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Thermal and back-action noises in dual-sphere gravitational-wave detectors
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We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as
nested spheres. We determine both the thermal and back-action noises when the resonators’ displacements are
read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new
method to deal with the force-displacement transfer functions in the intermediate frequency domain between
the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate
estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high
sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere
detector.
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I. INTRODUCTION

Dual systems, in the form of nested spheres@1,2# and
nested cylinders@3#, have been recently proposed as wid
band gravitational-wave detectors, of spectral sensitiv
complementary in frequency to advanced interferometric
tectors. Dual spheres are based on two spherical ma
nested together: the inner mass is a full sphere while
other one is a hollow sphere. The radii match so that on
small gap separates the two bodies.

The fundamental modes of both spheres are quadru
modes sensitive to gravitational waves. By a proper cho
of the mechanical and geometrical characteristics of the
spheres, the fundamental mode of the inner sphere occu
a frequency 2 or 3 times larger than the fundamental mod
the hollow one, without any sensitive modes in the interm
diate frequency domain between these two fundame
modes. This frequency domain is of particular interest as
spheres displacements caused by a gravitational wave ar
of phase byp radians, thus leading to a measurable variat
of the gap between the spheres.

To get a wideband detector, very sensitive and nonre
nant displacement sensors are needed. An efficient techn
consists in using optomechanical sensors based on a h
finesse Fabry-Perot cavity@4–6#. One mirror of the cavity is
coated on the inner side of the hollow sphere, whereas
other mirror is coated on the solid sphere. The measurem
of the phase of the field reflected by such a linear cavity t
provides information on the gap variation between the t
spheres, at the radial position of the sensor. One can ch
a strategy to set the number of optomechanical sensors
their location in such a way to reconstruct the sphere mo
@7,8#.

A key point for broadband operation is the sensitivity
the optomechanical sensor which actually depends on
coupling with the mechanical modes of the system. Since
frequencies of interest are between two mechanical re
nances, dual systems are conceptually different from b
and interferometers. With bars one has to deal with a sin
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resonator, driven by the gravitational wave at its fundamen
frequency. The treatment of the bar excitation by the gra
tational wave, by the thermal noise in the bar and in
transducer, and by the back-action noise induced by the
sor is relatively straightforward, including the understandi
of the standard quantum limit. One gets a prediction of
narrow-band spectral sensitivity as a function of relevant
rameters, dealing basically with few isolated modes@9#. For
the thermal noise, correlations may arise between the
modes originating from the tight coupling between the b
and the resonant transducer, when their mechanical qu
factors are very different@6,10#, but the noise spectral behav
ior does not suffer dramatic changes.

In the case of interferometers the gravitational wa
drives a set of masses, which can be considered free a
the pendulum resonant frequencies of the suspensi
Again, the sources of noise can be spelled out, down to
quantum limit, and the wideband spectral sensitivity can
predicted as a function of relevant parameters@11#.

Dual systems are conceptually different in that one has
deal neither at resonance as with bars, nor far from reso
modes as with interferometers, but rather in between re
nant modes. The difficulty is then to write a mechanic
transfer function for the system valid in this unusual fr
quency range.

In this paper we determine the limits induced both by t
thermal noise of the spheres and by the quantum fluctuat
of light, including the measurement noise and the ba
action effects of light on the dual system. We show in t
case of a single sensor that the limit of sensitivity can
expressed in terms of mechanical transfer functions cha
terizing the optomechanical coupling of light with the tw
spheres.

We illustrate this behavior in the case where only t
excitation of fundamental modes of each sphere is taken
account, showing a new effect of back-action noise can
lation in the frequency domain between the two modes. T
cancellation results from a destructive interference betw
radiation pressure effects on both spheres and leads t
©2003 The American Physical Society05-1
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increased sensitivity in between the two resonances.
We then develop a simple approach to take into acco

all other mechanical modes of the spheres. This method
lows one to estimate the mechanical transfer functions in
intermediate frequency range between the resonances
gives an upper bound for the estimate error. As a result
determine the sensitivity of a dual-sphere detector and s
that a spectral strain sensitivity better than 10222 Hz21/2 can
be obtained over a wide frequency range from 1 to 3.5 k

In Sec. II we present the basic principles of t
gravitational-wave detection by a dual system with a tra
ducer based on an optomechanical sensor. Section III is
voted to the determination of noises, illustrated in the cas
a dual system with only two mechanical resonances. In S
IV we derive the mechanical transfer functions, taking in
account all mechanical modes. Results for a beryllium du
sphere detector are presented in Sec. V.

II. DUAL DETECTOR WITH AN OPTOMECHANICAL
SENSOR

The scheme of the dual-sphere detector is shown in Fig
Although the main results of the paper are valid for a
geometry of the dual system, we will consider the case
two nested spheres with an inner radiusa and an externa
radius R. The gap between the two bodies is taken to
small as compared to these radii. Typical dimensions ar
the order of the meter fora andR, and of a few centimeters
for the gap.

The optomechanical sensor is based on a high-fine
single-ended cavity, resonant with the incident laser be
The phase of the field reflected by the cavity is measured
compared to the phase reflected by a reference cavity in
der to eliminate the effects of the laser frequency-noise@6#.

As shown in@12,13# the motion of one sphere~the full or
hollow one! induces a global phase shift on the light propo
tional to the displacementû of the mirror surface average
over the beam profile,

û~ t !5^u'~ t !,v0
2&, ~1!

where the brackets stand for the overlap integral on the m
ror surface,

FIG. 1. Scheme of the system studied in the paper. The s
gap between the two spheres of the gravitational-wave detector~in-
ner radiusa, external radiusR) is measured by an optomechanic
sensor made of a high-finesse single-ended cavity. The phase o
reflected field is sensitive to the differential displacement of
mirrors.
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^ f ,g&5E d2r f ~r !g~r !. ~2!

u'(r ,t) is the normal component of the displacement
point r and timet, andv0

2(r ) is the transverse Gaussian stru
ture of the light intensity on the mirror,

v0
2~r !5

2

pw0
2

e22r 2/w0
2
, ~3!

wherew0 is the beam-spot size, identical for the two mirro
in the case of a symmetric cavity.

The optomechanical sensor then reads out the differen
displacementûo(t)2ûi(t) between the internal surface o
the outer sphere~subscripto) and the surface of the inne
sphere~subscripti ).

A gravitational wave induces a displacement which can
written as a sum over all quadrupole modes$n,2% of the
spheres@14,15#. As long as the beam-spot size is small co
pared to the sphere radii, the spatial overlap between th
modes and the beam profile is independent ofn and of the
spot size. The radial displacement of each sphere, for a gr
tational wave of amplitudeh̃@V# at frequencyV, is then
equal to@16#

ûgw@V#52
1

2 (
n51

`

bnAn2~a!V2Ln2@V#h̃@V#, ~4!

wherebn are the coefficients in the orthogonal expansion
the response function of the sphere,An2(a) are the radial
functions at the surface positiona ~assumed to be the sam
for both surfaces since the gap is small!, andLn2@V# are the
frequency dependences of the modes@14,15#. They corre-
spond to harmonic oscillators with resonance frequenc
Vn2 and loss anglef, assumed to be the same for all mod
and independent of frequency:

Ln2@V#5
1

Vn2
2 2V22 iVn2

2 f
. ~5!

To illustrate the relevant features of the detector respo
we consider a dual-sphere made of beryllium with an in
radiusa51.2 m and an outer radiusR52 m. For these pa-
rameters the fundamental frequencies are equal to 1161
for the outer sphere and to 3075 Hz for the inner one. Pr
uctsb1A12(a) are equal to 1 for the hollow sphere and to 0
for the solid one. As a consequence, the displacementsûi

gw

and ûo
gw are in phase for frequencies outside the two re

nances and are out of phase byp radians in the intermediate
frequency domain between the two gravitational-wave se
tive modes. For these frequencies, effects of both modes
added to each other in the measured differenceûo

gw2ûi
gw .

Figure 2 shows the displacements induced by a grav
tional wave of amplitudeh̃510222 Hz21/2, for each funda-
mental mode~curvesa and b). Curve c is the global re-
sponse due to the two fundamental modes. The respo
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enhancement in the intermediate frequency domain is cle
visible, resulting in a flat response between the two fun
mental resonances.

We have also determined the effect of higher modes b
numerical computation of their mechanical characteris
@14#. Taking into account modes with resonance frequenc
up to 30 kHz for the solid sphere and up to 16 kHz for t
hollow one, we obtain no significant change for the respo
in the frequency band between the two fundamental mo
This is related to the frequency dependenceV2/Vn2

2 in the
contribution of higher modes (Vn2@V) in the sum~4!.

III. THERMAL AND QUANTUM NOISES

We now determine the classical and quantum noises in
measurement made by the optomechanical sensor. The p
of the field reflected by the cavity reproduces the cav
length variations. For a lossless cavity at resonance, the
tuationsdqout@V# at frequencyV for the phase quadrature o
the reflected field is given by@12#

dqout@V#5dqin@V#116ā inF ûo@V#2ûi@V#

l
, ~6!

wheredqin are the phase quadrature fluctuations of the in
dent field,F the cavity finesse,l the optical wavelength, and
ā in the mean incident field, related to the incident powerPin

and to the wave vectork52p/l by

Pin5\ckuā inu2. ~7!

We have neglected in Eq.~6! the low-pass filtering due to th
cavity bandwidth. Even for a cavity finesseF5106 and a
gap between the two spheres of 1 cm, the cavity bandw
is larger than 7.5 kHz and has no significant effect at f
quencies of interest. We also assume that the incident b
is in a coherent state, so that phase quadraturedqin and
intensity quadraturedpin are uncorrelated with noise spect
given by @12#

Spp
in @V#5Sqq

in @V#51. ~8!

FIG. 2. Displacementuûo
gw2ûi

gwu as a function of frequency fo

a gravitational wave of amplitudeh̃510222 Hz21/2. Curves corre-
spond to the response of the fundamental mode of the inner sp
(a), of the fundamental mode of the outer sphere (b), and of the
two modes together (c).
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The phase of the reflected beam provides a measurem
of the displacements induced by a gravitational wave, w
additional noises related to the incident phase fluctuati
and to displacement noises@Eq. ~6!#. The main sources o
displacement noise are the thermal fluctuations of sph
and the back action of the measurement process due to
radiation pressure exerted by the intracavity field on b
mirrors. All these noises are uncorrelated and the spec
strain sensitivity is given by equating the contribution of t
gravitational-wave signal with the noise contributions,

Shh@V#5
Suu

shot@V#1Suu
th @V#1Suu

ba@V#

uûo
gw@V#2ûi

gw@V#u2/uh̃@V#u2
, ~9!

whereSuu
shot, Suu

th , andSuu
ba are the displacement noise spec

due to incident phase fluctuations, thermal noise, and b
action, respectively.

We now determine these three noise spectra. The
noiseSuu

shot is given by the equivalent displacement noise c
responding in the measurement to the phase quadrature
tuationsdqin. From Eqs.~6! and ~8! one gets

Suu
shot@V#5

l2

256F 2uā inu2
. ~10!

Thermal fluctuations of the two spheres are uncorrela
and their contributions are added to each other in the ther
noise spectrumSuu

th . For each sphere, the displacement c
be related to a Langevin forceFth describing the coupling
with a thermal bath@17#,

ûth@V#5x@V#Fth@V#, ~11!

wherex@V# is a mechanical susceptibility characterizing t
response of the sphere to an external force. Since it relie
the displacementû averaged over the beam-spot size, it d
pends on the spatial overlap with the light. Using a mo
expansion for the displacements of the sphere,x@V# is given
by @12,13#

x@V#5 (
n51

`

^un ,v0
2&2xn@V#, ~12!

where^un ,v0
2& is the spatial overlap between the mechani

mode un(r ) and the beam profile@Eq. ~3!#. xn@V# is the
mechanical susceptibility associated with moden,

xn@V#5
1

Mn~Vn
22V22 iVn

2f!
, ~13!

whereVn is the resonance frequency of the mode andMn its
effective mass related to the total massM and to the volume
V of the sphere by

Mn5
M

V E
V
d3r uun~r !u2. ~14!

ere
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The noise spectrum of the Langevin forceFth is related to
the mechanical susceptibility through the fluctuation
dissipation theorem@17#,

SFF
th @V#52

2kBT

V
Im~x@V#21!, ~15!

wherekB is the Boltzmann constant andT the temperature
From Eqs.~11! and~15! one then gets the noise spectrum f
the thermal fluctuations of the differential displacementûo

2ûi measured by the optomechanical sensor

Suu
th @V#5

2kBT

V
Im~xo@V#1x i@V#!, ~16!

where xo and x i are the mechanical susceptibilities of th
outer and inner spheres, respectively.

Back-action effects are related to the radiation press
forces exerted by the intracavity field on both mirrors. Sin
the radiation pressure has the same spatial profile as the
racavity intensity, it can be shown@13# that the displacemen
ûba of each sphere is related to the force through the sa
susceptibility as the thermal noise@Eq. ~12!#,

ûba@V#5x@V#Fba@V#. ~17!

The radiation pressure force is equal to

Fba@V#52\kI@V#, ~18!

whereI is the intracavity intensity normalized as a number
photons per second. Intensity fluctuations can be relate
the amplitude quadrature of the incident field@12# and one
gets the noise spectrum of the radiation pressure,

SFF
ba @V#5

16\2k2

p2
F 2uā inu2. ~19!

The radiation pressure forces exerted on the two mirr
are equal and opposite. The induced cavity-length varia
is therefore related to the radiation pressure force through
sum of the susceptibilities of the outer and inner resonat

ûo
ba@V#2ûi

ba@V#5~xo@V#1x i@V#!Fba@V#, ~20!

and the resulting noise spectrum is given by,

Suu
ba@V#5uxo@V#1x i@V#u2SFF

ba @V#. ~21!

We have thus determined the spectra of the three fun
mental noises appearing in the measurement@Eqs.~10!, ~16!,
and~21!#. They only depend on a few parameters. The o
cal properties are accounted for via the cavity finesseF and
the incident light intensityuā inu2, with the usual behavior
that the shot noise is decreased for a larger cavity finess
a more intense light, whereas the back-action noise is
creased@Eqs.~10! and~19!#. This behavior leads to the stan
dard quantum limit@18,19#. The mechanical characteristic
only depend on the sumxo1x i of the susceptibilities of the
two spheres.
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To understand the relevant features of the quantum no
we consider a beryllium dual-sphere at zero tempera
(Suu

th 50), neglecting all mechanical modes except the fu
damental modes of the two spheres. The sum in expres
~12! of the mechanical susceptibilities is then limited to t
first termn51, their frequency dependence being the sa
as the response to a gravitational wave@compare Eqs.~5! and
~13!#. In contrast to this response, radiation pressure for
exerted on the two mirrors are opposite and one gets a b
action noise cancellation in the intermediate frequency
main between the two fundamental resonance frequenc
The mechanical susceptibilitiesxo andx i actually have op-
posite signs in between the two resonances so that the ef
of both spheres interfere destructively in the global ba
action noiseSuu

ba @Eq. ~21!#.
Figure 3 clearly shows this back-action cancellation,

sulting in an important noise reduction on the whole fr
quency band between the two resonances~curve a). The
optical parameterF 2uā inu2 is chosen in such a way tha
back-action and shot noises are equal at low frequency.
frequency for which exact cancellation occurs depends
the effective masses of the fundamental modes@Eqs. ~13!
and ~14!# and can be tuned in the intermediate frequen
domain by changing the mechanical characteristics of
spheres.

Since the contributions of both modes to the signal
added to each other whereas the back-action noises are
tracted, one can reach a very high sensitivity in the interm
diate frequency domain, as shown in Fig. 4. Curveb is ob-
tained for the same optical parameter as Fig. 3 and exhib
high sensitivity over a wide bandwidth. The behavior of t
spectral strain sensitivity actually depends on the ratio
tween the shot and back-action noises. For a ten-tim
smaller optical parameter~curvea), shot noise is dominan
and one recovers two peaks at the fundamental resona
frequencies. For a ten-times larger optical parameter~curve
c), the sensitivity follows the back-action noise behavior a
reaches an optimum value near the frequency for wh
back-action is cancelled out.

Curved in Fig. 4 shows the standard quantum limit whic
corresponds to the minimum reachable noise for a cohe
incident light. It is obtained by adjusting at every frequen

FIG. 3. Displacement noises as a function of frequency
back-action effect (ASuu

ba, curvea) and for shot-noise (ASuu
shot, curve

b). Only the two fundamental modes of the spheres are taken
account.
5-4
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the optical parameterF 2uā inu2 in such a way that shot an
back-action noises are equal. From Eqs.~10!, ~19!, and~21!,
the resulting minimum displacement noise is given by

Suu
sql@V#5\uxo@V#1x i@V#u. ~22!

As with other noises, it depends on the mechanical cha
teristics only via the sum of the susceptibilities of the tw
spheres.

IV. MECHANICAL SUSCEPTIBILITY

To perform an accurate evaluation of the spectral str
sensitivity of the detector, we need to calculate the mech
cal susceptibilities of the two spheres. For this purpose
can use two different approaches, but both are insufficien
our needs.

The first one is the normal modes expansion@13,20,21#
which can be used in principle in any case, if inhomogene
losses are absent~it fails in the presence of inhomogeneo
losses since correlations arise between modes@6,10,22#!.
This method consists of computing the sum in Eq.~12! over
a finite numberN of modes,

x (N)@V#5 (
n51

N

^un ,v0
2&2xn@V#. ~23!

This quantity of course converges towards the mechan
susceptibility for a large numberN of modes. It unfortunately
converges very slowly, and the computation of the appro
ate overlap integrals between the modes and light profi
for higher and higher modes, is in practice too demandin

The second approach applies in a direct manner
fluctuations-dissipation theorem to estimate the ther
noise, bypassing any normal mode expansion@23–25#. This
global approach has been worked out in the limit of very l
frequencies, so the results can be only used well below
resonance frequency of the system. It actually gives the s
susceptibility in the case where the size of the sensor is s
compared to the dimensions of the system. For the d
sphere, assuming the beam-spot sizew0 is small compared to
the spheres radii, the sphere surface can be approximate
a half-infinite plane and one gets@26#

FIG. 4. Quantum-limited spectral strain sensitivityAShh as a
function of frequency for increasing incident intensities~curvesa to
c). Curved is the standard quantum limit. Only the two fundame
tal modes of the spheres are taken into account.
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x@V50#5
12s2

Ap~12 if!Ew0

, ~24!

whereE ands are, respectively, the Young modulus and t
Poisson coefficient of the sphere.

We want to calculate the susceptibilities for frequenc
near or between resonance frequencies of the system so
we cannot apply this global approach. We instead consid
new method which simultaneously uses the modal and glo
approaches. We write the mechanical susceptibility in
form

x@V#5x@0#1 lim
N→`

~x (N)@V#2x (N)@0# !. ~25!

The first term is determined using the global approach@Eq.
~24!# whereas the differencex (N)@V#2x (N)@0# is computed
using the modal approach@Eq. ~23!#. We perform the sum
over a finite numberN of modes such that the resonan
frequencyVN is much larger than the frequencyV of inter-
est.

The advantage of this approach is that the difference
Eq. ~25! converges more quickly than each term taken se
rately. As a matter of fact, the difference is given by

x (N)@V#2x (N)@0#5 (
n51

N

^un ,v0
2&2~xn@V#2xn@0# !.

~26!

From Eq.~13! the term in the sum for a moden such that
Vn@V can be bounded by

xn@V#2xn@0#<xn@0#
V2

Vn
22V2

. ~27!

The last factorV2/(Vn
22V2) ensures a rapid convergence

the differencex (N)@V#2x (N)@0# as compared to the one o
x (N)@0#.

It is furthermore possible to determine an upper bound
the errorDx made by computing Eq.~26! up to a modeN.
Dx is given by

Dx@V#5 (
n5N11

`

^un ,v0
2&2~xn@V#2xn@0# !. ~28!

Using Eq.~27! for modesn such thatVn>VN one gets

Dx@V#<x@0#
V2

VN
2 2V2

. ~29!

This upper limit shows that the computation is accur
within 1% if the sum is extended up to modes with resona
frequencies ten times larger than the frequencyV of interest.

The approach presented in this section can be use
determine the thermal and back-action noises when one
tion sensor is used as read out in any dual-resonator sys
It can also be extended to calculate the spatial correlat
5-5
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BRIANT et al. PHYSICAL REVIEW D 67, 102005 ~2003!
between modes. This would be needed to discuss the ef
on thermal and back-action noises, when using a multitra
ducer read-out configuration.

V. SENSITIVITY OF A DUAL SPHERE

We apply the approach presented in the previous sec
to determine the mechanical susceptibilitiesxo andx i for a
dual sphere. As previously we consider spheres made o
ryllium with radii a51.2 m andR52 m. To calculate the
mechanical susceptibilities we take into account the con
butions of 120 modes for the solid sphere~resonance fre-
quencies up to 30 kHz! and of 80 modes for the hollow on
~up to 16 kHz! @14#. Optical parameters are as follow
wavelength l51 m, beam-spot size on the mirrorsw0
51 cm, cavity finesseF5106, and incident powerPin

545 mW.
An important issue is to reach such a large beam wais

an optical cavity with a length limited to a few centimete
A possibility recently proposed in@27# is to use a folded
Fabry-Perot cavity in which the light beam experiences s
eral reflections on the two sphere surfaces before get
back to the input mirror. Such a cavity maintains the sen
tivity of the measurement, but with a larger effective wai
Another possibility@28# is to use a convex-concave cavit
made of a convex mirror of radius2R1 and a concave mir-
ror of radiusR2, with R2.R1. The cavity is stable if the
cavity lengthL is larger thanR22R1. For values ofL and
R22R1, small as compared toR1 andR2, the beam-spot size
w0 in the cavity is given by

w0
25

lR1

p
A L

L2R21R1
. ~30!

One gets a spot size larger than 1 cm for radiiR1
54000 cm, R254004 cm, and a cavity lengthL
54.04 cm.

Figure 5 shows the shot and back-action noises obta
by a numerical calculation of Eq.~25!. The chosen optica
parameters are such that the back-action noise~curvea) and
the shot noise~curveb) are equal at low frequency. Curvec
is the noise obtained when only the two fundamental mo
of the spheres are considered for the same optical pa

FIG. 5. Displacement noises as a function of frequency
back-action effect (ASuu

ba, curvea) and for shot-noise (ASuu
shot, curve

b). Curvec shows the contribution of the two fundamental mod
to the back-action noise.
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cts
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ed

s
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eters. Taking into account higher modes then drastically
creases the back-action noise by two orders of magnitu
The resulting spectrum is almost flat in frequency and eq
to the value obtained at zero frequency by considering o
the static susceptibilityx@0# @Eq. ~24!#. The presence of
resonant modes in the frequency band of interest lead
narrow peaks in the noise spectrum. They correspond to
two fundamental modes but also to other modes which
not sensitive to gravitational waves. Back-action cancellat
is responsible for narrow dips after each resonance, at a
quency where the mechanical response of the resonant m
compensates the response of all other modes.

Figure 6 shows the thermal noise obtained for a qua
factor equal to 107 (f51027) and a temperatureT
50.1 K. All modes of the dual sphere are thermally excit
and responsible for the presence of peaks in the spect
For the chosen parameters the background thermal noise
tween two resonances will have no significant effect sinc
is smaller than the shot noise~curveb in Fig. 6!.

We have also considered the displacement noise du
thermodynamic and photothermal fluctuations. At low te
perature, the adiabatic approximation@26# is no longer valid
for beryllium since the heat diffusion length at frequencies
interest is much smaller than the beam-spot size. Th
moelastic noises are then almost independent on freque
and are only related to the thermal properties of berylliu
~thermal expansion coefficient, thermal conductivity, a
thermal capacity! @29#. Using the values of these paramete
at 0.1 K @30,31# and assuming a mirror absorption less th
1 ppm, one finds that both the thermodynamic and photot
mal noises are smaller than 10223 m/AHz. They have no
significant contribution to the total noise.

Curvea of Fig. 7 shows the resulting spectral strain se
sitivity obtained from Eq.~9! by computing the response to
gravitational wave as explained in Sec. II. Except for narr
peaks due to the resonant behavior of thermal and ba
action noises, one gets a quantum-limited sensitivity w
optimums of the order of 2310224 Hz21/2 at the resonance
frequencies of the two fundamental modes. The sensitivit
better than 10222 Hz21/2 over a wide frequency range, from
1 to 3.5 kHz.

The frequency dependence of the sensitivity is, howe
very different from the one obtained in a two-modes analy
~Fig. 4!. This clearly shows that two-modes or even fe

r FIG. 6. Displacement noises as a function of frequency for th
mal fluctuations (ASuu

th , curvea) and for shot-noise (ASuu
shot, curve

b), in the same conditions as in Fig. 5.
5-6
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THERMAL AND BACK-ACTION NOISES IN DUAL- . . . PHYSICAL REVIEW D 67, 102005 ~2003!
modes analyses are not satisfactory to describe the mec
cal behavior of the spheres. Taking into account all
modes leads to a larger mechanical response to radia
pressure fluctuations. As compared to Fig. 4 or to previ
results @1# one gets sharper dips around the fundame
resonance frequencies and a less flat sensitivity between
two resonances.

Except near mechanical resonances, the response to q
tum fluctuations is very similar to the static response giv
by the mechanical susceptibilityx@0#. As shown in Eq.~24!
a crucial parameter is then the beam-spot sizew0 on the
mirrors. Curvesb andc in Fig. 7 show the sensitivity for a
beam-spot size of 10 and 0.1 cm, respectively. In both ca
the optical parameters are adjusted to stay at the stan
quantum limit at low frequency. Curveb corresponds to an
incident powerPin5450 mW and curvec to 4.5 mW. It
clearly appears that increasing the beam-spot size by a fa
of 10 leads to wider dips at the fundamental resonance

FIG. 7. Spectral strain sensitivityAShh as a function of fre-
quency for the same parameters as in Figs. 5 and 6~curve a).
Curvesb and c correspond to a beam-spot size of 10 and 0.1 c
instead of 1 cm. Narrow peaks of these curves have been rem
for convenience.
A.

et

rs
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quencies and to a gain of sensitivity between the resona
by a factor ofA10, as expected from the expression of t
standard quantum limit@Eqs.~22! and ~24!#.

VI. CONCLUSION

We have determined the sensitivity of a dual-sphere
tector taking into account the thermal, shot, and back-ac
noises. Neglecting all modes except the two fundame
ones, we obtained a very high sensitivity in the intermedi
frequency domain between the two resonances, assoc
with a cancellation of back-action noise.

Using a new method mixing global and modal a
proaches, we have calculated the mechanical response o
dual-sphere. The features of the spectral strain sensiti
then look very different from the idealized two-mode
model, resulting in sharper dips around the fundamen
resonances and a less flat sensitivity between the two r
nances.

An important parameter is the beam-spot sizew0 on the
mirrors of the optomechanical sensor. Increasingw0 reduces
the influence of high-frequency modes, resulting in a be
spectral strain sensitivity. A challenge is thus to design sh
Fabry-Perot cavities with large beam waists. One may en
sion to use either a convex-concave cavity or a folded Fab
Perot cavity with large effective waists@27#. Another possi-
bility is to use nonresonant capacitive and inducti
transducers at their quantum limits, which intrinsically ha
a large sensor area. Finally one may try to implement a g
metrically selective read out, as proposed for dual-cylin
@3# to reduce the influence of nonsensitive modes.
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