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Nonspherical mirrors to reduce thermoelastic noise in advanced gravitational wave interferometers
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We introduce and study a non-Gaussian paraxial cavity mode that has a special beam intensity by properly
designing the end mirrors of a resonator. The final aim is to reduce the thermoelastic noise generated by the
interaction between the field and the mirror by optimizing the shape of both. We present numerical results for
the special design of a resonator as long as the Fabot-Rems of the gravitational wave detector Laser
Interferometric Gravitational Wave ObservatdityGO). We discuss the alignment stability of such a cavity
and we present the most important investigations we have done for implementing the reshaped mirrors we
propose in the next LIGO configuration. We implement different numerical tools in order to understand the
impact of both a small misalignment in the Fabryr®ecavity and imperfections in the radial profile of the
mirrors on the power built up inside the resonators and on the signal at the dark port of the beam splitter. The
results of all the simulation runs are compared with an analytical model that takes into account mismatch
problems and losses.
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INTRODUCTION errors in their orientation and shape is enhanced. The impli-
cations have been addressed by both analytical calculations
In gravitational wave interferometric antennas, the varia-and numerical simulations based on a fast Fourier transform
tion of the distance between two mirrors is measured usingFFT) paraxial ray propagation code, using the flat topped
the interference between the beams that come out of twahirrors[4,5].
perpendicular identical Fabry-Re cavities; one of them In Sec. lll we address a variety of problems related to
will sense a Squeezing effect while the other will be misalignment. We consider realistic imperfections in the sur-
stretched. The variation that is measured depends on arigce of the mirrors that affect the flat topped beam in Sec. IV.
displacement of the reflective surfaces of the two mirrorsVVe tackle the main problems related to the quasidegeneracy
Such physical displacement can be caused by fundament@f the recycling cavity and comment on some solutions.
noise sources and it can also be mimicked by the measure-
ment, because of any technical noise affecting the detection |. OUTLINE OF GRAVITATIONAL WAVE
process. INTERFEROMETERS WITH SPHERICAL MIRRORS
In the design for the planned advanced Laser Interfero-
metric Gravitational Wave ObservatofiIGO) interferom-
eter, the mirror substrates are 40 kg sapphire cylinders. T
most serious noise is thermoelastic ndigéused silica sub-
strates are used the considerations of this manuscript are ir- tirzezikL
relevanj. The relevance of that kind of internal thermal noise Uret=| — N1+ k| Yin=Tett¥in»

The reflected and transmitted electromagnetic field, for a
h%avity such as the one in Fig. 1, are defined by the transmit-
tivities and reflectivities of the two end mirrors:

has already been studied through mathematical models, for 1-rarpe”

the infinite half-space approximation and for mirrors with L

finite size[1-3]. - tito€ PR
The intensity distribution of the electric field generates a tr 1—rqre2kt " eff¥in.

heat flow, inside the mirror. The temperature inside the sub-
strate is hot homogeneous but varies on a small scale. )
O’Shaughnessy and Thorne have pointed out that ther- Yo A hé A
moelastic noise is reduced when the dynamically fluctuating
bumps and valleys are averaged out by a flat laser beam
instead of the baseline beam with Gaussian profile. It must
also be a stable mode of the cavity, with a resonating fre-
qguency well separated by those of the higher order modes. A v, v, W
beam such as that is studied for a resonator as long as the -
arms of the LIGO gravitational wave antenna. This detector
is briefly reviewed in Sec. | for comparison purposes with
spherical mirrors. The flat topped beam is introduced in de-
tail in Sec. Il and the mirrors that support it as a resonating FIG. 1. Schematic diagram of a FabryrBecavity with front
mode of the cavity are introduced. and back mirrors. In LIGO interferometers the mirrors are the
Since those mirrors are considerably flatter than the baseyavitational masses under study: they have been conventionally
line spherical mirrors, the sensitivity of the interferometer tonamed the internal and external test mass or ITM and ETM.
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Log of Loss

Effects of diffraction on only one mirror
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FIG. 2. The arm cavities and the recycling cavity. FIG. 3. Three sets of results for diffraction losses: two of them

were obtained by a numerical code and one was computed by the
wherek is the wave number and is the length of the reso- amount of light that falls outside the mirror.

nator. We can add a recycling mirror so that the coupling
between the two cavities is expressed by the effective reflec-

- . ; © 2 r? m?
tivity ress. Therefore we can write the power gain for the L= | ——exg —2—|2rmdr=expg —2—
recycling cavity as m TW w w

Gairhc=t,2/|1— rrreferikllza m= half of the mirrof's diameter,

based on the approximation that the field retains its shape.
wherel is the distance between the recycling mirror and theThe finiteness of the mirrors may induce significant changes
Fabry-Peot cavity. We then introduce two Fabry#®earms in the characteristics of the beam.
and a beam splitter as in Fig. 2. Using more sophisticated tools we can obtain different

If the beam splitter is perfect and the arms identical, theesults for [7].

above formulas stand for the power circulating in the recy- The simple formula above is referred to as the clipping
cling cavity over the power that enters the interferometerapproximation. We computed also using two different nu-
through the recycling mirror. This ratio is the gain of the merical codegone based on the FFT of the field and one on
recycling cavity and it depends on the lengthendL. The  its decomposition into transverse mogesd we found for

conditions for resonance are expressed by both a result- 2.5 times larger than predicted by the clipping
approximation as shown in Fig. 3. From the data we find
e2ikL — g2kl — 1 that, setting the mirror’s diameter at 30 cm, we have a dif-

fraction loss of 10 ppm according to the design for the ad-

. . ) o vanced LIGO, that is, using mirrors with radii of curvature
Any difference in the effective reflectivities from the tWo 54 km in 4 km long Fabry-Ret resonators. These param-

arm caviti_es will b_e de_tected at the antisymmetric port of thegters implyw~6 cm for the size of the beam reflecting on
beam splitter, which is also named the dark port or outputne mirrors and are considered typical of the advanced LIGO
port of the interferometer. The signal is proportional toconfiguration, as reported in www.ligo.caltech.edu/lige?
dress- If the only variation is caused by the gravitational A sjgnificant reduction of thermoelastic noise can be
wave, achieved by an increase of the spot size. Since this will cause
larger diffraction losses, we can alternatively design a reso-

4i Fpg, N nator with nonspherical mirrors, such that the fundamental
Of o= p— 1 mode sustained in there has a flat intensity profile with ac-
12

ceptable diffraction losses. This is proposed in the next sec-
tion with a limit of 21 ppm on diffraction losses.

with ¢g,, the amplitude of the phase change predicted by the
theory of general relativity, ancF the finesse of the two
Fabry-Peot cavities.

The configuration we will focus on is the advanced LIGO
(whose characteristics can be surveyed at www.ligo.caltech. We can overstep the limits put on Gaussian beams by the
edu/ligo2[8]) and we are referring to its design for cavity diffraction losses by using a non-Gaussian mode as proposed
lengths and mirror diameters. Reducing thermoelastic noisby O’Shaughnessy and Thorne, and studied by D’Ambrosio
can be accomplished by increasing the spot sizef the et al. [6]. We review the construction of that mode for a
Gaussian beams. This would result in increased diffractiosymmetric Fabry-Ret cavity, which implies that the waist
losses, as a smaller portion of the field hits the surface of thposition is in the middle. We first define the intensity of the
mirror. The fraction of power that is lost may be expressedlat topped beam at its waist position, which is where the
by the following formula: wave front is exactly flat, and we shall use a superposition of

Il. THE FLAT TOPPED BEAM AND THE CAVITY
SUPPORTING IT AS AN OPTICAL MODE
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Gaussian functions. The flattest intensity we may imagine is s Height of the mirror surface in meters 10"
1 2. 2= p2 y
— for x°+y°=p’, 30
Us(X,y) =9 7Tp2
0 for x2+y2> p2, 25 1

which is a step function. We can obtain this by overlapping ,,
delta functions, and more generally a flat profile can be gen-
erated by overlapping narrow Gaussian functions as follows: N

[ 2
Uo(X7Y):J JXngygspdeodYO W

% @~ (1) [(x=x)2+(y=yp)?]

cm

Wo
When __>0, (1) 0 5 10 15 20 25 30 35
p

. . . FIG. 4. The shape of mirrors supporting the flat topped beam is
but this is not the optimal choice. In fact, for each of theshown. The central area is significantly flat but on the external rim

Gaussian beams overlapping to form the flat topped beanye sy face is quite steep, reaching a height of about@:En only
the spot size becomes quite large in the propagation, making, cm. The stability of the optical cavity formed by two of these

the field spread too much. So we have to choose a larg&irrors 4 km apart is the main focus of the analytical and numerical
value forw, and keep the ratiovy/p small. The minimum  studies reported in this paper.
spot size on the mirrors of a Fabry+Becavity is obtained

for Gaussian beams whose waist is surface that matches its wave front, the sign in fron®bfg

L L is flipped so that when it is propagated back it has the same
Wo= \ﬁ: \/—, shapg9-11].
k 2m In order to match the wave front of the beam, the height

and this is the value we will use in Eql). We make the of the mirrors must be

beam propagate toward the end of the cavity, where one of

the mirrors is located and we obtain N
h(x,y)=5_{®[u(0,0] - P[u(x,y)]}.

1+i
u(x,y)= J fZ , ,d%dYo
XoTYo=P 2wy The corresponding profile for the end mirrors is shown in
o, ) ) Fig. 4. The other way around, the fundamental mode of the
X @~ [(+D/2W]LX=x0) ™+ (y=y0)"] (2)  cavity constructed according to this design must be a flat

topped beam. In Fig. 5 the wave front of the beam resonating
in such a cavity is shown. The phase map results from the
FFT model we have been using. This numerical program
u(x,y)= J dx'f dy’ K(x,y;x",y" ue(x",y") simulates the propagation of the beam using the paraxial

approximation. The first case we analyze is the ideal configu-
ration with perfectly shaped and aligned mirrors. The appro-
priate information must be provided as input parameters; one

2i Qi preliminary calculation that we consider interesting is the

K(x,y;x"\y')= L exp[ — ﬁ[(x—x’)zﬂy—y’)z] . design of the beam that drives the cavity.

as a result of

with the symmetric kernel

Althoughu(x,y) does not retain its shape, a definition of A optimization of the beam profile for the field driving
the Gouy phase is still possible as the phase gained by propa- the cavity
gation along the longitudinal axis. . . : .
The field also has a wave frofthe phase is not uniform V& propose a technique to identify the Gaussian beam

on a plane transverse to the longitudinal axis with the largest overlap with the field This analytical study
We shall therefore define is useful either to drive the system directly by a Gaussian
beam or to maximize the laser power coupled inside the
O yr=D[u(x,y)]—P[u(0,0)] mode cleaner that prepares the field according to the flat

topped profile. Any electromagnetic field is fully defined,
and we can evaluate the wave front corresponding to thence its transverse shape is known for one specific location.
mirrors’ location. When the flat topped beam hits a reflectiveTherefore we evaluate the overlap at the waist position
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Wavefront of the flat topped beam and use the property

351 25

301

! f f dxdyLE(x,y)Uo(X.Y)

e f dedyf J’ dx'dy’ug(x,y)

25

20

§ X 8(x=x")8(y—y" uo(x",y")

15 -1

=f f dx"dy”J f dxdyf fdx’dy’u’e‘(x,y)
10
05 XKT(X,y;X”,y’)K(X",y";x’,y,)Uo(X’,y,),
sk
, 0 where the Gaussian field
00 5 10 15 20 25 30 35
FIG. 5. The wave front of the flat topped beam, as computed by j dxf dyK(x,y;x",y" ) ug(x",y")

the maps of the real and imaginary parts of the electromagnetic field

that resonates in the Fabry+Be cavity, simulated by the paraxial

ray propagation code we have used to quantify the effect of a variat the mirror’s location corresponds to the beam we are using
ety of perturbations on the stability of the system. Before analyzingo drive the cauvity.

practical issues we checked that the wave front of the flat topped We find the result

beam resulting from the simulation corresponds to the profile we

have designed. The numerical program makes the electromagnetic

field bounce back and forth between the two mirrors until it con- 2TWoWg
verges toward the solution we expect: the flat topped beam whose C= o 5
wave front matches the profile of the end mirrors of the cavity 1+iLwg/2ReWy

— pIWA(WEIWE +iL/2Rg)

1—exp

f f dxdy(X,y)ug(X,y)
C= ) X

\/f f dxdy§(x,y) \/f f dxdy@(x,y)

1+w3/wWa+iL/2Rg

N €)

2 1 ik whose absolute value we want to maximize. We consider the
ug(x,y)= —Zex;{ | = toRe [x 2+y?]|, portion that depends oRg andwg and look for the deriva-
T™Wg We tive in those variables, taking into account the sign. Hence
2

o2 w2 . — (p?IW3)(1+wzIwg) — p2L?/(2RgW,)?

1+ (Lwa/2Rgw}3)? (1+w3/w3)%+ (LI2Rg)?

ped (p?IwW3)(1+wilw3) — p2L?/ (2RgW,)? p?L/4RgW3
+4 ex
(1+w3/w3)%+ (LI2Rg)? (1+w3/w3)%+ (LI2Rg)?

has its maximum value for zero curvature, that iR+ 0, and forwg that solves the following equation:

p[ —(p/wo)? ]( (WG/WO)Z(p/WO)Z)_
l-e =

l+(WG/W0)2 [l+(WG/W0)Z]2
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B. Implications and numerical evaluation

At the input mirror

[X*+y?]

, \/ 2 exp[ _( 1 . 2ik
WG [1+(Wo/wg)*] WG[1+(Wo/we)*]  L[1+(Wa/wo)]

is the Gaussian beam with the largest coupling with the flat topped beam, thatug; #ifsove maximizes the absolute value
of Eqg. (3). The main feature of the above Gaussian beam is that it resonates in a symmetric cavity and its waist is in the middle
between the two mirrors. Furthermore, the scalar product

2mwo(Wg/wp)| 1—expy ———
1+ (wg/wp)?

2 plwo plwio 2, .2 0
27Wg f rldrlj’ rodroexp{ —(r;+r3)/2}Z°(rqr,)
0 0

is real. In the above equatidf is the modified Bessel func- )

tion of the first kind. IfC were complex there would be a f f2+ o dxdfu(xy)|

difference between the phase of the Gaussian beam thatis =~~~ """ —0.000021.
building up power inside the resonator and the flat topped f J’ dxdyiu(x,y)|?

beam that is being generated by reflection of the driving '

beam upon the mirrors.
Also, in the Hermite-Gauss basis determinedvgy, the
flat topped beam is a vector with real components. In Fig. 7 we compare the intensity of the flat topped beam
In Fig. 6 the intensity profile of the flat topped beam is with the Gaussian beam that has the same diffraction loss. In
shown as a function af/w, with r = x?+y?. The Gaussian both cases we have pickga=4w,, which involveswg
curve that is shown in the same graph is the one with the best 3.62v, and a diameter for the mirrorr@=32 cm.
coupling with the flat topped beam.
The diffraction losses are
I1l. ALIGNMENT STABILITY OF THE RESONATOR
SUPPORTING THE FLAT TOPPED BEAM

2
Ly .= f J dxdy\/ In this section we will study the sensitivity of the electric
G 2..2- 2 2 4 . ; . . .
XTryt=m TWG[1+ (Wo/wg)'] field to a tilt of the external mirror in one cavity of the
2(x2+y?) interferometer. We study spherical mirrors first for two rea-
><ex;{—< 5 n
wg[ 1+ (wo/wg)™]

=0.003, sons: we want to check that the results of the simulations are
in agreement with the analytical predictions for the baseline
design with Gaussian beams and we also want to compare
the sensitivity of the flat topped beam to misalignment with

Power . . . .
0.1 that of those Gaussian beams. With spherical mirrors,
0.08 Power
0.1
0.06
0.08
0.04
0.06
0.02
0.04
i 2 3 4 5 6 71 °
0.02
FIG. 6. The transverse power distribution of the flat topped

beam and the Gaussian beam having the best coupling with it. In T 5 3 7 5 A = T

mirrors with diameter 32 cm the two beams have diffraction losses

that are different by two orders of magnitude with smaller losses for FIG. 7. The intensity of the flat topped and Gaussian beams
the flat topped beam. Nonetheless, the two beams match very wehaving the same diffraction loss. The radial variablis shown in
The radial variable is expressed in units ofiy units of wy.

102004-5



ERIKA D’AMBROSIO

N 2 ; 2.2
Usq(X,Y,2) = mex i Dgy(2) = (X°+y*)

PHYSICAL REVIEW D 67, 102004 (2003

y

0
AN

1 ik ) [ 1 ]
“\w22 T 2r)) | N = asrqr s /
2Xx 2y ,
. VW)H‘*< Vm)

are the cavity modefl2].
The phase shift they acquire when propagating from one

mirror to the other is FIG. 8. If one mirror is rotated byy around thefl axis, its

surface is displaced by an amoui#(x,y) = — 6x, wherez has the
same direction as the incoming beam. Similarly, if it is rotatedby

aroundx the surface of the mirror is moved biz(x,y) = 6y.

Dso(L) = Psy(0)=kL—(s+q+1)

caconf[r-p ]

whereR(0)=R; andR(L) =R, are the radii of curvature o
the end mirrors.

We refer to the cavity in Fig. 1 for our description.rlf
=1 and there is no loss,

L
RO

L

! TR

where 7=®o(L) =P 1o(0)— Pyy(L) + Po(0). The nota-
¢ tion we are using is
) w3

u00=(
The input field is

ikw(L)é&
eln—e 1"

1
0

0
1

_rl_}_eZi[(bsq(L)_(Dsq(o)] .
in= Usq= Pret= 11,2 [@sL) = P5(O)] ¥in

Ugp=V1— Uo.
where the coefficient in front of}, is a phase factor. I is

adjusted so tha?'[?so)=Psd0l=1 the beam is resonating  If the cavity is properly tuned to make, resonate, the

inside the cavity and

reflected field is

Yret= ll/:’l . . 1
ikw(L)6 _
If the beam is not resonating inside the cavity, we can take vt en_eg i 2V2" M
the limit of high reflectivity r;—1 and find thaty,e;= er—e 7

— 47, . This limit can be applied only when the distinction _ . o
between the resonating and the nonresonating modes is well In the whole interferometer the symmetric combination of
defined; if the cavity is nearly degenerate there are quasires§?€ fields reflected from the two arms goes through the sym-
nating modes in addition to the resonating one and for thenf1etric port of the beam splitter and the antisymmetric com-
the full formula for ¢,o; must be applied. In the LIGO the bmatlc_)n e>_<|ts.through the dark port..lf only one of the MO
first optical modes starting from the fundamental one ar@rms is misaligned in the way described above, the ratio of
nondegenerate. Since diffraction losses increase very rapidie dark port to the bright port power,
with s+q, we have to consider only the low order modes. K 2

( W(L)G) =0 219%

2 siny

is predicted according to the design parameters of the ad-

We first tackle misalignment for spherical mirrors and usevanced LIGO, which includ&=27/\ with A=1.064um
the basisgg. and R(0)=R(L)=54 km. The length of the Fabry-Rua

The details of perturbation theory as applied to opticalarm isL=3999.01 m and these are the same parameters we
physics are given in Appendix A. At first order in the rotation have used for estimating the diffraction losses in Sec. I. From
angle of a mirror, the only modes that are excitedwgggand  the numerical simulations we have obtained the data shown
Uoy if the input beam isigg. When the back mirror is rotated in Fig. 9, which are best fitted by the curve
around they axis as in Fig. 8 the new eigenvectors of the

2
Pop

Pep

prad

A. Misalignment between the driving field and the axis
of the cavity

2
misaligned cavity are identified using a<2 model: DP _
=0.219
PBP M I’ad
1 ikw(L)6
—| ikwL)e | =0 | S| e with an agreement of-0.2% with the theoretical estimation.
vam| W) Tun, vem)| € Tmen ] =g, The analysis we have done so far can be repeated if the front
e'n—e ' 1 mirror of a cavity is tilted.

102004-6



NONSPHERICAL MIRRORS TO REDUE. .. PHYSICAL REVIEW D 67, 102004 (2003

Dark port over bright port Power in the Fabry—Perot

0.00002
0.000015 30} J

0.00001
-6 ° a5r
L J

o

5-10

0.002 0.002 0.006 0.008 0. ormrererad

20f
FIG. 9. The ratio of the dark port to the bright port is reported as g
a function of the angle error for the back mirror of one arm accord-
ing to the parameters of the advanced LIGO. BF
B. Investigation of the effects of misalignment
for flat topped beam

For our initial studies we have decided not to implement
the recycling mirror in Fig. 2. In practice we had to set 5¢ .
=0.000015 in order to make the code work. The FFT model
that we have used sets the length of each cavity by maximiz:
ing the circulating power of the electric field. The two Fabry- 5 10 15 20 25 30
Paot arms are pseudolocked first and then the recycling cav- em

ity: the distance between the end mirrors in each cavity is FIG. 10. The intensity profile of the beam resonating in a cavity

adjusted in order to make the circulating field resonate. Thigyith nonspherical mirrors which are designed to make the built-up
procedure is repeated until stationarity is achieved, whichieiq very flat.

means the power levels and the round-trip phases do not

change from one iteration to the next by more than a certain p

threshold which is decided by the user. Since any round-trip 0.028= 4ﬂ£u:>£u:0_000019,

phase is computed by making the field propagate and be Po

bounced from the optics, none of the mirrors can be absent, ) ] ) )

otherwise the code fails to converge. Although the recyclingbuPstituted in Eq(4), gives P, /Po=373. This may sug-
mirror cannot be removed its reflectivity can be very small.9est that the finite size of the mirrors makes the shape of the
We used the parameters=0 andt, = /0.005 which we had field change, so that if we use the ideal beam in our formula

chosen for testing spherical mirrors. We checked that th&h€ result is slightly off. The intensity of the beam as com-
phase of the field matches the surface of the mirrors wheRUt€d by postprocessing the data obtained by the numerical

stationarity is achieved. If simulations is shown in Fig. 10. When one mirror is tilted we
want to repeat the analysis we have done for spherical mir-
C=0.97, L,=0.000021, rors. Although we do not know the higher order modes, we

can use symmetry properties to infer that the first excited
as we have estimated, whex is the amount of power input  component will be odd i for rotations aroung. Using this
to the system feature we quantified the impact of misalignment on the flat
topped beam.
Since we know the shape of the beam in the unperturbed
case, we can project the field resonating in the misaligned
cavity onto that and remove that part. What is left is divided

Pew 1 t2 t2
=—|C|? =372,
Po 2 (1-1)2 (1-V1-£—£,V1-£,)?

4) into an odd and an even componentinf the perturbation

and the numerical result is small the odd part is proportional # and the even part
proportional to #2. The power associated with those two

Peay components has been evaluated for 11 runs, with60
p_02373 <10 ®rad. In Fig. 11 and Fig. 12 the intensities of the

excited odd and even contributions are shown. By fitting the
is very close to the prediction. We also looked at the data foflata, we can evaluate the coefficients for the first terms in the
the total loss expansion of the eigenvector resonating inside the mis-
aligned cavity. Since our analysis is based on the electric
Po—Pout Po—Pop—Preti field picked up at the front mirror, which is unperturbed, the
Po - Po =0.028, eigenvector must be real in the basis of the unperturbed
eigenvectors. The data are fitted by
whereP, . is the power reflected back toward the laser. The
diffraction loss that we infer, Uit = @oU+ a1Uoggt @alepen,
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Power in u odd Dark port power
0.0005
0 0004 0.0004
0 0003 0.0003
- 0.0002
0.0001 0.0001
0. 002 0.004 0,006 0,008 0,01 crorad 0002 0.004 0.006 0.008 0. o1 crorad

FIG. 11. Results of the evaluation of the portion of power due to  FIG. 13. When one mirror is misaligned, the power exiting the
tilt at the first order in the angle error. This is the main contributiondark port is quadratic in the tilt angle. The excited field is odat in
to higher order modes when the cavity is misaligned, thus generafor a rotation around/ and odd iny for a rotation arounc. The
ing a signal out of the dark port because this perturbation breaks thghysical mechanism is the same as in the more common case of tilt

symmetry of the interferometer. in spherical mirrors.
, Py . total suppression of the odd contribution. The best fit for
%=p =1l-af— a3, those data is
tot
Pnondip 0 4
2 POdd (7] 2 DP :31{ y
a|= P =5.142 m , Po ,urad
tot
which is comparable with
o \* A
2__ _ even__ nondip 4
Prot Z(Mrad O 02+ a?)=28. —
0 Py [C|*(a]+ a5)=28. wrad)

and we can use the above information to interpret the signal ) ) ) - .
at the dark port of the interferometer. We compute the frac- 1h€ intensity ofuoqq is shown in Fig. 15. The excited

tion of input power that goes out of the dark port because ofPmponent has the very topology we expect from geometri-
the misalignment of one of the two long arm cavities: cal considerations. Although this is what could have been

inferred by analogy with spherical mirrors, we found a quan-

2 titative relationship between the misalignment and the varia-
(5) tion of the beam. When the second order perturbation is
taken into account, the change in the surface of the mirror
. due to the orientation has a more general effect: not only is
and the numerical result there a new axis of the cavity but the phase profile sensed by
2 the beam is quite different. In Fig. 16 the power associated

Ppp ¢ - R i

= :4.82(— with ug,en has a very peculiar distribution: the analogy with
Po prad spherical mirrors is broken since when the beam does not
_ o ) impinge on the center of the reflecting surface, the shape of
is close to Eq.(5) within 0.4% (see Fig. 1B As for the  the sensed reflecting surface is different from the unper-

spherical mirrors case, if the odd component were filtereqyrhed situation. For spherical mirrors this is not the case,
out, the signal at the dark port would be much decreased. In

Fig. 14 the power at the dark port is shown as a result of a Non-dipolar DP

Pop ) 0
P_O—|C| a1—4.8 Mj y

, 3-1077
Power in u_even
3.5-107° 2.5-107"
3-107° 2-107
2.5'10_8 1.5.10'7
2-107° T
-8
1.5-10 5.1078
1-107° +——o microrad
5.10°% ' 0.002 0.004 0.006 0.008 0.01
0 002 0004 0 006 0. 008 0 Olmicrorad FIG. 14. The field at the dark port due to small misalignments

consists of the antisymmetric combination of the beams coming

FIG. 12. The modes that are excited at second order when oneom the two cavities. A small portion corresponds to the unper-

mirror is tilted do not contribute much if the angle is not larger thanturbed mode and that is due to slightly different reflectivities when
1078 rad. the field is bounced back from the two cavities.
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Beam intensity of the odd contribution

at the dark port. The design for this mode cleaner is similar
to the Fabry-Peot cavity of Fig. 1. If we take ;=r all the
light of the resonating mode is transmitted. The higher order
modes are suppressed:

-2 |¢tr|2 _ titg

[inl2 (111 )21+ (41 g1, sinf )/ (1= 141 )2

Y Axis in mm.

when the round-trip phaser2>(1—rr,). Compared to the

fundamental mode we have a reductiendr r, sirfz/(1
—ryr,)% This factor can be very high.

There is one more detail to be investigated, which is how
misalignment modifies diffraction losses. We studied the in-
teraction of a beam representing the fundamental mode of
| the unperturbed cavity with the misaligned cavity. We found

0 50 T that when the cavity is not driven by a cavity mode, there is
a mismatch at the input mirror, and because of that only a

FIG. 15. The variation of the resonating electric field due to afraction of the input power is available to be stored in the
small misalignment of one mirror is proportional to the angle errorresonating mode. This makes the power level drop down in
and is odd with respect to the axis of rotation. We have named sucthe resonator.
variationu,qq and it has been extracted from the grid representing  We therefore analyze how diffraction depends on the tilt
the transverse amplitude of the field, obtained by simulations. ang|e' since this can cause the power gain to decrease. Since

iati 2
since they have the same curvature for any point on theitrhe variation should be- ¢,

surface the peam _happens to hit. In Fig. 16 we see a quad-LU_ :I—u"—ai(l—u —L)
rupole form intensity. titt odd
Since the shape of the beam is affected, the thermoelastic
noise integral that corresponds to the field circulating in the + f fer o OXAY2RL U™ (X,Y) Ueyen(X.Y) .
Xc+yc>m

misaligned cavity is also changé¢él].

The results obtained by O’'Shaughnessy set a requiremegfe expect a small impact on the total power reflected back
for the angle error. He and Strigin have calculated the excifrom the cavity. If there is any difference in the reflectivities
tation of the mirrors due to thermoelastic interaction with thefrom the two arms, the result is a deteriorated contrast, with
beam for different configurations. There are options that insome light exiting the dark port. By fitting the data for the

volve reshaping the bulk of the mirrors, which allows a largetotal power lost because of increased diffraction losses, we
reduction of thermoelastic noigé]. find

A mode cleaner introduced at the output of the interfer-
ometer can be used for filtering out the main contribution 2

(%
1 5reff=—0.5J(—Mrad s

and on adding the term

or2 0
2| 2 eff _
|C| ( 5reffa1+ _4 ) 25(_,u,rad

to our first estimation above we obtain a value close to the
numerical result forPR"4"/ P, within a few percent. All
these runs and checks with analytical predictions make us
confident of the analogy between the behavior of the flat
topped beam and the more common Gaussian beams. The
characteristic shape af,4, for example, makes it suitable

for the control system. Since the intensity is shifted from the
unperturbed axis when there is misalignment, the same
method used to correct the angular displacement of spherical
mirrors will work for flat topped beams. If the light distribu-

Beam intensity of the even contribution x 10'1

2

[T

4

Y Axis in mm.

0 50 100 150 200 250 300
X Axis inmm.

FIG. 16. The second order perturbation of the resonating field is
small and looks like a quadrupole; since the mirror is nonspherical YIn order to recover a better shot-noise sensitivity, VIRGO de-
a tilt involves a change of the symmetry of the beam that goe<ided to use an output mode cleaner to reduce the contrast defect
beyond the simple variation of the direction of propagation. [13].
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Dark Port Power Amplitude of the excited field
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FIG. 17. We have introduced one realistic mirror in the interfer- |
ometer. The imperfections have been scaled down by the facto
shown on the horizontal axis and the corresponding power at the
dark port is reported on the vertical axis. If all the mirrors are
affected by a similar deformation the power which is lost through -0.015—
the excitation of higher order modes is four times the values shown
in this graph. -0.02

-0.01 —

3% 30 25 20 15 10 5 0 10 20 30 40

tion is not symmetric in two half planes of the photodetector

used in the control system, the alignment is to be corrected FIG. 18. This is the change in the shape of the resonating beam-
[14,15. ue to realistic mirrors obtained by overlapping the perfect mirror

with the typical deviations we might expect.

IV. SENSITIVITY OF THE ELAT TOPPED BEAM With a view to re;tricting our analysis to a regime of linear-
TO REALISTIC SURFACE DISTORTIONS ity, we have decided to choose=0.2. For larger valueg

=0.4 the influence of the tilt on the interferometer’s perfor-

We want to analyze the impact of mirror imperfections onmance computed by analysis of the data obtained by the FFT
the profile of the beam. Any advantage obtained by using aodel and the predictions based on the perturbative model
field with flat intensity distribution would be lost if the shape O’Shaughnessy has implemented are in disagreement, al-
of the beam were completely changed because of any distothough several modes have been used, while the agreement
tion in the mirror surfaces. In order to study a realistic situ-is excellent for the valug=0.2, which Billingsley believes
ation we used the measurements of the surface of a LIGO dhould be achievable by mirror manufacturers, at least in the
beam splitter, because that is the flattest mirror we currentljnnermost 10 cnithe area that is most important for its in-
have that satisfies the requirements of the LIGO. fluence on the impinging fiejd by coating.

A map of the deformations was provided by Garilynn  We sete=0.2 and for this value 99% of the power at the
Billingsley of LIGO Laboratories. In this section we report dark port is proportional te- €. The resulting change in the
and comment on our study of the influence of realistic figurebeam contains a large component of odd modes as is shown
errors for the mirrors on the interferometer’s perfomance. in Fig. 18. We used a procedure similar to the one set up for

Although the deformation can be considered realisticstudying the influence of tilt on the resonating beam, in order
Billingsley told us that mirrors can be manufactured muchto identify the perturbed cavity mode and express it as a
more accurately. Hence we have regarded it as the most pesembination of the unperturbed cavity modes. Using a for-
simistic case. malism similar to the one introduced above,

We scaled down the data of the distortion and put the
manipulated map of deviations from flatness on the top of
the external mirror in one Fabry-Re cavity of the interfer-
om:;e\r,.ve learnt from analyzing misalignment, if only one is the field resonating inside the cavity with a perturbed ex-

cavity is perturbed the signal at the dark port is generated b§f™al mirror. It can be expressed as its projection upon the
the higher order modes excited by the distortion. In Fig. 170nPerturbed flat topped beam plus the remaining excited

the power at the dark port versus the size of the imperfecgomﬁonem' ook for the odd buti H
tions is shown. The scale factor in front of the deformation is Then we can look for the odd contributions. We use the

€c[0,1]. The best fit for the numerical data is the following "€Sults obtained by our simulations for misalignment to esti-
mate the angle error corresponding to the dipolar component

Udef= ®oU~+ agylexc

curve: of the excited field. We expect that adjusting the alignment of
the mirror can reduce the impact of the fabrication imperfec-
op tions. When a significant amount of the dipolar field is mini-
P—O:0.029762+ 0.0064*. mized by realigning the mirror, the output power is reduced:
Por _0.38¢10°2,
2For an exhaustive overview of metrology procedures,[$6 Po
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while without the proper adjustment the dark port power is . Distortion measrements in nm, scaled down by 0.2
three times larger:

30

Poe 1130102
Po
251
This test shows again that the flat topped beam behaves sim
larly to the much more common Gaussian beams. 2o
If the mirror distortions are not axially symmetric, the §
light distribution is slightly off center on the transverse st
plane. The control system which measures and compares th
intensity of the electric field in two half planes separated by ,,

they andx axes will partly compensate for the perturbation
[17].

Also, in order to have small variations in the linear regime
the distortion in the central area must be less than 6 nm. The
phase change sensed by the electric field, % 5 10 18 20 25 30

cm

sk

. FIG. 19. The features of the deformation we have used are
f szzgmzdxdyd‘(x,y)exp[2|kAz(x,y)]u(x,y), shown in this figure, which is obtained by scaling the measured
values bye=0.2. The profile of the mirror is changed by20

must be much smaller than the phase difference between the30 nm in the outer region. The asymmetry in the central area has
optical modes. When this is not the case the higher orde®n effect equivalent to misalignment; if the mirror is slightly tilted
modes are easily excited and the cavity is no longer support? order to compensate for that, the power at the dark port is no-
ing the flat topped beam. For this reason, any perturbatioHc€abPly decreased. This power is due to the higher order modes
that contains a tilt effect can greatly affect the shape of th&*Cited in the cavity, whose external mirror is affected by the de-
beam, since it couples the fundamental mode with the firsto"™mation shown in this map.
excited mode. The angle error will be detected by the control

system, which is aimed to minimize the asymmetry in the )

power distribution ofvge;. The difference in the overlap f f2X2+y2>m2dXd)’1U(X,Y)|

betweeru andv 4. Over two half planes is computed through L Esz =0.00834
a quadrant diode; it is the error signal that is fed back to the f f dxdylu(x,y)|?

perturbed mirror to control its tilt.

We made one more test that also helps in understanding
the importance of a smooth profile in the central area; wg, o clipping approximation.
scaled the realistic deformation down by the facte+0.2 For such diffraction loss,
only in the central area. On the rim we kept the entire value.
We found the result

Manipulated version of the realistic deformation in nm
T T T T T T

P
“PP _3.02¢10°3,
P aof

which is three times larger than the value obtained by scaling |
down the whole realistic deformation and more than ten
times smaller than the value obtained by using the whole
realistic deformation. In Fig. 19 the data we used scaledE
down bye=0.2 are shown. The modified version is shown in °
Fig. 20. In the latter, the measured data for the deformation **[
have been multipled by 0.2 far<9.6 cm. In the outer re-
gion r=12.2 cm we kept the measured values, and in be- o
tween we linearly interpolated to make the transition smooth.

Some crucial issues related to the design
of the recycling cavity 0 . . . s . .

cm

The main source of diffraction loss in LIGO consists of
the beam splitter, which faces the circulating field at 45°. If  FIG. 20. This figure represents the manipulation of the realistic
we take a beam splitter with the same diameter as the mideformation we did by scaling down the data for the central area,
rors, keeping the rim as it is from measurements.
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Pea | |21_£55 2 4124+ Lo =t5+r15+ L,=t2+r2+ L,
=|C
Po 2 (I=reV1-t2—L,)? is always applied. Since.¢;<1 because of the losses in Eq.
5 (6), if we compute the power carried by the field that exits
t the bright port and goes toward the recycling mirror and the
X 1 \/1 2 \/ 5 power carried by the field that is going from the recycling
(1=V1-t=LyV1-Ly) mirror toward the beam splitter, we find a small difference.
=7822, The beam splitter needs to be fabricated larger to reduce
the diffraction loss, or other means need to be applied. For
P 2 example, the bulk of the internal test mass mirrors that are
RM_ IC|? r the input mirrors of the two arm cavities can be designed in
=) _ [1 _s2_ p 2 order to make the beam converge toward a closest focus. The
° (I~ TerVI—ti—Ly) thermoelastic noise depends on the intensity of the beam; the
=20.07 atthe recycling mirror, power circulating in the Fabry-Pet cavities is about 400
times larger than in the recycling cavity. This allows less
Pep tfrgff strict requirements fo_r the design qf the recycling cavity. We
—=|cJ? can even afford conical shape mirrors for the internal test
Po (1— reff\/l—tf—[,u)Z masses, which will further reduce the thermoelastic noise. In
principle, the recycling cavity can be affected by losses that
=19.15 atthe bright port, are two orders of magnitude larger than in the arm cavities.
] For example, the diffraction los§) must be reduced by at
where we have defined least one order of magnitude but it does not need te-idg .
BS There are also motivations for allowing the beam not to be
" :1_£u —rytr; ©) flat in the recycling cavity, related to the quasidegeneracy
eff 2 (1-\1-22-£,1-L,)? that affects the sidebands. They contribute to both the control
and the detection scheme. The sidebands circulate only in the
and used our resulf,=0.000019 as obtained in Sec. lll. If recycling cavity and the higher order modes are easily ex-
we compare the above predictions with the numerical Outc|ted, because of the small difference between the e|genval'
come of the simulation, ues of the round-trip propagator. We found, for example, that

the sensitivity of the beam to imperfections affecting the mir-
Peaw ror surfaces is one order pf magnitude larger in the recycling
Py =5958, cavity than in the Fabry-Ret cavity. This would put tight

requirements on the surface of the mirrors that are compa-

rable with the accuracy of the data we have used for the

P : X -
_PR’V': 15.28, typical distortions.
0
=) V. SUMMARY AND REMARKS
—2P_14.35
Po " After thermoelastic noise was found to be the dominating

problem for the advanced LIGO, to reach the sensitivity
we find a large discrepancy due to the underestimation ofevel due to the quantum noise limit much study and
EES. reasearch has been done by a collaboration led by Thorne.
Therefore we compute the total loss, from which we canSince the reduction of thermoelastic noise has been shown to
infer how much light is diffracted away through the beambe significant by using mirrors with a special shape, some
splitter. In Sec. llI£, was estimated by the same method andfundamental issues related to the implementation of those
the numerical and analytical results were not exactly themirrors have been examined by both simulations and analyti-
same. Using the numerical estimation 0, we calculate  cal calculations.
SeveraFORTRAN programs were written for analyzing the

Po—Preti= Pop—4Pca Lu— PruLu— PepLly maps of the beam inside the interferometer and at the exter-
Po(Pry+ Pgp) nal pickup points to study how the field is affected by real-

istic perturbations. We processed the results in order to quan-
=L£5°=0.0162 (7)  tify the impact of misalignment on the flat topped beam. The

data were compared with the same effect concerning the ad-
and in fact inserting this value in our analytical formulasvanced LIGO. Our analysis shows that the tilt angle must be
gives the correct predictions within 0.8%. We used controlled ~five times better. The current fluctuations are
=/0.06 because this is the transmittivity of the recycling~ 108 rad with a spectrum decreasing ad L.
mirror required for the next configuration of the LIGO. The  We also showed that the most important excited contribu-
other values arg, = 1/0.005 and,=0, and any reflectivity is tion is dipolar(Fig. 13 so that it can be filtered out by using
defined such that a mode cleaner. Since the excited field has the same geo-
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metrical asymmetry around the rotation axis of the tilted mir- A quantitive analysis of thermoelastic noise has been done
ror, the physical principles and the control system that workby O’Shaughnessy, Strigin, and Watchanin using a finite el-
for the Gaussian beams apply to the flat topped beam as wetment model program. Although their results required so-
We reviewed the mirrors that support the flat topped beanphisticated computations, a rough estimation can be done
and studied how deviations from the ideal surface careasily for the reduction of thermoelastic noigerough a flat
modify its shape. In Fig. 17 the power that is transferred taopped beam instead of a Gaussian)dihat is based on a
higher order modes and thus exits the dark port depends aomparison between the beam we have chosen to drive the
the size of the typical deformations of one mirror. If all mir- Fabry-Peot cavity (by optimizing its overlap with the flat
rors are affected by similar uncorrelated distortions, we exiopped beamand the Gaussian beam characterized by the
pect four times that amount, which means advanced LIGO baseline design. We find

PDp Sflattop

S €[0.005,0.01=max Az(x,y)] €[4 nm,6 nn] (8)
0

(W)3 (6 cm/9 cm®=0.3
=|—1] =(6 cm/9 cm3=0.
Stico Wg

- . . _3 .
in the central area. by_S|mpIy.appIy.|ng thg scaling law-w™* for thermoglastlc
noise. This estimate is very close to the numerical result

Furthermore, if the real mirrors are affected by a large 4Nl for th i h vzed in thi
nonaxially symmetric perturbation the alignment can be corfeporte |_n[ | or the specific case we have analyzed In this
aper. This estimation implies that the sensitivity of the ad-

rected to partially compensate for it. In the specific case wé
P Y P P anced LIGO with a flat topped beam will improve up to the

analyzed, we found an impact on the flat topped beany2"! ; )
equivalent to a tilt of limit due to quantum noise. Further reduction can be ob-

tained by reshaping the bulk of the mirrd.

0=0.013 prad
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are excited, less power is available in a suitable form formodeling optical imperfections. That code has been very
signal detection and the excess power contributes to shaetseful in simulating the interferometer and several scientists
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cavity included, to study the impact of mirror deformations We acknowledge Brett Bochner and Yaron Hefetz. The other
on the circulating field. numerical tool we used is a steady-state analytical model,

From the results of this last set of simulations, having thewhose aim is to expand the electromagnetic field everywhere
same requirements foPpp/P, as in Eq. (8) implies in the interferometer, using a set of unperturbed spatial basis
max Az(x,y)]~ 1 nm. This constraint is of the same order functions. This model is widely employed by the LIGO com-
of magnitude as the accuracy of the data that have been ttigunity and its development is fundamentally due to Ray
basis for our numerical investigations of the mirror's defor-Beausoleilet al. [19]. We are grateful to the Center for Ad-
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investigations of its feasibility. Because of its short length the
recycling cavity is deeply affected by any distortion in the  APPENDIX A: PERTURBATION THEORY APPLIED
mirror profiles. The results of our simulations suggest that TO EVALUATE THE EFFECTS OF MISALIGNMENTS
the field need not be flat in the recycling cavity and is ) _ )
matched through a lens to the flat topped beam resonating in First of all let us define the eigenvectors for the operator
the Fabry-Peot cavity where thermoelastic noise dominates.that represents a round-trip propagation inside a cavity, with

Several options have been studied although we have préPherical mirrors whose curvatureRg andR,,
sented here one typical case. Both the size of the reflecting

surface and the shape of the mirrors are variables that can bel:(r» F.0)= f f d2re-ik 7 121Ry oKL+ i —F|22L]
properly designed to further reduce thermoelastic noise. i 2l

When the constraints on the fabrication of large crystals
of sapphire are exhaustively understood the optimal choice « o= ikIr|%/R, K eiKIL+ [F=ri|2/2L]

can be selected among many opti¢a$ 2mil
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wherer; andr are the initial and final transverse positions. . . .
Since the above operator is not Hermitian, there is a set XX 2i[Psq(L) — Ps¢(0) ]} =exp 2ikL —2i(s+q+1)
left and a set of right eigenvectors. We can use the biorthogo-

nality between these two sets with a view to the application L L
of the techniques of perturbation theory to problems con- XarCCOS\/( 1- R_) 1- R_)J
nected with deformations which induce a variation in the ! 2
circulating field: (A2)

(I:+ I:pert)

|un>+2 Cfﬂ)|un'>)
n/

=(NptAN,)

|un>+z Cg})|un’>)
n/

<an||:pert|un>:A7\nv
<an’|I:pert|un>:()\n_>\n’)chr:)a
where we have defined

|:|un>:)\n|un>a <an|£:<an|7\n

<an| um> = Onm-

We can apply the above formalism to some typical perturba
tion. For example, when a variation of the radius of curva-
ture of the back mirror occurs, the surface of the mirror is 1

for a round-trip propagation. Our reference for the expansion
is Eqg. (Al) defined atz=0. This choice implies that the
eigenvectors of the perturbed cavity have the same wave
front as the unperturbed eigenvectorszatO if the input
mirror is not distorted.

When the input mirror is tilted by’ around the-;/ axis,
we have

(00) e4i77
ClO :eZiﬂ_e‘”U[_lkW(o)a ]5
where we have used
e/ " D7=exp[i(Psq(L) — P54 0))
—i(D@og(L) —P(0))]} (A3)

according to Eq(A2). As we discussed in Sec. Ill, when the
cavity is driven by

—ikw(0) 6’
i r ivi 1 ikw(0)0" [ ————
displaced by the amoumntz(r,L), giving the result UooZ( ): “ikw(0)e' | + ( )- e 27
of | ———] 1-e¥"
)\1/2)\1/2 R 1_e2l77 1
Cy=——"— J f A7y, (7, L)[e2 K200 — 1 Juy(r, L),
M= N ikw(0) 6’
o =v1+ mvz, (A4)
00 _ (00 e7e'” [ ikw(L)?
20702 g2y gbin 1 the reflected field is
2y2 Rpert Rz
pert 2 1
For a rotationd of the back mirror around thg axis, the vi— Mvg =| ikw(0)0’
above formalism gives the correction 1-e”7 1—e 27
e2i7] in ik (0)
CO=— [ —ikw(L)# : , [ Tkw(0)¢"
10 e2|77_e4|77[ ( ] _ IkW(O)@ ]_——e2"7
1—e?7
with the following eigenvectors: 1
un=usq(x,y,z) 1
\/T =| kw(0)6’ (A5)
= — i (w2 2 R
W) 9X+¢’sq(2) (x=+y9) tanzy

1 ik [ 1
X(WZ(Z) * 2R(z)) 25*dslq!
2X 2y

Vm)”q \ m)

for the unperturbed state.
The corresponding eigenvalues are

XHg

in a 2X2 model based ofugg,u;q}. There are a few obser-
vations worth making. First, we can set a limit on the pertur-
bation because

in complete analogy with perturbation theory applied to
guantum mechanics. The eigenvectoysandv, in Eq. (A4)
are not real. This is due to the new wave front that must
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match the tilted mirror at=0. In Eq.(A5) the cavity eigen-

PHYSICAL REVIEW D 67, 102004 (2003

by Hello and Vinet to simulate the system when realistic

vectors are reflected as conjugate. This comes from the proprirrors are included; it was aimed to investigate the impact

erties ofL, which is symmetric. The reflection from the an-
tireflective surface of the input mirror is represented Nay
—ekI?/Rs|f there is no loss,

L* (Mlu) =ML Yu) =\ "M[uy)  (A6)

implying M|u,)oc|u*). This applies to the perturbed shapes
of the input mirror's surface as well. The propeftyL = 1

of distortions on the optical path on the beam, through re-
flection upon the mirror’s surface, and through transmission
through their bulk. Since the propagation between the mir-
rors is calculated by using the paraxial approximation, the
field is transformed in the frequency domain to make it
propagate, by multiplication with the operator representing
the Fourier transform of the propagator. The field is trans-
formed back to the space domain after any propagation,
since its interaction with the mirrors is evaluated in the space
domain. Each pixel of the grid is multiplied by a phase delay,

implies that energy is conserved and conjugation upon reque to the profile of the mirror along the direction of that

flection reveals that there is time-reversal symmetry. In Eq

(AB) N, '=\Z . We also assumed thai was the resonating
mode reflected by+1 andv, nonresonating. The case of

pixel. In other words, each pixel of the electromagnetic field
couples with the pixel of the mirror map that is right in front
of it. This interaction assumes that the light rays do not in-

bothv, andv, resonating can occur only in a degenerateterfere with each other, when the electromagnetic field inter-
cavity. Bothv,; andv, can be nonresonating. In this case, theacts with the mirror; the optical path involved in such an

reflected beam is

1
_v*_w *=_| ikw(0)¢’
L7 etin 2 —
1—e 27
, ikw(0) 6’
ikw(0)0' | ———
— | 1-é?"
1—e?7
1
1
~ |ikw(0) e’ (A7)

which represents the vecterM Ugg- The minus sign in Eg.

interaction is so small that any diffractive coupling between
the light rays is neglected.

This code has been widely used in VIRGO and it is part
of the numerical tools making up the global simulator of the
gravitational wave antenna. Because of its flexibility it has
been adapted to simulate the LIGO configuration. A very
important feature of this model is that it is a general purpose
program, which can be used for studying how power builds
up inside each cavity of the system, for any kind of mirror.
For example, it has been used for setting requirements and
tolerances for the initial LIGO optical components and it
showed itself an ideal tool for a quantitative analysis of the
effects of thermal lensing. When stationarity is achieved the
grids representing the fields are obtained. These data have
been manipulated for obtaining information on how the
beam becomes distorted because of misalignment or imper-

(A7) is due to the convention that assigns a positive reflecfections in the reflecting surfaces.

tivity to the reflective side of the mirrors and a negative one

to the antireflective side. We can use E@s5) and(A7) and
take the beat between them. The wave nunikierEg. (A7)
must be sligthly different from the one in EGA5).

These grids are represented by ¥2828 maps. They con-

tain the imaginary and real parts of the electromagnetic field,
picked up at many locations inside and outside the interfer-
ometer[20]. The parameters we used in the simulations are

When we place a photodetector in front of the input mir-the ones currently assumed as standard for the advanced
ror, we detect a signal proportional to the subtraction of thd-1GO. We kept fixed the reflectivities of each mirror and the

light impinging on the two half planes>0 andx<<0. When
both the front and the back mirrors are tilted, the signal

kw(0) 6’ cos( 5+ 5) +kw(L) 6 cog 7)
s sin(7)

(A8)

is proportional to the two angle errors. The pha_;sdn Eq.
(A8) depends on the distance between the input mirror an

lengths of the cavities according to the advanced LIGO de-
sign. When spherical mirrors are implemented,

h(x,y)= \/xz+y7/(2R)

stands for the height of the mirror witR the radius of cur-
vature. The grid for any arbitrary shape can be introduced.
The ones that have been computed to be implemented in the
#FT simulations are designed to match the phase profile of

the photodetector and it corresponds to the phase shift agne flat topped beam. The data representing the figure errors

quired in propagation by the different modes, as in &@).

APPENDIX B: THE FAST FOURIER TRANSFORM
MODEL USED TO SIMULATE THE SYSTEM

One of the tools that has been used in the LIGO for simu-

lating the interferometer is BORTRAN implementation of a

of the mirror height are added to the unperturbed profile. For
example, when one of the mirrors is tilted ldyaround the
axis directed along the azimuthal angle the perturbation is

Sh(x,y) = [ xsing —ycosp |

fast Fourier transform model. The first model was designedor a very small misalignment.
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