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Neutrino clustering in the galaxy with a global monopole
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School of Physics, University of Melbourne, Victoria 3010, Australia
~Received 4 December 2002; published 22 May 2003!

In spherically symmetric, static spacetime, we show that onlyj 51/2 fermions can satisfy both Einstein’s
field equation and Dirac’s equation. It is also shown that neutrinos are able to have effective masses and cluster
in the galactic halo when they are coupled to a global monopole situated at the galactic core. The astronomical
implications of the results are discussed.
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I. INTRODUCTION

In the Barriola-Vilenkin global monopole solution@1# to
Einstein’s field equation, scalar fields with globalO(3) bro-
ken symmetry are minimally coupled to gravity and t
background spacetime has deficits of angle. Nucamendiet al.
@2# suggested that the global monopole solution could
plain the flat rotational velocity curves~FRVC! of stars in
galaxies because its energy density is proportional to 1r 2

and hence it can be dark matter in the galatic halo. E
though some questions were raised@3# about the global
monopole solution for FRVC, various generalized versio
of the global monopole were studied as models for dark m
ter and dark energy@4#.

Neutrino clustering was studied by some authors incl
ing one of us@5# to explain the continuation of the cosm
ray spectrum beyond the GZK~Greisen-Zatsepen-Kuzmin!
cutoff. The origin of the GZK cutoff is degradation of th
proton energy by the nuclear resonant scattering proces
the cosmic microwave background radiation. If the high
energy protons come from a rather nearby source, pro
energy is not lost significantly. It seems likely that there a
not enough sources within 50 Mpc to explain the obser
GZK-violating events, challenging standard theo
Neutrino-antineutrino(n-n̄) annihilation to aZ0 boson is one
possible explanation for the phenomena, because neut
can propagate unimpeded from distant (>100 Mpc) sources
of the highest energy to Earth. But forn-n̄ annihilation into
a Z0 boson to produce enough super GZK air shower
neutrino flux atEn>1021 eV with mn; a few eV and a
significant clustering of the relic neutrino density in our g
lactic halo are required@6#.

In this article we investigate if neutrinos can coalesce i
neutrino clouds in a curved spacetime. Considering fermi
coupled to anO(3) triplet of scalar fields in the most gener
static metric with spherical symmetry, we show that only t
total angular momentumj 51/2 fermions can satisfy both
Einstein’s field equation and Dirac’s equation. When the g
bal O(3) symmetry of the Lagrangian is spontaneously b
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ken toU(1) at the ground state of the scalar potential in t
shape of a Mexican hat, we can have a global monop
solution similar to that of Barriola and Vilenkin. Bein
coupled to a global monopole situated at the galactic cen
neutrinos are then able to have effective masses and clu
in the galactic halo.

II. GLOBAL O„3… SYMMETRIC MODEL FOR NEUTRINO
CLUSTERING

A. General relativistic formulation

The action of the globalO(3) symmetric model of scala
fieldsFm and massive neutrinosCn(m,n51,2,3) minimally
coupled to gravity is given by

S5E d4xA2gL, ~1!

L52
1

2
gmn]mFm]nFm2V~F2!1

i

2
~C̄nga¹aCn

2¹aC̄ngaCn!2mnC̄nCn1
gy

v
FmFmC̄nCn , ~2!

whereV(F2) is a scalar potential,F25FmFm, and the last
term is the scalar-neutrino interaction for which we assu
the first leading order term preservingO(3) symmetry,
scaled by the symmetry breaking scalev of the more funda-
mental theory. Varying the action with respect to the fiel
we obtain following equations for scalar fieldsFm and neu-
trinos Cn :

1

A2g
]m~A2ggmn]nFm!2

]V

]Fm
12

gy

v
C̄nCnFm50,

~3!

iga¹aCn2mnCn1
gy

v
F2Cn50, ~4!

where thega matrices satisfy the Clifford algebra in a local
flat inertial coordinate

$ga,gb%522hab, ~5!

with

hab5Diag~21,1,1,1!. ~6!

ty,
©2003 The American Physical Society07-1



um

Ei

s

-
-
o

ric

lly
on,

eu-

T. H. LEE AND B. H. J. McKELLAR PHYSICAL REVIEW D67, 103007 ~2003!
The covariant derivative

¹a5em
a~]m1Gm! ~7!

is constructed from the vierbeinem
a and spin connection

Gm , which we give explicitly in Eqs.~A4!–~A11!.
Using the standard definition of the energy-moment

tensor

Tmn[2
2

A2g

dS

dgmn
52

eam

det$e%

dS

dea
n

, ~8!

we have

Tmn5]mFm]nFm2gmn@ 1
2 ]bFm]bFm1V~F2!#

2
i

4
@~C̄ngm¹nCn2¹nC̄ngmCn!

1~m↔n!#. ~9!

The energy-momentum tensor allows us to construct the
stein equation

Gmn5kTmn , ~10!

whereGmn is the Einstein tensor

Gmn5Rmn2 1
2 gmnR, ~11!

Rmn is the Ricci tensor andk58pG.

B. Ansatz for the global O„3… model in the spherically
symmetric spacetime

When we consider the following potential of scalar field

V~F2!5
l

4
~F22h2!2, ~12!

with a constanth, the globalO(3) symmetry is spontane
ously broken toU(1). Thescalar field configuration describ
ing a global monopole is known to be given by the hedgeh
ansatz

Fm5F~r !
xm

r
, ~13!

with a real function F(r ) and r 5(xmxm)1/25(x21y2

1z2)1/2.
Assume the line element of the spherically symmet

static spacetime as

ds252d2~r !a2~r !dt21
dr2

a2~r !
1r 2du21r 2sin2udf2.

~14!

In the Cartesian coordinates

xm5~ t,xm!5~ t,x,y,z! for m51,2,3, ~15!

the line element can be written as
10300
n-

:

g

,

ds25gmndxmdxn, ~16!

with the metric tensor

gmn52d2a2d t
md t

n1Fdmn1S 1

a2
21D xmxn

r 2 Gdm
mdn

n ,

~17!

and its inverse

gmn52
1

d2a2
dm

td
n

t1Fdmn1~a221!
xmxn

r 2 Gdm
mdn

n .

~18!

From the standard definition of Christoffel symbols

Gab
m 5 1

2 gmn~gna,b1gnb,a2gab,n!, ~19!

the non-zero components are

G tm
t 5

xm

2r S d2,r

d2
1

a2,r

a2 D ,

G tt
l 5

xla
2

2r
~d2a2,r1d2,ra

2!,

Gmn
l 5

xla
2

2r F2
a2,r

a4

xmxn

r 2
1~a2221!

3S dmn2
xmxn

r 2 D 2

r G , ~20!

whered2,r[(]d2/]r ), . . . and the relations

]d2

]xm
5

]d2

]r

]r

]xm
5

]d2

]r

xm

r
[d2,rxm /r , . . .

have been used for simplicity.
In the metric given in Eq.~14!, the scalar field equation

reads

a2F,rr 1
a2

2
F,rS d2,r

d2
12

a2,r

a2
1

4

r D 2
2F

r 2
2

]V

]F

1
2gy

v
C̄nCnF50, ~21!

where F,r[(]F/]r ),F,rr [(]2F/]r 2), . . . . Equations of
motion for neutrinos and Einstein equation in the spherica
symmetric, static spacetime will be given in the next secti
and calculations of vierbeinsem

a and spin connectionsGm in
the spacetime will be given in the Appendix.

III. SPHERICAL SYMMETRY AND jÄ 1
2 FERMIONS

Using the results of the Appendix, we can show that n
trino field equations
7-2
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igaem
a~]m1Gm!Cn2mnCn1

gy

v
F2Cn50, ~22!

become

g0
i

ad
] tCn1g1iaD̂rCn1g2

i

r S ]u1
cosu

2 sinu DCn

1g3
i

r sinu
]fCn2S mn2

gy

v
F2DCn50, ~23!

in the spherically symmetric and static metric in Eq.~14!.
Equivalently, we can write the last equation as

i ] tCn5ĤCn , ~24!

where the Hamiltonian is defined as

Ĥ5adFg0g1
a

i
D̂ r1g1

1

ir
k̂1g0S mn2

gy

v
F2D G , ~25!

with

D̂r5] r1
1

r
1

1

4 S d2,r

d2
1

a2,r

a2 D . ~26!

Here we have defined the operatork̂ as @7,8#

k̂[ ig0g1S g2
1

iAsinu
]uAsinu1g3

1

i sinu
]fD , ~27!

which commutes with the Hamiltonian operatorĤ

@ k̂,Ĥ#50. ~28!

Taking the representation ofg matrices to be direct prod
ucts of independent Pauli matricess i ,r j ~i.e. rW ^ sW represen-
tation! @7,8#,

g05r2 , g15 ir1 , g252 ir3s3 , g352 ir3s1 ,
~29!

we can representk̂ in 2-dimensionals space

k̂5s3

1

iAsinu
]uAsinu1s1

1

i sinu
]f , ~30!

and we can solve the eigenvalue equation

k̂Y k
m~u,f!5kY k

m~u,f!, ~31!

for the 2-dimensional spinor spherical harmonics@8#
10300
Y k
m~u,f!5

eimf

A2p
F ~ j 1m!!

~ j 2m!! G
1/2S tan

u

2D s2/2

sinmu
S ]

] cosu D j 2m

3
sin2 ju

2 j~ j 2 1
2 !!

S tan
u

2D 2s2

uk , ~32!

where

uk5
1

A2uku
S uku

k D , ~33!

with k56( j 1 1
2 ) and j 5 l 6 1

2 . In the representation~29! for
g matrices, the Hamiltonian is expressed in terms
2-dimensionalr matrices

Ĥ5adFr3

a

i
D̂ r1r1

1

r
k̂1r2S mn2

gy

v
F2D G . ~34!

The eigenfunctions of bothĤ and k̂ can be written as
direct products of ther-space spinorcn

(km) and s-space
spinorY k

m ,

Cn~ t,r ,u,f!5e2 iEnt (
2 j <m< j

cn
(km)~r !Y k

m~u,f!, ~35!

and the neutrino equationsi ] tCn5ĤCn then read

En

ad
cn

(km)5r3

a

i
D̂ rcn

(km)1Fr1

k

r
1r2S mn2

gy

v
F2D Gcn

(km) .

~36!

Moreover, if we put

cn
(km)~r ![

1

r
~a2d2!21/4Rn

(km)~r !, ~37!

since

D̂rcn
(km)5

1

r
~a2d2!21/4] rRn

(km) , ~38!

then we get

En

ad
Rn

(km)5r3

a

i
] rRn

(km)1Fr1

k

r
1r2S mn2

gy

v
F2D GRn

(km) .

~39!

Setting

Rn
(km)5S wn

(km)

xn
(km) D , ~40!

we obtain the coupled equations

S En

ad
1 ia] r Dwn

(km)5Fk

r
2 i S mn2

gy

v
F2D Gxn

(km) ,
7-3
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S En

ad
2 ia] r Dxn

(km)5Fk

r
1 i S mn2

gy

v
F2D Gwn

(km) ,

~41!

asymptotic solutions to which are given in the following se
tion.

Einstein’s equationGmn5kTmn can be rewritten as

Rmn5k~Tmn2 1
2 gmnTa

a!. ~42!

Substituting Eq.~9! into the Einstein’s equation in Eq.~42!
gives

Rmn5kF]mFm]nFm1gmnV1
i

4
gmnS2

i

4
~C̄ngm¹nCn

2¹mC̄ngnCn1C̄ngn¹mCn2¹nC̄ngmCn!G , ~43!

with

S5ea
c~C̄ngc]aCn2]aC̄ngcCn!. ~44!

Elements of Ricci tensor calculated from metric coefficie
in Eq. ~14! and the ansatz forFm in Eq. ~13! are substituted
into Eq. ~43!, to give the set of equations.

1

2d2
~d2a2!,rr 2

~d2a2!,r

4d2

d2,r

d2
1

1

r

~d2a2!,r

d2

5kF2V2
i

4
S1

i

2da
~C̄ng0] tCn2] tC̄ng0Cn!G ,

~45!

2
1

2d2
~d2a2!,rr 1

~d2a2!,r

4d2

d2,r

d2
2

1

r
a2,r

5kFa2~F,r !
21V1

i

4
S

2
ia

2
~C̄ng1] rCn2] rC̄ng1Cn!G , ~46!

1

r 2
~12a2!2

1

r
a2,r2

a2

2r

d2,r

d2

5kFF2

r 2
1V1

i

4
S2

i

2r
~C̄ng2]uCn2]uC̄ng2Cn!G ,

~47!
10300
-

s

1

r 2
~12a2!2

1

r
a2,r2

a2

2r

d2,r

d2

5kFF2

r 2
1V1

i

4
S2

i

2r sinu
~C̄ng3]fCn

2]fC̄ng3Cn!G . ~48!

The first in above equations is the (t,t) component of Eq.
~43!, the second the (r ,r ) component, the third the (u,u)
component, and the last the (f,f) component.

The (u,u) component of the Einstein equation is same
the (f,f) component of the Einstein equation if

C̄ng2]uCn2]uC̄ng2Cn

5
1

sinu
~C̄ng3]fCn2]fC̄ng3Cn!. ~49!

Using rW ^ sW representation forg matrices and the math
ematical identities,

s3]uY k
m5S 6s3m cotu6s1

i

2 sinu DY k
m

6s3e7 ifA~ j 6m11!~ j 7m!Y k
m61 , ~50!

this condition becomes

(
m,m8

cn
†(km8)r1cn

(km)FY k
†m8H 6s3~m2m8!cotu

6s1

i

sinuJY k
m

6Y k
†m8s3e7 ifA~ j 6m11!~ j 7m!Y k

m61

7Y k
†m861s3e6 ifA~ j 6m811!~ j 7m8!Y k

mG
5 (

m,m8
cn

†(km8)r1cn
(km)~m1m8!Y k

†m8s1

i

sinu
Y k

m .

~51!

The condition~51! can be satisfied if

m5m8,

m1m852m561,

j 5 1
2 , ~52!

since

Yk( j 51/2)
61/261 50. ~53!

Moreover, explicit calculations show us that
7-4
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~Yk( j 51/2)
61/2 !†Yk( j 51/2)

61/2 5
1

4p
,

~Yk( j 51/2)
61/2 !†s1Yk( j 51/2)

61/2 56
sinu

4p

k

uku
. ~54!

These make Eqs.~45!–~48! u and f independent, which is
consistent with the spherically symmetric metric in Eq.~14!,
when we consider only (j 5 1

2 ,m5 1
2 ) or ( j 5 1

2 ,m52 1
2 ) fer-

mions.
For the case (j 5 1

2 ,m5 1
2 ) or ( j 5 1

2 ,m52 1
2 ) with k5

61, the neutrino wave function is

Cn~ t,r ,u,f!5e2 iEntcn
(k,61/2)~r !Y k

61/2~u,f!. ~55!

Let cn(r )[cn
(k,1/2)(r ) or cn

(k,21/2)(r ) and

cn~r !5
1

r
~a2d2!21/4S wn

xn
D . ~56!

In this case the termS in Eq. ~44! reads

S52
i

r 2a2d2
q01

i

r 2d
q11

i

r 2ad
qk , ~57!

with

q05
2En

4p
r 2adcn

†cn5
2En

4p
~wn* wn1xn* xn!, ~58!

q15
2 i

4p
r 2ad~cn

†r3] rcn2] rcn
†r3cn!

5
2 i

4p
~wn* ] rwn2] rwn* wn2xn* ] rxn1] rxn* xn!, ~59!

qk5
1

2p
rad

k

uku
cn

†r1cn5
1

2pr

k

uku ~xn* wn1wn* xn!,

~60!

q25
1

4p
r 2adcn

†r2cn5
i

4p
~xn* wn2wn* xn!. ~61!

Using the last equations Einstein’s equations are given b

1

2d2
~d2a2!,rr 2

~d2a2!,r

4d2

d2,r

d2
1

1

r

~d2a2!,r

d2

5kF2V1
1

4r 2 S q0

d2a2
1

q1

d
1

qk

ad D G , ~62!

a2

r

d2,r

d2
5kFa2~F,r !

21
1

2r 2 S q0

d2a2
1

q1

d D G , ~63!
10300
1

r 2
~12a2!2

1

r
a2,r2

a2

2r

d2,r

d2

5kFF2

r 2
1V1

1

4r 2 S q0

d2a2
2

q1

d D G , ~64!

and the scalar field equation is

a2F,rr 1
a2

2
F,rS d2,r

d2
12

a2,r

a2
1

4

r D 2
2F

r 2
2

]V

]F

1
2gy

v
q2

r 2da
F50. ~65!

IV. ASYMPTOTIC SOLUTIONS FOR LARGE r

As in the case of the global monopole solution@1#, one
componenta(r ) of the metric in Eq.~14!, far away from the
galactic core, can be asymptotically taken as

a2.ao
2[c2

2M

r
, ~66!

with a constantc when

F.h, V~h2!.0,
]V

]F
~h2!.0. ~67!

Analyzing Eqs.~62!–~65! with the assumption thatqi ’s in
Eqs.~58!–~61! areO(r 0), we can get an asymptotic solutio
for another component of the metric in Eq.~14! as

d2.A2lnS r

2M D , ~68!

with a constantA. In this limit with the help of Eq.~56! the
neutrino equation~41! becomes

] r
2wn.2q2~r !wn , ~69!

with

q~r ![A En
2

d2ao
4

2
m2

o.n

ao
2

, ~70!

andmo.n5mn2(gy /v)h2.
In the region

0, lnS r

2M D<
En

2

A2ao
2m2

o.n

, ~71!

we have an asymptotic solution to Eq.~69!

wn.Aneiq(r )r1Bne2 iq(r )r ,
7-5
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xn.
i

mo.n
FAnS En

aod
2aoq~r ! De1 iq(r )r

1BnS En

aod
1aoq~r ! De2 iq(r )r G . ~72!

With above asymptotic solutions to Dirac’s equation for ne
trinos, theqi in Eqs.~58!–~61! are given by

q0.
En

p FBn
2H 11

1

m2
o.n

S En
2

ao
2d2

1ao
2q2~r !D J

1AnBn~11m2
o.n!cos~2qr !G ,

q1.
2En

p
Bn

2q2

d
,

qk.
2k

pr uku
AnBn

aoq

mo.n
sin~2qr !,

q2.
En

pmo.naod
@AnBncos~2qr !1Bn

2#,

with real constantsAn andBn such thatuAnu5uBnu. Theqi ’s
areO(r 0) or less and so are consistent with the assump
of Eq. ~68!. For r .r o with ln(ro/2M )[En

2/A2ao
2m2

o.n , q(r )
in Eq. ~70! is pure imaginary and then wave functions
neutrinos become multiplied by exponentially decaying f
tors. Therefore we getneutrino clusteringwith the radiusr o .
Taking r o.1023 cm which corresponds to the radius of o
galaxy and assuming that there exists a supermassive b
hole at the center of the galaxy with a massMSBH.3
3106M ( @12#, we can estimate the energy of neutrinos
En.5mo.n , where we have used the relation

En
2/A2ao

2m2
o.n. ln(ro/2MSBH) andA2ao

2.O(1).

V. ASYMPTOTIC SOLUTIONS FOR SMALL r

Next let us study the smallr behaviors of components o
the metric in Eq.~14!, a andd. For smallr near the galactic
core we adopt the Thomas-Fermi~TF! approximation as was
done in the case of fermion stars@9–11#. In the TF approxi-
mation there is at each point in space a Fermi sea of mas
neutrinos with the local Fermi momentumqF(r ), which de-
pends only onr because of spherical symmetry. We th
have the energy density and the pressure of neutrinos w
depend only onr.

From the local conservation law, 05(C̄gmC) ;m

5(1/A2g)]m(A2gC̄gmC), we have the conserved, tot
number of neutrinos

N5E d3xA2gC̄g tC5E d3xA2gC†Cet
0 . ~73!

The number density of neutrinos in the TF approximation
given by
10300
-

n

-

ck

s

ive

ch

s

^C†C&TF5
2

~2p!3E d3qnq5
qF

3~r !

3p2
, ~74!

where the Fermi distributionnq5u(qF2q). From Eq.~74!
and the time-dependent Dirac’s equationi ] tCn5EnCn , we
can put

K i

2da
~C̄ng0] tCn2] tC̄ng0Cn!L

TF

5
2

~2p!3E d3qnqEn~q!et
0[r~r !, ~75!

wherer is the energy density of neutrinos andet
051/da.

The stress tensor of neutrinos has the following diago
elements in the vierbein basis:

K a

2i
~C̄ng1] rCn2] rC̄ng1Cn!L

TF

5p1 ,

K 1

2ir
~C̄ng2]uCn2]uC̄ng2Cn!L

TF

5p2 ,

~76!

and

K 1

2ir sinu
~C̄ng3]fCn2]fC̄ng3Cn!L

TF

5p3 , ~77!

respectively.
We assume, in the spherically symmetric spacetime

consider, thatp15p25p3[p(r ). From Dirac’s equation
~24! and its Hermitian conjugate, we have the relation

i

da
~C̄ng0] tCn2] tC̄ng0Cn!

1 ia~C̄ng1] rCn2] rC̄ng1Cn!

1
i

r
~C̄ng2]uCn2]uC̄ng2Cn!

1
i

r sinu
~C̄ng3]fCn2]fC̄ng3Cn!

52me f f~r !C̄nCn , ~78!

with meff(r )5mn2(gy /v)F2(r ). Since the left hand side o
above equation is same asiS in Eq. ~44!, we have the fol-
lowing relation in the TF approximation:

i

2
^S&TF[r23p5meff

v
2gy

Q, ~79!

where we have defined (v/2gy)Q(r )[^C̄nCn&TF . Thus in
the TF approximation the Einstein equations~45!–~48! read
7-6
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1

2d2
~d2a2!,rr 2

~d2a2!,r

4d2

d2,r

d2
1

1

r

~d2a2!,r

d2

5k@2V1 1
2 r1 3

2 p#, ~80!

2
1

2d2
~d2a2!,rr 1

~d2a2!,r

4d2

d2,r

d2
2

1

r
a2,r

5k@a2~F,r !
21V1 1

2 r2 1
2 p#, ~81!

1

r 2
~12a2!2

1

r
a2,r2

a2

2r

d2,r

d2
5kFF2

r 2
1V1

1

2
r2

1

2
pG ,

~82!

which are consistent with those in the case of fermion s
@9#. The scalar field equation~21! reads

a2F,rr 1
a2

2
F,rS d2,r

d2
12

a2,r

a2
1

4

r D 2
2F

r 2
2

]V

]F
1QF50.

~83!

If we assume that there exist regular solutions of the m
ric components, scalar fields, and the energy density
pressure of neutrinos for smallr, we can make series expan
sions of

a25 (
n>0

anr n, d25 (
n>0

bnr n

F5 (
n>0

hnr n, r5 (
n>0

rnr n,

p5 (
n>0

pnr n. ~84!

Substituting these expansions into Eqs.~80!–~83!, we get the
following values for the coefficients:

a051, a150, a252kF1

3
r01

l

12
h41

1

2
h1

2G ,
b150, b25b0k@ 1

2 r01 1
2 p01 1

2 h1
2#,

h050, h250, mn

v
2gy

Q05r023p0 . . . . ~85!

We thus have solutions in the smallr region which are

F5h1r 1O~r 3!,

a2512kF1

3
r01

l

12
h41

1

2
h1

2G r 21O~r 3!,

d2a2511kF1

6
r01

1

2
p02

l

12
h4G r 21O~r 3!, ~86!
10300
rs

t-
d

where we have re-parametrized the time asAb0t→t. These
solutions are consistent with the results in fermionic st
with a global monopole@11#, even if they@11# takeF.0 for
small r. The value ofh1 is determined by the matching con
dition thatF(r ) should be continuous atr 5r c , which is the
upper bound for smallr. This gives us the relation

h1r c5h. ~87!

We might putr c.2MSBH, whereMSBH is the mass of the
supermassive black hole at the center of our galaxy@12#.

VI. NEUTRINO CLUSTERING

In Z-burst models to explain the continuation of the co
mic ray spectrum beyond the GZK cutoff, Weiler@6# and
Fargion@13# assumed that the relic neutrinos cluster in g
axies a few times the normal relic density, and found that
required flux of cosmic ray neutrinos is larger than pre
ously suggested. Blanco-Pilladoet al. @14# suggested that the
relic neutrino density in the clustering might be 102–104

times the mean relic densitynM.54 cm23. Independently in
Ref. @5# a neutrino cloud was considered as a sphere with
diffuse boundary such that the relic neutrino density is giv
by nn(r )5nRu(R2r )1nMu(r 2R), where nR.1012

21016 cm23 andR.101421020 cm. This can moderate th
required incident flux of ultrahigh energy neutrinos.

From the results in the previous Secs. IV and V, we c
have a cluster of neutrinos with a diffuse boundary such t
the density of the relic neutrinos is

nn~r !5ncu~r c2r !1no~r !u~r 2r c!u~r o2r !, ~88!

where nc is the constant neutrino density for smallr (<r c

;2MSBH) as in the Sec. V, andno(r )5ncr c
2/r 2 is the neu-

trino density for r c,r<r o as in the Sec. IV. Herer o
.1023 cm ~the radius of our galaxy!, r c.2MSBH.1012 cm
~the Schwarzschild radius of a supermassive black hole a
center of the galaxy!, andnc>103(me f f/1 eV)3 cm23 @15#.

VII. SUMMARY AND DISCUSSIONS

In the most general static spacetime with spherical sy
metry, we explicitly show that onlyj 51/2 fermions can sat-
isfy Einstein’s equation, in therW ^ sW representation ofg ma-
trices @7#. It is also possible to demonstrate this result
other representations ofg matrices. Considering neutrino
coupled toO(3) scalar fieldsFm via F2C̄C interaction
term, we had a global monopole solution@1# of scalar fields
and asymptotic solutions of the metric components to E
stein’s equation in Eqs.~66! and ~68!, for large r. The
asymptotic solution of one metric componentd2 can be
given in series of more general functions asd2(r )
.(nf n

2(r )lnn(r/2M ) with f n(r→`)5const, which do not
change the asymptotic behaviors of other solutions in
limit.

We adopted the TF approximation for smallr expansions
of the energy density, pressure of neutrinos, and so on. S
only s waves are considered in the TF approximation, sm
r expansions in the Sec. V are consistently related
7-7
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asymptotic solutions obtained for larger in the Sec. IV. More
rigorous connection between two asymptotic solutions
be made by numerical methods. With the simple assumpt
Eq. ~88!, about the radial dependence of the relic density
neutrinosnn(r ) clustered in the galactic halo, further studi
of Z-burst models shall be possible. Other realistic calcu
tions fornn(r ) are included in a recent work@16# on Z-burst
models, even if they@16# used a method based on the col
sionless Boltzmann equation to calculatenn(r ) and the re-
sultant radial dependence of the neutrino density is a l
different from ours. For smallr solutions in the Sec. V to
have astronomical meaning, the globalO(3) symmetry
breaking scaleh and the scalar self-coupling constantl in
Eq. ~12! should be very small, which might be realized
some Majoron models@17#. In these models a scalar field
introduced to provide a Majorana mass for neutrinos. Sc
fields of this type can then provide the neutrino-scalar in
actions we have introduced here. The global lepton num
of particles in the models is spontaneously broken with
massless Nambu-Goldstone boson, Majoron, and realistic
small neutrino masses imply a small value of the lep
number violation scale. In such a case the deficit angl
2c[kh2 in Eq. ~66! is negligible@1#.
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APPENDIX: CALCULATIONS OF VIERBEINS AND SPIN
CONNECTIONS

We rewrite the line element in Eq.~14! as

ds25habe
aeb, ~A1!

with inverse ofhab, hab5Diag(21,1,1,1), and

e05addt, e15
dr

a
, e25rdu, e35r sinudf. ~A2!

Putting

ea5ea
mdxm, ~A3!

we find the vierbein given by

ea
m5S ad 0 0 0

0
1

a
sinu cosf

1

a
sinu sinf

1

a
cosu

0 cosu cosf cosu sinf 2sinu

0 2sinf cosf 0

D ,

~A4!
10300
n
n,
f

-

e

ar
r-
er
a
lly
n
1

and their inverse

en
b5S 1

ad
0 0 0

0 a sinu cosf cosu cosf 2sinf

0 a sinu sinf cosu sinf cosf

0 a cosu 2sinu 0

D
~A5!

5S 1

ad
0 0 0

0 S a
]xm

]r D S 1

r

]xm

]u D S 1

r sinu

]xm

]f D D .

~A6!

The vierbein satisfy the relations

ea
mem

b5da
b , ~A7!

en
aea

m5dn
m . ~A8!

The spin connection which appeared in Eq.~7! is defined
as

Gm52 1
4 gagbenaen

b;m , ~A9!

with

en
b;a5en

b,a1Gab
n eb

b . ~A10!

We calculate the spin connections from Eq.~20! and Eq.
~A9!, and obtain

G t5
1
4 g0g1~2a2d,r1da2,r !

Gx5 1
2 g1g2

a cosu cosf

r

2
1

2
g2g3

cosu sinf

r sinu
1

1

2
g3g1

a sinf

r
,

Gy5
1

2
g1g2

a cosu sinf

r

1
1

2
g2g3

cosu cosf

r sinu

2
1

2
g3g1

a cosf

r
,

Gz52
1

2
g1g2

a sinu

r
, ~A11!

which satisfy the Cartan structure equation

@gn,Gm#5gn
;m . ~A12!
7-8
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