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Long base interferometers for gravitational wave detection involve a number of mirrors having outstanding
levels of quality. These large mirrors are now currently being produced. Each mirror has its own signature in
reflected wave fronts due to its particular roughness pattern. Direct wave front measurements, carried out after
the coating process, provide numerical maps from which very useful information can be extracted, either
directly or by insertion in a numerical model of the interferometer. In particular, we show how it is possible to
test the performances of the instrument for various attitudes of the mirrors before installing them in the vacuum
chambers, a heavy and dangerous task.
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I. INTRODUCTION noise [4,5] if it finds a path to recombine with the main
beam, we can consider these as a simple loss which de-

The detection bandwidth of large interferometric gravita-creases the efficiency of the recycling process.
tional wave detectors, such as Virgo and the Laser Interfero- Low angle scattering plays a different role when the light
metric Gravitational Wave ObservatoIGO) [1,2], will is scattered out of the TE)J mode but couples to low order
extend from a few Hz to a few kHz. In most of that range, modes and remains inside the resonant cavities. The effect is
from about 100 Hz up to the upper limit, their performancenot only to decrease the recycling coeffici€and thus the
will be limited by the quality of the large optical compo- signal amplitudg but also to add spurious light on the dark
nents. fringe, and then to increase the shot noise.

It is important to recall briefly what is their common op- ~ An important issue is finally the level of asymmetry of the
tical design: these are Michelson interferometers operated ago arms of the Michelson interferometer. For a given aver-
close as possible to the dark fringe. E&8tor 4 km arm of  age level of mirror imperfection, the overall performance of
the Michelson interferometer is a Fabry-Peresonant cav- the interferometer will improve if the symmetry is improved.
ity, which provides an effective length of more than 100 km.We have shown earlig¢6] that specific and powerful optical
The laser light which remains in the “bright fringe” reflected modeling tools were necessary in order to specify the perfor-
by the Michelson interferometer is “recycled” towards the mances of the mirrors. In this paper we show that the same
beam splitter in order to enhance the effective laser powetpols are useful again once the mirrors have been realized
and hence to improve the shot noise—limited measuremenind measured: using the measured mirrors maps, we build a
noise. Nominally, the optical beam geometry is simple: thecomplete numerical interferometer, which allows us to “ma-
laser beam is a TEpM} Gaussian mode which matches the nipulate” them safely and quickly, in order to optimize their

eigenmodes of the arms resonant cavities. choice and relative positioning.
The properties of the mirror surfaces and coatings are We also use this technique to optimize the performance of
important for two reasons: the mode cleaner: in Virgo, this i8] a high finesse ring

Individual mirror losses determine how much light is lost cavity of triangular shape; two flat mirrors operate with an
by transmission, absorption, and scattering at large anglefcidence angle of about 45°, while the third, curved mirror
Neglecting the fact that scattered light can create additionadperates with a very small incidence angle of about

300 wRd. It is important to decouple very well the two pos-
sible beamgclockwise and counter clockwiseso we have

*Electronic address: brillet@obs-nice.fr to minimize the backscatter from one beam to the other, and
Electronic address: vinet@obs-nice.fr since the residual roughness of the mirror is not axisymmet-
*Electronic address: loriette@optique.espci.fr ric, the performance will depend on the rotation angle of the
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'Electronic address: Pinard@ipnl.in2p3.fr simulation. In both cases, we show how to handle these maps
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II. METROLOGY AND WAVE FRONT MEASUREMENTS w, the geometrical parameters avedependent. But in turn,

w, due to matching, depends on the curvature parameter, for

.T.he mirror s_urface figures are obtained using a phassve obviously want to take an analyzing value wfcorre-
shifting Fizeau interferometer. In order to reach a measure-

ment accuracy better than 10 nm. reauired for testing Vir sponding to a realistic operation of a defined cavity. As cus-
. acy m, req 9 gqomary in such problems, an iterative approach allows us to

optics, the instrument was designed to be as aberranon-frer%ach the qoal. We first choose an approximate VR

as possible. In particular it does not contain any zoom optic goa. bp e

thus its resolution is fixed. Each pixel of the charge—couple?ne curvature radiuge.g. its nominal valug from which an

i . estimatew, of w can be derived, knowing the geometry of
device (C.CD) array Images a 35pmM>X 350 um surface.. the cavity in which the mirror is to be included and the
The required accuracy is by far better than any Commerc'a”)(/vavelength of the light. We denotes(x,y) the fundamental
available large diameter reference flat. All reference flats A EM- mode of wi dthW and arbitrar, hase curvature ra-
tested against each other using the standaree flats test 00 b y P

technique which provides absolute surface figure measured-Ius R We have, namely(in all of what follows, k

ments on a number of diameters of each referencd 8lat =2m/}),

Some mirrors are larger than the Fizeau 150 mm aperture; 5

we have developed a stitching algorithm which allows us to @o(X,¥)= /—zexp[—(x2+y2)/wf]
perform subaperture measurements and successfully com- TW]

bine them into a full map. The loss of accuracy introduced by s

the stitching technique lies in the nanometer range, so it does Xexplik(x*+y“)/2R].

not degrade significantly the overall performances of the in-

strument. The instrument provides discrete surface figuréf z=1(x,y) is the apex equation of the mirror's surface, the

maps, corrected from the reference flats surface figures, Orﬁflected field is

430x 430 grids for single aperture maps, and up to 1000 - _ 9
X 1000 grids for large maps that require the stitching tech- #refXY) = po(X,y) X expl — 2ikT(x,y)].

nique. Because the Fizeau interferometer measures the afiow we shall consider a fielgbpobd X,y) coming from the
gap between the reference flat and the surface under studirror, with an arbitrary direction defined by the angles
the surface figure maps usually contain an arbitrary piston2¢, ¢), as if it were reflected off a mirror tilted byé(¢),

term as well as arbitrary tip or tilt terms. and the same arbitrary phase curvature raduss the in-
coming field. We have, namely,
ll. NUMERICAL METHODS >
- i Pprobd X, Y) = \/ — &xp[ — (x*+y?)/wi]
A. Extraction of mirror parameters probe. W2 1
1
The wave front maps coming from direct measurement P

need to be refined before exploitation. The reason is that in X expl —ik(x“+y)/2R]
the numerical codes described above, we need to match the X exp[ 2ik 6(x cosp+y sind)].

beams. For matching, it is necessary to have collimated mir-

rors of known curvature radius. It is therefore necessary teve propose to findR, 6, ¢ by looking for the best coupling
extract the tilt angles and the curvature radius from the empetweeng, and ¢ prope. IN Other words, we use the probe to
pirical data. Tilt angles come from the fact that some wedgeest the preferred direction of the reflected field, and its pre-
may exist in the substrate, and the curvature radius given bigrred matching parameter. In this way we deduce the geo-
the manufacturer is usually within the requirements, but itsmetrical parameters of the mirror from the behavior of the

value is not accurately known and, moreover it does not havgrobe. The coupling coefficiedt(R, 8, ¢) is defined by the
the same meaning for the polisher and for the laser scientisHermitian scalar product

This last point notes a severe problem when defining the

specifications of optical components. Usually, polishers de- f
fine the radius of curvature as the radius of the sphere match- I'(R,0,¢)= JRZ Pprobd X;Y) Pref(X,y) dx dy.
ing the surface figure over a fixed diameter. In this case all

points on the surface are of equal importance for evaluatinghis is

its value. On the other hand, since the mirrors are used with
laser beams, it is clear that the value of the radius of curva-
ture is more critical for regions close to the mirror center
than for regions close to the mirror edge. The radius of cur-
vature, as measured by polishers, which are dependent on a
particular surface diameter, can only be used as an estimate
of the quality of the polishing process, not as accurate infor- ) ) o S
mation on the surface figure. It must therefore be understoobi, (X,¥) is the normalized optical intensity distributiopis
that these three geometrical parametéltsangles, curvature a piston(corresponding to a possible longitudinal translation
radiug, are not independent on the analyzing beam. If theof the mirror surfacg It is clear, however, thap does not
analyzing beam is a clean Gaussian beam of width parametepntribute the modulus df. The best coupling is obtained

X2 +y?

I'(R,0,¢)= fRzIWl(x,y)exr{Zik<f(x,y)— SR

—0(xcosp+ysing)—p||dxdy. D
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TABLE |. Empirical statistical parameters of two mirrors re-
cently manufactured for Virgo.

Mirror no.  Curvature radins  Matched waist rms roughness

co1077 3584 m 2.12 cm 2.8 nm
C02017 3624 m 2.15cm 3.6 nm

g
when|T'|2 is a maximum, so that the problem is reduced to
maximizing|I'|? with respect taR, 8, . Now, if the mirror is

of high quality, the departure of the surface from an ideal

paraboloid is very small, and when the probe parameters ar

near their optimal values, the residual g8
3 s
X4y’ - FIG. 1. Residual roughness in th | f CO107;
St(x,y)=f(x,y)— R —6(Xcosp+ysing)—p G. 1. Residual roughness in the central zone of C010¢,¥;) (

units are m. Weighted rms roughness: 2.8 nm.

is very small(usually a few nm compared to the wave-
length, so that an expansion of the exponential factor is al
lowed in Eq.(1):

the two arms of Virgo, coated at SMA-Lyon, referred to as
C01077 and C02017, respectively.
Figures 1 and 2 show the structure of the residual rough-
nesses of the two mirrors, respectively. One can notice the
I'(R,0,¢)= fR2|Wl(X,y) [1+2ikof(x,y) analogy of the two profiles, up to a possible rotation.

2 2
2kt (xy) T dx dy. B. Models of paraxial optical devices
The square modulus is then We briefly describe the principles of the codes used for
simulating operation of complex optical systems like gravi-
IT(R,6, ¢)|2:1_4k2[<5f2>wl_<5f>3v1] tational wave interferometric detectors. In these devices, the
) light beams have very longkm) Rayleigh parameters and
where we denote b{f),, the weighted average of any func- the mirrors are nearly flatseveral km curvature radiysso
tion F(x,y): that the paraxial approximation holds for describing light
propagation. Two possiblgalled spectralmethods are valid
(Fu= f WOGYIF(XY). in this context. They both consist of expanding the fields in
R elementary waves of which propagation is so simple that it
i ) ) ) results only in a phase factor. In the first off@urier trans-
It is always possible to choose the dummy piston in such g, techniqug the field is expanded on a continuous fam-
way that(sf)=0, and we get ily of plane waves. In the secor{dalled modal, the field is
expanded on a discrete family of Hermite-Gauss wave func-
tions. Both families are orthogonal solutions of the paraxial
(Fresnel wave equation. We have developed the two ap-
a-proaches separately, firstly because their excellence area does

IT(R,0,¢)|?=1—4k?( 5t2).

The maximum of I'|2 is obviously attained whe(6f?) is a
minimum, and eventually, the problem is thus strictly equiv
lent to fit a quadric polynomial

R x2+y? _
f(x,y)= SR + 6(xcos¢p+ysing)+p

to the empirical functionf(x,y) by an intensity-weighted
least-square algorithm. This is the way we proceed. This “
gives a better estimate of B2 6 cos¢ and 8 sin¢, and the
new valueR, found forR gives in turn a better estimate wf
The procedure is iterated until a stable value is found for all
parameters. At the end, the final functiéh is the residual
roughness, an@sf?) is the weighted rms roughness. The tilt
and the piston are removed by usirfg(x,y)="f(X,y)

— #(x cosp+ysing)—p instead off(x,y). f’ represents a
rough but collimated paraboloidor the relevant beajm of
which the curvature radius is accurately known. For instance, FIG. 2. Residual roughness in the central zone of C0207¥)(
see Table | for two mirrors recently produced for the ends ofunits are m. Weighted rms roughness: 3.6 nm.
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M,, recycling system such as Virgo, we proceed as foll¢gese
Fig. 3): We denote byR;,T;, respectively, the operators as-
sociated with the reflection and the transmission of mirror

O F M; . The 6 mirrors involved are the recycling mirierg, the

| corner mirrorM 4 and the far mirroM ;, of the north cavity,
and the correspondinil,;, M,, for the west cavity. The
splitter isMg. We start from three estimateg&,F,,F,) of

the internal fields corresponding to the easily computed ideal

situation (perfect mirror$, then new estimates can be com-

puted according to the following scheme:

Y
g
]
d~
|
D
L |

=
2

11 My
B EMeW=TrA+ Rg[ P1R11P; + PRy P,]EM

FIG. 3. Power recycling Michelson interferometer with Fabry- + RRplTllchgld"‘ RRP2T2162Fg|d

Perd cavities.
- . F1o"="T1;P;E%+ Ry G, FSY

not exactly coincide and, secondly, in order to be able to
check results by comparing the outputs of independent
COdeS. FgeW: T21P2E0|d+ Rzlczl:gld
1. FFT based codes where(; denotes a round trip in cavityi#i.e. propagation/
reflection/propagation P; a propagation along the north
short arm through the splitter, arfd, a propagation from
south to west by reflection on the splitter. Then the process is
iterated until the Hermitian distance between two successive
estimates is small enough. At the end, the field in the dark
fringe is B given by

The principle of light propagation by Fourier transforms,
and its implementation via fast Fourier transfo(RFT) has
been described if6]. Let us recall briefly that for the com-
plex amplitude of any field being(x,y) at z=0, one can
compute its new amplitude at a distaricdy taking its 2D
Fourier transformAy(p,q) and then multiplying it by the
propagator(Fourier transform of the diffraction kernel B=[PLRy 1Py + PyRotPolE+ PiT1iCoF 1+ PoToiCoF

PL(p,q):eikL e—ixL(p2+q2)/4w_ -
where the operator®; and P, represent, respectively, a
One finds the Fourier transformA_(p,q)=P.(p.q) propagation from north to east by reflection on the splitter,

xRqo(p,q) of the amplitude after propagation. The inverseand a propagation from west to east through the splitter.
2D Fourier transform gives the amplitudeg(x,y) itself. The

whole algorithm can be represented symbolically by the lin- 2. Modal codes

ear propagation operat@,_ as We denote byH, the Hilbert space of optical amplitudes
atz=0, and byH, the Hilbert space of optical amplitudes at
AL=PLAo. z=L. If we take inH, a basis of Hermite-Gauss functions,

: . . . . Ademno(x,y) : mneN}, and in H_ the basis
The greatest interest of this technique is to reduce in praCtIC%gom,n;L(x,y) - m.ne N} involving the same TEM modes but

the calculations to FFT calls. For this, we sample the ampli-,; . . ;
tudes on a square grid, givingx N arrays that enter the diffracted over the distande propagation along a distante

2DFFT routines. Reflection on a mirror is represented by of any optical field is a mappin@f,—7, , represented by

product with a mirror operatdvl (x,y). If f(x,y) denotes the %he diagonal operataP, acting as
apex equation of the mirror’s surface, ands scalar photo- —i(m+n+1)a

metric reflectivity(we assume it uniform we have Pémno=¢€ Pm,n,L

M(x,y)=r ek where« is a constant depending dnand on the Rayleigh
parameteb of the bean{namelya= tan (L/b)]. The ef-

and if we denote byA,(x,y) the incoming amplitude and by  fect of mirrors on amplitudes can be represented by matrices
Are(X,Y) the reflected one, we have

AredX,y)=M (x,y) ><A0(X,y) M :<99m’,n’,z M ‘Pm,n,z>

so that whatever the simulated system, the code reduces where( . . .) denotes the Hermitian scalar product. In prac-
FFT's and simple array products in the direct and in thetice, the infinite family of modes taken into account in a code
Fourier space. This allows us to benefit from any parallelizamust be truncated. It is consistent to take- n<V, the total

tion capability of the used workstation. Finding the fieldsnumber of modes being theNy=(V+1)(V+2)/2. With
inside a resonant cavity, and especially in a recycling intersuch a representation of propagation and reflection, all codes
ferometer require$7] an iterative algorithm. For a power reduce toNy X N, matrix algebra.
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3. A brief comparison

Both the discrete Fourier transfor®FT) approach and
the modal expansiofME) approach have in common a prac-
tical limit in their dimension. INX N is the dimension of the
arrays representing the fields in DFT’s avidhe maximum
order of modes in ME’s, we have the following numbers:
Ng=N? for DFT, andN,,=(V+ 1)(V+2)/2 modes for ME.
The information lost by this unwanted but necessary trunca-
tion has some similar consequences in the two approache:
ReducingNg or Ny, removes information on sharp details in
the field. It forbids us to represent too large diffraction
angles. But the main difference lies in the fact that a modal
expansion matches more efficiently the nearly Gaussiar.
mode of a realistic Fabry-Pereavity than an expansion in FIG. 4. Residual roughness in the central zone of the MC
terms .Of plane waves. As long as we are interested by Smaélpherical mirror; X,y) units are m. Weighted rms roughness: 2.8
deviations with respect to the fundamental TgMf the cav- .,
ity caused by smooth aberrations, ME-based codes can give

excellent results with NM much smaller than thNF which Wheref(xyy) refers to the wave front map of the mirror,

is necessary for reaching the same accuracy. If we are noWcluding the mean paraboloid plus the residual roughness.
interested in light scattered by the roughness of mirrors, thehe reflected beam is thus

random details of the field are more easily matched by plane

waves of any direction than with combinations of even or(X,Y)=M(X,Y) X @o(X,Y).

higher order Hermite-Gauss modes of fixed waist, and DFT ) ) )

methods are preferable. The counterpropagating beam is the phase conjugate of
(2

IV. MODE-CLEANER MIRRORS ©c= @g-

The mode_cleaner“is a_longv(143 ”.‘) triangular cavity g coupling coefficient’(6,¢) between the reflected and
designed to filter out jitter in the pointing of the laser beam

. . <. 'the counterpropagating beams is given by the Hermitian sca-
and power fluctuations. It has the topology of a ring cavity in propagating g y

. : ; ? JJar product:
order to avoid spurious collimated reflections that could spoi P

the laser stability. This property results from the existence of I'(0,0)=(¢c,oRr)

a unique clockwise propagating mode. The two nearly or-

thogonal mirrors forming the basis are flat, whereas the fagr, in detail,

mirror is spherical. A special situation in the interferometer is X2+y2
that this mirror works under a small incidence angle. Due to _ J : ( _ H
its residual roughness, it is able to scatter light in a solid re.4) RZI(X,y)exr{ 21k| T(x.y) 2R
angle large enough to include the incoming direction, and
thus to couple some power into the counterpropagating
mode. This results in interference fringes on the detector th%herel(x y) is the normalized intensity distribution in the
are able to make unstable the servo loops that are locking t !

v, A hall he sifuat b uated with 222 Note that the functionsf(x,y)=f(x,y)—[(x?
cavity. As we shall see, the situation can be evaluated wit 3y?)/2R] is nothing but the residual roughness of the mirror
out any propagation algorithm. The coordinates are such th?&ee Fig. 4

the z axis is the spherical mirror axis. They axes are or-

X exp[ —2ikf(x cos¢p+y sing)|dxdy

o ; Since this residue is small compared to a wavelength, we

thogonal and within the plane tangent to the mirror. We de., '\ rite

note byep(X,y) an incoming Gaussian beam, matched to the

mirror, and incident with anglesg(¢). We have T2W2 62

I'(0,¢)=exp| ———— +2ikJ 1(x,y)of(x,y)
5 N R?
Po(X,y)=\/ WEXp[_ (x> +y?)Iw?] X exp[ — 2ik O(x cos¢+y sin ) Jdxdy
xexpl KO +y?)/2R] ~2k2 [ 100y of(xy)?
R

Xexp[ —ikf(x cosp+y sin ¢)]. X exp[ — 2ik A(x cos¢+y sin¢)]dxdy.

The mirror operator is When the roughness is zero, the first term still remains. It
represents the natural overlap of the reflected beam with the
M(x,y)= exp[2ikf(x,y)] phase conjugate beam, due to Gaussian divergencé. If

102006-5



BRILLET et al. PHYSICAL REVIEW D 67, 102006 (2003

107

PO A
A\ VI \
" N MW T
\ 1V CEE R
Q_ X A ¥ A i ) A1 L 1 Y OIN TN
- LAY V4 1V} AW | \vl LW YW AY
= WA [ | v M I
10° v ./\l ‘V
10—‘0
0.00 0.39 0.79 1.18 157 1.96 2.36 275 314
¢ [Rd]

FIG. 6. Coupling coefficient as a function éf for backscatter-
ing. The star locates the preferred orientation as pointed out in the
preceding map.

ing beam for all azimuth angles of the incident beam, or as
Be04 604 de0d 2004 0. 2e04  4e04  6e0d  BeOd well for all rotations of the mirror around its axis. The inner
thin circle surrounds a nonsignificant region where the natu-
B ral overlap dominates, and which has been removed. We see
10401 -9.06400 776400 630400 -5.06+00 that backcoupling depends sharply on this azimuth aggle
One could raise the question of the sensitivity of this pattern
with respect to the centering of the analyzing beam: in other
words, has this pattern any physical reality? The answer can
be obtained by varying via a small offset the incidence loca-
tion on the mirror, then taking the average valugltf over
Eil locations; we call this operation dithering. If we consider
To(6)= exp[—202/0§] a Ga_ussian. dist_ribu_tion _of paranjetﬁnv of thes_e incidence
locations, dithering is strictly equivalent to taking an analyz-
where 6,=\/mw. For the Virgo mode-cleaner parameters,ing beam of widthw’ = JwZ+6w?. For plausible values of
we havef,~3.15< 10~ Rd. For values of) comparable to  dw (analogous to an error in the centerinthe map is rather
the mode-cleaner sharp anglé~3X 1074 Rd), we see unsensitive to small variations @f. We conclude that it has
that |I'y|2 is extremely small and definitely negligible. an actual physical meaning. It also shows that there are pre-
Within the angular region corresponding to backscattering, iferred orientations, and that these preferred orientations re-
is thus possible to reduce the expression of the couplingluire a rather accurate positioning. Figure 6 represents the
factor to the accurate approximation variations of|I"|? along the outer circle, i.e. for all possible
orientations of the mirror, the incidence angle being fixed. A
hole in the speckle pattern is exactly on the circlegat
~0.37 Rd, and it gives a better position of the mirror.

FIG. 5. Coupling coefficient as a function of(¢) (logarithmic
scalg. The star shows the optimal orientation of the mirror.

=0, this overlap is simply unity, expressing the perfect
matching of the beam. We can express the natural overlap

IT(0,¢)|2=4K2 fzux,y) 3t(xy)
R

Xexp[ —2ik6(x cos¢+y sing)|dxdy V. VIRGO END MIRRORS

+ik J' 2|(X,y) 5f(x,y)2 A. Orientation
R We now consider a recycling interferometer involving the
) ) 2 two mirrors of which the main parameters have been ex-
X exp[ — 2ik O(x cos ¢+y sin ¢)]dXd>+ tracted, namely C01077 and C02017. We can define a merit
factor for the interferometer by an expression analogous to
showing that the result reduces eventually to the Fourieth€ signal to noise ratio. It is well known that the SNRiis

transform of the roughness, weighted, as usual, by the interroportional to the square root of the recycled power @ind
sity distribution of the beam. For numerical computation, itProportional to the finesse at low frequenéyis the power

is straightforward to use the exact formula operator acting on amplitudes, the recycled power can be
estimated fromP(E), and the finesses of the cavities from
IT(6,¢)|?°=[3(2k6 cose, 2k sin ¢)|? the ratioP(F;)/P(E). We have performed the computation

of the SNR for various relative orientations of the mirrors
whereJ(x,y)=I1(x,y) exp[2iksf(x,y)]. We give in Fig. 5 a and got the following resultésee Fig. 7 It seems clear that
map of the backcoupling in angular coordinates. The outethe two mirrors should be given the same orientation. This
thin circle corresponds to coupling with the counterpropagateould be surprising, and even could raise suspicion against
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corresponds to identical and perfect mirrors. Integrated power on
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the correctness of the codes, if we did not know that the FiG. 9. Intensity distribution in the optimal dark fringe structure
mirror substrates are manufactured with two parallel flats onjogarithmic scalg

the edg€in order to allow further bonding proces$gsefore

polishing. The flats obviously suppress any arbitrariness ilbFT principles. For a computational window of widdhthe
the positioning of the blanks in the polishing device. The twogyantum of frequency in the Fourier spacéjs=2/a, and
blanks have thus undergone almost identical actiexam- consequently the frequency dynamic®is,,=Nm/a if N is
ine the roughness patterns of Figs. 1 andr2identical po-  the common number of samples along fendy directions.
sitions; this explains why they must eventually also work inf e interpret the spatial frequenciep, ) (coordinates in

the same position. In the case where the_ mirrors are optihe Fourier spadeas projections on the transverse plane of
mally installed, they have nevertheless different curvaturq)b”que wave vectors, according to

radii, and consequently the waist of the two TiMavity

modes are different. One could ask what is the best beam p=(2m/N)0cosp, g=(2m/\)0Osing, 2
parameter for the laser source. The answer can be drawn

from Fig. 8: We see that the actual value of the input waist isve have an estimate of the maximum diffraction angle al-
noncritical. We see also that the losses in the SNR come nadwed:

from the curvature differences, but from the roughness. The

best dark fringe(obtained with the optimal position of the NA

mirrors) has the structure showed on Fig. 9. ﬂmax=£.

B. Scattered light For a 1 mwide window with 256<256 samples, this means

The numerical map allows us to also get some informa#,,,,~ 1.28<10 % Rd. This may seem very restrictive, but
tion about the scattered light distribution. This information isit allows us to explore an angular region very problematic for
limited by the maximum diffraction angle allowed by the the experiment. Larger values are difficult to test numerically
(to get one order of magnitude, the size the grid should in-
crease by 2 orders of magnitydeut can be experimentally
explored, so that there is a natural complement between di-
rect measurements and numerical treatment. Let us assume
N that a perfectly Gaussian beam (TEMpoo(X,Y) is reflected
0% g by a mirror of apex equatiorz=(x*>+y?)/2R+ 5f(X,y),
whereR is the curvature radius of the mirror, aadl(x,y) its
residual roughness. The Fourier transform of the reflected
beamW¥(x,y) is

‘max

SNR/SNR

092 o

v = a (Px+ay) gk +y?) R+ 2ik 5 (x,y)
088 LM 2.i35; (p,a) fRZ

19 20 21 22 23 X poo(X,y) dx dy. (€)

waist of the input TEM [em]

FIG. 8. SNR versus waist of the input TEM amplitude. Crosses:f the peak-to-peak amp”tl_lde of th? "OU_ghneSS is much less
two identical mirrors with zero roughness. Circles: different curva-than the wavelengttotherwise the mirror is uselgssve can
tures and no roughness. Squares: actual situation. expand exp ikdf, which yields
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V(p,a) = bool(p.Q)
+2ik f 2é<Px+qy> 5T (X,Y) dio(X,y) dx dy
R

where we denote byp, the amplitude that would be re-
flected in the absence of roughness, i.e. the phase conjuga
of the incoming TEM,. We call this part specularly re-
flected. We are interested in the difference between the
specular and the non-specular parts in the actual reflection
and more specifically in

P(6) IStRd|

sobodol ovepd oy ovvd v v e

10° . . L . .
0. 2.0e-05 4.0e-05 6.0e-05 8.0e-05 1.0e-04 12e-04

[W(p,) — doo P, )2 o
FIG. 10. Relative angular distribution of scattered light. Solid
=4k? f dlp(x=x")+aly=y")] oo X%.Y) doo(X'y") line: C01077; dashed line: C02014,: Gaussian divergence of the
R? specularly reflected beansly, : edge of the facing mirror.

X of(xy) 8 (x",y")dx dy dX dy’. “) exclude some long range correlation due to large scale aber-

If we consider thdvirtual) class of all mirrors that have been rations, but if this happens, it is in a region whé(a,y) is
manufactured exactly the same way, we can viéhtx,y) as ~ Negligible. It is equivalent to replacing in Eq(6),
a random process, characterized by two statistical momentsg’ ,(p,q)|? by a delta function, and finally

namely a zero mean and a rms value

(5= 2. (1%(p.a) = dadp. D=4k (pa). (D)

Now, the power spectral density can be interpreted as an

The random proceséf, considered stationary on the mirror . : :
P y angular density of scattered light according(see[4])

surface, has an autocorrelation functiofx,y) such that

(sf(xy) of(x'.y")) = A% dPgeaf 0,6)
C(kacos¢,kasmq§)—4k202 P, d0

= o?C(x=x".y=y")

) In order to get a simple merit function for a given mirror, we

= % . e ilP' =) +a'-YIE(p’ g )dp'dq’. (5) take an azimuthal average ovér
dpscat( 0) 1 s - 2
We get, after some elementary algebra P d0 2 ([¥(p,a)— doo(p,a)[*)=P(6) (8
n
(1W(p,a) = ¢oo(P,a)|?) where (,q) are implicitly assumed, expressed as functions
of (6,¢).
B k?o? &' a e , N12dp'dd’ The numerical computation is easy to perform on the nu-
T2 R (P".a")¢"odP—P",a—q")|*dp’dq merical maps by processing the mirror for various rotation
angles and taking the average distribution. We then get the
=4k%0?D(p,q). (6)  plots of P(#) for the two mirrors(Fig. 10. The function

P(#) is analogous to the bidirectional reflection distribution
The quantityC(p,q) appearing in the preceding formulas is function (BRDF) of the mirror (frequently used for surface
the power spectral density of the procés# represents the characterizationfor normal incidence. This averaged distri-
distribution of the various spatial frequencies in the scattere@ution allows us to easily compare different mirrors. Here,
light. It is likely that this distribution is much wider than the the similarity of the two distributions is clear, and is one
angular extension of the specularly reflected light. This canmore proof of the homogeneity of the manufacturing process

be seen by considering the inverse Fourier transforrd of rOM its beginning. The ling, corresponds to the angle at
which is simply the product of the Gaussian intensity by thehich the specular beam intensity is Afemes its maximum

autocorrelation function: value. The lined,, corresponds to the edge of the facing flat
mirror seen from the end mirror, in other words, light with a
D(x,y)=C(X,y) X1(X,y). scattering angle larger thay, escapes the cavity.

The autocorrelation functio@(x,y) is sharply peaked with a
correlation range much shorter than the beam widthso

that the Gaussian intensity is practically constant through the Some useful information can be extracted from the wave
significant part of the autocorrelation function. This does nofront maps measured on mirrors recently produced for Virgo.

VI. CONCLUSION
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We have shown how to compute the best orientation of thshow how to obtain the part of the scattered light angular
mirrors either for minimizing the backscattering or for maxi- distribution near the axis but outside the facing mirror, in an
mizing the signal to noise ratio of the interferometer. We alscangular region where direct measurements are difficult.
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