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Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass
in supersymmetry
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I present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersym-
metric extensions of the standard model, using a mass-independent renormalization scheme. The Higgs scalar
self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the
complete two-loop effective potential in Landau gauge. I discuss the dependence of this approximation on the
choice of renormalization scale, and note the existence of particularly poor choices, which fortunately can be
easily identified and avoided. For typical input parameters, the variation in the calculated Higgs boson mass
over a wide range of renormalization scales is found to be of the order of a few hundred MeV or less, and is
significantly improved over previous approximations.
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Low-energy supersymmetry@1# predicts the existence of
light Higgs scalar bosonh0, which should be accessible t
discovery and study at the Fermilab Tevatron and CE
Large Hadron Collider experiments. The mass ofh0 is noto-
riously sensitive to radiative corrections. In fact, the tre
level prediction is thath0 should be lighter than theZ0 boson
in the minimal supersymmetric standard model~MSSM!. It
is well known that including one-loop corrections shows th
h0 can be heavier than present experimental bounds, but
leaves a large theoretical uncertainty, even assuming pe
knowledge of all input parameters. Ultimately, this sensit
ity should become a blessing rather than a curse, sinc
means that the mass ofh0 can be a precision observab
useful for testing particular supersymmetric models. This
motivated many previous efforts~for example,@2–8# and
references therein! to calculate the higher-order correction
in various forms.

In this paper, I will describe the calculation of the po
mass ofh0 using a method which is exact at the one-lo
level, and includes all two-loop effects within the effectiv
potential approximation. A similar strategy has been e
ployed in Refs.@3,8#, but neglecting two-loop effects involv
ing electroweak couplings and lepton and slepton inter
tions. The complete two-loop effective potential has recen
been given in Refs.@9,10#. There, I showed that including th
previously neglected effects greatly reduces
renormalization-scale dependence of the minimization c
ditions for the Higgs vacuum expectation valuesvu andvd .
Here I will show that there is a similar beneficial effect o
the calculation of the mass ofh0. Throughout, I will use the
notations and conventions of Ref.@10#.

The pole mass ofh0 can be calculated as follows. For
given choice of Lagrangian parameters specified at so
strategically chosen renormalization scaleQ in the super-
symmetric and mass-independent dimensional reduc
(DR8) scheme@11,12#, one computes the effective potenti
in Landau gauge in a loop expansion:

Veff~vu ,vd!5V(0)1
1

16p2
V(1)1

1

~16p2!2
V(2)1•••. ~1!
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One then requires thatVeff is minimized @16# to obtainvu
andvd . These areQ-dependent quantities, just like the La
grangian parameters, and they satisfy renormalization gr
~RG! equations, which were found to two-loop order in Re
@10#. The propagators and interactions of all of the fields
then obtained by diagonalizing the squared mass matri
with the Higgs fields shifted byvu andvd , in the tree-level
Lagrangian. This procedure ensures that the sum of all
pole diagrams~including tree-level ones! vanishes through
two-loop order.

Then, by summing one-particle-irreducible two-poi
Feynman diagrams, one obtains the neutral Higgs self-en
matrix Pf

i
0f

j
0(p2) at momentump. This is a 232 matrix

~with f i
05h0,H0) if CP violation is negligible, and a 4

34 matrix ~with f i
05h0,H0,G0,A0) if there is CP viola-

tion. For simplicity, I will assume noCP violation in the
following. The gauge-invariant complex pole masssh0 is
then defined to be the smaller eigenvalue of

S mh0
2

1Ph0h0~p2! Ph0H0~p2!

PH0h0~p2! mH0
2

1PH0H0~p2!
D , ~2!

with p25sh0[Mh0
2

2 iM h0Gh0. The quantitiesmh0
2 andmH0

2

are the tree-level squared masses~without tadpole contribu-
tions included! as defined in Sec. II of Ref.@10#. Once the
self-energy functions are known,sh0 can be found by itera-
tion. In the following, I will quoteMh0.

In practice, the self-energies are calculated in a loop
pansion

P~p2!5
1

16p2
P (1)~p2!1

1

~16p2!2
P (2)~p2!1•••. ~3!

The one-loop self-energy functionsP (1)(p2) are easily
found, but so far a complete expression forP (2)(p2) is lack-
ing. However, given then-loop contribution to the effective
potential, then-loop self-energies atp250 are
©2003 The American Physical Society12-1
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S Ph0h0
(n)

~0! Ph0H0
(n)

~0!

PH0h0
(n)

~0! PH0H0
(n)

~0!
D 5

1

2S ca 2sa

sa ca
D S ]2V(n)/]vu

2 ]2V(n)/]vu]vd

]2V(n)/]vu]vd ]2V(n)/]vd
2 D S ca sa

2sa ca
D . ~4!

Now, for smallp2, one may reasonably approximateP (n)(p2)'P (n)(0). In principle, the resulting approximated pole ma
suffers from two related diseases; it is not gauge invariant, and as we will see it has singularities~or instabilities! if evaluated
at ~or near! a scaleQ at which a tree-level scalar squared mass in a loop happens to vanish. However, when calculating
mass, these errors are controlled by the smallness ofMh0

2 compared to the squared masses of the superpartners and
Higgs scalar bosons in loops.

The one-loop self-energies in Landau gauge can be written in terms of functions:

SSS~ms1

2 ,ms2

2 !52B0~ms1

2 ,ms2

2 !, ~5!

SFF~mf 1

2 ,mf 2

2 !5~mf 1

2 1mf 2

2 2p2!B0~mf 1

2 ,mf 2

2 !2A0~mf 1

2 !2A0~mf 2

2 !, ~6!

SFF~mf 1

2 ,mf 2

2 !52B0~mf 1

2 ,mf 2

2 !, ~7!

SS~ms
2!5A0~ms

2!, ~8!

SV~mv
2!53A0~mv

2!, ~9!

SSV~ms
2 ,mv

2!5~2ms
22mv

212p2!B0~ms
2 ,mv

2!1~ms
22p2!2@B0~ms

2 ,0!2B0~ms
2 ,mv

2!#/mv
21A0~ms

2!

1~ms
22mv

22p2!A0~mv
2!/mv

2 , ~10!

SVV~mv
2 ,mv

2!5A0~mv
2!/2mv

222B0~mv
2 ,mv

2!1@2~mv
22p2!2B0~mv

2 ,0!2~p2!2B0~0,0!

2~2mv
22p2!2B0~mv

2 ,mv
2!#/4~mv

2!2, ~11!

where

A0~m2!5m2@ ln~m2!21# ~12!

B0~m1
2 ,m2

2!52E
0

1

dx ln@xm1
21~12x!m2

22x~12x!p2# ~13!

with ln(X)[ln(X/Q22ie) for real X, and defined for complexX by Taylor expansion. Then one has

Pf
i
0f

j
0

(1)
5(

f̃ , f̃ 8
nf̃lf

i
0 f̃ f̃ 8* lf

j
0 f̃ 8 f̃* SSS~ f̃ , f̃ 8!1

1

2 (
k,l 51

4

lf
i
0f

k
0f

l
0lf

j
0f

k
0f

l
0SSS~fk

0 ,f l
0!1 (

k,l 51

2

lf
i
0f

k
1f

l
2lf

j
0f

l
1f

k
2SSS~fk

1 ,f l
1!

13yt
2$Re@kuf

i
0kuf

j
0* #SFF~ t,t !1Re@kuf

i
0kuf

j
0#mt

2SFF~ t,t !%13yb
2$Re@kdf

i
0kdf

j
0* #SFF~b,b!

1Re@kdf
i
0kdf

j
0#mb

2SFF~b,b!%1yt
2$Re@kdf

i
0kdf

j
0* #SFF~t,t!1Re@kdf

i
0kdf

j
0#mt

2SFF~t,t!%

12 (
k,l 51

2

$Re@YC̃
k
1C̃

l
2f

i
0YC̃

k
1C̃

l
2f

j
0* #SFF~C̃k ,C̃l !1Re@YC̃

k
1C̃

l
2f

i
0YC̃

l
1C̃

k
2f

j
0#mC̃k

mC̃l
SFF~C̃k ,C̃l !%

1 (
k,l 51

4

$Re@YÑkÑlf i
0YÑkÑlf j

0* #SFF~Ñk ,Ñl !1Re@YÑkÑlf i
0YÑkÑlf j

0#mÑk
mÑl

SFF~Ñk ,Ñl !%13yt
2Re@kuf

i
0kuf

j
0* #(

k51

2

SS~ t̃ k!

13yb
2Re@kdf

i
0kdf

j
0* #(

k51

2

SS~ b̃k!1yt
2Re@kdf

i
0kdf

j
0* #(

k51

2

SS~ t̃k!1
1

4 (
k51

2

Re$g2@d i j 12~kdf
i
0kuf

j
01kuf

i
0kdf

j
0!kdf

k
1kuf

k
1#

1g82~kdf
i
0kdf

j
0* 2kuf

i
0kuf

j
0* !~kdf

k
1

2
2kuf

k
1

2
!%SS~fk

1!1
g21g82

8 (
k51

4

Re@kdf
i
0kdf

j
0kdf

k
0
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1kuf
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0kuf
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0kuf
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0
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j
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0kuf
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0* 1kdf

i
0* kuf
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0!kdf

k
0kuf

k
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0* ukdf
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0* ukuf
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Re@kdf

i
0kdf

j
0* 2kuf

i
0kuf

j
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0kdf

k
0* 2kuf
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0kuf

k
0* #Im@kdf

j
0kdf

k
0* 2kuf
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0kuf

k
0* #SSV~fk

0 ,Z!1
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k51

2

Re@~kdf
i
0kdf

k
12kuf

i
0* kuf

k
1!
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j
0* kdf

k
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k
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The name of a particle is used to denote its squared m
when appearing as an argument of a loop function. All of
masses, couplings, and mixing parameters appearing her
defined explicitly in Sec. II of Ref.@10#, except

lf
i
0f

j
0f

k
05~g21g82!vd$Re@kdf

i
0kdf

j
0kdf

k
0* 1kdf

i
0kdf

j
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0
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i
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0#%/2A2. ~15!

The corresponding Feynman gauge formulas are given
Refs. @13,14#, but we need the Landau gauge results to
consistent with the calculation ofVeff andvu ,vd .

The calculation now proceeds by using the abo
P (1)(p2) and, as an approximation to the actual two-lo
self-energy, the functionsP (2)(0). The latter are obtained
from Eq. ~4! by numerically differentiating the effective po
tential V(2) appearing in Ref.@10# using a finite difference
method, sampling nearby points in (vu ,vd) space.~One
could also differentiateV(2) analytically, but the resulting
expressions are very complicated and not at all significa
more accurate.!

Numerical results as a function of the choice ofQ are
shown in Fig. 1 for the sample test model defined in Sec.
of Ref. @10#. This model is defined by dimensional reductio
(DR8) input parameters at a scaleQ05640 GeV:

g850.36, g50.65, g351.06,

yt50.90, yb50.13, yt50.10, ~16!

and, in GeV,
09501
ss
e
are

in
e

e

ly

I

M15150, M25280, M35800,

at52600, ab52150, at5240

and, in GeV2,

mQ1,2

2 5~780!2, mu1,2

2 5~740!2, md1,2

2 5~735!2,

mL1,2

2 5~280!2, me1,2

2 5~200!2,

mQ3

2 5~700!2, mu3

2 5~580!2, md3

2 5~725!2,

mL3

2 5~270!2, me3

2 5~195!2,

mHu

2 52~500!2, mHd

2 5~270!2. ~17!

With

m5504.18112 GeV, b5~184.22026 GeV!2, ~18!

FIG. 1. The real partMh0 of the pole mass of the lightest Higg
boson of supersymmetry for the sample test model of Ref.@10#, as
a function of the choice of renormalization scaleQ. The solid line is
the result of the calculation presented here. The dashed line sh
the result if all effects involving electroweak couplings and lept
and slepton interactions are removed from the two-loop contri
tion, corresponding to previous approximations.
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this leads to a minimum at

vu~Q0!5172 GeV; vd~Q0!517.2 GeV. ~19!

Then the parameters of the model~including vu ,vd) are run
to any other scaleQ using the two-loop RG equations o
Refs.@15,10#. There, the parametersm andb are adjusted to
ensure thatVeff is minimized; as shown in Ref.@10# this
readjustment is very small when the full two-loop effecti
potential is used. Then the pole mass is found as descr
above to determineMh0, which is graphed in Fig. 1 as th
solid line. Ideally, this would be independent ofQ, so the fact
that it does not give an indication of the effects of our a
proximations.

A striking feature of the graph is the presence of instab
ties nearQ5463 GeV~where the tree-level squared mass
h0 passes through 0!, andQ5568 GeV~where the Landau-
gauge tree-level squared masses of the Nambu-Golds
bosonsG0,G6 pass through 0! @17#. The point is that for
small tree-level scalar squared massesmf

2 , the effective po-
tential scales like

V(2)5(
f

mf
2 @c1

fln~mf
2 !1c2

fln2~mf
2 !#1••• ~20!

wherec1,2
f are constants asmf

2 →0. Thus, whileVeff is well
defined and continuous in that limit, derivatives of it are n
~The Nambu-Goldstone bosons havec2

f50, so the corre-
sponding singularities are less severe.! These and nearby val
ues ofQ simply represent bad choices, where the appro
mation being made for the pole mass is invalidated by la
logarithms. If it were available, the use ofP (2)(p25sh0),
rather than the approximationP (2)(0), would eliminate the
instability for choices of renormalization scale at which t
Goldstone boson masses happen to vanish.@This is easily
checked for the analogous case at one-loop order, wher
placingP (1)(p2) by P (1)(0) leads to similar but milder nu
merical instabilities, because ofV(1)5(f(mf

2 )2ln(mf
2)/4

1••• for mf
2 →0.# Therefore, one should simply be caref

to avoid such choices for the renormalization scale@18#
For largerQ, the result forMh0 is nicely stable. A likely

good range of scale choices is 600 GeV,Q,700 GeV.
This range includes the geometric mean of the top-squ
masses, a traditional guess for the optimal scale for eval
ing Mh0. It also includes the scale at whichMh0 is equal to
the tree-level valuemh0, and the scale at which the two-loo
corrections to the Goldstone boson masses vanish. In
09501
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-
f
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i-
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re-

rk
t-

is

range, the value ofMh0 calculated by the method describe
here varies by less than 100 MeV. Even for the larger ra
600 GeV,Q,900 GeV, the variation ofMh0 is about 320
MeV. For reference, the precise result of the calculation
Q05640 GeV isMh05115.628 GeV in this model.

For comparison, also shown in Fig. 1 as the dashed lin
the result which should correspond to previous approxim
tions @3,8# in which electroweak, tau, stau, and tau sneutr
interactions (g,g8,yt ,at) are neglected in the two-loop pa
@19#. Because the terms implicated in Eq.~20! are simply not
included in this approximation, the instabilities of the fu
calculation at special values ofQ do not appear. The more
important comparison occurs at the better choice of largeQ
as in the previous paragraph. There, the dashed-line esti
is significantly larger, and shows a stronger scale dep
dence, than the calculation presented here with the comp
V(2).

I have checked that similar results are obtained in a w
variety of MSSM models with dimensional parameters at
below the TeV scale, including models with larger a
smaller tanb and different superpartner mass hierarchies a
mixing angles. I find that the calculatedMh0 is quite gener-
ally stable to within a few hundred MeV or less over a wi
range which includes the geometric mean of the top squ
masses and excludes any scales where tree-level s
squared masses vanish. However, the scale-dependen
Mh0 should not be confused with the actual theoretical er
which is probably somewhat larger. This is because so
fraction of the neglected contributions is going to be sc
independent.

To improve the situation still further, one must calcula
the full two-loop self-energiesP (2)(p2). The present work
has shown that the effects of the electroweak couplings
this are certainly not negligible compared to our event
ability to measureMh0 at colliders. The method outlined her
will also be a useful check on a future calculation
P (2)(p2) in Landau gauge, since it will have to coincide wi
the p2→0 limit.

The viability of any given model scenario can be tested
conducting global fits ofMh0 and many other observabl
masses, cross sections, and decay rates to a set of unde
model parameters. If supersymmetry is part of our futu
then the determination ofMh0 will play an important role in
testing the whole structure of the softly broken supersy
metric Lagrangian.
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