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Nonspherical mirrors to reduce thermoelastic noise in advanced gravitational wave interferometers

Erika D’Ambrosio
California Institute of Technology, Pasadena, California 91125

~Received 11 December 2002; published 14 May 2003!

We introduce and study a non-Gaussian paraxial cavity mode that has a special beam intensity by properly
designing the end mirrors of a resonator. The final aim is to reduce the thermoelastic noise generated by the
interaction between the field and the mirror by optimizing the shape of both. We present numerical results for
the special design of a resonator as long as the Fabry-Pe´rot arms of the gravitational wave detector Laser
Interferometric Gravitational Wave Observatory~LIGO!. We discuss the alignment stability of such a cavity
and we present the most important investigations we have done for implementing the reshaped mirrors we
propose in the next LIGO configuration. We implement different numerical tools in order to understand the
impact of both a small misalignment in the Fabry-Pe´rot cavity and imperfections in the radial profile of the
mirrors on the power built up inside the resonators and on the signal at the dark port of the beam splitter. The
results of all the simulation runs are compared with an analytical model that takes into account mismatch
problems and losses.

DOI: 10.1103/PhysRevD.67.102004 PACS number~s!: 04.80.Cc, 07.05.Dz, 07.60.Ly, 42.55.2f
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INTRODUCTION

In gravitational wave interferometric antennas, the var
tion of the distance between two mirrors is measured us
the interference between the beams that come out of
perpendicular identical Fabry-Pe´rot cavities; one of them
will sense a squeezing effect while the other will
stretched. The variation that is measured depends on
displacement of the reflective surfaces of the two mirro
Such physical displacement can be caused by fundame
noise sources and it can also be mimicked by the meas
ment, because of any technical noise affecting the detec
process.

In the design for the planned advanced Laser Interfe
metric Gravitational Wave Observatory~LIGO! interferom-
eter, the mirror substrates are 40 kg sapphire cylinders.
most serious noise is thermoelastic noise~if fused silica sub-
strates are used the considerations of this manuscript ar
relevant!. The relevance of that kind of internal thermal noi
has already been studied through mathematical models
the infinite half-space approximation and for mirrors w
finite size@1–3#.

The intensity distribution of the electric field generates
heat flow, inside the mirror. The temperature inside the s
strate is not homogeneous but varies on a small scale.

O’Shaughnessy and Thorne have pointed out that t
moelastic noise is reduced when the dynamically fluctua
bumps and valleys are averaged out by a flat laser b
instead of the baseline beam with Gaussian profile. It m
also be a stable mode of the cavity, with a resonating
quency well separated by those of the higher order mode
beam such as that is studied for a resonator as long as
arms of the LIGO gravitational wave antenna. This detec
is briefly reviewed in Sec. I for comparison purposes w
spherical mirrors. The flat topped beam is introduced in
tail in Sec. II and the mirrors that support it as a resonat
mode of the cavity are introduced.

Since those mirrors are considerably flatter than the b
line spherical mirrors, the sensitivity of the interferometer
0556-2821/2003/67~10!/102004~16!/$20.00 67 1020
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errors in their orientation and shape is enhanced. The im
cations have been addressed by both analytical calculat
and numerical simulations based on a fast Fourier transf
~FFT! paraxial ray propagation code, using the flat topp
mirrors @4,5#.

In Sec. III we address a variety of problems related
misalignment. We consider realistic imperfections in the s
face of the mirrors that affect the flat topped beam in Sec.
We tackle the main problems related to the quasidegene
of the recycling cavity and comment on some solutions.

I. OUTLINE OF GRAVITATIONAL WAVE
INTERFEROMETERS WITH SPHERICAL MIRRORS

The reflected and transmitted electromagnetic field, fo
cavity such as the one in Fig. 1, are defined by the trans
tivities and reflectivities of the two end mirrors:

c re f5S 2r 11
t1
2r 2e2ikL

12r 1r 2e2ikLDc in5r e f fc in ,

c tr5
t1t2eikL

12r 1r 2e2ikL
c in5te f fc in ,

FIG. 1. Schematic diagram of a Fabry-Pe´rot cavity with front
and back mirrors. In LIGO interferometers the mirrors are t
gravitational masses under study: they have been convention
named the internal and external test mass or ITM and ETM.
©2003 The American Physical Society04-1
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wherek is the wave number andL is the length of the reso
nator. We can add a recycling mirror so that the coupl
between the two cavities is expressed by the effective refl
tivity r e f f . Therefore we can write the power gain for th
recycling cavity as

GainRC5t r
2/u12r r r e f fe

2ikl u2,

wherel is the distance between the recycling mirror and
Fabry-Pe´rot cavity. We then introduce two Fabry-Pe´rot arms
and a beam splitter as in Fig. 2.

If the beam splitter is perfect and the arms identical,
above formulas stand for the power circulating in the re
cling cavity over the power that enters the interferome
through the recycling mirror. This ratio is the gain of th
recycling cavity and it depends on the lengthsl andL. The
conditions for resonance are expressed by

e2ikL5e2ikl51.

Any difference in the effective reflectivities from the tw
arm cavities will be detected at the antisymmetric port of
beam splitter, which is also named the dark port or out
port of the interferometer. The signal is proportional
dr e f f . If the only variation is caused by the gravitation
wave,

dr e f f.
4iFfgw

p
, F5

pAr 1r 2

12r 1r 2
,

with fgw the amplitude of the phase change predicted by
theory of general relativity, andF the finesse of the two
Fabry-Pe´rot cavities.

The configuration we will focus on is the advanced LIG
~whose characteristics can be surveyed at www.ligo.calte
edu/ligo2 @8#! and we are referring to its design for cavi
lengths and mirror diameters. Reducing thermoelastic n
can be accomplished by increasing the spot sizew of the
Gaussian beams. This would result in increased diffrac
losses, as a smaller portion of the field hits the surface of
mirror. The fraction of power that is lost may be express
by the following formula:

FIG. 2. The arm cavities and the recycling cavity.
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expF22

r 2

w2G2rpdr 5expF22
m2

w2G ,

m5half of the mirror8s diameter,

based on the approximation that the field retains its sha
The finiteness of the mirrors may induce significant chan
in the characteristics of the beam.

Using more sophisticated tools we can obtain differe
results forL @7#.

The simple formula above is referred to as the clippi
approximation. We computedL also using two different nu-
merical codes~one based on the FFT of the field and one
its decomposition into transverse modes! and we found for
both a result;2.5 times larger than predicted by the clippin
approximation as shown in Fig. 3. From the data we fi
that, setting the mirror’s diameter at 30 cm, we have a d
fraction loss of 10 ppm according to the design for the a
vanced LIGO, that is, using mirrors with radii of curvatu
54 km in 4 km long Fabry-Pe´rot resonators. These param
eters implyw;6 cm for the size of the beam reflecting o
the mirrors and are considered typical of the advanced LI
configuration, as reported in www.ligo.caltech.edu/ligo2@8#.

A significant reduction of thermoelastic noise can
achieved by an increase of the spot size. Since this will ca
larger diffraction losses, we can alternatively design a re
nator with nonspherical mirrors, such that the fundamen
mode sustained in there has a flat intensity profile with
ceptable diffraction losses. This is proposed in the next s
tion with a limit of 21 ppm on diffraction losses.

II. THE FLAT TOPPED BEAM AND THE CAVITY
SUPPORTING IT AS AN OPTICAL MODE

We can overstep the limits put on Gaussian beams by
diffraction losses by using a non-Gaussian mode as propo
by O’Shaughnessy and Thorne, and studied by D’Ambro
et al. @6#. We review the construction of that mode for
symmetric Fabry-Pe´rot cavity, which implies that the wais
position is in the middle. We first define the intensity of th
flat topped beam at its waist position, which is where t
wave front is exactly flat, and we shall use a superposition

FIG. 3. Three sets of results for diffraction losses: two of the
were obtained by a numerical code and one was computed by
amount of light that falls outside the mirror.
4-2
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Gaussian functions. The flattest intensity we may imagin

us~x,y!5H 1

App2
for x21y2<p2,

0 for x21y2.p2,

which is a step function. We can obtain this by overlapp
delta functions, and more generally a flat profile can be g
erated by overlapping narrow Gaussian functions as follo

u0~x,y!5 E E
x0

2
1y0

2<p2
dx0dy0A 2

w0
2p

3e2~1/w0
2
! @~x2x0!21~y2y0!2#

when
w0

p
→0, ~1!

but this is not the optimal choice. In fact, for each of t
Gaussian beams overlapping to form the flat topped be
the spot size becomes quite large in the propagation, ma
the field spread too much. So we have to choose a la
value forw0 and keep the ratiow0 /p small. The minimum
spot size on the mirrors of a Fabry-Pe´rot cavity is obtained
for Gaussian beams whose waist is

w05AL

k
5AlL

2p
,

and this is the value we will use in Eq.~1!. We make the
beam propagate toward the end of the cavity, where on
the mirrors is located and we obtain

u~x,y!5 E E
x0

2
1y0

2<p2
dx0dy0

11 i

A2w0
2p

3e2[ ~11 i ! /2w0
2] @~x2x0!21~y2y0!2# ~2!

as a result of

u~x,y!5 E dx8 E dy8K~x,y;x8,y8!u0~x8,y8!

with the symmetric kernel

K~x,y;x8,y8!5
2i

lL
expH 2

2ip

lL
@~x2x8!21~y2y8!2#J .

Although u(x,y) does not retain its shape, a definition
the Gouy phase is still possible as the phase gained by pr
gation along the longitudinal axis.

The field also has a wave front~the phase is not uniform
on a plane transverse to the longitudinal axis!.

We shall therefore define

FWF5F@u~x,y!#2F@u~0,0!#

and we can evaluate the wave front corresponding to
mirrors’ location. When the flat topped beam hits a reflect
10200
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surface that matches its wave front, the sign in front ofFWF
is flipped so that when it is propagated back it has the sa
shape@9–11#.

In order to match the wave front of the beam, the heig
of the mirrors must be

h~x,y!5
l

2p
$F@u~0,0!#2F@u~x,y!#%.

The corresponding profile for the end mirrors is shown
Fig. 4. The other way around, the fundamental mode of
cavity constructed according to this design must be a
topped beam. In Fig. 5 the wave front of the beam resona
in such a cavity is shown. The phase map results from
FFT model we have been using. This numerical progr
simulates the propagation of the beam using the para
approximation. The first case we analyze is the ideal confi
ration with perfectly shaped and aligned mirrors. The app
priate information must be provided as input parameters;
preliminary calculation that we consider interesting is t
design of the beam that drives the cavity.

A. Optimization of the beam profile for the field driving
the cavity

We propose a technique to identify the Gaussian be
with the largest overlap with the fieldu. This analytical study
is useful either to drive the system directly by a Gauss
beam or to maximize the laser power coupled inside
mode cleaner that prepares the field according to the
topped profile. Any electromagnetic field is fully define
once its transverse shape is known for one specific locat
Therefore we evaluate the overlap at the waist position

FIG. 4. The shape of mirrors supporting the flat topped beam
shown. The central area is significantly flat but on the external
the surface is quite steep, reaching a height of about 0.5mm in only
;2 cm. The stability of the optical cavity formed by two of thes
mirrors 4 km apart is the main focus of the analytical and numer
studies reported in this paper.
4-3
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C5

E E dxdyuG* ~x,y!u0~x,y!

A E E dxdyu0
2~x,y!

,

uG~x,y!5A 2

pwG
2

expF2S 1

wG
2

1
ik

2RG
D @x21y2#G ,

FIG. 5. The wave front of the flat topped beam, as computed
the maps of the real and imaginary parts of the electromagnetic
that resonates in the Fabry-Pe´rot cavity, simulated by the paraxia
ray propagation code we have used to quantify the effect of a v
ety of perturbations on the stability of the system. Before analyz
practical issues we checked that the wave front of the flat top
beam resulting from the simulation corresponds to the profile
have designed. The numerical program makes the electromag
field bounce back and forth between the two mirrors until it co
verges toward the solution we expect: the flat topped beam wh
wave front matches the profile of the end mirrors of the cavity
10200
and use the property

E E dxdyuG* ~x,y!u0~x,y!

5 E E dxdyE E dx8dy8uG* ~x,y!

3d~x2x8!d~y2y8!u0~x8,y8!

5 E E dx9dy9 E E dxdyE E dx8dy8uG* ~x,y!

3K†~x,y;x9,y8!K~x9,y9;x8,y8!u0~x8,y8!,

where the Gaussian field

E dxE dyK~x,y;x9,y9!uG~x9,y9!

at the mirror’s location corresponds to the beam we are us
to drive the cavity.

We find the result

C5
2pw0wG

11 iLwG
2 /2RGw0

2

3

F12 exp
2p2/w0

2~w0
2/wG

2 1 iL /2RG!

11w0
2/wG

2 1 iL /2RG
G

A E E dxdyu0
2~x,y!

, ~3!

whose absolute value we want to maximize. We consider
portion that depends onRG andwG and look for the deriva-
tive in those variables, taking into account the sign. Hen

y
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ri-
g
d
e
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-
se
uCu2}
wG

2

11~LwG
2 /2RGw0

2!2 H S 12 expF2~p2/wG
2 !~11w0

2/wG
2 !2p2L2/~2RGw0!2

~11w0
2/wG

2 !21~L/2RG!2 G D 2

14 expF2~p2/wG
2 !~11w0

2/wG
2 !2p2L2/~2RGw0!2

~11w0
2/wG

2 !21~L/2RG!2 Gsin2
p2L/4RGw0

2

~11w0
2/wG

2 !21~L/2RG!2J
has its maximum value for zero curvature, that is, 1/RG50, and forwG that solves the following equation:

12expH 2~p/w0!2

11~wG /w0!2J S 112
~wG /w0!2~p/w0!2

@11~wG /w0!2#2 D 50.
4-4
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B. Implications and numerical evaluation

At the input mirror

4A 2

pwG
2 [11(w0 /wG)4]

expF2S 1

wG
2 @11~w0 /wG!4#

1
2ik

L@11~wG /w0!4# D @x21y2#G
is the Gaussian beam with the largest coupling with the flat topped beam, that is, thewG above maximizes the absolute valu
of Eq. ~3!. The main feature of the above Gaussian beam is that it resonates in a symmetric cavity and its waist is in th
between the two mirrors. Furthermore, the scalar product

C5

2pw0
2~wG /w0!S 12expH 2~p/w0!2

11~wG /w0!2 J D
2pw0

2A E
0

p/w0
r 1dr1 E

0

p/w0
r 2dr2 exp$ 2~r 1

21r 2
2!/2 %I 0~r 1r 2!
-
a
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e

in
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. In
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is real. In the above equationI 0 is the modified Bessel func
tion of the first kind. If C were complex there would be
difference between the phase of the Gaussian beam th
building up power inside the resonator and the flat topp
beam that is being generated by reflection of the driv
beam upon the mirrors.

Also, in the Hermite-Gauss basis determined bywG , the
flat topped beam is a vector with real components.

In Fig. 6 the intensity profile of the flat topped beam
shown as a function ofr /w0 with r 5Ax21y2. The Gaussian
curve that is shown in the same graph is the one with the
coupling with the flat topped beam.

The diffraction losses are

LuG
5 E E

x21y2>m2
dxdyA 2

pwG
2 [11(w0 /wG)4]

3expF2S 2~x21y2!

wG
2 @11~w0 /wG!4#

G D 50.003,

FIG. 6. The transverse power distribution of the flat topp
beam and the Gaussian beam having the best coupling with i
mirrors with diameter 32 cm the two beams have diffraction los
that are different by two orders of magnitude with smaller losses
the flat topped beam. Nonetheless, the two beams match very
The radial variabler is expressed in units ofw0
10200
is
d
g

st

Lu5

E E
x21y2>m2

dxdyuu~x,y!u2

E E dxdyuu~x,y!u2

50.000021.

In Fig. 7 we compare the intensity of the flat topped be
with the Gaussian beam that has the same diffraction loss
both cases we have pickedp54w0, which involves wG
53.62w0 and a diameter for the mirror 2m532 cm.

III. ALIGNMENT STABILITY OF THE RESONATOR
SUPPORTING THE FLAT TOPPED BEAM

In this section we will study the sensitivity of the electr
field to a tilt of the external mirror in one cavity of th
interferometer. We study spherical mirrors first for two re
sons: we want to check that the results of the simulations
in agreement with the analytical predictions for the basel
design with Gaussian beams and we also want to com
the sensitivity of the flat topped beam to misalignment w
that of those Gaussian beams. With spherical mirrors,

In
s
r
ll.

FIG. 7. The intensity of the flat topped and Gaussian bea
having the same diffraction loss. The radial variabler is shown in
units of w0.
4-5
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usq~x,y,z!5A 2

pw2~z!
expF iFsq~z!2~x21y2!

3S 1

w2~z!
1

ik

2R~z! D GA 1

2s1qs!q!
Hs

3SA 2x

w~z!
DHqSA 2y

w~z!
D

are the cavity modes@12#.
The phase shift they acquire when propagating from

mirror to the other is

Fsq~L !2Fsq~0!5kL2~s1q11!

3arccosAS 12
L

R~0! D S 12
L

R~L ! D ,

whereR(0)5R1 andR(L)5R2 are the radii of curvature o
the end mirrors.

We refer to the cavity in Fig. 1 for our description. Ifr 2
51 and there is no loss,

c in5usq⇔c re f5
2r 11e2i [Fsq(L)2Fsq(0)]

12r 1e2i [Fsq(L)2Fsq(0)]
c in*

where the coefficient in front ofc in* is a phase factor. IfL is
adjusted so thate2i [Fsq(L)2Fsq(0)]51, the beam is resonatin
inside the cavity and

c re f5c in* .

If the beam is not resonating inside the cavity, we can t
the limit of high reflectivity r 1→1 and find thatc re f5
2c in* . This limit can be applied only when the distinctio
between the resonating and the nonresonating modes is
defined; if the cavity is nearly degenerate there are quasir
nating modes in addition to the resonating one and for th
the full formula for c re f must be applied. In the LIGO the
first optical modes starting from the fundamental one
nondegenerate. Since diffraction losses increase very rap
with s1q, we have to consider only the low order modes

A. Misalignment between the driving field and the axis
of the cavity

We first tackle misalignment for spherical mirrors and u
the basisusq .

The details of perturbation theory as applied to opti
physics are given in Appendix A. At first order in the rotatio
angle of a mirror, the only modes that are excited areu10 and
u01 if the input beam isu00. When the back mirror is rotate
around they axis as in Fig. 8 the new eigenvectors of t
misaligned cavity are identified using a 232 model:

v15S 1

ikw~L !u

eih2e2 ih
,D 5v1* , v25S ikw~L !u

e2 ih2eih

1
D 5v2* ,
10200
e

e

ell
o-

m

e
ly

e

l

where h5F10(L)2F10(0)2F00(L)1F00(0). The nota-
tion we are using is

u005S 1

0D , u105S 0

1D .

The input field is

u005v12
ikw~L !u

eih2e2 ih
v2 .

If the cavity is properly tuned to makev1 resonate, the
reflected field is

v11
ikw~L !u

eih2e2 ih
v25S 1

2ikw~L !u

eih2e2 ih
D .

In the whole interferometer the symmetric combination
the fields reflected from the two arms goes through the s
metric port of the beam splitter and the antisymmetric co
bination exits through the dark port. If only one of the tw
arms is misaligned in the way described above, the ratio
the dark port to the bright port power,

PDP

PBP
5S kw~L !u

2 sinh D 2

50.2192S u

m radD
2

,

is predicted according to the design parameters of the
vanced LIGO, which includek52p/l with l51.064mm
and R(0)5R(L)554 km. The length of the Fabry-Pe´rot
arm isL53999.01 m and these are the same parameters
have used for estimating the diffraction losses in Sec. I. Fr
the numerical simulations we have obtained the data sh
in Fig. 9, which are best fitted by the curve

PDP

PBP
50.2196S u

m radD
2

with an agreement of;0.2% with the theoretical estimation
The analysis we have done so far can be repeated if the f
mirror of a cavity is tilted.

FIG. 8. If one mirror is rotated byu around theŷ axis, its
surface is displaced by an amountdz(x,y)52ux, wherez has the
same direction as the incoming beam. Similarly, if it is rotated byu

aroundx̂ the surface of the mirror is moved bydz(x,y)5uy.
4-6
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B. Investigation of the effects of misalignment
for flat topped beam

For our initial studies we have decided not to impleme
the recycling mirror in Fig. 2. In practice we had to setr r
50.000015 in order to make the code work. The FFT mo
that we have used sets the length of each cavity by maxim
ing the circulating power of the electric field. The two Fabr
Pérot arms are pseudolocked first and then the recycling c
ity: the distance between the end mirrors in each cavity
adjusted in order to make the circulating field resonate. T
procedure is repeated until stationarity is achieved, wh
means the power levels and the round-trip phases do
change from one iteration to the next by more than a cer
threshold which is decided by the user. Since any round-
phase is computed by making the field propagate and
bounced from the optics, none of the mirrors can be abs
otherwise the code fails to converge. Although the recycl
mirror cannot be removed its reflectivity can be very sm
We used the parameterst250 andt15A0.005 which we had
chosen for testing spherical mirrors. We checked that
phase of the field matches the surface of the mirrors w
stationarity is achieved. If

C50.97, Lu50.000021,

as we have estimated, whenP0 is the amount of power inpu
to the system

Pcav

P0

5
1

2
uCu2

t r
2

~12r r !
2

t1
2

~12A12t1
22LuA12Lu!2

5372,

~4!

and the numerical result

Pcav

P0
5373

is very close to the prediction. We also looked at the data
the total loss

P02Pout

P0
5

P02PDP2Pre f l

P0
50.028,

wherePre f l is the power reflected back toward the laser. T
diffraction loss that we infer,

FIG. 9. The ratio of the dark port to the bright port is reported
a function of the angle error for the back mirror of one arm acco
ing to the parameters of the advanced LIGO.
10200
t

l
z-

v-
is
is
h
ot
in
ip
e
t,

g
l.

e
n

r

e

0.02854
Pcav

P0
Lu⇒Lu50.000019,

substituted in Eq.~4!, gives Pcav /P05373. This may sug-
gest that the finite size of the mirrors makes the shape of
field change, so that if we use the ideal beam in our form
the result is slightly off. The intensity of the beam as co
puted by postprocessing the data obtained by the nume
simulations is shown in Fig. 10. When one mirror is tilted w
want to repeat the analysis we have done for spherical m
rors. Although we do not know the higher order modes,
can use symmetry properties to infer that the first exci
component will be odd inx for rotations aroundŷ. Using this
feature we quantified the impact of misalignment on the
topped beam.

Since we know the shape of the beam in the unpertur
case, we can project the field resonating in the misalig
cavity onto that and remove that part. What is left is divid
into an odd and an even component inx. If the perturbation
is small the odd part is proportional tou and the even par
proportional tou2. The power associated with those tw
components has been evaluated for 11 runs, with 0<u
<1028 rad. In Fig. 11 and Fig. 12 the intensities of th
excited odd and even contributions are shown. By fitting
data, we can evaluate the coefficients for the first terms in
expansion of the eigenvector resonating inside the m
aligned cavity. Since our analysis is based on the elec
field picked up at the front mirror, which is unperturbed, t
eigenvector must be real in the basis of the unpertur
eigenvectors. The data are fitted by

v t i l t 5 a0u1a1uodd1a2ueven ,

s
-

FIG. 10. The intensity profile of the beam resonating in a cav
with nonspherical mirrors which are designed to make the built
field very flat.
4-7
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a0
25

Pu

Ptot
512a1

22a2
2 ,

a1
25

Podd

Ptot
55.1426S u

m radD
2

,

a2
25

Peven

Ptot
54.12S u

m radD
4

,

and we can use the above information to interpret the sig
at the dark port of the interferometer. We compute the fr
tion of input power that goes out of the dark port because
the misalignment of one of the two long arm cavities:

PDP

P0
5uCu2a1

254.84S u

mradD
2

, ~5!

and the numerical result

PDP

P0
54.82S u

mradD
2

is close to Eq.~5! within 0.4% ~see Fig. 13!. As for the
spherical mirrors case, if the odd component were filte
out, the signal at the dark port would be much decreased
Fig. 14 the power at the dark port is shown as a result o

FIG. 11. Results of the evaluation of the portion of power due
tilt at the first order in the angle error. This is the main contributi
to higher order modes when the cavity is misaligned, thus gene
ing a signal out of the dark port because this perturbation breaks
symmetry of the interferometer.

FIG. 12. The modes that are excited at second order when
mirror is tilted do not contribute much if the angle is not larger th
1028 rad.
10200
al
-
f

d
In
a

total suppression of the odd contribution. The best fit
those data is

PDP
nondip

P0
531.5S u

mradD
4

,

which is comparable with

PDP
nondip

P0
5uCu2~a1

41a2
2!528.8S u

mradD
4

.

The intensity ofuodd is shown in Fig. 15. The excited
component has the very topology we expect from geome
cal considerations. Although this is what could have be
inferred by analogy with spherical mirrors, we found a qua
titative relationship between the misalignment and the va
tion of the beam. When the second order perturbation
taken into account, the change in the surface of the mi
due to the orientation has a more general effect: not onl
there a new axis of the cavity but the phase profile sense
the beam is quite different. In Fig. 16 the power associa
with ueven has a very peculiar distribution: the analogy wi
spherical mirrors is broken since when the beam does
impinge on the center of the reflecting surface, the shap
the sensed reflecting surface is different from the unp
turbed situation. For spherical mirrors this is not the ca

o

t-
he

ne

FIG. 13. When one mirror is misaligned, the power exiting t
dark port is quadratic in the tilt angle. The excited field is odd inx

for a rotation aroundŷ and odd iny for a rotation aroundx̂. The
physical mechanism is the same as in the more common case o
in spherical mirrors.

FIG. 14. The field at the dark port due to small misalignme
consists of the antisymmetric combination of the beams com
from the two cavities. A small portion corresponds to the unp
turbed mode and that is due to slightly different reflectivities wh
the field is bounced back from the two cavities.
4-8
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since they have the same curvature for any point on t
surface the beam happens to hit. In Fig. 16 we see a q
rupole form intensity.

Since the shape of the beam is affected, the thermoela
noise integral that corresponds to the field circulating in
misaligned cavity is also changed@6#.

The results obtained by O’Shaughnessy set a requirem
for the angle error. He and Strigin have calculated the e
tation of the mirrors due to thermoelastic interaction with t
beam for different configurations. There are options that
volve reshaping the bulk of the mirrors, which allows a lar
reduction of thermoelastic noise@6#.

A mode cleaner introduced at the output of the interf
ometer can be used for filtering out the main contribution~5!

FIG. 15. The variation of the resonating electric field due to
small misalignment of one mirror is proportional to the angle er
and is odd with respect to the axis of rotation. We have named s
variationuodd and it has been extracted from the grid represent
the transverse amplitude of the field, obtained by simulations.

FIG. 16. The second order perturbation of the resonating fiel
small and looks like a quadrupole; since the mirror is nonspher
a tilt involves a change of the symmetry of the beam that g
beyond the simple variation of the direction of propagation.
10200
ir
d-

tic
e

nt
i-

-

-

at the dark port. The design for this mode cleaner is sim
to the Fabry-Pe´rot cavity of Fig. 1. If we taker 15r 2 all the
light of the resonating mode is transmitted. The higher or
modes are suppressed:

uc tr u2

uc inu2
5

t1
2t2

2

~12r 1r 2!2@11~4r 1r 2 sin2h̄ !/~12r 1r 2!2#

when the round-trip phase 2h̄@(12r 1r 2). Compared to the
fundamental mode we have a reduction;4r 1r 2 sin2h̄/(1
2r1r2)

2. This factor can be very high.1

There is one more detail to be investigated, which is h
misalignment modifies diffraction losses. We studied the
teraction of a beam representing the fundamental mode
the unperturbed cavity with the misaligned cavity. We fou
that when the cavity is not driven by a cavity mode, there
a mismatch at the input mirror, and because of that onl
fraction of the input power is available to be stored in t
resonating mode. This makes the power level drop down
the resonator.

We therefore analyze how diffraction depends on the
angle, since this can cause the power gain to decrease. S
the variation should be;u2,

Lv t i l t
5Lu1a1

2~Luodd
2Lu!

1 E E
x21y2.m2

dxdy2R@a2u* ~x,y!ueven~x,y!#,

we expect a small impact on the total power reflected b
from the cavity. If there is any difference in the reflectivitie
from the two arms, the result is a deteriorated contrast, w
some light exiting the dark port. By fitting the data for th
total power lost because of increased diffraction losses,
find

dr e f f520.51S u

mradD
2

,

and on adding the term

uCu2S 2dr e f fa1
21

dr e f f
2

4 D 52.5S u

mradD
4

to our first estimation above we obtain a value close to
numerical result forPDP

nondip/P0 within a few percent. All
these runs and checks with analytical predictions make
confident of the analogy between the behavior of the
topped beam and the more common Gaussian beams.
characteristic shape ofuodd , for example, makes it suitabl
for the control system. Since the intensity is shifted from t
unperturbed axis when there is misalignment, the sa
method used to correct the angular displacement of sphe
mirrors will work for flat topped beams. If the light distribu

1In order to recover a better shot-noise sensitivity, VIRGO d
cided to use an output mode cleaner to reduce the contrast d
@13#.
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tion is not symmetric in two half planes of the photodetec
used in the control system, the alignment is to be correc
@14,15#.

IV. SENSITIVITY OF THE FLAT TOPPED BEAM
TO REALISTIC SURFACE DISTORTIONS

We want to analyze the impact of mirror imperfections
the profile of the beam. Any advantage obtained by usin
field with flat intensity distribution would be lost if the shap
of the beam were completely changed because of any di
tion in the mirror surfaces. In order to study a realistic si
ation we used the measurements of the surface of a LIG
beam splitter, because that is the flattest mirror we curre
have that satisfies the requirements of the LIGO.2

A map of the deformations was provided by Garilyn
Billingsley of LIGO Laboratories. In this section we repo
and comment on our study of the influence of realistic fig
errors for the mirrors on the interferometer’s perfomance

Although the deformation can be considered realis
Billingsley told us that mirrors can be manufactured mu
more accurately. Hence we have regarded it as the most
simistic case.

We scaled down the data of the distortion and put
manipulated map of deviations from flatness on the top
the external mirror in one Fabry-Pe´rot cavity of the interfer-
ometer.

As we learnt from analyzing misalignment, if only on
cavity is perturbed the signal at the dark port is generated
the higher order modes excited by the distortion. In Fig.
the power at the dark port versus the size of the imper
tions is shown. The scale factor in front of the deformation
eP@0,1#. The best fit for the numerical data is the followin
curve:

PDP

P0
50.0297e210.0064e4.

2For an exhaustive overview of metrology procedures, see@16#.

FIG. 17. We have introduced one realistic mirror in the interf
ometer. The imperfections have been scaled down by the fa
shown on the horizontal axis and the corresponding power at
dark port is reported on the vertical axis. If all the mirrors a
affected by a similar deformation the power which is lost throu
the excitation of higher order modes is four times the values sh
in this graph.
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With a view to restricting our analysis to a regime of linea
ity, we have decided to choosee50.2. For larger valuese
>0.4 the influence of the tilt on the interferometer’s perfo
mance computed by analysis of the data obtained by the
model and the predictions based on the perturbative mo
O’Shaughnessy has implemented are in disagreement
though several modes have been used, while the agree
is excellent for the valuee50.2, which Billingsley believes
should be achievable by mirror manufacturers, at least in
innermost 10 cm~the area that is most important for its in
fluence on the impinging field!, by coating.

We sete50.2 and for this value 99% of the power at th
dark port is proportional to;e2. The resulting change in the
beam contains a large component of odd modes as is sh
in Fig. 18. We used a procedure similar to the one set up
studying the influence of tilt on the resonating beam, in or
to identify the perturbed cavity mode and express it a
combination of the unperturbed cavity modes. Using a f
malism similar to the one introduced above,

vde f5a0u1aexcuexc

is the field resonating inside the cavity with a perturbed
ternal mirror. It can be expressed as its projection upon
unperturbed flat topped beam plus the remaining exc
component.

Then we can look for the odd contributions. We use t
results obtained by our simulations for misalignment to e
mate the angle error corresponding to the dipolar compon
of the excited field. We expect that adjusting the alignmen
the mirror can reduce the impact of the fabrication imperf
tions. When a significant amount of the dipolar field is min
mized by realigning the mirror, the output power is reduce

PDP

P0
50.3831023,

-
or
e

n

FIG. 18. This is the change in the shape of the resonating be
due to realistic mirrors obtained by overlapping the perfect mir
with the typical deviations we might expect.
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while without the proper adjustment the dark port power
three times larger:

PDP

P0
51.1331023.

This test shows again that the flat topped beam behaves
larly to the much more common Gaussian beams.

If the mirror distortions are not axially symmetric, th
light distribution is slightly off center on the transvers
plane. The control system which measures and compare
intensity of the electric field in two half planes separated
the ŷ and x̂ axes will partly compensate for the perturbati
@17#.

Also, in order to have small variations in the linear regim
the distortion in the central area must be less than 6 nm.
phase change sensed by the electric field,

E E
x21y2<m2

dxdyu* ~x,y!exp@2ikDz~x,y!#u~x,y!,

must be much smaller than the phase difference between
optical modes. When this is not the case the higher or
modes are easily excited and the cavity is no longer supp
ing the flat topped beam. For this reason, any perturba
that contains a tilt effect can greatly affect the shape of
beam, since it couples the fundamental mode with the
excited mode. The angle error will be detected by the con
system, which is aimed to minimize the asymmetry in t
power distribution ofvde f . The difference in the overlap
betweenu andvde f over two half planes is computed throug
a quadrant diode; it is the error signal that is fed back to
perturbed mirror to control its tilt.

We made one more test that also helps in understan
the importance of a smooth profile in the central area;
scaled the realistic deformation down by the factore50.2
only in the central area. On the rim we kept the entire val
We found the result

PDP

P0
53.0231023,

which is three times larger than the value obtained by sca
down the whole realistic deformation and more than
times smaller than the value obtained by using the wh
realistic deformation. In Fig. 19 the data we used sca
down bye50.2 are shown. The modified version is shown
Fig. 20. In the latter, the measured data for the deforma
have been multipled by 0.2 forr<9.6 cm. In the outer re-
gion r>12.2 cm we kept the measured values, and in
tween we linearly interpolated to make the transition smoo

Some crucial issues related to the design
of the recycling cavity

The main source of diffraction loss in LIGO consists
the beam splitter, which faces the circulating field at 45°
we take a beam splitter with the same diameter as the
rors,
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L u
BS5

E E
2x21y2>m2

dxdyuu~x,y!u2

E E dxdyuu~x,y!u2

50.00834

in the clipping approximation.
For such diffraction loss,

FIG. 19. The features of the deformation we have used
shown in this figure, which is obtained by scaling the measu
values bye50.2. The profile of the mirror is changed by;20
230 nm in the outer region. The asymmetry in the central area
an effect equivalent to misalignment; if the mirror is slightly tilte
in order to compensate for that, the power at the dark port is
ticeably decreased. This power is due to the higher order mo
excited in the cavity, whose external mirror is affected by the
formation shown in this map.

FIG. 20. This figure represents the manipulation of the reali
deformation we did by scaling down the data for the central ar
keeping the rim as it is from measurements.
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Pcav

P0

5uCu2
12L u

BS

2

t r
2

~12r e f fA12t r
22Lu!2

3
t1
2

~12A12t1
22LuA12Lu!2

57822,

PRM

P0

5uCu2
t r
2

~12r e f fA12t r
22Lu!2

520.07 at the recycling mirror,

PBP

P0

5uCu2
t r
2r e f f

2

~12r e f fA12t r
22Lu!2

519.15 at the bright port,

where we have defined

r e f f5
12L u

BS

2

2r 11r 2

~12A12t1
22LuA12Lu!2

~6!

and used our resultLu50.000019 as obtained in Sec. III.
we compare the above predictions with the numerical o
come of the simulation,

Pcav

P0
55958,

PRM

P0
515.28,

PBP

P0
514.35,

we find a large discrepancy due to the underestimation
L u

BS.
Therefore we compute the total loss, from which we c

infer how much light is diffracted away through the bea
splitter. In Sec. IIILu was estimated by the same method a
the numerical and analytical results were not exactly
same. Using the numerical estimation forLu , we calculate

P02Pre f l2PDP24PcavLu2PRMLu2PBPLu

P0~PRM1PBP!

5L u
BS50.0162 ~7!

and in fact inserting this value in our analytical formul
gives the correct predictions within 0.8%. We usedt r

5A0.06 because this is the transmittivity of the recycli
mirror required for the next configuration of the LIGO. Th
other values aret15A0.005 andt250, and any reflectivity is
defined such that
10200
t-

of

n

d
e

t1
21r 1

21Lu5t2
21r 2

21Lu5t r
21r r

21Lu

is always applied. Sincer e f f,1 because of the losses in E
~6!, if we compute the power carried by the field that ex
the bright port and goes toward the recycling mirror and
power carried by the field that is going from the recyclin
mirror toward the beam splitter, we find a small differenc

The beam splitter needs to be fabricated larger to red
the diffraction loss, or other means need to be applied.
example, the bulk of the internal test mass mirrors that
the input mirrors of the two arm cavities can be designed
order to make the beam converge toward a closest focus.
thermoelastic noise depends on the intensity of the beam
power circulating in the Fabry-Pe´rot cavities is about 400
times larger than in the recycling cavity. This allows le
strict requirements for the design of the recycling cavity. W
can even afford conical shape mirrors for the internal t
masses, which will further reduce the thermoelastic noise
principle, the recycling cavity can be affected by losses t
are two orders of magnitude larger than in the arm cavit
For example, the diffraction loss~7! must be reduced by a
least one order of magnitude but it does not need to be;Lu .
There are also motivations for allowing the beam not to
flat in the recycling cavity, related to the quasidegenera
that affects the sidebands. They contribute to both the con
and the detection scheme. The sidebands circulate only in
recycling cavity and the higher order modes are easily
cited, because of the small difference between the eigen
ues of the round-trip propagator. We found, for example, t
the sensitivity of the beam to imperfections affecting the m
ror surfaces is one order of magnitude larger in the recyc
cavity than in the Fabry-Pe´rot cavity. This would put tight
requirements on the surface of the mirrors that are com
rable with the accuracy of the data we have used for
typical distortions.

V. SUMMARY AND REMARKS

After thermoelastic noise was found to be the dominat
problem for the advanced LIGO, to reach the sensitiv
level due to the quantum noise limit much study a
reasearch has been done by a collaboration led by Tho
Since the reduction of thermoelastic noise has been show
be significant by using mirrors with a special shape, so
fundamental issues related to the implementation of th
mirrors have been examined by both simulations and ana
cal calculations.

SeveralFORTRAN programs were written for analyzing th
maps of the beam inside the interferometer and at the ex
nal pickup points to study how the field is affected by re
istic perturbations. We processed the results in order to qu
tify the impact of misalignment on the flat topped beam. T
data were compared with the same effect concerning the
vanced LIGO. Our analysis shows that the tilt angle must
controlled ;five times better. The current fluctuations a
;1028 rad with a spectrum decreasing as; f 21.

We also showed that the most important excited contri
tion is dipolar~Fig. 13! so that it can be filtered out by usin
a mode cleaner. Since the excited field has the same
4-12
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metrical asymmetry around the rotation axis of the tilted m
ror, the physical principles and the control system that w
for the Gaussian beams apply to the flat topped beam as
We reviewed the mirrors that support the flat topped be
and studied how deviations from the ideal surface c
modify its shape. In Fig. 17 the power that is transferred
higher order modes and thus exits the dark port depend
the size of the typical deformations of one mirror. If all m
rors are affected by similar uncorrelated distortions, we
pect four times that amount, which means

PDP

P0
P@0.005,0.01#⇒max@Dz~x,y!# P@4 nm,6 nm# ~8!

in the central area.
Furthermore, if the real mirrors are affected by a lar

nonaxially symmetric perturbation the alignment can be c
rected to partially compensate for it. In the specific case
analyzed, we found an impact on the flat topped be
equivalent to a tilt of

u50.013 m rad

of the mirror around the axis at255° in its x̂,ŷ plane. Since
the control system measures the asymmetry of the inten
in two half planes, this correction is feasible.

The requirements in Eq.~8! are imposed by the limits du
to shot noise@18#. The shot noise increases with; APDP.
The sidebands contribute to shot noise even when the in
ferometer is perfect, since they are transmitted through
dark port with almost their total power. If higher order mod
are excited, less power is available in a suitable form
signal detection and the excess power contributes to
noise. We simulated the whole system with the recycl
cavity included, to study the impact of mirror deformatio
on the circulating field.

From the results of this last set of simulations, having
same requirements forPDP /P0 as in Eq. ~8! implies
max@Dz(x,y)#; 1 nm. This constraint is of the same ord
of magnitude as the accuracy of the data that have been
basis for our numerical investigations of the mirror’s defo
mations.

With the current technology, mirrors whose central reg
has a peak-to-valley error of the order of;5 nm are attain-
able according to Billingsley. Every requirement first enta
investigations of its feasibility. Because of its short length
recycling cavity is deeply affected by any distortion in t
mirror profiles. The results of our simulations suggest t
the field need not be flat in the recycling cavity and
matched through a lens to the flat topped beam resonatin
the Fabry-Pe´rot cavity where thermoelastic noise dominate

Several options have been studied although we have
sented here one typical case. Both the size of the reflec
surface and the shape of the mirrors are variables that ca
properly designed to further reduce thermoelastic noise.

When the constraints on the fabrication of large cryst
of sapphire are exhaustively understood the optimal cho
can be selected among many options@6#.
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A quantitive analysis of thermoelastic noise has been d
by O’Shaughnessy, Strigin, and Vyatchanin using a finite
ement model program. Although their results required
phisticated computations, a rough estimation can be d
easily for the reduction of thermoelastic noise~through a flat
topped beam instead of a Gaussian one! that is based on a
comparison between the beam we have chosen to drive
Fabry-Pe´rot cavity ~by optimizing its overlap with the flat
topped beam! and the Gaussian beam characterized by
advanced LIGO baseline design. We find

Sf lattop

SLIGO II
5S w

wG
D 3

.~6 cm/9 cm!350.3

by simply applying the scaling law;w23 for thermoelastic
noise. This estimate is very close to the numerical res
reported in@6# for the specific case we have analyzed in th
paper. This estimation implies that the sensitivity of the a
vanced LIGO with a flat topped beam will improve up to th
limit due to quantum noise. Further reduction can be o
tained by reshaping the bulk of the mirrors@6#.
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APPENDIX A: PERTURBATION THEORY APPLIED
TO EVALUATE THE EFFECTS OF MISALIGNMENTS

First of all let us define the eigenvectors for the opera
that represents a round-trip propagation inside a cavity, w
spherical mirrors whose curvature isR1 andR2,

L̂~r f
W ,r i

W ,0!5E E d2rWe2 ik ur f
W u2/R1

k

2p iL
eik[L1 ur f

W2rWu2/2L]

3e2 ik urWu2/R2
k

2p iL
eik[L1 urW2r i

W u2/2L] ,
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whererW i and rW f are the initial and final transverse position
Since the above operator is not Hermitian, there is a se
left and a set of right eigenvectors. We can use the biortho
nality between these two sets with a view to the applicat
of the techniques of perturbation theory to problems c
nected with deformations which induce a variation in t
circulating field:

~ L̂1L̂pert!S uun&1(
n8

Cn8
(n)uun8& D

5~ln1Dln!S uun&1(
n8

Cn8
(n)uun8& D

^ũnuL̂pertuun&5Dln ,

^ũn8uL̂pertuun&5~ln2ln8!Cn8
(n) ,

where we have defined

L̂uun&5lnuun&, ^ũnuL̂5^ũnuln

^ũnuum&5dnm .

We can apply the above formalism to some typical pertur
tion. For example, when a variation of the radius of curv
ture of the back mirror occurs, the surface of the mirror
displaced by the amountDz(rW,L), giving the result

Cn8
(n)

5
ln8

1/2ln
1/2

ln2ln8
E E d2rWũn8

* ~rW,L !@e2ikDz(rW,L)21#un~rW,L !,

C20
(00)5C02

(00)5
e3iheih

e2ih2e6ih F2
ikw~L !2

2A2S 1

Rpert
2

1

R2
D G .

For a rotationu of the back mirror around theŷ axis, the
above formalism gives the correction

C10
(00)5

e2iheih

e2ih2e4ih
@2 ikw~L !u#

with the following eigenvectors:

un5usq~x,y,z!

5A 2

pw2~z!
expF iFsq~z!2~x21y2!

3S 1

w2~z!
1

ik

2R~z! D GA 1

2s1qs!q!

3HsSA 2x

w~z!
DHqSA 2y

w~z!
D ~A1!

for the unperturbed state.
The corresponding eigenvalues are
10200
.
of
o-
n
-

-
-
s

exp$2i @Fsq~L !2Fsq~0!#%5expF2ikL22i ~s1q11!

3arccosAS 12
L

R1
D S 12

L

R2
D G

~A2!

for a round-trip propagation. Our reference for the expans
is Eq. ~A1! defined atz50. This choice implies that the
eigenvectors of the perturbed cavity have the same w
front as the unperturbed eigenvectors atz50 if the input
mirror is not distorted.

When the input mirror is tilted byu8 around theŷ axis,
we have

C10
(00)5

e4ih

e2ih2e4ih
@2 ikw~0!u8#,

where we have used

ei (s1q)h5exp$@ i ~Fsq~L !2Fsq~0!!

2 i ~F00~L !2F00~0!!#% ~A3!

according to Eq.~A2!. As we discussed in Sec. III, when th
cavity is driven by

u005S 1

0D 5S 1

2 ikw~0!u8

12e2ih
D 1

ikw~0!u8

12e2ih S 2 ikw~0!u8

12e22ih

1
D

5v11
ikw~0!u8

12e2ih
v2, ~A4!

the reflected field is

v1* 2
ikw~0!u8

12e2ih
v2* 5S 1

ikw~0!u8

12e22ih
D

2
ikw~0!u8

12e2ih S ikw~0!u8

12e2ih

1
D

5S 1

kw~0!u8

tanh
D ~A5!

in a 232 model based on$u00,u10%. There are a few obser
vations worth making. First, we can set a limit on the pert
bation because

kw~0!u8!sinh,

in complete analogy with perturbation theory applied
quantum mechanics. The eigenvectorsv1 andv2 in Eq. ~A4!
are not real. This is due to the new wave front that m
4-14
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match the tilted mirror atz50. In Eq.~A5! the cavity eigen-
vectors are reflected as conjugate. This comes from the p
erties ofL̂, which is symmetric. The reflection from the a
tireflective surface of the input mirror is represented byM̂

5eikur uW2/R1. If there is no loss,

L̂* ~M̂ uun&)5M̂ ~ L̂21uun&)5ln
21M̂ uun& ~A6!

implying M̂ uun&}uun* &. This applies to the perturbed shap

of the input mirror’s surface as well. The propertyL̂†L̂51
implies that energy is conserved and conjugation upon
flection reveals that there is time-reversal symmetry. In
~A6! ln

215ln* . We also assumed thatv1 was the resonating
mode reflected by11 and v2 nonresonating. The case o
both v1 and v2 resonating can occur only in a degenera
cavity. Bothv1 andv2 can be nonresonating. In this case, t
reflected beam is

2v1* 2
ikw~0!u8

12e2ih
v2* 52S 1

ikw~0!u8

12e22ih
D

2
ikw~0!u8

12e2ih S ikw~0!u8

12e2ih

1
D

52S 1

ikw~0!u8
D ~A7!

which represents the vector2M̂u00. The minus sign in Eq.
~A7! is due to the convention that assigns a positive refl
tivity to the reflective side of the mirrors and a negative o
to the antireflective side. We can use Eqs.~A5! and~A7! and
take the beat between them. The wave numberk in Eq. ~A7!
must be sligthly different from the one in Eq.~A5!.

When we place a photodetector in front of the input m
ror, we detect a signal proportional to the subtraction of
light impinging on the two half planesx.0 andx,0. When
both the front and the back mirrors are tilted, the signal

S}
kw~0!u8cos~h1h̄ !1kw~L !u cos~ h̄ !

sin~h!
~A8!

is proportional to the two angle errors. The phaseh̄ in Eq.
~A8! depends on the distance between the input mirror
the photodetector and it corresponds to the phase shift
quired in propagation by the different modes, as in Eq.~A3!.

APPENDIX B: THE FAST FOURIER TRANSFORM
MODEL USED TO SIMULATE THE SYSTEM

One of the tools that has been used in the LIGO for sim
lating the interferometer is aFORTRAN implementation of a
fast Fourier transform model. The first model was design
10200
p-

e-
.

-
e

-
e

d
c-

-

d

by Hello and Vinet to simulate the system when realis
mirrors are included; it was aimed to investigate the imp
of distortions on the optical path on the beam, through
flection upon the mirror’s surface, and through transmiss
through their bulk. Since the propagation between the m
rors is calculated by using the paraxial approximation,
field is transformed in the frequency domain to make
propagate, by multiplication with the operator represent
the Fourier transform of the propagator. The field is tra
formed back to the space domain after any propagat
since its interaction with the mirrors is evaluated in the sp
domain. Each pixel of the grid is multiplied by a phase del
due to the profile of the mirror along the direction of th
pixel. In other words, each pixel of the electromagnetic fie
couples with the pixel of the mirror map that is right in fro
of it. This interaction assumes that the light rays do not
terfere with each other, when the electromagnetic field in
acts with the mirror; the optical path involved in such
interaction is so small that any diffractive coupling betwe
the light rays is neglected.

This code has been widely used in VIRGO and it is p
of the numerical tools making up the global simulator of t
gravitational wave antenna. Because of its flexibility it h
been adapted to simulate the LIGO configuration. A ve
important feature of this model is that it is a general purpo
program, which can be used for studying how power bui
up inside each cavity of the system, for any kind of mirr
For example, it has been used for setting requirements
tolerances for the initial LIGO optical components and
showed itself an ideal tool for a quantitative analysis of t
effects of thermal lensing. When stationarity is achieved
grids representing the fields are obtained. These data h
been manipulated for obtaining information on how t
beam becomes distorted because of misalignment or im
fections in the reflecting surfaces.

These grids are represented by 1283128 maps. They con-
tain the imaginary and real parts of the electromagnetic fie
picked up at many locations inside and outside the inter
ometer@20#. The parameters we used in the simulations
the ones currently assumed as standard for the adva
LIGO. We kept fixed the reflectivities of each mirror and th
lengths of the cavities according to the advanced LIGO
sign. When spherical mirrors are implemented,

h~x,y!5Ax21y2/~2R!

stands for the height of the mirror withR the radius of cur-
vature. The grid for any arbitrary shape can be introduc
The ones that have been computed to be implemented in
FFT simulations are designed to match the phase profile
the flat topped beam. The data representing the figure er
of the mirror height are added to the unperturbed profile.
example, when one of the mirrors is tilted byu around the
axis directed along the azimuthal anglef, the perturbation is

dh~x,y!5u@xsinf2ycosf#

for a very small misalignment.
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