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T. Briant! M. Cerdonio? L. Conti? A. Heidmann® A. Lobo. and M. Pinard
!Laboratoire Kastler Brossel, CNRS, Ecole Normale Sigpee and Universite®. et M. Curie, Case 74, 4 place Jussieu,
F75252 Paris Cedex 05, France
2INFN Padova Section and Department of Physics, University of Padova, via Marzolo 8, 1-35100 Padova, Italy
3Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
(Received 14 January 2003; published 22 May 2003

We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as
nested spheres. We determine both the thermal and back-action noises when the resonators’ displacements are
read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new
method to deal with the force-displacement transfer functions in the intermediate frequency domain between
the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate
estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high
sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere
detector.
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I. INTRODUCTION resonator, driven by the gravitational wave at its fundamental
frequency. The treatment of the bar excitation by the gravi-

Dual systems, in the form of nested sphef&ég?] and tational wave, by the thermal noise in the bar and in the
nested cylinder$3], have been recently proposed as wide-transducer, and by the back-action noise induced by the sen-
band gravitational-wave detectors, of spectral sensitivitysor is relatively straightforward, including the understanding
complementary in frequency to advanced interferometric deef the standard quantum limit. One gets a prediction of the
tectors. Dual spheres are based on two spherical massearrow-band spectral sensitivity as a function of relevant pa-
nested together: the inner mass is a full sphere while theameters, dealing basically with few isolated mogi@s For
other one is a hollow sphere. The radii match so that only ahe thermal noise, correlations may arise between the two
small gap separates the two bodies. modes originating from the tight coupling between the bar

The fundamental modes of both spheres are quadrupoknd the resonant transducer, when their mechanical quality
modes sensitive to gravitational waves. By a proper choicéactors are very differen6,10], but the noise spectral behav-
of the mechanical and geometrical characteristics of the twior does not suffer dramatic changes.
spheres, the fundamental mode of the inner sphere occurs atIn the case of interferometers the gravitational wave
a frequency 2 or 3 times larger than the fundamental mode adrives a set of masses, which can be considered free above
the hollow one, without any sensitive modes in the intermethe pendulum resonant frequencies of the suspensions.
diate frequency domain between these two fundamentahgain, the sources of noise can be spelled out, down to the
modes. This frequency domain is of particular interest as thquantum limit, and the wideband spectral sensitivity can be
spheres displacements caused by a gravitational wave are quredicted as a function of relevant paramefédrs.
of phase byr radians, thus leading to a measurable variation Dual systems are conceptually different in that one has to
of the gap between the spheres. deal neither at resonance as with bars, nor far from resonant

To get a wideband detector, very sensitive and nonresanodes as with interferometers, but rather in between reso-
nant displacement sensors are needed. An efficient techniguant modes. The difficulty is then to write a mechanical
consists in using optomechanical sensors based on a higtransfer function for the system valid in this unusual fre-
finesse Fabry-Perot cavif¢—6]. One mirror of the cavity is quency range.
coated on the inner side of the hollow sphere, whereas the In this paper we determine the limits induced both by the
other mirror is coated on the solid sphere. The measuremettiermal noise of the spheres and by the quantum fluctuations
of the phase of the field reflected by such a linear cavity thusf light, including the measurement noise and the back-
provides information on the gap variation between the twoaction effects of light on the dual system. We show in the
spheres, at the radial position of the sensor. One can choosase of a single sensor that the limit of sensitivity can be
a strategy to set the number of optomechanical sensors amspressed in terms of mechanical transfer functions charac-
their location in such a way to reconstruct the sphere motionerizing the optomechanical coupling of light with the two
[7,8]. spheres.

A key point for broadband operation is the sensitivity of ~ We illustrate this behavior in the case where only the
the optomechanical sensor which actually depends on itexcitation of fundamental modes of each sphere is taken into
coupling with the mechanical modes of the system. Since thaccount, showing a new effect of back-action noise cancel-
frequencies of interest are between two mechanical resdation in the frequency domain between the two modes. This
nances, dual systems are conceptually different from barsancellation results from a destructive interference between
and interferometers. With bars one has to deal with a singleadiation pressure effects on both spheres and leads to an
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Phase (f,g>=f d2rf(r)g(r). (2)

detection

u,(r,t) is the normal component of the displacement at
pointr and timet, ande(r) is the transverse Gaussian struc-

Liager ture of the light intensity on the mirror,

2 2
Full sphere  Hollow sphere v g (r)= Se” 2r2/W0, (3

FIG. 1. Scheme of the system studied in the paper. The small ™o

gap between the two spheres of the gravitational-wave det@otor h is the b tsi identical for the tw .
ner radiusa, external radiug?) is measured by an optomechanical WRErew, IS the beam-spot siz€, identical for the two mirrors
the case of a symmetric cavity.

sensor made of a high-finesse single-ended cavity. The phase of i . . .
reflected field is sensitive to the differential displacement of the The optomechanical sensor then reads out the differential

mirrors. displacementu,(t) — U;(t) between the internal surface of
the outer spherésubscripto) and the surface of the inner
increased sensitivity in between the two resonances. sphere(subscripti).

We then develop a simple approach to take into account A gravitational wave induces a displacement which can be
all other mechanical modes of the spheres. This method alvritten as a sum over all quadrupole modes2 of the
lows one to estimate the mechanical transfer functions in thephereg14,15. As long as the beam-spot size is small com-
intermediate frequency range between the resonances apdred to the sphere radii, the spatial overlap between these
gives an upper bound for the estimate error. As a result wenodes and the beam profile is independenh @nd of the
determine the sensitivity of a dual-sphere detector and shoapot size. The radial displacement of each sphere, for a gravi-
that a spectral strain sensitivity better than #0Hz "?can  tational wave of amplitud&[Q] at frequency, is then
be obtained over a wide frequency range from 1 to 3.5 kHzequal to[16]

In Sec. Il we present the basic principles of the
gravitational-wave detection by a dual system with a trans- R 17 _
ducer based on an optomechanical sensor. Section Il is de- uMMQl=- > > brAn(a) Q2L [ QTR O], (4)
voted to the determination of noises, illustrated in the case of n=1
a dual system with only two mechanical resonances. In Sec. . . .
IV we derive the mechanical transfer functions, taking intoVhereb, are the coefficients in the orthogonal expansion of

account all mechanical modes. Results for a beryllium dual'-[he response function of th(_a_sphem,z(a) are the radial
sphere detector are presented in Sec. V. functions at the surface positian(assumed to be the same

for both surfaces since the gap is smadindL ,[ ()] are the
frequency dependences of the mod&4,15. They corre-
spond to harmonic oscillators with resonance frequencies
Q,, and loss angle, assumed to be the same for all modes

The scheme of the dual-sphere detector is shown in Fig. nd independent of frequency:
Although the main results of the paper are valid for any
geometry of the dual system, we will consider the case of
two nested spheres with an inner radausnd an external
radius R. The gap between the two bodies is taken to be
small as compared to these radii. Typical dimensions are of g jjjystrate the relevant features of the detector response
the order of the meter foa andR, and of a few centimeters e consider a dual-sphere made of beryllium with an inner
for the gap. _ , . radiusa=1.2 m and an outer radit®=2 m. For these pa-

The optomechanical sensor is based on a high-finessg neters the fundamental frequencies are equal to 1161 Hz

single-ended cavity, resonant with the incident laser beamy, e outer sphere and to 3075 Hz for the inner one. Prod-
The phase of the field reflected by the cavity is measured an ctsb,A,,(a) are equal to 1 for the hollow sphere and to 0.6

compared to the phase reflected by a reference cavity in of- . . -
der to eliminate the effects of the laser frequency-npie ?or the solid one. As a consequence, the displacemgits

As shown in[12,13 the motion of one spherghe full or ~ and Gg‘” are in phase for frequencies outside the two reso-
hollow one induces a global phase shift on the light propor-nances and are out of phase byadians in the intermediate
tional to the displacemen]t of the mirror surface averaged frequency domain between the two gravitational-wave sensi-

Il. DUAL DETECTOR WITH AN OPTOMECHANICAL
SENSOR

Ln[Q]=

. 5
0%, 071059 ©

over the beam profile, tive modes. For these frequencies, effects ofA bothAmodes are
added to each other in the measured differanfte-u".
ﬂ(t)=<uL(t),v§>, (1) Figure 2 shows the displacements induced by a gravita-

tional wave of amplitudéh=10"22 Hz~ Y2 for each funda-
where the brackets stand for the overlap integral on the mirmental mode(curvesa and b). Curve c is the global re-
ror surface, sponse due to the two fundamental modes. The response
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~ o The phase of the reflected beam provides a measurement
@ of the displacements induced by a gravitational wave, with
E 106 additional noises related to the incident phase fluctuations
Na~ and to displacement nois¢gqg. (6)]. The main sources of

*é 1072 displacement noise are the thermal fluctuations of spheres
g and the back action of the measurement process due to the
g 10 radiation pressure exerted by the intracavity field on both
- mirrors. All these noises are uncorrelated and the spectral
410 . e . . . .

A strain sensitivity is given by equating the contribution of the

0.5 1 4 gravitational-wave signal with the noise contributions,
Frequency (kHz)
ho th bay
FIG. 2. Displacemeniu"—u?"| as a function of frequency for S [Q]= ?ﬁu [Q]+ASUU[Q]+S~“U[Q] o)
a gravitational wave of amplitude=10"2? Hz" Y2 Curves corre- U Q]-u Q% [hQ]|?

spond to the response of the fundamental mode of the inner sphere

(a), of the fundamental mode of the outer sphei, (and of the ~ whereSS'®, SI! | andSP2 are the displacement noise spectra

two modes togethercy. due to incident phase fluctuations, thermal noise, and back
action, respectively.

enhancement in the intermediate frequency domain is clearly We now determine these three noise spectra. The shot

ViSible, resulting in a flat response between the two fUndanoise§LjZOtiS given by the equiva|ent disp|acement noise cor-

mental resonances. _ . responding in the measurement to the phase quadrature fluc-
We have also determined the effect of higher modes by &ationssq'". From Egs.(6) and(8) one gets

numerical computation of their mechanical characteristics

[14]. Taking into account modes with resonance frequencies A2

up to 30 kHz for the solid sphere and up to 16 kHz for the Sﬁ*l‘f’[Q]: _ (10

hollow one, we obtain no significant change for the response 25672|a'"|?

in the frequency band between the two fundamental modes. ]

This is related to the frequency dependemﬁﬂﬁz in the Thermal fluptuqtlons of the two spheres are.uncorrelated

contribution of higher modes(f,,> () in the sum(4). and their contributions are added to each other in the thermal

noise spectrurTSLhu. For each sphere, the displacement can

Ill. THERMAL AND QUANTUM NOISES be related to a Langevin forde'" describing the coupling

with a thermal bath17],
We now determine the classical and quantum noises in the
measurement made by the optomechanical sensor. The phase UM Q]=x[Q]FNQ], (11)
of the field reflected by the cavity reproduces the cavity
length variations. For a lossless cavity at resonance, the fluevherex[ (1] is a mechanical susceptibility characterizing the
tuations6q°{ Q] at frequency() for the phase quadrature of response of the sphere to an external force. Since it relies on

the reflected field is given bj12] the displacementi averaged over the beam-spot size, it de-
. . pends on the spatial overlap with the light. Using a modal
: — U [Q]-y[Q i i is qi
SO = SO+ 160" F o[ Q2]=u[Q] C® Expansmn for the displacements of the sphgf€)] is given
)\ y[12,13
wheredq'" are the phase quadrature fluctuations of the inci- - ~
dent field, the cavity finesse, the optical wavelength, and x[Q]= nzl (Un,vp) “xn[ 21, (12)
o'™ the mean incident field, related to the incident po®&r
and to the wave vectdt=2m/\ by where(u, ,v3) is the spatial overlap between the mechanical
_ _ mode u,(r) and the beam profiléEq. (3)]. x,[Q] is the
P"=rck a"|?. (7)  mechanical susceptibility associated with marle
We have neglected in E¢6) the low-pass filtering due to the 1
cavity bandwidth. Even for a cavity finesse=10° and a xnlQ]= 7 o (13
gap between the two spheres of 1 cm, the cavity bandwidth Mn(Q7—Q°=i1Q5é)

is larger than 7.5 kHz and has no significant effect at fre- . .
quencies of interest. We also assume that the incident beawhere(, is the resonance frequency of the mode bhglits
is in a coherent state, so that phase quadraﬁq‘@ and effective mass related to the total mégsand to the volume
intensity quadraturép™ are uncorrelated with noise spectra V of the sphere by

given by[12]

i i M :Mf d3r|un(r)|? (14
Sopl Q1=S5[Q]=1. (8 "V )y me
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The noise spectrum of the Langevin fofe® is related to - 0P
the mechanical susceptibility through the fluctuations- @
dissipation theorer17], <

\E/ 10—21 L
2kgT B ©
SELQ]= ~ —— IM(Q] ™Y, (15 g
§ 1023
wherekg is the Boltzmann constant aridthe temperature. =
From Eqgs.(11) and(15) one then gets the noise spectrum for é’

the thermal fluctuations of the differential displacemapt 0.5
—U; measured by the optomechanical sensor

1
Frequency (kHz)

FIG. 3. Displacement noises as a function of frequency for
th 2ksT back-acti ffect{S.a d for shot-noisey(S;""
ShQ]=——Im(x[Q]+xi[Q]), (16) ack-action effect{S;;, curvea) and for shot-noise (S}, curve _
Q b). Only the two fundamental modes of the spheres are taken into

) N account.
where x, and x; are the mechanical susceptibilities of the

outer and inner spheres, respectively. )
Back-action effects are related to the radiation pressure To understand the relevant features of the quantum noises
forces exerted by the intracavity field on both mirrors. Sincewe consider a beryllium dual-sphere at zero temperature
the radiation pressure has the same spatial profile as the intS,=0), neglecting all mechanical modes except the fun-
racavity intensity, it can be shown3] that the displacement damental modes of the two spheres. The sum in expression

(P2 of each sphere is related to the force through the samel? of the mechanical susceptibilities is then limited to the

susceptibility as the thermal noigEq. (12)], first termn=1, their frquen_cy dependence being the same
as the response to a gravitational wasempare Eq95) and
P Q1= x[Q]FPY Q1. (170 (13]. In contrast to this response, radiation pressure forces
exerted on the two mirrors are opposite and one gets a back-
The radiation pressure force is equal to action noise cancellation in the intermediate frequency do-
ba main between the two fundamental resonance frequencies.
FPQ]=27kI[Q], (18 The mechanical susceptibilitieg, and y; actually have op-

posite signs in between the two resonances so that the effects

wherel is the intracavity intensity normalized as a hnumber of . : X
photons per second. Intensity fluctuations can be related t%f both spheres interfere destructively in the global back-

. . ba
the amplitude quadrature of the incident fi¢lP] and one action noises, [Eq. (21)]. . . .
gets the noise spectrum of the radiation pressure Figure 3 clearly shows this back-action cancellation, re-
' sulting in an important noise reduction on the whole fre-

k2 guency band between the two resonan¢@sve a). The
SELOQ]= ———F "2 (19 optical parametetF?|a'"|? is chosen in such a way that
m back-action and shot noises are equal at low frequency. The
{requency for which exact cancellation occurs depends on
e effective masses of the fundamental mopegs. (13)
nd (14)] and can be tuned in the intermediate frequency
omain by changing the mechanical characteristics of the

The radiation pressure forces exerted on the two mirror
are equal and opposite. The induced cavity-length variatio
is therefore related to the radiation pressure force through th
sum of the susceptibilities of the outer and inner resonator z

pheres.
“bary7_ b _ , b Since the contributions of both modes to the signal are
UoTQI= U= (o A+ ODFHO), - (20 added to each other whereas the back-action noises are sub-
and the resulting noise spectrum is given by, tracted, one can reach a very high sensitivity in the interme-
diate frequency domain, as shown in Fig. 4. Cubvis ob-
ShL Q1= x[ Q1+ xi[ Q2SR Q]. (21)  tained for the same optical parameter as Fig. 3 and exhibits a

high sensitivity over a wide bandwidth. The behavior of the

We have thus determined the spectra of the three fundaspectral strain sensitivity actually depends on the ratio be-
mental noises appearing in the measurerfiggs.(10), (16),  tween the shot and back-action noises. For a ten-times
and(21)]. They only depend on a few parameters. The opti-smajler optical parametdcurvea), shot noise is dominant
cal properties are accounted for via the cavity fine&sEnd  and one recovers two peaks at the fundamental resonances
the incident light intensity«'"|?, with the usual behavior frequencies. For a ten-times larger optical parameterve
that the shot noise is decreased for a larger cavity finesse @), the sensitivity follows the back-action noise behavior and
a more intense light, whereas the back-action noise is inreaches an optimum value near the frequency for which
creasedEqs.(10) and(19)]. This behavior leads to the stan- back-action is cancelled out.
dard quantum limif18,19. The mechanical characteristics  Curved in Fig. 4 shows the standard quantum limit which
only depend on the sum,+ x; of the susceptibilities of the corresponds to the minimum reachable noise for a coherent
two spheres. incident light. It is obtained by adjusting at every frequency
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10-20 2

3 [0=0]= ———~ (24)
< XLE=V= 7= """ "
T Vm(1-i¢)Ewg
o
o 1022 b whereE and o are, respectively, the Young modulus and the
gl Poisson coefficient of the sphere.
= We want to calculate the susceptibilities for frequencies
% near or between resonance frequencies of the system so that
R ol : : we cannot apply this global approach. We instead consider a
05 1 : 4 new method which simultaneously uses the modal and global
Frequency (kHz) approaches. We write the mechanical susceptibility in the
form
FIG. 4. Quantum-limited spectral strain sensitivif{,, as a
function of frequency for increasing iqcident intensitiearvesa to x[Q]=x[0]+ lim (X(N)[Q] _X(N)[o])_ (25)
c). Curved is the standard quantum limit. Only the two fundamen- N—o

tal modes of the spheres are taken into account.
The first term is determined using the global approget.

the optical parameteF2|a"|2 in such a way that shot and (24] whereas the difference™[Q ]~ x™[0] is computed

back-action noises are equal. From EG9), (19), and(21), ~ Using the modal approaditq. (23)]. We perform the sum
the resulting minimum displacement noise is given by over a finite numbeN of modes such that the resonance

frequencyQy is much larger than the frequen€y of inter-
SLQI=Hx [ Q]+ xi[Q]]. (22  est _ _ _ .
The advantage of this approach is that the difference in
As with other noises, it depends on the mechanical charad=q. (25) converges more quickly than each term taken sepa-
teristics only via the sum of the susceptibilities of the tworately. As a matter of fact, the difference is given by
spheres. N
(N) —+v(Nro1= 2y2 _

IV. MECHANICAL SUSCEPTIBILITY XL =x L0 Z‘l {Un v0)"(xnl 2] = xa[OD).-
To perform an accurate evaluation of the spectral strain (26)
sensitivity of the detector, we need to calculate the mechaanrom Eq.(13) the term in the sum for a mode such that
cal susceptibilities of the two spheres. For this purpose W(h > () can be bounded by
can use two different approaches, but both are insufficient for "

our needs. 5
The first one is the normal modes expansjd8,20,21 Y[ Q1 x[0]< Xn[o] . (27)
which can be used in principle in any case, if inhomogeneous -0

losses are absefit fails in the presence of inhomogeneous
losses since correlations arise between mdde$0,22).  The last facto2?/(Q2— Q?) ensures a rapid convergence of
This method consists of computing the sum in Ek) over  the differencey(N[Q]— x"\)[0] as compared to the one of
a finite numbem of modes, x™N[0o].

N It is furthermore possible to determine an upper bound for
X(N)[Q]:zfl (Un 022 Q1. 29 '21; iesrrg(])i:/i%( tr)r;/ade by computing Eq26) up to a mode\.
This quantity of course converges towards the mechanical

susceptibility for a large numbét of modes. It unfortunately AX[Q]= X Uy 032Xl Q1= xa[0]). (29
converges very slowly, and the computation of the appropri- neNTL

ate overlap integrals between the modes and light profile

for higher and higher modes, is in practice too demandlngsUSIng Eq.(27) for modesn such that2, =y one gets

The second approach applies in a direct manner the QZ
fluctuations-dissipation theorem to estimate the thermal Ax[Q]= [0] (29)
noise, bypassing any normal mode expan$®+25. This -0%

global approach has been worked out in the limit of very low

frequencies, so the results can be only used well below anyhis upper limit shows that the computation is accurate
resonance frequency of the system. It actually gives the statiwithin 1% if the sum is extended up to modes with resonance
susceptibility in the case where the size of the sensor is smditequencies ten times larger than the frequeficgf interest.
compared to the dimensions of the system. For the dual The approach presented in this section can be used to
sphere, assuming the beam-spot sigas small compared to determine the thermal and back-action noises when one mo-
the spheres radii, the sphere surface can be approximated bgn sensor is used as read out in any dual-resonator system.
a half-infinite plane and one geft6] It can also be extended to calculate the spatial correlations
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FIG. 5. Displacement noises as a function of frequency for FIG. 6. Displacement noises as a function of frequency for ther-
back-action effect (S22, curvea) and for shot-noise (S curve  mal fluctuations (/ST,, curvea) and for shot-noise (S°: curve
b). Curvec shows the contribution of the two fundamental modesb), in the same conditions as in Fig. 5.

to the back-action noise. o ) . )
eters. Taking into account higher modes then drastically in-

between modes. This would be needed to discuss the effecgseases the back-action noise by two orders of magnitude.
on thermal and back-action noises, when using a multitransFhe resulting spectrum is almost flat in frequency and equal

ducer read-out configuration. to the value obtained at zero frequency by considering only
the static susceptibilityy[0] [Eqg. (24)]. The presence of
V. SENSITIVITY OF A DUAL SPHERE resonant modes in the frequency band of interest leads to

narrow peaks in the noise spectrum. They correspond to the

We apply the approach presented in the previous sectiofwo fundamental modes but also to other modes which are
to determine the mechanical susceptibilitesand x; for a  not sensitive to gravitational waves. Back-action cancellation
dual sphere. As previously we consider spheres made of bgs responsible for narrow dips after each resonance, at a fre-
ryllium with radii a=1.2 m andR=2 m. To calculate the quency where the mechanical response of the resonant mode
mechanical susceptibilities we take into account the contricompensates the response of all other modes.
butions of 120 modes for the solid spheresonance fre- Figure 6 shows the thermal noise obtained for a quality
quencies up to 30 kHzand of 80 modes for the hollow one factor equal to 10(¢=10"") and a temperatureT
(up to 16 kHz [14]. Optical parameters are as follows: =0.1 K. All modes of the dual sphere are thermally excited
wavelengthA=1 u, beam-spot size on the mirrons,  and responsible for the presence of peaks in the spectrum.
=1 cm, cavity finesseF=10°, and incident powerP™  For the chosen parameters the background thermal noise be-
=45 mW. tween two resonances will have no significant effect since it

An important issue is to reach such a large beam waist ifis smaller than the shot noigeurveb in Fig. 6).
an optical cavity with a length limited to a few centimeters. We have also considered the displacement noise due to
A possibility recently proposed ifi27] is to use a folded thermodynamic and photothermal fluctuations. At low tem-
Fabry-Perot cavity in which the light beam experiences sevperature, the adiabatic approximatid6] is no longer valid
eral reflections on the two sphere surfaces before gettingpr beryllium since the heat diffusion length at frequencies of
back to the input mirror. Such a cavity maintains the sensiinterest is much smaller than the beam-spot size. Ther-
tivity of the measurement, but with a larger effective waist.moelastic noises are then almost independent on frequency
Another possibility[28] is to use a convex-concave cavity, and are only related to the thermal properties of beryllium
made of a convex mirror of radius R; and a concave mir- (thermal expansion coefficient, thermal conductivity, and
ror of radiusR,, with R,>R;. The cavity is stable if the thermal capacity[29]. Using the values of these parameters
cavity lengthL is larger thanR,— R;. For values ofL and  at 0.1 K[30,31 and assuming a mirror absorption less than
R,—R;, small as compared #®; andR,, the beam-spot size 1 ppm, one finds that both the thermodynamic and photother-

Wy in the cavity is given by mal noises are smaller than 1% m/\Hz. They have no
significant contribution to the total noise.
Wz_)\_Rl [ L (30 Curvea of Fig. 7 shows the resulting spectral strain sen-
o L-R,+Ry’ sitivity obtained from Eq(9) by computing the response to a

gravitational wave as explained in Sec. Il. Except for narrow

One gets a spot size larger than 1 cm for raBj peaks due to the resonant behavior of thermal and back-
=4000 cm, R,=4004 cm, and a cavity lengthL action noises, one gets a quantum-limited sensitivity with
=4.04 cm. optimums of the order of 10 24 Hz~ ' at the resonance

Figure 5 shows the shot and back-action noises obtaineflequencies of the two fundamental modes. The sensitivity is
by a numerical calculation of Eq25). The chosen optical better than 10%? Hz~ ¥ over a wide frequency range, from
parameters are such that the back-action n@sevea) and 1 to 3.5 kHz.
the shot noisécurveb) are equal at low frequency. Curee The frequency dependence of the sensitivity is, however,
is the noise obtained when only the two fundamental modesery different from the one obtained in a two-modes analysis
of the spheres are considered for the same optical parantFig. 4). This clearly shows that two-modes or even few-
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1020 quencies and to a gain of sensitivity between the resonances
& by a factor of\10, as expected from the expression of the
TN standard quantum limftEgs. (22) and(24)].

&

By 10—22 L

:E /v VI. CONCLUSION

’g We have determined the sensitivity of a dual-sphere de-

2 tector taking into account the thermal, shot, and back-action
0% noises. Neglecting all modes except the two fundamental

05 4 ones, we obtained a very high sensitivity in the intermediate

frequency domain between the two resonances, associated

FIG. 7. Spectral strain sensitivityS,; as a function of fre- With a cancellation of back-action noise.
quency for the same parameters as in Figs. 5 ar{duéve a). Using a new method mixing global _and modal ap-
Curvesb andc correspond to a beam-spot size of 10 and 0.1 cmProaches, we have calculated the mechanical response of the
instead of 1 cm. Narrow peaks of these curves have been removéliial-sphere. The features of the spectral strain sensitivity
for convenience. then look very different from the idealized two-modes
model, resulting in sharper dips around the fundamental
resonances and a less flat sensitivity between the two reso-
modes analyses are not satisfactory to describe the mechamiances.
cal behavior of the spheres. Taking into account all the An important parameter is the beam-spot sizgon the
modes leads to a larger mechanical response to radiatighirrors of the optomechanical sensor. Increasingeduces
pressure fluctuations. As compared to Fig. 4 or to previoughe influence of high-frequency modes, resulting in a better
results[1] one gets sharper dips around the fundamenta$pectral strain sensitivity. A challenge is thus to design short
resonance frequencies and a less flat sensitivity between tti@bry-Perot cavities with large beam waists. One may envi-
two resonances. sion to use either a convex-concave cavity or a folded Fabry-
Except near mechanical resonances, the response to qud?Perot cavity with large effective waisf&7]. Another possi-
tum fluctuations is very similar to the static response giverbility is to use nonresonant capacitive and inductive
by the mechanical susceptibiligf 0]. As shown in Eq(24)  transducers at their quantum limits, which intrinsically have
a crucial parameter is then the beam-spot sigeon the a large sensor area. Finally one may try to implement a geo-
mirrors. Curvesb andc in Fig. 7 show the sensitivity for a metrically selective read out, as proposed for dual-cylinder
beam-spot size of 10 and 0.1 cm, respectively. In both casd$] to reduce the influence of nonsensitive modes.
the optical parameters are adjusted to stay at the standard
quantum limit at low frequency. Curve corresponds to an
incident powerP=450 mW and curvec to 4.5 mW. It
clearly appears that increasing the beam-spot size by a factor We gratefully thank F. Marin for stimulating discussions
of 10 leads to wider dips at the fundamental resonance frerelative to the optics of the optomechanical sensor.
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