an
server and source areDOL , DLS , andDOS, respectively~all
distances are expressed in terms of the Schwarzschild ra
r s52M , whereM is the mass of the lens!. The position of
the source and the image are related through the so ca
lens equation@12#

tanu2tanb5
DLS

DOS
@ tanu1tan~a2u!#, ~12!

wherea is the deflection angle. For positiveb, the above
relation gives images only on the same side (u.0) of the
source. Images on the other side can be obtained by ta
negative values ofb. The first and main step in getting th
image positions is to calculate the deflection angle.

For the GMGHS space-time the deflection angle as
function of closest approachx0 (x05r 0/2M ) can be ex-
pressed as

a~x0!5I ~x0!2p, ~13!

where
9-2
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I ~x0!52E
x0

` dx/x

A~x/x0!2~121/x0!~12j/x!2~12j/x0!212~12j/x!~121/x!
, ~14!
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x5r /2M , and j5Q2e22f0/2M2. The relation between the
impact parameter~the perpendicular distance from the lens
the tangent to the null geodesic of the source! and the dis-
tance of closest approach can be obtained from the con
vation of the angular momentum of the scattering proce
and it is given by

b~x0!5x0A12j/x0

121/x0
. ~15!

With the decrease of the closest approachx0, the deflection
angle will increase, and for a certain value ofx0 the deflec-
tion angle will become 2p, so that the light ray will make a
complete loop around the lens. Ifx0 decreases further, th
light ray will wind several times around the lens befo
reaching the observer, and finally, whenx0 is equal to the
radius of the photon sphere (xps), the deflection angle will
become unboundedly large and the incident photon will
captured by the black hole. The radius of the photon sph
for this black hole is given by

xps5
j131z

4
~16!

where

z5Aj2210j19. ~17!

Expanding the integrand in Eq.~14! in powers of 1/x and
taking up to the second order, we get the deflection angl
follows:

a~r 0!5
4M

r 0
1

4M2

r 0
2 S 15p

16
21D2

Q2e22f0

r 0
2 S 3p

4
22D

1
Q4e24f0

M2r 0
2 S 22

p

16D1OS 1

r 0
3D . ~18!

One trivially recovers the Schwarzschild deflection angle
settingQ50 in the above equation. This deflection angle
larger than that for the RN space-time, which is given by1

a~r 0!5
4M

r 0
1

4M2

r 0
2 S 15p

16
21D2

3p

4

Q2

r 0
2

1OS 1

r 0
3D .

~19!

1The coefficient ofQ2/r 0
2 in Eq. ~55! of @11# contains an addi-

tional term, which occurred due to a typing error in the calculat
@14#.
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The term proportional toQ4/r 0
2 is totally absent in the de

flection angle for the RN black hole@11# but this term is
obviously very small as long asQ is small.

To evaluate the integral~14! close to its divergence, the
divergent integral will be split into two parts to separate o
the divergent@ I D(x0)# and the regular parts@ I R(x0)#. Then
both of them will be expanded aroundx05xps and will be
approximated by the leading terms. But first the integrand
Eq. ~14! is expressed as a function of a new convenient v
ablez, which is defined by

z512
x0

x
, ~20!

so that

I ~x0!5E
0

1

R~z,x0! f ~z,x0!dz, ~21!

where

R~z,x0!5
2A12j/x0

12j/x01zj/x0
, ~22!

f ~z,x0!5F12
1

x0
2S 12

1

x0
1

z

x0
D ~12z!2

3S 11
zj

x02j D 21G21/2

. ~23!

The integral~21! is then split into two parts:

I ~x0!5I D~x0!1I R~x0!, ~24!

where

I D~x0!5E
0

1

R~0,xps! f 0~z,x0!dz ~25!

includes the divergence and

I R~x0!5E
0

1

g~z,x0!dz ~26!

is regular inz andx0. The functionf 0(z,x0) is the expansion
of the argument of the square root in the divergent funct
f (z,x0) up to the second order inz:

f 0~z,x0!5
1

Ap~x0!z1q~x0!z2
, ~27!

where
9-3
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p~x0!5
j~x022!1x0~322x0!

x0~j2x0!
, ~28!

q~x0!5
j223jx02~x023!x0

2

x0~j2x0!2
~29!

and the functiong(z,x0) is simply the difference between th
original integrand and the divergent integrand:

g~z,x0!5R~z,x0! f ~z,x0!2R~0,xps! f 0~z,x0!. ~30!

The leading order term of the divergent integralI D(x0) is
given by

I D~x0!52uD logS x0

xps
21D1vD1O~x02xps!, ~31!

where

uD5
R~0,xps!

Aq~xps!
, ~32!

vD5uD log 2, ~33!

and

q~xps!5
4~12j!@j21j~2121z!19~31z!#

~323j1z!2~31j1z!
. ~34!

Although I R(x0) is regular atz50 andx05xps , it is difficult
to solve exactly. ExpandingI R(x0) in power ofx02xps and
considering only the first expansion term~the zeroth order
term!, one gets

I R~x0!5E
0

1

g~z,xps!dz1O~x02xps!. ~35!

This integral can be evaluated exactly, and the regular t
in the deflection angle becomes

vR5I R~xps!5hF log~4Aa0!2 logS 2a01a1

Aa0

12Aa01a11a2D G , ~36!

where

a052~12j!@j21j~2121z!19~31z!#, ~37!

a154@j31j2~2151z!1j~2316z!23~31z!#, ~38!

a2524j228j~31z!, ~39!

and

h5
A323j1z~31j1z!

Aa0/2
. ~40!
10300
m

Thus the final expression for the strong-field limit of th
deflection angle becomes@13#

a~u!.2u logS uDOL

b~xps!
21D1v1O„b2b~xps!…, ~41!

where

u5
uD

2
5

h

2
, ~42!

v52p1vR1
h

2
log

2q~xps!

121/xps

52p1
h

2 H 2F log~4Aa0!2 logS 2a01a1

Aa0

12Aa01a11a2D G1 log
4a0

~323j1z!2~211j1z!
J
~43!

and the impact parameter at the photon sphereb(xps) is

b~xps!5
1

2A2
A~92j!z127218j2j2. ~44!

Setting j to 0, one obtains the Schwarzschild deflecti
angle ~in the strong limit! from Eq. ~41! using Eqs.~42!,
~43!, and~44!.

In contrast, for the RN solution the strong-field limit o
the deflection angle can also be approximated by Eq.~41! but
with the following coefficients@13#:

u5
xpsAxps22q2

A~32xps!xps
2 29q2xps18q4

, ~45!

v.2p10.949621.5939q2

1u logF2~xps2q2!2
~32xps!xps

2 29q2xps18q4

~xps22q2!3~xps
2 2xps1q2!

G ,

~46!

b~xps!5
~31A9232q2!2

4A2A328q21A9232q2
, ~47!

where the radius of the photon sphere (xps) for this black
hole is

xps5
3

4 S 11A12
32q2

9 D . ~48!

Here q5Q/2M . In this case Eq.~35! cannot be evaluated
exactly. Hence the first regular term of the deflection angle
9-4
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TABLE I. Estimates of the lensing observable for the central black hole of our galaxy.

Observable GMGHS Reissner-Nordstro¨m
Q Q

0.1M 0.2M 0.4M 0.8M 0.1M 0.2M 0.4M 0.8M

u` (m arc sec) 16.84 16.76 16.41 14.92 16.84 16.76 16.41 14.
s (m arc sec) 0.0212 0.0216 0.0233 0.0326 0.0212 0.0216 0.0234 0
r 6.81 6.79 6.70 6.27 6.81 6.79 6.69 6.07
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approximated only up to theq2 term. Thus the coefficients o
the deflection angles for the RN and GMGHS black holes
different.

Once the deflection angle is known, the positions of
images can be obtained from Eq.~12!. In the strong-field
regime and when the source, lens, and observer are hi
aligned, the lens equation becomes@10#

b5u2
DLS

DOS
Dan , ~49!

whereDan5a22np is the offset of the deflection anglea
andn is an integer. Ifun

0 are the image positions correspon
ing to a52np, we have, from Eq.~41!,

un
05

b~xps!

DOL
~11en!, ~50!

where

en5e(v22np)/u, ~51!

and thus the position of thenth relativistic image can be
approximated by@13#

un5un
01

b~xps!enDOS

uDLSDOL
~b2un

0!. ~52!

The magnification of thenth relativistic image is given by
~approximating the position of the images byun

0)

mn5
1

~b/u!]b/]u
.en

b~xps!
2~11en!DOS

ubDLSDOL
2

. ~53!

In the simplest situation, if only the outermost image can
resolved as a single image, then its angular separation f
the remaining bunch of relativistic images is

s5u12u` , ~54!

whereu` is the angular position of a set of relativistic im
ages in the limitn→`. If r denotes the ratio of the flux from
the outermost relativistic image to those from the remain
relativistic images, then

r .e2p/u. ~55!

Since the deflection angle is already known, the stro
lensing parameters, viz., the positions of the relativistic i
ages, the angular separation between the outermost rela
10300
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tic image and the remaining relativistic images, and their fl
ratio, readily follow from Eqs.~50!, ~54!, and~55!. By mea-
suring these parameters one should be able to identify
nature of the lensing black hole@13#.

IV. LENSING BY THE SUPERMASSIVE
GALACTIC CENTER

Nuclear stellar dynamics indicates the existence of sup
massive central black holes in our galaxy as well as in m
other galaxies@7#. Considering the supermassive galac
center as a GMGHS black hole, we estimate the observa
of strong lensing. The present example is intended only
estimate numerical values of the lensing parameters so
we get some idea of the string effect in a strong-lens ob
vation.

The mass of the central object of our galaxy is estima
as 23106 of the solar mass and its distance is around
kpc. ThereforeDOL;3.1831010. Taking the source distanc
DOS52DOL , the angular position of the relativistic image
(u`), the angular separation of the outermost relativistic i
age with the remaining bunch of relativistic images (s), and
the relative magnification of the outermost relativistic ima
with respect to the other relativistic images~r! are estimated
and are given in Table I. Here we have takenf050 ~in the
strings modelef0 can be identified with the parametera of
the Eddington-Robertson metric, and the empirical definit
of the mass thus leads to the choiceef051). The same
observable parameters when the lens is a Reiss
Nordström black hole instead of a GMGHS black hole a
also given in Table I for comparison. It is clear from Table
that for smallQ the observational predictions of the GMGH
and RN black holes are the same within the given accura
For largeQ, however, the lensing parameters are different
these two classes of black holes. But this is mainly beca
the first regular term in the deflection angle for the RN le
has been approximated up to the second order inQ, whereas
the same term for the GMGHS black hole is exact.

On the other hand, if we consider a black hole havi
mass equal to the solar mass and chargeQ situated at the
galactic halo with distance about 4 kpc as the lens, and a
in the galactic bulge~distance;8 kpc) as the source, the
DOL will be ;4.1931016. In that case, forQ50.1 the
positions of the relativistic images will beu`

51.2831025 m arc sec ands51.6131025 m arc sec. The
relative magnificationr will remain the same as in the cas
of lensing by the galactic center~Table I!.
9-5
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V. DISCUSSION

When the curvature is small compared to the Planck sc
all vacuum solutions of the Einstein field equations are
proximate solutions of string theory. But in the regime
strong curvature the solutions of the two theories differ fu
damentally. The same is also true when additional ma
fields, such as the Maxwell field, are present. As a result,
charged black hole solutions of general relativity are
even considered as an approximate solution of string the
Thus, it is expected that there will be some distinctive obs
vational features of these two theories, particularly in
strong-gravity scenario and when matter fields are involv
To unveil such features we studied the gravitational lens
due to the charged black hole of heterotic string theory
calculated different strong-lensing parameters, such as
angular positions of the relativistic images, angular sepa
tion between the outermost relativistic image and the res
the images, and also their relative magnification.

Modeling the massive compact object at the center of
y,
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galaxy as a GMGHS black hole, we estimated the numer
values of different strong-lensing parameters. When co
pared with the corresponding lensing observable due to
Reissner-Nordstro¨m black hole, it is found that against th
expectation there is no significant string effect present on
observable parameters. This means that, although
GMGHS and the RN black hole solutions look quite diffe
ent, in respect of the observational effects, particularly in
case of strong-field lensing, these two black holes are ne
the same.

It has already been realized that observation of relativi
images is very difficult@9#. To observe the relativistic im-
ages, the resolution of the detecting telescope needs to b
the order ofm arc sec or even better, whereas the resolut
achieved so far is only of the order of m arc sec. More i
portantly, the relativistic images are highly demagnified. B
if future experiments can attain 0.01m arc sec resolution and
if ever such highly demagnified relativistic images are d
tected, even then lensing observations will not be able
distinguish the string theory from general relativity.
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