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Virtual gravitational wave interferometers with actual mirrors
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Long base interferometers for gravitational wave detection involve a number of mirrors having outstanding
levels of quality. These large mirrors are now currently being produced. Each mirror has its own signature in
reflected wave fronts due to its particular roughness pattern. Direct wave front measurements, carried out after
the coating process, provide numerical maps from which very useful information can be extracted, either
directly or by insertion in a numerical model of the interferometer. In particular, we show how it is possible to
test the performances of the instrument for various attitudes of the mirrors before installing them in the vacuum
chambers, a heavy and dangerous task.
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I. INTRODUCTION

The detection bandwidth of large interferometric gravi
tional wave detectors, such as Virgo and the Laser Interfe
metric Gravitational Wave Observatory~LIGO! @1,2#, will
extend from a few Hz to a few kHz. In most of that rang
from about 100 Hz up to the upper limit, their performan
will be limited by the quality of the large optical compo
nents.

It is important to recall briefly what is their common op
tical design: these are Michelson interferometers operate
close as possible to the dark fringe. Each~3 or 4 km! arm of
the Michelson interferometer is a Fabry-Pero´t resonant cav-
ity, which provides an effective length of more than 100 k
The laser light which remains in the ‘‘bright fringe’’ reflecte
by the Michelson interferometer is ‘‘recycled’’ towards th
beam splitter in order to enhance the effective laser pow
and hence to improve the shot noise–limited measurem
noise. Nominally, the optical beam geometry is simple:
laser beam is a TEM00 Gaussian mode which matches t
eigenmodes of the arms resonant cavities.

The properties of the mirror surfaces and coatings
important for two reasons:

Individual mirror losses determine how much light is lo
by transmission, absorption, and scattering at large ang
Neglecting the fact that scattered light can create additio
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noise @4,5# if it finds a path to recombine with the mai
beam, we can consider these as a simple loss which
creases the efficiency of the recycling process.

Low angle scattering plays a different role when the lig
is scattered out of the TEM00 mode but couples to low orde
modes and remains inside the resonant cavities. The effe
not only to decrease the recycling coefficient~and thus the
signal amplitude!, but also to add spurious light on the da
fringe, and then to increase the shot noise.

An important issue is finally the level of asymmetry of th
two arms of the Michelson interferometer. For a given av
age level of mirror imperfection, the overall performance
the interferometer will improve if the symmetry is improve
We have shown earlier@6# that specific and powerful optica
modeling tools were necessary in order to specify the per
mances of the mirrors. In this paper we show that the sa
tools are useful again once the mirrors have been real
and measured: using the measured mirrors maps, we bu
complete numerical interferometer, which allows us to ‘‘m
nipulate’’ them safely and quickly, in order to optimize the
choice and relative positioning.

We also use this technique to optimize the performance
the mode cleaner: in Virgo, this is@3# a high finesse ring
cavity of triangular shape; two flat mirrors operate with
incidence angle of about 45°, while the third, curved mirr
operates with a very small incidence angle of abo
300 mRd. It is important to decouple very well the two po
sible beams~clockwise and counter clockwise!, so we have
to minimize the backscatter from one beam to the other,
since the residual roughness of the mirror is not axisymm
ric, the performance will depend on the rotation angle of
mirror around its axis, and can be optimized through
simulation. In both cases, we show how to handle these m
and avoid slow and difficult experimental studies.
©2003 The American Physical Society06-1
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II. METROLOGY AND WAVE FRONT MEASUREMENTS

The mirror surface figures are obtained using a ph
shifting Fizeau interferometer. In order to reach a measu
ment accuracy better than 10 nm, required for testing Vi
optics, the instrument was designed to be as aberration
as possible. In particular it does not contain any zoom opt
thus its resolution is fixed. Each pixel of the charge-coup
device ~CCD! array images a 350mm3350 mm surface.
The required accuracy is by far better than any commerci
available large diameter reference flat. All reference flats
tested against each other using the standardthree flats test
technique which provides absolute surface figure meas
ments on a number of diameters of each reference flat@8#.
Some mirrors are larger than the Fizeau 150 mm apert
we have developed a stitching algorithm which allows us
perform subaperture measurements and successfully c
bine them into a full map. The loss of accuracy introduced
the stitching technique lies in the nanometer range, so it d
not degrade significantly the overall performances of the
strument. The instrument provides discrete surface fig
maps, corrected from the reference flats surface figures
4303430 grids for single aperture maps, and up to 10
31000 grids for large maps that require the stitching te
nique. Because the Fizeau interferometer measures th
gap between the reference flat and the surface under s
the surface figure maps usually contain an arbitrary pis
term as well as arbitrary tip or tilt terms.

III. NUMERICAL METHODS

A. Extraction of mirror parameters

The wave front maps coming from direct measurem
need to be refined before exploitation. The reason is tha
the numerical codes described above, we need to match
beams. For matching, it is necessary to have collimated
rors of known curvature radius. It is therefore necessary
extract the tilt angles and the curvature radius from the e
pirical data. Tilt angles come from the fact that some wed
may exist in the substrate, and the curvature radius given
the manufacturer is usually within the requirements, but
value is not accurately known and, moreover it does not h
the same meaning for the polisher and for the laser scien
This last point notes a severe problem when defining
specifications of optical components. Usually, polishers
fine the radius of curvature as the radius of the sphere ma
ing the surface figure over a fixed diameter. In this case
points on the surface are of equal importance for evalua
its value. On the other hand, since the mirrors are used
laser beams, it is clear that the value of the radius of cur
ture is more critical for regions close to the mirror cen
than for regions close to the mirror edge. The radius of c
vature, as measured by polishers, which are dependent
particular surface diameter, can only be used as an estim
of the quality of the polishing process, not as accurate in
mation on the surface figure. It must therefore be underst
that these three geometrical parameters~tilt angles, curvature
radius!, are not independent on the analyzing beam. If
analyzing beam is a clean Gaussian beam of width param
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w, the geometrical parameters arew dependent. But in turn
w, due to matching, depends on the curvature parameter
we obviously want to take an analyzing value ofw corre-
sponding to a realistic operation of a defined cavity. As c
tomary in such problems, an iterative approach allows us
reach the goal. We first choose an approximate valueR1 of
the curvature radius~e.g. its nominal value!, from which an
estimatew1 of w can be derived, knowing the geometry
the cavity in which the mirror is to be included and th
wavelength of the light. We denotew0(x,y) the fundamental
TEM00 mode of widthw1, and arbitrary phase curvature ra
dius R. We have, namely~in all of what follows, k
[2p/l),

w0~x,y!5A 2

pw1
2

exp@2~x21y2!/w1
2#

3exp@ ik~x21y2!/2R#.

If z5 f (x,y) is the apex equation of the mirror’s surface, t
reflected field is

w ref~x,y!5w0~x,y!3 exp@22ik f ~x,y!#.

Now we shall consider a fieldwprobe(x,y) coming from the
mirror, with an arbitrary direction defined by the angl
(2u,f), as if it were reflected off a mirror tilted by (u,f),
and the same arbitrary phase curvature radiusR as the in-
coming field. We have, namely,

wprobe~x,y!5A 2

pw1
2

exp@2~x21y2!/w1
2#

3exp@2 ik~x21y2!/2R#

3exp@2iku~x cosf1y sinf!#.

We propose to findR,u,f by looking for the best coupling
betweenw ref andwprobe. In other words, we use the probe
test the preferred direction of the reflected field, and its p
ferred matching parameter. In this way we deduce the g
metrical parameters of the mirror from the behavior of t
probe. The coupling coefficientG(R,u,f) is defined by the
Hermitian scalar product

G~R,u,f!5E
R2

wprobe~x,y !̄ w ref~x,y! dx dy.

This is

G~R,u,f!5 E
R2

I w1
~x,y!expF2ikS f ~x,y!2

x21y2

2R

2u~x cosf1y sinf!2pD G dx dy. ~1!

I w1
(x,y) is the normalized optical intensity distribution.p is

a piston~corresponding to a possible longitudinal translati
of the mirror surface!. It is clear, however, thatp does not
contribute the modulus ofG. The best coupling is obtaine
6-2
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when uGu2 is a maximum, so that the problem is reduced
maximizinguGu2 with respect toR,u,f. Now, if the mirror is
of high quality, the departure of the surface from an id
paraboloid is very small, and when the probe parameters
near their optimal values, the residual

d f ~x,y!5 f ~x,y!2
x21y2

2R
2u~x cosf1y sinf!2p

is very small ~usually a few nm! compared to the wave
length, so that an expansion of the exponential factor is
lowed in Eq.~1!:

G~R,u,f!5 E
R2

I w1
~x,y! @112ikd f ~x,y!

22k2f ~x,y!2# dx dy.

The square modulus is then

uG~R,u,f!u25124k2@^d f 2&w1
2^d f &w1

2 #

where we denote bŷF&w the weighted average of any func
tion F(x,y):

^F&w5 E
R2

I w~x,y!F~x,y!.

It is always possible to choose the dummy piston in suc
way that^d f &50, and we get

uG~R,u,f!u25124k2^d f 2&.

The maximum ofuGu2 is obviously attained when̂d f 2& is a
minimum, and eventually, the problem is thus strictly equiv
lent to fit a quadric polynomial

f̂ ~x,y!5
x21y2

2R
1u~x cosf1y sinf!1p

to the empirical functionf (x,y) by an intensity-weighted
least-square algorithm. This is the way we proceed. T
gives a better estimate of 1/2R, u cosf andu sinf, and the
new valueR2 found forR gives in turn a better estimate ofw.
The procedure is iterated until a stable value is found for
parameters. At the end, the final functiond f is the residual
roughness, and̂d f 2& is the weighted rms roughness. The t
and the piston are removed by usingf 8(x,y)5 f (x,y)
2u(x cosf1ysinf)2p instead of f (x,y). f 8 represents a
rough but collimated paraboloid~for the relevant beam!, of
which the curvature radius is accurately known. For instan
see Table I for two mirrors recently produced for the ends

TABLE I. Empirical statistical parameters of two mirrors re
cently manufactured for Virgo.

Mirror no. Curvature radins Matched waist rms roughne

C01077 3584 m 2.12 cm 2.8 nm
C02017 3624 m 2.15 cm 3.6 nm
10200
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the two arms of Virgo, coated at SMA-Lyon, referred to
C01077 and C02017, respectively.

Figures 1 and 2 show the structure of the residual rou
nesses of the two mirrors, respectively. One can notice
analogy of the two profiles, up to a possible rotation.

B. Models of paraxial optical devices

We briefly describe the principles of the codes used
simulating operation of complex optical systems like gra
tational wave interferometric detectors. In these devices,
light beams have very long~km! Rayleigh parameters an
the mirrors are nearly flat~several km curvature radius!, so
that the paraxial approximation holds for describing lig
propagation. Two possible~called spectral! methods are valid
in this context. They both consist of expanding the fields
elementary waves of which propagation is so simple tha
results only in a phase factor. In the first one~Fourier trans-
form technique!, the field is expanded on a continuous fam
ily of plane waves. In the second~called modal!, the field is
expanded on a discrete family of Hermite-Gauss wave fu
tions. Both families are orthogonal solutions of the parax
~Fresnel! wave equation. We have developed the two a
proaches separately, firstly because their excellence area

FIG. 1. Residual roughness in the central zone of C01077; (x,y)
units are m. Weighted rms roughness: 2.8 nm.

FIG. 2. Residual roughness in the central zone of C02077; (x,y)
units are m. Weighted rms roughness: 3.6 nm.
6-3
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not exactly coincide and, secondly, in order to be able
check results by comparing the outputs of independ
codes.

1. FFT based codes

The principle of light propagation by Fourier transform
and its implementation via fast Fourier transform~FFT! has
been described in@6#. Let us recall briefly that for the com
plex amplitude of any field beingA0(x,y) at z50, one can
compute its new amplitude at a distanceL by taking its 2D
Fourier transformÃ0(p,q) and then multiplying it by the
propagator~Fourier transform of the diffraction kernel!,

PL~p,q!5eikL e2 ilL(p21q2)/4p.

One finds the Fourier transformÃL(p,q)5PL(p,q)
3Ã0(p,q) of the amplitude after propagation. The inver
2D Fourier transform gives the amplitudeAL(x,y) itself. The
whole algorithm can be represented symbolically by the
ear propagation operatorPL as

AL5PLA0 .

The greatest interest of this technique is to reduce in prac
the calculations to FFT calls. For this, we sample the am
tudes on a square grid, givingN3N arrays that enter the
2DFFT routines. Reflection on a mirror is represented b
product with a mirror operatorM (x,y). If f (x,y) denotes the
apex equation of the mirror’s surface, andr its scalar photo-
metric reflectivity~we assume it uniform!, we have

M ~x,y!5r e2ik f (x,y)

and if we denote byA0(x,y) the incoming amplitude and b
Aref(x,y) the reflected one, we have

Aref~x,y!5M ~x,y!3A0~x,y!

so that whatever the simulated system, the code reduce
FFT’s and simple array products in the direct and in
Fourier space. This allows us to benefit from any paralleli
tion capability of the used workstation. Finding the fiel
inside a resonant cavity, and especially in a recycling in
ferometer requires@7# an iterative algorithm. For a powe

FIG. 3. Power recycling Michelson interferometer with Fabr
Perót cavities.
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recycling system such as Virgo, we proceed as follows~see
Fig. 3!: We denote byRi ,Ti , respectively, the operators a
sociated with the reflection and the transmission of mir
Mi . The 6 mirrors involved are the recycling mirrorMR , the
corner mirrorM11 and the far mirrorM12 of the north cavity,
and the correspondingM21, M22 for the west cavity. The
splitter is MS . We start from three estimates (E,F1 ,F2) of
the internal fields corresponding to the easily computed id
situation~perfect mirrors!, then new estimates can be com
puted according to the following scheme:

Enew5TRA1RR@P1R11P11P2R21P2#Eold

1RRP1T11C1F1
old1RRP2T21C2F2

old

F1
new5T11P1Eold1R11C1F1

old

F2
new5T21P2Eold1R21C2F2

old

whereCi denotes a round trip in cavity #i ~i.e. propagation/
reflection/propagation!, P1 a propagation along the nort
short arm through the splitter, andP2 a propagation from
south to west by reflection on the splitter. Then the proces
iterated until the Hermitian distance between two succes
estimates is small enough. At the end, the field in the d
fringe is B given by

B5@P18R11P11P28R21P2#E1P18T11C1F11P28T21C2F2

where the operatorsP18 and P28 represent, respectively,
propagation from north to east by reflection on the splitt
and a propagation from west to east through the splitter.

2. Modal codes

We denote byH0 the Hilbert space of optical amplitude
at z50, and byHL the Hilbert space of optical amplitudes
z5L. If we take inH0 a basis of Hermite-Gauss function
$wm,n;0(x,y) : m,nPN%, and in HL the basis
$wm,n;L(x,y) : m,nPN% involving the same TEM modes bu
diffracted over the distanceL, propagation along a distanceL
of any optical field is a mappingH0→HL , represented by
the diagonal operatorP, acting as

Pwm,n,05e2 i (m1n11)awm,n,L

wherea is a constant depending onL and on the Rayleigh
parameterb of the beam@namelya5 tan21(L/b)]. The ef-
fect of mirrors on amplitudes can be represented by matr

Mmm8nn85^wm8,n8,z ,Mwm,n,z&

where^ . . . & denotes the Hermitian scalar product. In pra
tice, the infinite family of modes taken into account in a co
must be truncated. It is consistent to takem1n<V, the total
number of modes being thenNM5(V11)(V12)/2. With
such a representation of propagation and reflection, all co
reduce toNM 3 NM matrix algebra.
6-4
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3. A brief comparison

Both the discrete Fourier transform~DFT! approach and
the modal expansion~ME! approach have in common a pra
tical limit in their dimension. IfN3N is the dimension of the
arrays representing the fields in DFT’s andV the maximum
order of modes in ME’s, we have the following numbe
NF5N2 for DFT, andNM5(V11)(V12)/2 modes for ME.
The information lost by this unwanted but necessary trun
tion has some similar consequences in the two approac
ReducingNF or NM removes information on sharp details
the field. It forbids us to represent too large diffractio
angles. But the main difference lies in the fact that a mo
expansion matches more efficiently the nearly Gauss
mode of a realistic Fabry-Pero´t cavity than an expansion in
terms of plane waves. As long as we are interested by s
deviations with respect to the fundamental TEM00 of the cav-
ity caused by smooth aberrations, ME-based codes can
excellent results with aNM much smaller than theNF which
is necessary for reaching the same accuracy. If we are
interested in light scattered by the roughness of mirrors,
random details of the field are more easily matched by pl
waves of any direction than with combinations of ev
higher order Hermite-Gauss modes of fixed waist, and D
methods are preferable.

IV. MODE-CLEANER MIRRORS

The mode cleaner is a long (;143 m) triangular cavity
designed to filter out jitter in the pointing of the laser bea
and power fluctuations. It has the topology of a ring cavity
order to avoid spurious collimated reflections that could sp
the laser stability. This property results from the existence
a unique clockwise propagating mode. The two nearly
thogonal mirrors forming the basis are flat, whereas the
mirror is spherical. A special situation in the interferomete
that this mirror works under a small incidence angle. Due
its residual roughness, it is able to scatter light in a so
angle large enough to include the incoming direction, a
thus to couple some power into the counterpropaga
mode. This results in interference fringes on the detector
are able to make unstable the servo loops that are locking
cavity. As we shall see, the situation can be evaluated w
out any propagation algorithm. The coordinates are such
the z axis is the spherical mirror axis. Thex,y axes are or-
thogonal and within the plane tangent to the mirror. We
note byw0(x,y) an incoming Gaussian beam, matched to
mirror, and incident with angles (u,f). We have

w0~x,y!5A 2

pw2
exp@2~x21y2!/w2#

3exp@2 ik~x21y2!/2R#

3exp@2 iku~x cosf1y sin f!#.

The mirror operator is

M ~x,y!5 exp@2ik f ~x,y!#
10200
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where f (x,y) refers to the wave front map of the mirro
including the mean paraboloid plus the residual roughne
The reflected beam is thus

wR~x,y!5M ~x,y!3w0~x,y!.

The counterpropagating beamwc is the phase conjugate o
w0,

wc5w 0̄.

The coupling coefficientG(u,f) between the reflected an
the counterpropagating beams is given by the Hermitian s
lar product:

G~u,f!5^wc ,wR&

or, in detail,

G~u,f!5 E
R2

I ~x,y!expF2ikS f ~x,y!2
x21y2

2R D G
3exp@22iku~x cosf1y sinf!#dxdy

where I (x,y) is the normalized intensity distribution in th
beam. Note that the functiond f (x,y)[ f (x,y)2@(x2

1y2)/2R# is nothing but the residual roughness of the mirr
~see Fig. 4!.

Since this residue is small compared to a wavelength,
can write

G~u,f!5 expF2
2p2w2u2

l2 G12ik E
R2

I ~x,y!d f ~x,y!

3exp@22iku~x cosf1y sinf!#dxdy

22k2 E
R2

I ~x,y! d f ~x,y!2

3exp@22iku~x cosf1y sinf!#dxdy.

When the roughness is zero, the first term still remains
represents the natural overlap of the reflected beam with
phase conjugate beam, due to Gaussian divergence.u

FIG. 4. Residual roughness in the central zone of the M
spherical mirror; (x,y) units are m. Weighted rms roughness: 2
nm.
6-5
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50, this overlap is simply unity, expressing the perfe
matching of the beam. We can express the natural overla

G0~u!5 exp@22u2/ug
2#

whereug[l/pw. For the Virgo mode-cleaner paramete
we haveug;3.1531025 Rd. For values ofu comparable to
the mode-cleaner sharp angle (uMC;331024 Rd), we see
that uG0u2 is extremely small and definitely negligible
Within the angular region corresponding to backscattering
is thus possible to reduce the expression of the coup
factor to the accurate approximation

uG~u,f!u254k2U E
R2

I ~x,y! d f ~x,y!

3exp@22iku~x cosf1y sinf!#dxdy

1 ik E
R2

I ~x,y! d f ~x,y!2

3exp@22iku~x cosf1y sin f!#dxdyU2

showing that the result reduces eventually to the Fou
transform of the roughness, weighted, as usual, by the in
sity distribution of the beam. For numerical computation
is straightforward to use the exact formula

uG~u,f!u25uJ̃~2ku cosf,2ku sinf!u2

whereJ(x,y)[I (x,y) exp@2ikdf(x,y)#. We give in Fig. 5 a
map of the backcoupling in angular coordinates. The ou
thin circle corresponds to coupling with the counterpropag

FIG. 5. Coupling coefficient as a function of (u,f) ~logarithmic
scale!. The star shows the optimal orientation of the mirror.
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ing beam for all azimuth angles of the incident beam, or
well for all rotations of the mirror around its axis. The inn
thin circle surrounds a nonsignificant region where the na
ral overlap dominates, and which has been removed. We
that backcoupling depends sharply on this azimuth anglef.
One could raise the question of the sensitivity of this patt
with respect to the centering of the analyzing beam: in ot
words, has this pattern any physical reality? The answer
be obtained by varying via a small offset the incidence lo
tion on the mirror, then taking the average value ofuGu2 over
all locations; we call this operation dithering. If we consid
a Gaussian distribution of parameterdw of these incidence
locations, dithering is strictly equivalent to taking an analy
ing beam of widthw85Aw21dw2. For plausible values of
dw ~analogous to an error in the centering!, the map is rather
unsensitive to small variations ofw. We conclude that it has
an actual physical meaning. It also shows that there are
ferred orientations, and that these preferred orientations
quire a rather accurate positioning. Figure 6 represents
variations ofuGu2 along the outer circle, i.e. for all possibl
orientations of the mirror, the incidence angle being fixed
hole in the speckle pattern is exactly on the circle atf
;0.37 Rd, and it gives a better position of the mirror.

V. VIRGO END MIRRORS

A. Orientation

We now consider a recycling interferometer involving t
two mirrors of which the main parameters have been
tracted, namely C01077 and C02017. We can define a m
factor for the interferometer by an expression analogous
the signal to noise ratio. It is well known that the SNR is~i!
proportional to the square root of the recycled power and~ii !
proportional to the finesse at low frequency.P is the power
operator acting on amplitudes, the recycled power can
estimated fromP(E), and the finesses of the cavities fro
the ratioP(Fi)/P(E). We have performed the computatio
of the SNR for various relative orientations of the mirro
and got the following results~see Fig. 7! It seems clear tha
the two mirrors should be given the same orientation. T
could be surprising, and even could raise suspicion aga

FIG. 6. Coupling coefficient as a function off for backscatter-
ing. The star locates the preferred orientation as pointed out in
preceding map.
6-6
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the correctness of the codes, if we did not know that
mirror substrates are manufactured with two parallel flats
the edge~in order to allow further bonding processes!, before
polishing. The flats obviously suppress any arbitrariness
the positioning of the blanks in the polishing device. The t
blanks have thus undergone almost identical actions~exam-
ine the roughness patterns of Figs. 1 and 2! in identical po-
sitions; this explains why they must eventually also work
the same position. In the case where the mirrors are o
mally installed, they have nevertheless different curvat
radii, and consequently the waist of the two TEM00 cavity
modes are different. One could ask what is the best be
parameter for the laser source. The answer can be dr
from Fig. 8: We see that the actual value of the input wais
noncritical. We see also that the losses in the SNR come
from the curvature differences, but from the roughness.
best dark fringe~obtained with the optimal position of th
mirrors! has the structure showed on Fig. 9.

B. Scattered light

The numerical map allows us to also get some inform
tion about the scattered light distribution. This information
limited by the maximum diffraction angle allowed by th

FIG. 7. SNR vs a mutual angle of end mirrors~squares!. SNRmax

corresponds to identical and perfect mirrors. Integrated powe
dark fringe~triangles!.

FIG. 8. SNR versus waist of the input TEM amplitude. Cross
two identical mirrors with zero roughness. Circles: different curv
tures and no roughness. Squares: actual situation.
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DFT principles. For a computational window of widtha, the
quantum of frequency in the Fourier space isdp52p/a, and
consequently the frequency dynamics ispmax5Np/a if N is
the common number of samples along thex andy directions.
If we interpret the spatial frequencies (p,q) ~coordinates in
the Fourier space! as projections on the transverse plane
oblique wave vectors, according to

p5~2p/l!u cosf, q5~2p/l!u sinf, ~2!

we have an estimate of the maximum diffraction angle
lowed:

umax5
Nl

2a
.

For a 1 mwide window with 2563256 samples, this mean
umax; 1.2831024 Rd. This may seem very restrictive, bu
it allows us to explore an angular region very problematic
the experiment. Larger values are difficult to test numerica
~to get one order of magnitude, the size the grid should
crease by 2 orders of magnitude! but can be experimentally
explored, so that there is a natural complement between
rect measurements and numerical treatment. Let us ass
that a perfectly Gaussian beam (TEM00)f00(x,y) is reflected
by a mirror of apex equationz5(x21y2)/2R1d f (x,y),
whereR is the curvature radius of the mirror, andd f (x,y) its
residual roughness. The Fourier transform of the reflec
beamC(x,y) is

C̃~p,q!5 E
R2

ei (px1qy)eik(x21y2)/R12ikd f (x,y)

3f00~x,y! dx dy. ~3!

If the peak-to-peak amplitude of the roughness is much
than the wavelength~otherwise the mirror is useless!, we can
expand exp 2ikdf, which yields

n

:
-

FIG. 9. Intensity distribution in the optimal dark fringe structu
~logarithmic scale!.
6-7
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C̃~p,q!5f008̃ ~p,q!

12ik E
R2

ei (px1qy) d f ~x,y! f008 ~x,y! dx dy

where we denote byf008 the amplitude that would be re
flected in the absence of roughness, i.e. the phase conju
of the incoming TEM00. We call this part specularly re
flected. We are interested in the difference between
specular and the non-specular parts in the actual reflec
and more specifically in

uC̃~p,q!2f008̃ ~p,q!u2

54k2 E
R2

ei [ p(x2x8)1q(y2y8)]f008 ~x,y!f008̄ ~x8,y8!

3d f ~x,y!d f ~x8,y8!dx dy dx8 dy8. ~4!

If we consider the~virtual! class of all mirrors that have bee
manufactured exactly the same way, we can viewd f (x,y) as
a random process, characterized by two statistical mome
namely a zero mean and a rms value

^d f 2&5s2.

The random processd f , considered stationary on the mirro
surface, has an autocorrelation functionC(x,y) such that

^d f ~x,y! d f ~x8,y8!&

5 s2C~x2x8,y2y8!

5
s2

4p2 ER2
e2 i [ p8(x2x8)1q8(y2y8)]C̃~p8,q8!dp8dq8. ~5!

We get, after some elementary algebra

^uC̃~p,q!2f008̃ ~p,q!u2&

5
k2s2

p2 E
R2

C̃~p8,q8!uf 8̃00~p2p8,q2q8!u2dp8dq8

54k2s2D̃~p,q!. ~6!

The quantityC̃(p,q) appearing in the preceding formulas
the power spectral density of the processf. It represents the
distribution of the various spatial frequencies in the scatte
light. It is likely that this distribution is much wider than th
angular extension of the specularly reflected light. This c
be seen by considering the inverse Fourier transform oD̃
which is simply the product of the Gaussian intensity by
autocorrelation function:

D~x,y!5C~x,y!3I ~x,y!.

The autocorrelation functionC(x,y) is sharply peaked with a
correlation range much shorter than the beam widthw, so
that the Gaussian intensity is practically constant through
significant part of the autocorrelation function. This does
10200
ate

e
n,

ts,

d

n

e

e
t

exclude some long range correlation due to large scale a
rations, but if this happens, it is in a region whereI (x,y) is
negligible. It is equivalent to replacing in Eq.~6!,

uf 8̃00(p,q)u2 by a delta function, and finally

^uC̃~p,q!2f008̃ ~p,q!u2&54k2s2C̃~p,q!. ~7!

Now, the power spectral density can be interpreted as
angular density of scattered light according to~see@4#!

C̃~ku cosf,ku sinf!5
l2

4k2s2

dPscatt~u,f!

Pin dV
.

In order to get a simple merit function for a given mirror, w
take an azimuthal average overf:

dPscatt~u!

Pin dV
5

1

l2
^uC̃~p,q!2f008̃ ~p,q!u2&5P~u! ~8!

where (p,q) are implicitly assumed, expressed as functio
of (u,f).

The numerical computation is easy to perform on the
merical maps by processing the mirror for various rotat
angles and taking the average distribution. We then get
plots of P(u) for the two mirrors~Fig. 10!. The function
P(u) is analogous to the bidirectional reflection distributio
function ~BRDF! of the mirror ~frequently used for surface
characterization! for normal incidence. This averaged distr
bution allows us to easily compare different mirrors. He
the similarity of the two distributions is clear, and is on
more proof of the homogeneity of the manufacturing proc
from its beginning. The lineug corresponds to the angle a
which the specular beam intensity is 1/e2 times its maximum
value. The lineuM corresponds to the edge of the facing fl
mirror seen from the end mirror, in other words, light with
scattering angle larger thanuM escapes the cavity.

VI. CONCLUSION

Some useful information can be extracted from the wa
front maps measured on mirrors recently produced for Vir

FIG. 10. Relative angular distribution of scattered light. So
line: C01077; dashed line: C02017.ug : Gaussian divergence of th
specularly reflected beam;uM : edge of the facing mirror.
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We have shown how to compute the best orientation of
mirrors either for minimizing the backscattering or for max
mizing the signal to noise ratio of the interferometer. We a
a

a

an

F.

10200
e

o

show how to obtain the part of the scattered light angu
distribution near the axis but outside the facing mirror, in
angular region where direct measurements are difficult.
li-
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