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Spherically symmetric black holes produce, by strong field lensing, two infinite series of relativistic images,
formed by light rays winding around the black hole at distances comparable to the gravitational radius. In this
paper we address the relevance of the black hole spin for the strong field lensing phenomenology, focusing on
trajectories close to the equatorial plane for simplicity. In this approximation, we derive a two-dimensional lens
equation and formulas for the position and the magnification of the relativistic images in the strong field limit.
The most outstanding effect is the generation of a nontrivial caustic structure. Caustics drift away from the
optical axis and acquire finite extension. For a high enough black hole spin, depending on the source extension,
we can practically observe only one image rather than two infinite series of relativistic images. In this regime,
additional nonequatorial images may play an important role in the phenomenology.
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I. INTRODUCTION The same method was applied by Eiroa, Romero and Torres
[9] to a Reissner-Nordstno black hole, confirming the ap-
Gravitational lensing, since its beginning, has been useg@earance of a similar pattern of images. Later on, the formu-
to test general relativity in the weak field approximation.las given in Ref[8] were used by Pettefd 0] to calculate
Later on, several studies of null geodesics in strong gravitarelativistic effects on microlensing events. Finally, in a pre-
tional fields were made. Bardeet al. [1] studied the ap- Vvious work, we have developed a generalization of the strong
pearance of a black hole in front of a uniform source; Vier-field limit to an arbitrary spherically symmetric spacetime
gutz [2] made a semianalytical investigation of null [11], comparing the image patterns for several interesting
geodesics in Kerr geometry; Nemirdf] studied the visual Mmetrics. We have shown that different collapsed objects are
distortions around a neutron star and around a black holdlistinguishable by a careful examination of the separation
Falcke, Melia and Agof4] considered the luminosity of the between the first two relativistic images and their luminosity
accretion flow as a source. ratio. The sensitivities required for such measures are out of
Arecent paper by Virbhadra and EI[i§] has aroused new the actual very long baseline interferomet%LBI) projects
interest about gravitational lensing as a probe for strond12], but might be reached in a not so far future.
gravitational fields generated by collapsed objects, providing [nsofar, only spherically symmetric black holes have been
a new important test for the full general relativity. They haveadequately investigated. Yet, in general, a black hole would
shown that a source behind a Schwarzschild black hole coulde characterized by a non-zero intrinsic angular momentum
generate an infinite series of images on both sides of the len#hich breaks spherical symmetry, leaving only a rotational
These relativistic images are formed by light rays passingymmetry around one axis. Rotation heavily affects the
close to the event horizon and W|nd|ng several times aroungravitational field around the collapsed object. It is thus natu-
the black hole before emerging towards the observer. By affl to expect relevant modifications in the phenomenology of
alternative formulation, Frittelli, Kling and Newmdi6] at-  strong field gravitational lensing.
tained an exact lens equation, giving integral expressions for A further motivation for such a study comes from the fact
its solutions, and compared their results to those by Virbihat previous works on the subject have selected the super-
hadra and Ellis. The phenomenok)gy of Co||ap5ed object@aSSive black hole hosted by the radio source Sagittarius A*
with naked singularities, analyzed by Virbhadra and Ellis in[13] as the best candidate for strong field gravitational lens-
another work[7], is radically different. This difference pro- ing [5,11. Its mass has been estimated to he=2.6
vides a possible way to test the correctness of the cosmig 10°M¢ but our knowledge on a possible intrinsic angular
censorship conjecture. momentum of this object is still very poor. However, the
A new, simple and reliable method to investigate the subanalysis of the variability of the spectrum in the millimeter-
ject was proposed by Bozzi al.in Ref.[8]. They reexam- submillimeter region suggests the possibility of a non-
ined the Schwarzschild black hole lensing definingtang ~ negligible spin[14]. In particular, the value
field limit for the deflection angle, which retained the first
two leading order terms. By this approximation, a fully ana- |a|~0.044 1)
lytical treatment was developed and simple formulas for the ’
position and the magnification of the images were derived.
has been proposdavith respect to Ref[14], we normalize
distances to the Schwarzschild radius rather than to the black
*Electronic address: valboz@sa.infn.it hole mass, hence the factor 1/2 in this vaJubut high
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uncertainties in the assumptions behind the calculations matpe static limit and the horizon is called ergosphere: here
push the spin towards even higher values. everything is bound to rotate around the black hole.

The purpose of this paper is to investigate the relevance of The geodesics equations can be derived taking
the black hole spin in strong field lensing phenomenology. o
We formulate the strong field limit for Kerr black hole lens- L=g,,X*X" (5)
ing, considering trajectories close to the equatorial plane. ) o o
With this limitation we cannot give a complete description of @ the Lagrangian, where the dot indicates the derivative
the whole phenomenology, which we shall delay to futureWith respect to some affine parameter.
works. However, as we shall see, quasi-equatorial motion Finding four integrals of motion, we can transform these
yields very sharp indications useful to understand also th&guations into a set of four first order equations which are
general case. In particular, we will show that the presence ggquivalent to the original ones. Two constants of motions are
a sufficiently high black hole spin drastically changes thethe energy and the angular momentum of the particle, given
expected pattern of observable images. by

This paper is structured as follows. In Sec. Il we recall

X . aL
some general properties of Kerr geodesics. In Sec. Il we 2E= — (6)
carry out the strong field limit expansion of the deflection at
angle on the equatorial plane. In Sec. IV we move off from
. . . . . L
the equatorial plane and consider trajectories at small decli _23=2& @
nations. In Sec. V we write the lens equation on the equato- dd’

rial plane. In Sec. VI we write a polar lens equation dealing ) , .
with displacements normal to the equatorial plane. In SecBY @ suitable choice of the affine parameter, we can set
VII we find the positions of the caustic points and the mag- E—1 )
nification of all images in the equatorial plane. In Sec. VIl '
we describe the critical curves and caustic structure. Section
IX discusses the effects of the black hole spin on the gravi:
tational lensing phenomenology, with special reference to th
black hole at the center of our Galaxy. Section X contains the
summary. . 9astGos)

Y t 5 9)

933900~ 903

From these equations, we find an expressiont fand ¢
terms ofx, ¥ andJ

II. GEODESICS IN KERR SPACETIME

. +
In Boyer-Lindquist coordinategl5] x*=(t,x,9,¢), the = M. (10
Kerr metric reads Yoz~ 9330t
A— aZsir2 s p? L is another constant of motion, which vanishes for null
ds’= ————dt*~ KdXZ—pzdﬁz geodesics and can be used to write
p
(x2+a?)?— a2A sirtd D \/—goot2—922ﬁ2—933¢2—2903t¢> (11)
- 7 sirf9d¢? - g1 '
5 29 Finally, 9 can be obtained in terms of a fourth integral of
T &dtdqs (2) ~ motion, separating the Hamilton-Jacobi equafin6:
p?
. 1
A=x%2—x+a2 (3) ﬁ:i?\/Q‘FaZCOS’)ﬁ_JZCOFﬁ. (12)
p?=x>+a%cog 9 (4)  Equations(9)—(12) represent the sought set of first order

differential equations, suitable for a detailed study.

wherea is the specific angular momentum of the black hole.  The integrals of motiod andQ can be expressed in terms
All distances are measured in Schwarzschild radiiof the geometric parameters of the incoming light ray trajec-
(2MG/c?=1). tory. In general, we can identify a light ray coming from

The Kerr space is characterized by a spherical event hdnfinity by three parameter@ig. 1), referring to the straight
rizon at x,=(1++1—4a?%)/2 for |a|<0.5. Beyond this line which the photon would follow if there were no gravi-
critical value of the spin there is no event horizon and cautational field. The projection of this line on the equatorial
sality violations are present in the whole spacetime, with theplane has a distanae from the origin, which we shall call
appearance of a naked singulafitys,17. We shall restrictto  the projected impact parameter. At this minimum projected
subcritical angular momenta. The ellipsdid-a?sirP9=01is  distance, the light ray has some heighon the equatorial
the static limit bounding the region where every static worl-plane. Finally, the inclination/, is the angle that the light
dine (x=9= ¢=0) becomes spacelike. The region betweerray forms with the equatorial plane. When we switch on the
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again towards infinity. Evaluating the Lagrangianxat X,
we find an implicit relation betweed=u and the closest
approach distancey:

—Do+ V4A,Co+ D}
J=u=
2A,
_ —atXxgya®+Xo(Xe—1)

]

<
> =

> 1 , an

&

\v/ where all the metric functions with the subscript 0 are evalu-

2

ated atx=Xx,. The impact parameteu is then univocally
determined by, and vice versa. Choosing the positive sign
before the square root, we describe only light rays winding
counterclockwise when seen from above. &BorO the black

gravitational field, the light ray is obviously deviated from Nole also rotates counterclockwise, while &+ 0 the black
this ideal straight line, but these three parameters can still bg°le and the photon rotate in opposite senses.

used to label any light rays coming from infinity. Taking the  Dividing ¢ by x, we find the azimuthal shift as a function
asymptotic limit of the equations of motion, we can write of the distance

and Q in terms of the initial conditions characterizing the

FIG. 1. The three parameters identifying an incoming light ray.

ight ray 5 = P1XX0)P2(X,Xo) (18
J=u cosiy (13
h2cog 2_ a?)sir? P1(X,%o) VB(2AAT+ AGD) (19
Q COS g+ (U—a“)sin‘ ¢y (14 1 0 m\/ﬂrAC—-i-Dz
IIl. DEFLECTION ANGLE IN THE EQUATORIAL PLANE 1
In this section we consider light rays strictly lying on the Pa(x,%0) = ' (20)
equatorial plane)= 7/2 by settingh=¢,=0. The reduced \/A —A%+ i(AD ~A,D)
metric has the form 0 cC C o0

ds*=A(x)dt*~B(x)dx*— C(x)d¢*+ D(x)dtde Integrating this expression fromy to infinity we find half
(15  the deflection angle as a function of the closest approach.
Given the symmetry between approach and departure, we

with can write the whole deflection angle as
1
AX)=1-= a(Xo) = ¢¢(Xo) = (21)
¢f(xo):2f ax 9% (22)
— X
B(x)= 22 0
1- X +- di(Xp) is the total azimuthal shift. It evaluates tofor a
X straight line and becomes larger as the light ray is bent by the
5 (16)  gravitational field. The expression for a spherically symmet-
C(x)=x2+a2+a— ric metric, given in Ref[11] can be recovered setting
X = Doz 0 .

The deflection angle grows ag decreases. It diverges
whenx, reaches a minimum valuwe,, which represents the
radius of the photon sphere. If a photon falls inside this
sphere, it is destined to be absorbed by the black hole. Of
What we say in this section is immediately extendable to anyourse, we will have different photon spheres for photons
axially symmetric spacetime if we replace E46) by any  winding in the same sense of the rotation of the black hole
other expression. (hereafter direct photonsand for photons winding in the

As =0, by Eqg.(13) the angular momentuhcoincides  opposite senséretrograde photonsIn general, we expect
with the impact parametar. The impact parameter is also the latter to be absorbed more easily. Their photon sphere
related to the minimum distaneg reached by the photon. In  will thus be larger than that of retrograde photons, which can
general, a light ray coming from infinity approaches theescape more easily. As we shall see later, this is what hap-
black hole, reaches this minimum distangeand then leaves pens.

_.a
D(X)—Z;
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Following the philosophy of the strong field limit, we Xm
look for an expansion of the deflection angle of the form

6D
oL_4

a(6)=—alog +b+O(u—u, (23

m

where the coefficientsi,,, a andb depend on the metric
functions evaluated at,,. Do, is the distance between the

lens and the observer, so that the angular separation of tt 1.25
image from the lengalso referred as impact anglées 6 a
=u/Do, . -0.4 -0.2 0.2 4
All the steps to be taken towards this final expression are 0.75
very similar to those for spherically symmetric black holes,
with few adjustments. We shall sketch them very briefly, 0.5

referring to Ref[11] for details.

We define the variables FIG. 2. The radius of the photon sphere versus the black hole

angular momentum.
y=AX) (24) The real solution external to the horizon of this equation
defines the radius of the photon sphegg plotted in Fig. 2.
(251 As expected, for positiva (direct photons are allowed to
1-vyo get closer to the black hole, entering even the ergosphxgre (
. . ) falls below 1) at high values o#. It is possible to calculate
whereyy=A,. The integral(22) in the deflection angle be- exactly from the equation=0 at what angular momentum

comes this happens. The critical value is
1
= 1
¢f(xo) fo R(Z,Xo)f(Z,Xo)dZ (26) acr:_ =0.354. (32)
242
_ Notice thatx,—1/2 asa—1/2, i.e. the photon sphere
R(z,%0) =2 Yo P.(X,Xo) 27) coincides with the horizon in the limit of extremal Kerr black

!

hole. For negative angular momer{t@trogradg light rays
must keep farther from the center.

f(z,X0) = P4(X,Xg) (28) The procedure to find the strong field limit coefficients is
from now on identical to that described in R¢L1], with
wherex=A"(1-yq)z+VYol. R(z,xq) f(z,xg) and f(z,xy) given by Egs.(27), (28) and

The functionR(z,X,) is regular for all values of andxg, (29), respectively. We shall not repeat the whole technique
while f(z,x,) diverges forz—0. To find out the order of here but just specify the results of Rgf1] for our metric.
divergence of the integrand, we expand the argument of the The strong field limit coefficients of the expansi¢2d)

square root inf(z,Xg) to the second order im are
1 —Dpt V4ALCpnt D3,
f(2,%0)~fo(2,%0) = ——=. (29 U= oA (33
Vaz+ Bz? m
Whene is nonzero, the leading order of the divergence in = R(0Xm) (34)
fo is z 2, which can be integrated to give a finite result. 2\Bn,
When « vanishes, the divergence &1 which makes the
integral diverge. Then the outermost solution of the equation . cx2
a=0 defines the radius of the photon spheare (see also b=—a+ bD+bR+§Iogu—m (35
[18]). m
In the case of the Kerr metric, we have
where
a= X[ Xo(3—5xo+ 2x3) — 2a+ 2a/a®+ xo(xg— 1)] 2(1-y.)
e “Ym
X[(xo—1)(xg+a%(xo+1)]7 %, (30) bD_zalog—Aanm (36)

Equationa=0 is equivalent to the third degree equation

1
B8 xo(3— 240170 - be= fo[R(z.xm)f<z,xm>—R(o,xm)fo<z,xm>]dz (37)
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3.5} higher order singularity in the functiof(z,x) and a differ-
ent expansion should be performed.
3 L
IV. PRECESSION OF THE ORBITS
9. AT SMALL DECLINATIONS
The study of the deflection angle for photons lying on the
equatorial plane is sufficient to write a one-dimensional lens
equation. However, to address the caustic structure and cal-
1 culate the magnification of the images, we need a two-
’ dimensional lens equation. For this reason, in this section we
analyze trajectories close to the equatorial plane. They are
0.4 0.2 a described by one further coordinate: the polar ang)eor
equivalently, the declinatiogg= (7r/2)— . The problem be-
5 comes too involved to be solved in general but we shall give
a complete description for quasi-equatorial motion, preserv-
ing also the simplicity and immediacy of the strong field
4 limit scheme.
In order to remain at small declinations, we restrict to
3 light rays characterized by a small inward inclinatigg and
small heighth compared to the projected impact parameter
9 with ¢y~h/u. Retaining the first relevant terms, from Egs.
a (13), (14) we get
T J=u (39
Z0.4  -0.2 0.2 0.4 a Q=h+u?yj (40
u=u’-a? (41)
04 02 0.2 0.4 a . .
We require the declinatiorf to stay smallof the order of
] b i) during the motion. Dividing Eq(12) by Eq.(10), we get
ot a simple evolution equation fop as a function of the azi-
muth ¢
_3 L
dl/j 12 2
-4} @=iw(¢)wf—d/ (42)
_5 F i
with
_6 L
_ h?
=\ " (43)

FIG. 3. Coefficients of the strong field limit versus black hole
angular momentum.

_a*+x()[x(¢)—1]

=u . 44
andc is defined by the expansion w(¢) {a+ulx(¢)—1]}x() (49
- VY In the Schwarzschild case@€0), w—1 and Eq.(42) is
U= Um=C(Xo = Xm)" (38) immediately solved to
All the functions with the subscriptn are evaluated ax, W)= coS b+ o). (45)

=Xm-
Figure 3 shows the strong field limit coefficients as func- after each loop around the black hole, the declination returns
tions of a. The minimum impact parameter, decreases tg the initial value. This means that there is no precession of
with ain a way similar tox,,. a grows ando decreases, both the orbital plane, as expected for a spherically symmetric
diverging with opposite signs @&=1/2. The divergence of black hole.
the coefficients of the expansion warns that the strong field For non-vanishing angular momenta, is no longer a
limit deflection angle(23) no longer represents a reliable constant, sinc& depends onp, and the solution of Eq42)
description in the regime of higl, sincex,, becomes a is generalized to
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Y($) =1 cos b+ o) (46) >
with 4.5
_ ¢ 4
¢=f w(¢')de". (47)
0 3.5 n
Since we are interested in gravitational lensing, the pho- 3 b
ton comes from infinity and returns to infinity. Therefore, we
are interested in the quantity /"/ﬂ
— b5 a
qﬁf:f w(¢')de', (48 -0.4 -0.2 0.2 0.4
0

) ] ) ) FIG. 4. The coefficienb as a function ofa.
whereg; is the total azimuthal shift experienced by the pho-

ton in its whole trajectory, given by E¢22). As a general remark, we can say that for positive angular

This integral can be rewritten as momentaw is always less than one, so that<¢;. As a
. o deb 1 consequence, the orbital plane suffers a counterclockwise
¢f=Zf w(x)&dx=f R,(z,Xp)f(z,xg)dz (49 precession, i.e. after each loop an additiokdl is necessary
%o 0 to reach the same declinatiagh On the contrary, for nega-
tive angular momentap>1. In this case, the precession is
clockwise, i.e. the photon reaches the same declination be-
R,(Z,X0) = o(X)R(Z,X,) (500  fore completing a loop.

The integration constanp, in Eq. (46) is fixed by the
with R(z,%) and f(z,xg) given by Eqgs.(27) and (28), re- initial conditions. In particular, we have to impose that at
spectively. At this point, the integral can be solved by the¢=0 the declination is just minus the inclination of the in-
same technique used for the integt2®) with a very similar  coming photon trajectory, which we have indicated {ay.
result. This is possible since(x) adds no singularities and The result is that
can be englobed in the regular functiBn

where

The final result is o
¢o=—sgr hlarccos — =|. (56)
6DoL - 4
$;=—alog -1+ (51
Um The declination of the outward photon is thus
gz RolO2m) _ ) (52 U= (1) = COS 1+ o). (57
2\Bm
" Alternatively, using the expression @fy, we can write
. . X
b=—m+bp+bg+alog— (53 — h —
Um 1= — hoCOSh;— =Ssin ¢ . (58)
u
where
21—y The phase¢;, calculated through Eq51), has a central
bp=2al0g Ym (54) importance in the discussion of Secs. VI and VII.
mxm
V. LENSING IN THE EQUATORIAL PLANE
. 1
szf [Ro(Z,Xm) T(Z,Xm) In the previous sections we have expressed the deflection
0 anglea as a function of the impact angteand the outward
— R, (0 fo(z,X) ]dZ (55) declinationy; as a function of the incoming inclinatio#.

We are thus ready to write a lens equation for the Kerr black
hole. In this section we shall write the equatorial lens equa-

Notice that the coefficient of the logarithmic teranis . . . : !
tion, while the next section will deal with the polar lens

exactly equal to 1 for all values of the black hole spin. The X
equation.

coefficientb is jUStEJ”T in the Schwarzschild limia.=0. So let us start from the ideal case when observer and
This recovers the equivalence between the phase in the pOI§‘6urce both lie on the equatorial plane of the Kerr black hole
motion ¢ and the total azimuthal shifb; in this limit. The  and the whole trajectory of the photon is confined on the
full behavior ofb is plotted in Fig. 4. This coefficient di- same plane. In previous works, the strong field limit has been
verges as well in the extremal black hole lirait-1/2. developed assuming an almost perfect alignment of source,
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To solve the lens equation, sinée=u/Dg <1, in a first
step we solve the equatiop= — «(6#) mod 27. Using the
expression for the deflection angle derived in the strong field
limit (23), we find

u
0= —""(1+e,) (63)
DoL
e,= eE+ y— 2n77/;, (64)
wheren=1,2, . . . indicates the number of loops done by the

photon around the black hole. This solution is then corrected

; 0.
FIG. 5. The lensing geometry projected on the equatorial plan&>Pandinga(6) aroundé, :
in the case of the first relativistic imag@.is the impact angle as P
. e a
seen by the observes, is the angular position of the source as seen a(6)=a( 02) + = 02) +o(6— 02)

by the observery is the angular position of the source as seen by a6 e

the lens,6 is the impact angle from the source. "

lens and observer. This is because, for spherically symmetric ——y— aDO'-(g_ 00). (65)
metrics, the better the alignment the higher is the magnifica- UmE€n "

tion. As we shall see in Sec. VII, this is no longer the case for o ) )

Kerr black holes. Therefore we shall write the equatorial lens>Ubstituting in Eq(61) and neglecting higher order terms,
equation in a more general way, allowing for a generic geo¥e find

metric disposition of lens, source and obserisre Fig. 5.

The optical axis is the line joining the observer and the Unen(DoL+Dys)

) 1s On=6°| 1— ——= : (66)
lens. Setting the origin on the black hole, the angle between n aDo D.s
the direction of the source and the optical axis will be indi-
cated byy. y=0 is the case of almost perfect alignment where the correction is much smaller theﬂm
discussed in Ref§8—11]. From the lensing geometry, illus-  Images are formed on both sides of the lens. As all strong
trated in Fig. 5, we can write the relation field limit coefficients depend oawe have to be careful and
o choose the correct sign for the angular momentum. Conven-
y=—a+ 0+ 6 mod 27, (59  tionally we call north the direction of the black hole spin.
Then photons winding counterclockwise are direct and are
where described by a positiva. They form images on the eastern
side of the black hole. Images formed by retrograde rays
- u Dol appear on the western side and are described taking a nega-
" D.s Dis 0 60 five a and reversing the sign of.
is the impact angle from the source abds is the distance VI. LENSING AT SMALL DECLINATIONS

between the lens and the source.

The equatorial lens equation is then The lens equatiof6l) describes trajectories lying on the

equatorial plane and can be employed to calculate the posi-
Do +D.s tions of the relativistic images. However, to investigate the
= 0— a(6) mod 2. (61) problem on a deeper level we are forced to study what hap-
Dis pens at least for small displacements from the equatorial
. . . . plane. In this section we shall assist E§1) by its polar
In this lens equatiory can assume any value in the trigo- counterpart, which is necessary to understand the caustic

nometn_c(:j mtef,jr\;]al[ —bw,q-r]. Thr(]e sourcehmayle‘{en tl))e on the g4 icture and compute the magnification of the images.
same side of the observer whem- 7. The relation between — panys 1o the small declination hypothesis, at the lowest

y and B (the angular position of the source as seen by thejer we can neglect any backreaction on the equatorial lens
observey is equation. In all our discussion we shall speaising time
reversal as the photon were emitted by the observer and
sing= %siny, (62) absorbe_d by the source. _ _ _
Dos Consider a source whose height on the equatorial plane is
hs. The height of the observer will be indicated by . We
but here in general we cannot substitute the sines by theihall assume that the following hierarchy of distances holds
argumentsD s is the distance between source and observe(see Fig. &
which does not coincide with the distanbBg, + D, g actu-
ally covered by lensed photons. u<(hg,hg)<(Dg.,D.5). (67
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FIG. 6. The lensing geometry projected on the vertical plane. In

this picture we have assumed=0 for simplicity.

Recalling the meaning of the parametefs and h used

PHYSICAL REVIEW D 67, 103006 (2003

In this equationyy is directly related to the heights of the
observer and the source. The solution is

Dis
hgthoC,—hog—35,
u
lpO,nz ’ (77)

DolDis
— (Do +Ds)Cht m S

whereS, andC, are S andC calculated foré;= ¢ ,. The
phaseg; , of thenth image is the only quantity that needs to

insofar to identify the incoming light ray, we can write down be calculated preliminarly. However, once the equatorial lens

the simple geometric relation

h:ho+ DOL11//O' (68)

equation(6l) is solved, we know the impact angtg of the

nth image and then we can calculate by Eq. (51).
As a consistency check we can see what we obtain in the

A similar relation holds between the outgoing photon pa_SchwarzschiId case when the photon completes just one loop

rameterdh;, ¢; and the source position

hs=h¢+D s . (69)

Given the positions of source and observer, our purpose is
to determineys,, the inclination under which the observer

emits (see$ the light ray.

around the black hole, exiting on the opposite side. In this
casea=0 and ¢ ,=(2n+1)7. We get

hs—ho

YonlF;=2n+1)m= Do+ D, (78)

which is the correct result for photons passing very close to

By symmetry betw_een the outgoing and the incoming pathe black hole, looping around it.

rameters, Eq(43) for ¢ can be written substituting, andh

by ¢ andh;

— [z
= ?"'l/ff- (70

In this way, we can expreds in terms of ¢ and then, by

Eq. (57), in terms of¢; and ¢,
hy=ugsin( ¢+ o). (71)

Recalling Eq.(56), we also get
h¢= —Uzﬁosingf —h cosgf . (72

Substituting in Eq(69) together with Eq(58), we get

_ h
hS:_lﬂous_hC_Dleﬂ()C'f‘ DLS:S' (73)
u
where
S=sin ¢y (74)
C=cosd;. (75

Finally, substitutingh from Eq.(68) and discarding higher
order terms, we obtain the lens equation in the polar direc-

tion

DOLDLS

(DOL+DLS)C_ S .

(76)

D
hS: ho(TLSS_C> - l,[lo

The consistency of our approximation requires thigt
<1 andh<u. From Eq.(68) the height is

hsDoL—hoD sC
h,= sPoL™ NoliLsbn . (79

DolDis
—(DoL+Dg)Cht m Sh

For a genericgf, both constraints are automatically sat-
isfied, since the second term in the denominators dominates
and we have thaty~hg /Do andh~uhg/Dg, . However,

in the neighborhood of; =k the denominators of the two
expressions can vanish, making diverge both quantities. The
equation

K(7)=u(Do +D.s)C—Dg D sS=0 (80)

defines the positions of the caustic points. In the next section
we will discuss this equation in connection with the magni-
fication of the images formed by sources close to the caustic
points (which we call enhanced images for simpligity
Surprisingly, thanks to the dragging phenomenon, the
quasi-equatorial hypothesis is nearly always satisfied, except
for enhanced images. In this situation the quasi-equatorial
motion hypothesis is satisfied only for particular geometric
configurations which keeg, andh under control.

VIl. MAGNIFICATION AND CAUSTIC POINTS

The magnification is classically defined as the ratio of the
angular area element of the image and the corresponding
angular area element of the source that the observer would
see if there were no lens. The angular area element of the
image is
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d?A,=d6éd . (81) v=0 is a source aligned behind the lens reached by a photon
making no loop(weak field lensing y=— 2 is the same
The distance covered by the photondig + D s and then  source behind the lens but reached by a photon making one
the corresponding angular area element of the source is  loop; y=—4m is the same source for a photon making two
loops, and so on.

, D, sdydhs By the polar lens equatiov6), we have
dPAG=— . (82
(DoL+Dys)
PS_ (Do +DgC— 2O0Ptsg (89)
In fact the source element in the vertical direction is dpg - O- LS u

dhg/(Do +D,g). In the horizontal direction, the source el-
ement is spanned bgy when seen from the lens which  Assembling everything together, we get
corresponds to an angl®, cdy/(Do +D_g) seen from the

observer. If we want to compare the luminosity of a lensed

i ; . ; ; (DoL+Dyg)? uuye
image with the luminosity of the direct imageamely the u= _ Y )
source observed directly alonas without lensing, the DoDis  alu(Dg +D. s)C—Dg DS
magnification is to be multiplied by the factorDg, (90)
+D, g)%D3s. L
Our lens application has the form For a generiap;, u=0(u/Do)? but for the enhanced
images,u may even divergéormally for point-like sources
_ when the denominator of E@90) vanishes. They's where
y=v(0) (83) this happens are called caustic points. At the lowest order in
u/Dg., EQ.(80) reduces to
hs=hg(6,40), (84)
where the dependence @hin the polar lens application is =K. (91

through¢; and we have neglected the backreactiogygbn Combining the formula(51) for the phasezzf with the for-

v. The ratio betweerdydhg and dédys, is given by the : ) .
modulus of the Jacobian determinant of the lens applicatiorl;nUIa for the deflection angle23) and using thg equatgrlal
lens equation at the lowest order — a(6), this equation

becomes
(9’)/ ahs
[l=|=2 -~ (85) _
7 LA (92)
— —+b=k.
The magnification is then given by a
5 ) The solutions of this equation determine the angular po-
= dA _ (DoLtDys) i (86) sitions vy, of the caustic points
d?Ag Dis Nh

By the equatorial lens equatid61), retaining the domi- Y= —btalb—km). (93

nant terms, we have For eachk, we have one caustic point for direct photons

and one caustic point for retrograde photoks:1 would

dy EDOL describe the weak field caustic points, formed when the azi-
20 ue.’ (87 muthal shift is aboutr. To be coherent with our strong field
my limit approximation, we shall restrict our analysiskes2.
with Expanding the denominator of EO0) around the caustic
points, we have
e, =tV (88)
. e . K =K’ _ _ DOLDLS .
In the following, it is convenient to encode the number of (N=K'(yvdly=n(@] 3 [y= (@)l
loops done by the photon withify, in order to write more (94)

compact formulas for all the relativistic images. $ocan

assume any negative real valug;mod 27 represents the To understand the nature of these caustic points, notice
angular position of the source amd=[(7— vy)/27] is the that in the Schwarzschild limify,— —(k—1)7 and all the
number of loops done by the photon. Two valuesyoflif- odd caustic points are aligned on the optical axis behind the
fering by a multiple of 2r represent the same source positionlens on consecutive Riemann folds while the even ones are
with respect to the lens, but reached by photons performingligned before the lens. If the source is aligned behind the
a different number of loops around the lens. For examplelens, thenth image is given by photons doimgoops around
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0.014
0.012
0.4 - 0.2 0.4 ] 4
0.008 ;3
0.006
a FIG. 8. The magnifying power at the caustic point

-0.4 -0.2 0.2 0.4

FIG. 7. The angular positions of the first five relativistic caustic Of the magnifying power of the black hole for different en-
points: k=2,3,4,5,6 from below to above. Whep=2ms the  hanced images and different angular momenta.
source is behind the lens, when-(2m+ 1)= the source is before In Fig. 8 we plot the magnifying poweu; of the caustic
the lens. point 3, which fora=0 generates the first relativistic image

of a source behind the lens. The magnification grows for

the black hole. Setting~ — 2n, the closest caustic pointis negative angular momenta while decreases for positiak
von+1- Then we can recover the Schwarzschild magnificamost linearly. The divergence in the magnification wreen
tion for the images created by a source behind the [Bhs  approaches its extremal value 1/2 should not be taken seri-
ously, as the standard strong field limit approximation breaks
down as explained in Sec. lll.

DoL+D.s)? UUnme, — .
uSeh= ( [O)'- 5 Ls) m=n The shape ofit, remains more or less the same for every
oLYis Do D ; _ ab—km
al 2L LS(ZmTJr ¥) k but, sincee,, =e , we have that
a

Mk+1
=e "=0.043. 98
Dos Unmen(1+ey) Mk *8

(99

=— 5
DoDus o The magnification of enhanced images falls quite rapidly as

In Fig. 7 we plot the positions of the first five relativistic we let the photons make more and more loops.

caustic points as functions of the black hole angular momen-
tum. The first relativistic caustic point, is obtained when VIIl. CRITICAL CURVES AND CAUSTIC STRUCTURE

the photon turns around the black hole and comes back to-

wards the observey is thus close to- but is anticipated lens has an infinite series of Einstein rif§s5]. The first one

for negativea and delayed for positiva. vy is behind the . . ! . T .
is the classical weak field Einstein ring whose angular radius
lens but, at large angular momenta, can move very far from

the initial position. At high values of the spin, the caustic
points drift so much that they can even change their Riemann

fold. 2D, s
We can specify the magnification formula for the en- Oe= Do Dov (99
hanced images using E(R4) oL~ 0s

It is well known that the Jacobian of the Schwarzschild

The corresponding caustic is the pointygt=0.
enh_(DOL+ Dis)? my(a) 96 At small impact paramgters we entgr the strong field limit
k = D2 p2 lv— (96) of the Schwarzschild lensing and the light rays wind around
OL=LS the black hole. The second Einstein ring is created by pho-
tons coming back towards the observer. The caustic is at
mi(a)=u(yk(@)um(a)e,, (- 97 Y= —m _
Decreasingu further, the light ray completes a loop and

L= L we have the third Einstein ring, whose caustic pointyi
The quantityu, regulates the magnification close to caus- _ g pointys

tic points. The dependence gnhas been extracted and has _, —2mand is superposed on the first caustic pdort the

. 1 : second Riemann fo)d
the typical|y— " behavior. The dependence on the as-" g mming up, the Schwarzschild lens has a large weak

tronomical distance®o., Dis, Dos is negligible inuy at  field Einstein ring and an infinite series of concentric relativ-
the lowest order iu/Dg, . SO we can usg, as a measure istic Einstein rings, very close to the minimum impact angle
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field caustics. If this is the case, then the caustic pojtsn

AU the equatorial plane are cusps. This is consistent with the fact
B e N \ that if we let y decrease below somg, the corresponding
~< I S\ image changes parity. This can happen only when at the
BRSO critical point two images are formed with the same parity of
N ~L _  _  ________ the original imagg20,21]. These images rapidly move in the
W e, Y vertical direction and are missed in our quasi-equatorial ap-
' \:\\\ 2 proximation.
\ NN
\ \\ \\\\\/
\ \\ Y4 IX. PHENOMENOLOGICAL IMPLICATIONS
‘4 After all the analysis of the quasi-equatorial lensing in the

Kerr spacetime, we are able to discuss the phenomenological
FIG. 9. The first six caustics of the Kerr lens fo=0.1, marked  relevance of the black hole spin. In R¢tL1] it was shown
by the thick lines betweety(—[al) and y(|al). that all spherically symmetric black holes produce the same
patterns of relativistic images. These patterns differ by the
6... In the region bounded by theth ring and the (+1)th  separations and the luminosity ratios between different rela-
ring, the sign of the Jacobian is-(1)""1. tivistic images. The conclusion was that if strong field gravi-
What changes when we turn on the spin of the black hole?ational lensing will be caught by future VLBI experiments,
As regards the first Einstein ring of the weak field limit, it is it may provide a means to distinguish between different
distorted and shifted. As a consequence, the caustic poirlasses of black holes.
turns into a finite extension diamond shaped catjdi$j. In spherically symmetric black hole lensing, a generic
For the critical curves in the strong field limit, we can source not aligned with the optical axis produces extremely
calculate their intersections with the equatorial plane, whictfaint relativistic images. On the contrary, a point source per-
are fectly aligned along the optical axis produdéiseoretically
infinitely bright images. Actually the finite source radius cuts
off the real brightness of the images. The relativistic images

65" = gocr| 1— ume?k(DOL’LD'—S) (100 are maximally amplified altogether since all the caustic
k k EDOLDLS points of spherically symmetric black holes lie on the optical
axis.
In Kerr lensing, the situation becomes radically different.
gocT — Um (1+e.) (101) The crucial fact is that the caustics no longer lie on the op-
K Do Y tical axis but drift throughout the trigonometric interval.

Then if the source is close to one caustic point, it cannot be

They are closer to the optical axis on the positvside(for  close to any other. The consequence is that only one image at
left-winding photong and farther on the negativeside(i.e.  a time can be enhanced, while all the others stay extremely
for right-winding photons Therefore critical curves are dis- faint.
torted and shifted towards the negat@eside, which is the To clarify the situation, suppose we have a source aligned
western side, if north is the direction of the spin. with the caustic pointys(|al). Then the outermost relativis-

The caustics are no longer points but acquire a nonvantic image on the eastern side will be enhanced. If we put the
ishing extensionzy,(—|al) and y.(|a|) represent the inter- source onys(—|al), then we only enhance the first relativ-
sections of thekth caustic with the equatorial plane. As istic image on the western side. If we put the source on
lvk(—1|al)|<kw and|y,(|a])|>k= the caustic is shifted to- ys(]al), then the second relativistic image on the eastern
wards the western side. To visualize this situation, in Fig. Side will be enhanced and so on.
we have plotted the projections of the caustics on the equa- Rather than seeing an infinite series of relativistic images
torial plane, as seen from the north direction. Theon each side of the lens, we would observe only one en-
[vi(—|al),y1(]a])] caustic is the weak field one, which hanced relativistic image. It would be difficult to recognize a
stays almost aligned on the optical axis, while the relativisticsingle image as a gravitational lensing phenomenon rather
caustics drift in the clockwise direction. Als grows, the than any kind of environmental source around the black hole.
caustics become larger and farther from their initial positionEven if we managed, it would be quite tricky to extract in-
on the optical axis. Examining Fig. 7 we notice that at highformation about the strong fields around the black hole from
angular momenta the caustics may become very large, cowne single relativistic image.
ering even several Riemann folds. However, if the source is inside the caustic, two additional

At the lowest order iny and neglecting any backreaction images should appear, making it easier to recognize their real
on the equatorial lens equation it is not possible to give anature of lensed images of the same source. Moreover, three
rigorous classification of the type of catastrophes we encourimages can be used to investigate the gravitational
ter on the equatorial plane. However, the fact that the firsfield around the black hole and put constraints on its param-
caustic in the weak field assumes the typical diamond shapeters. Alas, the additional images are missed in our
of quadrupole lenses suggests a similar picture for stronguasiequatorial approximation. In order to catch them, it is
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necessary to face the problem of Kerr lensing in its generaGalaxy push towards high valugs4]. If these estimates are
form. A reliable treatment of non-equatorial images wouldconfirmed, then we are forced to include spin in any realistic
complete our quasi-equatorial study and would make postreatment of strong field gravitational lensing for Sgr A*.
sible a detailed investigation of strong field gravitational
lensing for high values of the black hole spin.

By now, we have discussed the two extreme situations: X. SUMMARY

spherically symmetric black holesa0) and high spin In this paper we have explored the modifications to strong
black holes. It is interesting to estimate the value of the spiffield limit gravitational lensing induced by the rotation of the
which separates the two regimes. We shall do it, referring t@entral body, analyzing the quasi-equatorial null geodesics.
the black hole at the center of our Galaxy, assuning. The most apparent change is the formation of extended
=8.5 kpc,D s=1 kpc. caustics which, for high angular momenta, can cover several
In order to consider a black hole as spherically symmetricRiemann folds. This situation is radically different from
the caustic drift must be negligible when compared to thespherically symmetric black holes where the caustics are
extension of the source. In fact, in this case, the source dogspints aligned behind and in front of the lens. While for
not “see” different caustics but they behave roughly as if =0 a source behind the lens is simultaneously close to all
they were all at the same point. For smallthe y, scale  odd caustics and gives rise only to enhanced images, for Kerr
linearly as —(k—1)m—a(no+ 7:K), with », and 7; nu-  black holes the source can be close to one caustic at a time
merical factors of order one. Then, the drift between twoand thus produces only one enhanced image.
consecutive caustics will be negligible if As secondary interesting effects, we can also mention the
asymmetry between images formed by photons winding in
Rs the same sense of the black hole and photons winding in the
| y«(@) = yk+2(@) mod 27|=27,a< 5 (102 opposite sense, the latter appearing farther from the black
hole. The magnification decreases with the spin, being higher
If we consider a source with radilRs=10R.,, we then for retrograde images.
find thata should be lower than 13° Whena is greater The study of quasi-equatorial Kerr gravitational lensing is
than this value, the source will see only one caustic at a time/ery instructive and has allowed us to discover a great num-
However, the caustic will be still seen as point-like, since theder of interesting features of spinning black holes. However,
extension of the caustic scalesafs Therefore, we will still  to address the phenomenology of the black hole at the center
have two enhanced images, corresponding to the two inteRf our Galaxy and/or other black holes with deeper insight,
sections of thekth caustic with the equatorial plang(a)  further investigation is necessary. In fact, we need a punctual

as rial plane. The existence of extended caustics suggests the

formation of pairs of non-equatorial images, missed in our
approximation, which are of striking importance for the phe-
nomenology.
s The quasi-equatorial lensing, studied in this work, then
(103 represents the first fundamental step to understanding lensing
by spinning black holes. However, the complexity of the
with &, and &, of order one. problem requires a global approach in order to give correct
For a 1R, source, this requirea<105. Beyond this and cor_nplet_e answers to all observational questions. Th|s is
value, only one image at a time will be enhandemyether the main ijectlve for future work on strong field gravita-
with an eventual additional pair of images if the source istional lensing.
inside the caustj¢ while all the others stay invisible.
These estimates reveal that the phenomenology of spheri-
cally symmetric black holes is realistic only for black holes
with tiny spin. Yet, as recalled in the Introduction, the first | am grateful to Mauro Sereno for useful discussions on
estimates of the spin of the black hole at the center of outhe subject.

|v(@)+ (k=1) 7| =[yu(—a)+ (k=1) 7|

’ R
=(étéka< D
LS
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