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Quasiequatorial gravitational lensing by spinning black holes in the strong field limit
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Spherically symmetric black holes produce, by strong field lensing, two infinite series of relativistic images,
formed by light rays winding around the black hole at distances comparable to the gravitational radius. In this
paper we address the relevance of the black hole spin for the strong field lensing phenomenology, focusing on
trajectories close to the equatorial plane for simplicity. In this approximation, we derive a two-dimensional lens
equation and formulas for the position and the magnification of the relativistic images in the strong field limit.
The most outstanding effect is the generation of a nontrivial caustic structure. Caustics drift away from the
optical axis and acquire finite extension. For a high enough black hole spin, depending on the source extension,
we can practically observe only one image rather than two infinite series of relativistic images. In this regime,
additional nonequatorial images may play an important role in the phenomenology.
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I. INTRODUCTION

Gravitational lensing, since its beginning, has been u
to test general relativity in the weak field approximatio
Later on, several studies of null geodesics in strong grav
tional fields were made. Bardeenet al. @1# studied the ap-
pearance of a black hole in front of a uniform source; Vi
gutz @2# made a semianalytical investigation of nu
geodesics in Kerr geometry; Nemiroff@3# studied the visual
distortions around a neutron star and around a black h
Falcke, Melia and Agol@4# considered the luminosity of th
accretion flow as a source.

A recent paper by Virbhadra and Ellis@5# has aroused new
interest about gravitational lensing as a probe for stro
gravitational fields generated by collapsed objects, provid
a new important test for the full general relativity. They ha
shown that a source behind a Schwarzschild black hole c
generate an infinite series of images on both sides of the l
These relativistic images are formed by light rays pass
close to the event horizon and winding several times aro
the black hole before emerging towards the observer. By
alternative formulation, Frittelli, Kling and Newman@6# at-
tained an exact lens equation, giving integral expressions
its solutions, and compared their results to those by V
hadra and Ellis. The phenomenology of collapsed obje
with naked singularities, analyzed by Virbhadra and Ellis
another work@7#, is radically different. This difference pro
vides a possible way to test the correctness of the cos
censorship conjecture.

A new, simple and reliable method to investigate the s
ject was proposed by Bozzaet al. in Ref. @8#. They reexam-
ined the Schwarzschild black hole lensing defining astrong
field limit for the deflection angle, which retained the fir
two leading order terms. By this approximation, a fully an
lytical treatment was developed and simple formulas for
position and the magnification of the images were deriv
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The same method was applied by Eiroa, Romero and To
@9# to a Reissner-Nordstro¨m black hole, confirming the ap
pearance of a similar pattern of images. Later on, the form
las given in Ref.@8# were used by Petters@10# to calculate
relativistic effects on microlensing events. Finally, in a pr
vious work, we have developed a generalization of the str
field limit to an arbitrary spherically symmetric spacetim
@11#, comparing the image patterns for several interest
metrics. We have shown that different collapsed objects
distinguishable by a careful examination of the separat
between the first two relativistic images and their luminos
ratio. The sensitivities required for such measures are ou
the actual very long baseline interferometry~VLBI ! projects
@12#, but might be reached in a not so far future.

Insofar, only spherically symmetric black holes have be
adequately investigated. Yet, in general, a black hole wo
be characterized by a non-zero intrinsic angular momen
which breaks spherical symmetry, leaving only a rotatio
symmetry around one axis. Rotation heavily affects
gravitational field around the collapsed object. It is thus na
ral to expect relevant modifications in the phenomenology
strong field gravitational lensing.

A further motivation for such a study comes from the fa
that previous works on the subject have selected the su
massive black hole hosted by the radio source Sagittarius
@13# as the best candidate for strong field gravitational le
ing @5,11#. Its mass has been estimated to beM52.6
3106M ( but our knowledge on a possible intrinsic angu
momentum of this object is still very poor. However, th
analysis of the variability of the spectrum in the millimete
submillimeter region suggests the possibility of a no
negligible spin@14#. In particular, the value

uau'0.044 ~1!

has been proposed~with respect to Ref.@14#, we normalize
distances to the Schwarzschild radius rather than to the b
hole mass, hence the factor 1/2 in this value!, but high
©2003 The American Physical Society06-1
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V. BOZZA PHYSICAL REVIEW D 67, 103006 ~2003!
uncertainties in the assumptions behind the calculations
push the spin towards even higher values.

The purpose of this paper is to investigate the relevanc
the black hole spin in strong field lensing phenomenolo
We formulate the strong field limit for Kerr black hole len
ing, considering trajectories close to the equatorial pla
With this limitation we cannot give a complete description
the whole phenomenology, which we shall delay to futu
works. However, as we shall see, quasi-equatorial mo
yields very sharp indications useful to understand also
general case. In particular, we will show that the presenc
a sufficiently high black hole spin drastically changes
expected pattern of observable images.

This paper is structured as follows. In Sec. II we rec
some general properties of Kerr geodesics. In Sec. III
carry out the strong field limit expansion of the deflecti
angle on the equatorial plane. In Sec. IV we move off fro
the equatorial plane and consider trajectories at small de
nations. In Sec. V we write the lens equation on the equ
rial plane. In Sec. VI we write a polar lens equation deal
with displacements normal to the equatorial plane. In S
VII we find the positions of the caustic points and the ma
nification of all images in the equatorial plane. In Sec. V
we describe the critical curves and caustic structure. Sec
IX discusses the effects of the black hole spin on the gra
tational lensing phenomenology, with special reference to
black hole at the center of our Galaxy. Section X contains
summary.

II. GEODESICS IN KERR SPACETIME

In Boyer-Lindquist coordinates@15# xm[(t,x,q,f), the
Kerr metric reads

ds25
D2a2sin2q

r2
dt22

r2

D
dx22r2dq2

2
~x21a2!22a2D sin2q

r2
sin2qdf2

1
2ax sin2q

r2
dtdf ~2!

D5x22x1a2 ~3!

r25x21a2cos2q ~4!

wherea is the specific angular momentum of the black ho
All distances are measured in Schwarzschild ra
(2MG/c251).

The Kerr space is characterized by a spherical event
rizon at xH5(11A124a2)/2 for uau,0.5. Beyond this
critical value of the spin there is no event horizon and c
sality violations are present in the whole spacetime, with
appearance of a naked singularity@16,17#. We shall restrict to
subcritical angular momenta. The ellipsoidD2a2sin2q50 is
the static limit bounding the region where every static wo
dine (x5q5f50) becomes spacelike. The region betwe
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the static limit and the horizon is called ergosphere: h
everything is bound to rotate around the black hole.

The geodesics equations can be derived taking

L5gmnẋmẋn ~5!

as the Lagrangian, where the dot indicates the deriva
with respect to some affine parameter.

Finding four integrals of motion, we can transform the
equations into a set of four first order equations which
equivalent to the original ones. Two constants of motions
the energy and the angular momentum of the particle, gi
by

2E5
]L
]t

~6!

22J5
]L
]f

. ~7!

By a suitable choice of the affine parameter, we can set

E51. ~8!

From these equations, we find an expression forṫ and ḟ
in terms ofx, q andJ

ṫ5
g331g03J

g33g002g03
2

~9!

ḟ5
g00J1g03

g03
2 2g33gtt

. ~10!

L is another constant of motion, which vanishes for n
geodesics and can be used to writeẋ

ẋ56A2g00ṫ
22g22q̇

22g33ḟ
222g03ṫ ḟ

g11
. ~11!

Finally, q̇ can be obtained in terms of a fourth integral
motion, separating the Hamilton-Jacobi equation@16#:

q̇56
1

r2
AQ1a2cos2q2J2cot2q. ~12!

Equations~9!–~12! represent the sought set of first ord
differential equations, suitable for a detailed study.

The integrals of motionJ andQ can be expressed in term
of the geometric parameters of the incoming light ray traj
tory. In general, we can identify a light ray coming fro
infinity by three parameters~Fig. 1!, referring to the straight
line which the photon would follow if there were no grav
tational field. The projection of this line on the equator
plane has a distanceu from the origin, which we shall call
the projected impact parameter. At this minimum projec
distance, the light ray has some heighth on the equatorial
plane. Finally, the inclinationc0 is the angle that the ligh
ray forms with the equatorial plane. When we switch on t
6-2
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QUASIEQUATORIAL GRAVITATIONAL LENSING BY . . . PHYSICAL REVIEW D 67, 103006 ~2003!
gravitational field, the light ray is obviously deviated fro
this ideal straight line, but these three parameters can sti
used to label any light rays coming from infinity. Taking th
asymptotic limit of the equations of motion, we can writeJ
and Q in terms of the initial conditions characterizing th
light ray

J5u cosc0 ~13!

Q5h2cos2c01~u22a2!sin2c0 . ~14!

III. DEFLECTION ANGLE IN THE EQUATORIAL PLANE

In this section we consider light rays strictly lying on th
equatorial planeq5p/2 by settingh5c050. The reduced
metric has the form

ds25A~x!dt22B~x!dx22C~x!df21D~x!dtdf
~15!

with

A~x!512
1

x

B~x!5
1

12
1

x
1

a2

x2

~16!

C~x!5x21a21
a2

x

D~x!52
a

x
.

What we say in this section is immediately extendable to
axially symmetric spacetime if we replace Eq.~16! by any
other expression.

As c050, by Eq.~13! the angular momentumJ coincides
with the impact parameteru. The impact parameter is als
related to the minimum distancex0 reached by the photon. In
general, a light ray coming from infinity approaches t
black hole, reaches this minimum distancex0 and then leaves

FIG. 1. The three parameters identifying an incoming light ra
10300
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again towards infinity. Evaluating the Lagrangian atx5x0,
we find an implicit relation betweenJ5u and the closest
approach distancex0:

J5u5
2D01A4A0C01D0

2

2A0

5
2a1x0Aa21x0~x021!

x021
, ~17!

where all the metric functions with the subscript 0 are eva
ated atx5x0. The impact parameteru is then univocally
determined byx0 and vice versa. Choosing the positive sig
before the square root, we describe only light rays wind
counterclockwise when seen from above. Fora.0 the black
hole also rotates counterclockwise, while fora,0 the black
hole and the photon rotate in opposite senses.

Dividing ḟ by ẋ, we find the azimuthal shift as a functio
of the distance

df

dx
5P1~x,x0!P2~x,x0! ~18!

P1~x,x0!5
AB~2A0AJ1A0D !

ACA0A4AC1D2
~19!

P2~x,x0!5
1

AA02A
C0

C
1

J

C
~AD02A0D !

. ~20!

Integrating this expression fromx0 to infinity we find half
the deflection angle as a function of the closest approa
Given the symmetry between approach and departure,
can write the whole deflection angle as

a~x0!5f f~x0!2p ~21!

f f~x0!52E
x0

`df

dx
dx. ~22!

f f(x0) is the total azimuthal shift. It evaluates top for a
straight line and becomes larger as the light ray is bent by
gravitational field. The expression for a spherically symm
ric metric, given in Ref.@11# can be recovered settingD
5D050.

The deflection angle grows asx0 decreases. It diverge
whenx0 reaches a minimum valuexm which represents the
radius of the photon sphere. If a photon falls inside t
sphere, it is destined to be absorbed by the black hole
course, we will have different photon spheres for photo
winding in the same sense of the rotation of the black h
~hereafter direct photons! and for photons winding in the
opposite sense~retrograde photons!. In general, we expec
the latter to be absorbed more easily. Their photon sph
will thus be larger than that of retrograde photons, which c
escape more easily. As we shall see later, this is what h
pens.
6-3
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V. BOZZA PHYSICAL REVIEW D 67, 103006 ~2003!
Following the philosophy of the strong field limit, w
look for an expansion of the deflection angle of the form

a~u!52ā logS uDOL

um
21D1b̄1O~u2um! ~23!

where the coefficientsum , ā and b̄ depend on the metric
functions evaluated atxm . DOL is the distance between th
lens and the observer, so that the angular separation o
image from the lens~also referred as impact angle! is u
5u/DOL .

All the steps to be taken towards this final expression
very similar to those for spherically symmetric black hole
with few adjustments. We shall sketch them very brie
referring to Ref.@11# for details.

We define the variables

y5A~x! ~24!

z5
y2y0

12y0
~25!

wherey05A0. The integral~22! in the deflection angle be
comes

f f~x0!5E
0

1

R~z,x0! f ~z,x0!dz ~26!

R~z,x0!52
12y0

A8~x!
P1~x,x0! ~27!

f ~z,x0!5P2~x,x0! ~28!

wherex5A21@(12y0)z1y0#.
The functionR(z,x0) is regular for all values ofz andx0,

while f (z,x0) diverges forz→0. To find out the order of
divergence of the integrand, we expand the argument of
square root inf (z,x0) to the second order inz

f ~z,x0!; f 0~z,x0!5
1

Aaz1bz2
. ~29!

Whena is nonzero, the leading order of the divergence
f 0 is z21/2, which can be integrated to give a finite resu
When a vanishes, the divergence isz21 which makes the
integral diverge. Then the outermost solution of the equa
a50 defines the radius of the photon spherexm ~see also
@18#!.

In the case of the Kerr metric, we have

a5x0@x0~325x012x0
2!22a212aAa21x0~x021!#

3@~x021!~x0
31a2~x011!#21. ~30!

Equationa50 is equivalent to the third degree equation

8a22x0~322x0!250. ~31!
10300
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The real solution external to the horizon of this equati
defines the radius of the photon spherexm , plotted in Fig. 2.
As expected, for positivea ~direct! photons are allowed to
get closer to the black hole, entering even the ergospherexm
falls below 1! at high values ofa. It is possible to calculate
exactly from the equationa50 at what angular momentum
this happens. The critical value is

acr5
1

2A2
50.354. ~32!

Notice that xm→1/2 as a→1/2, i.e. the photon spher
coincides with the horizon in the limit of extremal Kerr blac
hole. For negative angular momenta~retrograde! light rays
must keep farther from the center.

The procedure to find the strong field limit coefficients
from now on identical to that described in Ref.@11#, with
R(z,x0) f (z,x0) and f (z,x0) given by Eqs.~27!, ~28! and
~29!, respectively. We shall not repeat the whole techniq
here but just specify the results of Ref.@11# for our metric.

The strong field limit coefficients of the expansion~23!
are

um5
2Dm1A4AmCm1Dm

2

2Am
~33!

ā5
R~0,xm!

2Abm

~34!

b̄52p1bD1bR1ā log
cxm

2

um
~35!

where

bD52ā log
2~12ym!

Am8 xm

~36!

bR5E
0

1

@R~z,xm! f ~z,xm!2R~0,xm! f 0~z,xm!#dz ~37!

FIG. 2. The radius of the photon sphere versus the black h
angular momentum.
6-4
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QUASIEQUATORIAL GRAVITATIONAL LENSING BY . . . PHYSICAL REVIEW D 67, 103006 ~2003!
andc is defined by the expansion

u2um5c~x02xm!2. ~38!

All the functions with the subscriptm are evaluated atx0
5xm .

Figure 3 shows the strong field limit coefficients as fun
tions of a. The minimum impact parameterum decreases
with a in a way similar toxm . ā grows andb̄ decreases, both
diverging with opposite signs ata51/2. The divergence o
the coefficients of the expansion warns that the strong fi
limit deflection angle~23! no longer represents a reliab
description in the regime of higha, since xm becomes a

FIG. 3. Coefficients of the strong field limit versus black ho
angular momentum.
10300
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higher order singularity in the functionf (z,x0) and a differ-
ent expansion should be performed.

IV. PRECESSION OF THE ORBITS
AT SMALL DECLINATIONS

The study of the deflection angle for photons lying on t
equatorial plane is sufficient to write a one-dimensional le
equation. However, to address the caustic structure and
culate the magnification of the images, we need a tw
dimensional lens equation. For this reason, in this section
analyze trajectories close to the equatorial plane. They
described by one further coordinate: the polar angleq, or
equivalently, the declinationc5(p/2)2q. The problem be-
comes too involved to be solved in general but we shall g
a complete description for quasi-equatorial motion, prese
ing also the simplicity and immediacy of the strong fie
limit scheme.

In order to remain at small declinations, we restrict
light rays characterized by a small inward inclinationc0 and
small heighth compared to the projected impact parameteu,
with c0;h/u. Retaining the first relevant terms, from Eq
~13!, ~14! we get

J.u ~39!

Q.h21ū2c0
2 ~40!

ū[Au22a2. ~41!

We require the declinationc to stay small~of the order of
c0) during the motion. Dividing Eq.~12! by Eq.~10!, we get
a simple evolution equation forc as a function of the azi-
muth f

dc

df
56v~f!Ac̄22c2 ~42!

with

c̄5Ah2

ū2
1c0

2 ~43!

v~f!5ū
a21x~f!@x~f!21#

$a1u@x~f!21#%x~f!
. ~44!

In the Schwarzschild case (a50), v→1 and Eq.~42! is
immediately solved to

c~f!5c̄ cos~f1f0!. ~45!

After each loop around the black hole, the declination retu
to the initial value. This means that there is no precession
the orbital plane, as expected for a spherically symme
black hole.

For non-vanishing angular momenta,v is no longer a
constant, sincex depends onf, and the solution of Eq.~42!
is generalized to
6-5
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V. BOZZA PHYSICAL REVIEW D 67, 103006 ~2003!
c~f!5c̄ cos~f̄1f0! ~46!

with

f̄5E
0

f

v~f8!df8. ~47!

Since we are interested in gravitational lensing, the p
ton comes from infinity and returns to infinity. Therefore, w
are interested in the quantity

f̄ f5E
0

f f
v~f8!df8, ~48!

wheref f is the total azimuthal shift experienced by the ph
ton in its whole trajectory, given by Eq.~22!.

This integral can be rewritten as

f̄ f52E
x0

`

v~x!
df

dx
dx5E

0

1

Rv~z,x0! f ~z,x0!dz ~49!

where

Rv~z,x0!5v~x!R~z,x0! ~50!

with R(z,x0) and f (z,x0) given by Eqs.~27! and ~28!, re-
spectively. At this point, the integral can be solved by t
same technique used for the integral~26! with a very similar
result. This is possible sincev(x) adds no singularities an
can be englobed in the regular functionR.

The final result is

f̄ f52â logS uDOL

um
21D1b̂ ~51!

â5
Rv~0,xm!

2Abm

51 ~52!

b̂52p1b̂D1b̂R1â log
cxm

2

um
~53!

where

b̂D52â log
2~12ym!

Am8 xm

~54!

b̂R5E
0

1

@Rv~z,xm! f ~z,xm!

2Rv~0,xm! f 0~z,xm!#dz. ~55!

Notice that the coefficient of the logarithmic termâ is
exactly equal to 1 for all values of the black hole spin. T
coefficient b̂ is just b̄1p in the Schwarzschild limita50.
This recovers the equivalence between the phase in the p
motion f̄ f and the total azimuthal shiftf f in this limit. The
full behavior of b̂ is plotted in Fig. 4. This coefficient di
verges as well in the extremal black hole limita→1/2.
10300
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As a general remark, we can say that for positive angu
momentav is always less than one, so thatf̄ f,f f . As a
consequence, the orbital plane suffers a counterclockw
precession, i.e. after each loop an additionalDf is necessary
to reach the same declinationc. On the contrary, for nega
tive angular momenta,v.1. In this case, the precession
clockwise, i.e. the photon reaches the same declination
fore completing a loop.

The integration constantf0 in Eq. ~46! is fixed by the
initial conditions. In particular, we have to impose that
f50 the declination is just minus the inclination of the i
coming photon trajectory, which we have indicated byc0.
The result is that

f052sgn@h#arccosF2
c0

c̄
G . ~56!

The declination of the outward photon is thus

c f[c~f f !5c̄ cos~f̄ f1f0!. ~57!

Alternatively, using the expression off0, we can write

c f52c0cosf̄ f2
h

ū
sinf̄ f . ~58!

The phasef̄ f , calculated through Eq.~51!, has a central
importance in the discussion of Secs. VI and VII.

V. LENSING IN THE EQUATORIAL PLANE

In the previous sections we have expressed the deflec
anglea as a function of the impact angleu and the outward
declinationc f as a function of the incoming inclinationc0.
We are thus ready to write a lens equation for the Kerr bla
hole. In this section we shall write the equatorial lens eq
tion, while the next section will deal with the polar len
equation.

So let us start from the ideal case when observer
source both lie on the equatorial plane of the Kerr black h
and the whole trajectory of the photon is confined on
same plane. In previous works, the strong field limit has b
developed assuming an almost perfect alignment of sou

FIG. 4. The coefficientb̂ as a function ofa.
6-6
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QUASIEQUATORIAL GRAVITATIONAL LENSING BY . . . PHYSICAL REVIEW D 67, 103006 ~2003!
lens and observer. This is because, for spherically symm
metrics, the better the alignment the higher is the magnifi
tion. As we shall see in Sec. VII, this is no longer the case
Kerr black holes. Therefore we shall write the equatorial le
equation in a more general way, allowing for a generic g
metric disposition of lens, source and observer~see Fig. 5!.

The optical axis is the line joining the observer and t
lens. Setting the origin on the black hole, the angle betw
the direction of the source and the optical axis will be in
cated byg. g.0 is the case of almost perfect alignme
discussed in Refs.@8–11#. From the lensing geometry, illus
trated in Fig. 5, we can write the relation

g52a1u1 ū mod 2p, ~59!

where

ū.
u

DLS
.

DOL

DLS
u ~60!

is the impact angle from the source andDLS is the distance
between the lens and the source.

The equatorial lens equation is then

g5
DOL1DLS

DLS
u2a~u! mod 2p. ~61!

In this lens equationg can assume any value in the trig
nometric interval@2p,p#. The source may even be on th
same side of the observer wheng5p. The relation between
g and b ~the angular position of the source as seen by
observer! is

sinb5
DLS

DOS
sing, ~62!

but here in general we cannot substitute the sines by t
arguments.DOS is the distance between source and obser
which does not coincide with the distanceDOL1DLS actu-
ally covered by lensed photons.

FIG. 5. The lensing geometry projected on the equatorial pl
in the case of the first relativistic image.u is the impact angle as
seen by the observer,b is the angular position of the source as se
by the observer,g is the angular position of the source as seen

the lens,ū is the impact angle from the source.
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To solve the lens equation, sinceu5u/DOL!1, in a first
step we solve the equationg52a(u) mod 2p. Using the
expression for the deflection angle derived in the strong fi
limit ~23!, we find

un
05

um

DOL
~11en! ~63!

en5eb̄1g22np/ā, ~64!

wheren51,2, . . . indicates the number of loops done by th
photon around the black hole. This solution is then correc
expandinga(u) aroundun

0 :

a~u!5a~un
0!1

]a

]u U
u

n
0
~u2un

0!1o~u2un
0!

.2g2
āDOL

umen
~u2un

0!. ~65!

Substituting in Eq.~61! and neglecting higher order term
we find

un.un
0S 12

umen~DOL1DLS!

āDOLDLS
D , ~66!

where the correction is much smaller thanun
0 .

Images are formed on both sides of the lens. As all stro
field limit coefficients depend ona we have to be careful and
choose the correct sign for the angular momentum. Conv
tionally we call north the direction of the black hole spi
Then photons winding counterclockwise are direct and
described by a positivea. They form images on the easter
side of the black hole. Images formed by retrograde r
appear on the western side and are described taking a n
tive a and reversing the sign ofg.

VI. LENSING AT SMALL DECLINATIONS

The lens equation~61! describes trajectories lying on th
equatorial plane and can be employed to calculate the p
tions of the relativistic images. However, to investigate t
problem on a deeper level we are forced to study what h
pens at least for small displacements from the equato
plane. In this section we shall assist Eq.~61! by its polar
counterpart, which is necessary to understand the cau
structure and compute the magnification of the images.

Thanks to the small declination hypothesis, at the low
order we can neglect any backreaction on the equatorial
equation. In all our discussion we shall speak~using time
reversal! as the photon were emitted by the observer a
absorbed by the source.

Consider a source whose height on the equatorial plan
hS . The height of the observer will be indicated byhO . We
shall assume that the following hierarchy of distances ho
~see Fig. 6!:

u!~hO ,hS!!~DOL ,DLS!. ~67!

e

y
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Recalling the meaning of the parametersc0 and h used
insofar to identify the incoming light ray, we can write dow
the simple geometric relation

h5hO1DOLc0 . ~68!

A similar relation holds between the outgoing photon p
rametershf , c f and the source position

hS5hf1DLSc f . ~69!

Given the positions of source and observer, our purpos
to determinec0, the inclination under which the observe
emits ~sees! the light ray.

By symmetry between the outgoing and the incoming
rameters, Eq.~43! for c̄ can be written substitutingc0 andh
by c f andhf

c̄5Ahf
2

ū2
1c f

2. ~70!

In this way, we can expresshf in terms ofc f and then, by
Eq. ~57!, in terms off̄ f andf0

hf5ūc̄ sin~f̄ f1f0!. ~71!

Recalling Eq.~56!, we also get

hf52ūc0sinf̄ f2h cosf̄ f . ~72!

Substituting in Eq.~69! together with Eq.~58!, we get

hS52c0ūS2hC2DLSc0C1DLS

h

ū
S, ~73!

where

S5sinf̄ f ~74!

C5cosf̄ f . ~75!

Finally, substitutingh from Eq.~68! and discarding highe
order terms, we obtain the lens equation in the polar dir
tion

hS5hOS DLS

ū
S2CD 2c0F ~DOL1DLS!C2

DOLDLS

ū
SG .

~76!

FIG. 6. The lensing geometry projected on the vertical plane
this picture we have assumedg50 for simplicity.
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In this equationc0 is directly related to the heights of th
observer and the source. The solution is

c0,n5

hS1hOCn2hO

DLS

ū
Sn

2~DOL1DLS!Cn1
DOLDLS

ū
Sn

, ~77!

whereSn andCn areS andC calculated forf̄ f5f̄ f ,n . The
phasef̄ f ,n of thenth image is the only quantity that needs
be calculated preliminarly. However, once the equatorial l
equation~61! is solved, we know the impact angleun of the
nth image and then we can calculatef̄ f by Eq. ~51!.

As a consistency check we can see what we obtain in
Schwarzschild case when the photon completes just one
around the black hole, exiting on the opposite side. In t
casea50 andf̄ f ,n5(2n11)p. We get

c0,nuf f5(2n11)p5
hS2hO

DOL1DLS
, ~78!

which is the correct result for photons passing very close
the black hole, looping around it.

The consistency of our approximation requires thatc0
!1 andh!u. From Eq.~68! the height is

hn5
hSDOL2hODLSCn

2~DOL1DLS!Cn1
DOLDLS

ū
Sn

. ~79!

For a genericf̄ f , both constraints are automatically sa
isfied, since the second term in the denominators domin
and we have thatc0;hO /DOL andh;uhO /DOL . However,
in the neighborhood off̄ f5kp the denominators of the two
expressions can vanish, making diverge both quantities.
equation

K~g!5ū~DOL1DLS!C2DOLDLSS50 ~80!

defines the positions of the caustic points. In the next sec
we will discuss this equation in connection with the mag
fication of the images formed by sources close to the cau
points ~which we call enhanced images for simplicity!.

Surprisingly, thanks to the dragging phenomenon,
quasi-equatorial hypothesis is nearly always satisfied, ex
for enhanced images. In this situation the quasi-equato
motion hypothesis is satisfied only for particular geomet
configurations which keepc0 andh under control.

VII. MAGNIFICATION AND CAUSTIC POINTS

The magnification is classically defined as the ratio of
angular area element of the image and the correspon
angular area element of the source that the observer w
see if there were no lens. The angular area element of
image is

n

6-8
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d2AI5dudc0 . ~81!

The distance covered by the photons isDOL1DLS and then
the corresponding angular area element of the source is

d2AS5
DLSdgdhS

~DOL1DLS!2
. ~82!

In fact the source element in the vertical direction
dhS /(DOL1DLS). In the horizontal direction, the source e
ement is spanned bydg when seen from the lens whic
corresponds to an angleDLSdg/(DOL1DLS) seen from the
observer. If we want to compare the luminosity of a lens
image with the luminosity of the direct image~namely the
source observed directly alongDOS without lensing!, the
magnification is to be multiplied by the factor (DOL

1DLS)2/DOS
2 .

Our lens application has the form

g5g~u! ~83!

hS5hS~u,c0!, ~84!

where the dependence onu in the polar lens application is
throughf̄ f and we have neglected the backreaction ofc0 on
g. The ratio betweendgdhS and dudc0 is given by the
modulus of the Jacobian determinant of the lens applica

uJu5U]g

]u

]hS

]c0
U. ~85!

The magnification is then given by

m5
d2AI

d2AS

5
~DOL1DLS!2

DLS

1

uJu
. ~86!

By the equatorial lens equation~61!, retaining the domi-
nant terms, we have

]g

]u
.2

āDOL

umeg
, ~87!

with

eg5eb̄1g/ā. ~88!

In the following, it is convenient to encode the number
loops done by the photon withing, in order to write more
compact formulas for all the relativistic images. Sog can
assume any negative real value;g mod 2p represents the
angular position of the source andn5@(p2g)/2p# is the
number of loops done by the photon. Two values ofg dif-
fering by a multiple of 2p represent the same source positi
with respect to the lens, but reached by photons perform
a different number of loops around the lens. For exam
10300
d

n

f

g
,

g50 is a source aligned behind the lens reached by a ph
making no loop~weak field lensing!; g522p is the same
source behind the lens but reached by a photon making
loop; g524p is the same source for a photon making tw
loops, and so on.

By the polar lens equation~76!, we have

]hS

]c0
5~DOL1DLS!C2

DOLDLS

ū
S. ~89!

Assembling everything together, we get

m5
~DOL1DLS!2

DOLDLS

ūumeg

āuū~DOL1DLS!C2DOLDLSSu
.

~90!

For a genericf̄ f , m5O(u/DOL)2, but for the enhanced
images,m may even diverge~formally for point-like sources!
when the denominator of Eq.~90! vanishes. Theg ’s where
this happens are called caustic points. At the lowest orde
u/DOL , Eq. ~80! reduces to

f̄ f.kp. ~91!

Combining the formula~51! for the phasef̄ f with the for-
mula for the deflection angle~23! and using the equatoria
lens equation at the lowest orderg52a(u), this equation
becomes

2
g1b̄

ā
1b̂5kp. ~92!

The solutions of this equation determine the angular
sitionsgk of the caustic points

gk52b̄1ā~ b̂2kp!. ~93!

For eachk, we have one caustic point for direct photo
and one caustic point for retrograde photons.k51 would
describe the weak field caustic points, formed when the
muthal shift is aboutp. To be coherent with our strong fiel
limit approximation, we shall restrict our analysis tok>2.

Expanding the denominator of Eq.~90! around the caustic
points, we have

K~g!.K8~gk!@g2gk~a!#52
DOLDLS

ā
@g2gk~a!#.

~94!

To understand the nature of these caustic points, no
that in the Schwarzschild limitgk→2(k21)p and all the
odd caustic points are aligned on the optical axis behind
lens on consecutive Riemann folds while the even ones
aligned before the lens. If the source is aligned behind
lens, thenth image is given by photons doingn loops around
6-9
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V. BOZZA PHYSICAL REVIEW D 67, 103006 ~2003!
the black hole. Settingg;22np, the closest caustic point i
g2n11. Then we can recover the Schwarzschild magnifi
tion for the images created by a source behind the lens@8#

mn
Sch5

~DOL1DLS!2

DOLDLS

uumen

āUDOLDLS

ā
~2np1g!U

5
DOS

DOL
2 DLS

um
2 en~11en!

ubu
. ~95!

In Fig. 7 we plot the positions of the first five relativist
caustic points as functions of the black hole angular mom
tum. The first relativistic caustic pointg2 is obtained when
the photon turns around the black hole and comes back
wards the observer.g2 is thus close to2p but is anticipated
for negativea and delayed for positivea. g3 is behind the
lens but, at large angular momenta, can move very far fr
the initial position. At high values of the spin, the caus
points drift so much that they can even change their Riem
fold.

We can specify the magnification formula for the e
hanced images using Eq.~94!

mk
enh5

~DOL1DLS!2

DOL
2 DLS

2

m̄k~a!

ug2gku
~96!

m̄k~a!5ū~gk~a!!um~a!egk(a) . ~97!

The quantitym̄k regulates the magnification close to cau
tic points. The dependence ong has been extracted and h
the typical ug2gku21 behavior. The dependence on the a
tronomical distancesDOL , DLS , DOS is negligible inm̄k at
the lowest order inu/DOL . So we can usem̄k as a measure

FIG. 7. The angular positions of the first five relativistic caus
points: k52,3,4,5,6 from below to above. Wheng52mp the
source is behind the lens, wheng5(2m11)p the source is before
the lens.
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of the magnifying power of the black hole for different e
hanced images and different angular momenta.

In Fig. 8 we plot the magnifying powerm̄3 of the caustic
point g3, which fora50 generates the first relativistic imag
of a source behind the lens. The magnification grows
negative angular momenta while decreases for positivea al-
most linearly. The divergence in the magnification whena
approaches its extremal value 1/2 should not be taken s
ously, as the standard strong field limit approximation bre
down as explained in Sec. III.

The shape ofm̄k remains more or less the same for eve
k but, sinceegk

5eb̂2kp, we have that

mk11

mk
.e2p50.043. ~98!

The magnification of enhanced images falls quite rapidly
we let the photons make more and more loops.

VIII. CRITICAL CURVES AND CAUSTIC STRUCTURE

It is well known that the Jacobian of the Schwarzsch
lens has an infinite series of Einstein rings@3,5#. The first one
is the classical weak field Einstein ring whose angular rad
is

uE5A 2DLS

DOLDOS
. ~99!

The corresponding caustic is the point atg150.
At small impact parameters we enter the strong field lim

of the Schwarzschild lensing and the light rays wind arou
the black hole. The second Einstein ring is created by p
tons coming back towards the observer. The caustic is
g252p.

Decreasingu further, the light ray completes a loop an
we have the third Einstein ring, whose caustic point isg3
522p and is superposed on the first caustic point~on the
second Riemann fold!.

Summing up, the Schwarzschild lens has a large w
field Einstein ring and an infinite series of concentric relat
istic Einstein rings, very close to the minimum impact ang

FIG. 8. The magnifying power at the caustic pointg3.
6-10



le
is
o

n
ic

-

a
-
s

-
.
u

he
h
ti

io
gh
co

n
e
u
rs
a
on

fact

the
of
e
ap-

he
ical

me
the
ela-
vi-
s,
nt

ric
ely
er-

ts
es
tic
al

nt.
op-
l.
be
e at
ely

ned
-
the
-
on

ern

es
en-
a

ther
ole.
n-
om

nal
real
hree
nal
m-

our
t is

QUASIEQUATORIAL GRAVITATIONAL LENSING BY . . . PHYSICAL REVIEW D 67, 103006 ~2003!
u` . In the region bounded by thenth ring and the (n11)th
ring, the sign of the Jacobian is (21)n11.

What changes when we turn on the spin of the black ho
As regards the first Einstein ring of the weak field limit, it
distorted and shifted. As a consequence, the caustic p
turns into a finite extension diamond shaped caustic@19#.

For the critical curves in the strong field limit, we ca
calculate their intersections with the equatorial plane, wh
are

uk
cr.uk

0,crS 12
umegk

~DOL1DLS!

āDOLDLS
D ~100!

uk
0,cr5

um

DOL
~11egk

!. ~101!

They are closer to the optical axis on the positivea side~for
left-winding photons! and farther on the negativea side~i.e.
for right-winding photons!. Therefore critical curves are dis
torted and shifted towards the negativea side, which is the
western side, if north is the direction of the spin.

The caustics are no longer points but acquire a nonv
ishing extension.gk(2uau) and gk(uau) represent the inter
sections of thekth caustic with the equatorial plane. A
zgk(2uau) z,kp and zgk(uau) z.kp the caustic is shifted to
wards the western side. To visualize this situation, in Fig
we have plotted the projections of the caustics on the eq
torial plane, as seen from the north direction. T
@g1(2uau),g1(uau)# caustic is the weak field one, whic
stays almost aligned on the optical axis, while the relativis
caustics drift in the clockwise direction. Ask grows, the
caustics become larger and farther from their initial posit
on the optical axis. Examining Fig. 7 we notice that at hi
angular momenta the caustics may become very large,
ering even several Riemann folds.

At the lowest order inc and neglecting any backreactio
on the equatorial lens equation it is not possible to giv
rigorous classification of the type of catastrophes we enco
ter on the equatorial plane. However, the fact that the fi
caustic in the weak field assumes the typical diamond sh
of quadrupole lenses suggests a similar picture for str

FIG. 9. The first six caustics of the Kerr lens fora50.1, marked
by the thick lines betweengk(2uau) andgk(uau).
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field caustics. If this is the case, then the caustic pointsgk on
the equatorial plane are cusps. This is consistent with the
that if we let g decrease below somegk the corresponding
image changes parity. This can happen only when at
critical point two images are formed with the same parity
the original image@20,21#. These images rapidly move in th
vertical direction and are missed in our quasi-equatorial
proximation.

IX. PHENOMENOLOGICAL IMPLICATIONS

After all the analysis of the quasi-equatorial lensing in t
Kerr spacetime, we are able to discuss the phenomenolog
relevance of the black hole spin. In Ref.@11# it was shown
that all spherically symmetric black holes produce the sa
patterns of relativistic images. These patterns differ by
separations and the luminosity ratios between different r
tivistic images. The conclusion was that if strong field gra
tational lensing will be caught by future VLBI experiment
it may provide a means to distinguish between differe
classes of black holes.

In spherically symmetric black hole lensing, a gene
source not aligned with the optical axis produces extrem
faint relativistic images. On the contrary, a point source p
fectly aligned along the optical axis produces~theoretically!
infinitely bright images. Actually the finite source radius cu
off the real brightness of the images. The relativistic imag
are maximally amplified altogether since all the caus
points of spherically symmetric black holes lie on the optic
axis.

In Kerr lensing, the situation becomes radically differe
The crucial fact is that the caustics no longer lie on the
tical axis but drift throughout the trigonometric interva
Then if the source is close to one caustic point, it cannot
close to any other. The consequence is that only one imag
a time can be enhanced, while all the others stay extrem
faint.

To clarify the situation, suppose we have a source alig
with the caustic pointg3(uau). Then the outermost relativis
tic image on the eastern side will be enhanced. If we put
source ong3(2uau), then we only enhance the first relativ
istic image on the western side. If we put the source
g5(uau), then the second relativistic image on the east
side will be enhanced and so on.

Rather than seeing an infinite series of relativistic imag
on each side of the lens, we would observe only one
hanced relativistic image. It would be difficult to recognize
single image as a gravitational lensing phenomenon ra
than any kind of environmental source around the black h
Even if we managed, it would be quite tricky to extract i
formation about the strong fields around the black hole fr
one single relativistic image.

However, if the source is inside the caustic, two additio
images should appear, making it easier to recognize their
nature of lensed images of the same source. Moreover, t
images can be used to investigate the gravitatio
field around the black hole and put constraints on its para
eters. Alas, the additional images are missed in
quasiequatorial approximation. In order to catch them, i
6-11
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V. BOZZA PHYSICAL REVIEW D 67, 103006 ~2003!
necessary to face the problem of Kerr lensing in its gen
form. A reliable treatment of non-equatorial images wou
complete our quasi-equatorial study and would make p
sible a detailed investigation of strong field gravitation
lensing for high values of the black hole spin.

By now, we have discussed the two extreme situatio
spherically symmetric black holes (a50) and high spin
black holes. It is interesting to estimate the value of the s
which separates the two regimes. We shall do it, referring
the black hole at the center of our Galaxy, assumingDOL
58.5 kpc,DLS51 kpc.

In order to consider a black hole as spherically symmet
the caustic drift must be negligible when compared to
extension of the source. In fact, in this case, the source d
not ‘‘see’’ different caustics but they behave roughly as
they were all at the same point. For smalla the gk scale
linearly as2(k21)p2a(h01h1k), with h0 and h1 nu-
merical factors of order one. Then, the drift between t
consecutive caustics will be negligible if

ugk~a!2gk12~a! mod 2pu52h1a!
RS

DLS
. ~102!

If we consider a source with radiusRS510R( , we then
find that a should be lower than 10210. When a is greater
than this value, the source will see only one caustic at a ti
However, the caustic will be still seen as point-like, since
extension of the caustic scales asa2. Therefore, we will still
have two enhanced images, corresponding to the two in
sections of thekth caustic with the equatorial planegk(a)
andgk(2a). This intermediate situation takes place as lo
as

ugk~a!1~k21!pu2ugk~2a!1~k21!pu

5~j01j1k!a2!
RS

DLS
~103!

with j0 andj1 of order one.
For a 10R( source, this requiresa!1025. Beyond this

value, only one image at a time will be enhanced~together
with an eventual additional pair of images if the source
inside the caustic!, while all the others stay invisible.

These estimates reveal that the phenomenology of sp
cally symmetric black holes is realistic only for black hol
with tiny spin. Yet, as recalled in the Introduction, the fir
estimates of the spin of the black hole at the center of
e
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Galaxy push towards high values@14#. If these estimates are
confirmed, then we are forced to include spin in any realis
treatment of strong field gravitational lensing for Sgr A*.

X. SUMMARY

In this paper we have explored the modifications to stro
field limit gravitational lensing induced by the rotation of th
central body, analyzing the quasi-equatorial null geodesi

The most apparent change is the formation of exten
caustics which, for high angular momenta, can cover sev
Riemann folds. This situation is radically different from
spherically symmetric black holes where the caustics
points aligned behind and in front of the lens. While fora
50 a source behind the lens is simultaneously close to
odd caustics and gives rise only to enhanced images, for K
black holes the source can be close to one caustic at a
and thus produces only one enhanced image.

As secondary interesting effects, we can also mention
asymmetry between images formed by photons winding
the same sense of the black hole and photons winding in
opposite sense, the latter appearing farther from the b
hole. The magnification decreases with the spin, being hig
for retrograde images.

The study of quasi-equatorial Kerr gravitational lensing
very instructive and has allowed us to discover a great nu
ber of interesting features of spinning black holes. Howev
to address the phenomenology of the black hole at the ce
of our Galaxy and/or other black holes with deeper insig
further investigation is necessary. In fact, we need a punc
description of the caustic structure not limited to the equa
rial plane. The existence of extended caustics suggests
formation of pairs of non-equatorial images, missed in o
approximation, which are of striking importance for the ph
nomenology.

The quasi-equatorial lensing, studied in this work, th
represents the first fundamental step to understanding len
by spinning black holes. However, the complexity of t
problem requires a global approach in order to give corr
and complete answers to all observational questions. Th
the main objective for future work on strong field gravit
tional lensing.
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