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| present a method for accurately calculating the pole mass of the lightest Higgs scalar boson in supersym-
metric extensions of the standard model, using a mass-independent renormalization scheme. The Higgs scalar
self-energies are approximated by supplementing the exact one-loop results with the second derivatives of the
complete two-loop effective potential in Landau gauge. | discuss the dependence of this approximation on the
choice of renormalization scale, and note the existence of particularly poor choices, which fortunately can be
easily identified and avoided. For typical input parameters, the variation in the calculated Higgs boson mass
over a wide range of renormalization scales is found to be of the order of a few hundred MeV or less, and is
significantly improved over previous approximations.
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Low-energy supersymmetft] predicts the existence of a One then requires that.s is minimized[16] to obtainv,,

light Higgs scalar bosoh®, which should be accessible to andv,. These are)-dependent quantities, just like the La-
discovery and study at the Fermilab Tevatron and CERNyrangian parameters, and they satisfy renormalization group
Large Hadron Collider experiments. The mas$ibis noto-  (RG) equations, which were found to two-loop order in Ref.
riously sensitive to radiative corrections. In fact, the tree-[10]. The propagators and interactions of all of the fields are
level prediction is thah® should be lighter than thg° boson  then obtained by diagonalizing the squared mass matrices,
in the minimal supersymmetric standard mo@dSSM). It \ith the Higgs fields shifted by, anduvg, in the tree-level

is well known that including one-loop corrections shows thafy 54rangian. This procedure ensures that the sum of all tad-

0 . .
h™ can be heavier than present experimental bounds, but stlisje giagramgiincluding tree-level onésvanishes through
leaves a large theoretical uncertainty, even assuming perfe o-loop order.

knowledge of all input parameters. Ultimately, this sensitiv- Then, by summing one-particle-irreducible two-point

'rtgl sEoutlg :)?ﬁomn? a b(L?PSSIng Lather trha? iancu'se'rj'nbﬁe ﬁeynman diagrams, one obtains the neutral Higgs self-energy
eans that the mass can be a precision observable gnatrix H¢,_o¢o(p2) at momentump. This is a 2x2 matrix

useful for testing particular supersymmetric models. This ha

motivated many previous effortor example,[2—8] and ~ (With ¢?=h°,H°) if CP violation is negligible, and a 4

references therejrto calculate the higher-order corrections X4 matrix (with ¢?=h° H? G A%) if there is CP viola-

in various forms. tion. For simplicity, | will assume ndCP violation in the
In this paper, | will describe the calculation of the pole following. The gauge-invariant complex pole masg is

mass ofh® using a method which is exact at the one-loopthen defined to be the smaller eigenvalue of

level, and includes all two-loop effects within the effective

potential approximation. A similar strategy has been em- m§0+1‘[h0ho(p2) 1 on0(p?)
ployed in Refs[3,8], but neglecting two-loop effects involv- 5 ) o | (2)
ing electroweak couplings and lepton and slepton interac- Hyono(p?) Mo+ IoH0(p?)

tions. The complete two-loop effective potential has recently

been given in Ref§9,10]. There, | showed that including the with pZZShozmﬁo_iM wolho. The quamitiegmﬁo and mﬁo
previously neglected effects greatly reduces theyre the tree-level squared masgeithout tadpole contribu-
renormalization-scale dependence of the minimization contons included as defined in Sec. Il of Ref10]. Once the

ditions for the Higgs vacuum expectation valugsandvq.  self-energy functions are knows,oe can be found by itera-
Here | will show that there is a similar beneficial effect ontjon |n the following, I will quoteM o.

the calculation of the mass &f. Throughout, | will use the In practice, the self-energies are calculated in a loop ex-
notations and conventions of R¢L0]. pansion

The pole mass of® can be calculated as follows. For a
given choice of Lagrangian parameters specified at some

strategicgilly chosen rer_wormalization sp@ein_the super- T(p?)= 1 W(p?)+ 1 n@(p2)+-... (3)
symmetric and mass-independent dimensional reduction 1642 (1672)?
(DR’) schemd 11,17, one computes the effective potential
in Landau gauge in a loop expansion: The one-loop self-energy functionEl(Y(p?) are easily
1 1 found, but so far a complete expressionfbﬁz)(pz) is lack-
V(v ,ud)=V(°)+ v 4 V@t (1) ing. H(_Jwever, given tha-loop _contr|but|on to the effective
1672 (1672)2 potential, then-loop self-energies g°=0 are
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Now, for smallp?, one may reasonably approximdi™ (p?)~II1("(0). In principle, the resulting approximated pole mass
suffers from two related diseases; it is not gauge invariant, and as we will see it has singdlaritissabilities if evaluated
at (or neay a scaleQ at which a tree-level scalar squared mass in a loop happens to vanish. However, when calculating the pole
mass, these errors are controlled by the smallnedd |?@foompared to the squared masses of the superpartners and heavy
Higgs scalar bosons in loops.

The one-loop self-energies in Landau gauge can be written in terms of functions:

Ssdmz ,mZ )= —Bo(mZ ,m3), (5)
Ser(mi,m? )= (m7 +mi —p?)Bo(m7 ,m7 ) —Ao(mF ) = Ag(m?)), ()
Ser(mf ,mf ) =2Bo(mf ,m ), )
So(md) =Ag(m), ®)
Su(MZ) =3Ag(m), ©)

Ssv(mZ,m?%) = (2mi—mZ+2p?)By(mZ,m?) + (mZ—p?)?[Bo(m,0) — Bo(mZ ,m2) J/mZ+ Ag(m?)
+(m2—mZ=p?)Ag(m?)/m?, (10)

Sy(m2,m?) = Ag(m?)/2m?— 2B(mZ ,m?) + [ 2(m2— p?)?By(m?2,0) — (p?)?By(0,0)

—(2m3—p?)®Bo(m3,mZ)1/4(m?)?, (1D)

where
Ag(m?)=m?[In(m?) 1] (12
Bo(rf )= — [ xinperr+ (1-x0mg—x(1-x)p? 13

with E(X)Eln(X/Qz—ie) for real X, and defined for compleX by Taylor expansion. Then one has

4
~ o~ 1
H§3¢Q:Z, N g7 N g7 e Sed T )+ 5 2: N 00200 040405 B7 &) + 2 Moo oMo 0 Ssd b b1)
+3y; {Ra:ku¢0k ¢0]SFF (t t)+Re[ku¢°ku¢°]mt5FF(t t)}+3Yb{R€[kd¢°k ¢0]SFF(b b)

+Re kdd;iokdqs?]mbsﬁ(b-b)} +y%Re kd¢i0kd¢10]3|:|:( 7,7)+ RG[kdqsiOkw?]mTSF_F( 7,7)}
2
2,2 {REYEE g0Y5 e 0 Ser(Cio OO RAYE o0 golme, me, See(Ci T}

4
+ 2 ARAYF YRR, 50)See (Ric N+ REL YR 60 Y i, M Ser (N R -+ 3yE R ok o] 2 Z Sq(t)

2 2 2
~ ~ 1
+3yaRe kayrkga0l 2 So(Bi)+yIRekagokiyol 2 Ss(70+ 7 2 REGT 8+ 2(kagokugotkugokag?) kg Kugy ]

2’4

g 2 Re[kd¢okd¢ok ¢o+ku¢oku¢ok

+g (kd¢0kd¢0 ku¢0ku¢0)(kd¢ u¢"(*‘)}SS(¢|:r)+

095012-2



COMPLETE TWO-LOOP EFFECTIVE POTENTIA. .. PHYSICAL REVIEW D 67, 095012 (2003
* * * * *
(ksz)Okd(j)O+ kd¢0ku¢0) ku¢>0kd¢>0 (ku¢?kd¢?+ kd¢|0kud7?) kd¢(k)ku¢g+ 3kd¢|0kd¢?| kd¢E|2+ 3ku¢?ku¢?|ku¢g|2
1 , -
— 8;1Ss( )+ ERe[kd¢9k§¢?— ku¢?k3¢?]z nf(xq9°—x;9' %) Se(f) + ;[ (g°+9'?) Su(Z) +29°S\ (W) ]/4
f

9 g

2 2
g
+ E Im[kd¢0kd¢o ku¢?k:¢g]|m[kd¢?kz¢g— ku(f;?k:q;(k)]ssv( be.,2)+ > kgl Re[ (KggoKag, — k:¢,i0ku¢;)

X(k3¢?kd¢; - ku¢?ku¢k*)]55v( by W)+ Rd:vuku¢?+ vdkquio]Rq:UukUgb?_'— Udkd¢?][(92+ 9'9)?Sy(Z,2)

+2g*Sy (W, W) /4. (14
|
The name of a particle is used to denote its squared mass M,;=150, M,=280, M;=800,
when appearing as an argument of a loop function. All of the
masses, couplings, and mixing parameters appearing here are a,=—600, a,=-—150, a,=-—40

defined explicitly in Sec. Il of Refl10], except
and, in GeV,
—(n2 12 * *
Mopapap= (074 8w al RelKagpkaskago Kagpagkosg md, =(780°, mZ =(7402, m3 =(735>
Q1. L P vody o ’

* *
Fhagphagfhasg] = ReKagf IR Kol m? =(2802, mZ =(200?
Lio ! €12 '

—Re[Kq 0 RE Ky 40k
HagpIRE K] my,=(700%  mj =(580% m§ =(7257

— R kg 0]RE ky40k™ o]}2\24 (u—d),
G[ dQSk] q u<bi qu?]} \/_ ( — ) m53=(270)2, m§3=(195)2'

A2 * *
N0, o, =197 ([ akygot oKy golKag Kugy +[vaKug? i, =~ (5002, m? = (270> (17)
+Uukd¢io]ku¢j+kd¢k++ 5ijq—Udkd¢i°+Uuku¢io]) With
12
+ 9" Kag; Kag; —KugKug) IRGVKag? ©=504.18112 GeV, b=(184.22026 Ge)?, (18)

— o Kug0]}2V2. (15
The corresponding Feynman gauge formulas are given ir F
Refs.[13,14], but we need the Landau gauge results to be
consistent with the calculation &fy andv,vyg. C
The calculation now proceeds by using the aboveg 116k
M(p?) and, as an approximation to the actual two-loop = [
self-energy, the function¥I(®(0). The latter are obtained
from Eq. (4) by numerically differentiating the effective po-
tential V(?) appearing in Ref[10] using a finite difference
method, sampling nearby points i (,vy) space.(One
could also differentiate/(®) analytically, but the resulting
expressions are very complicated and not at all significantly
more accuratg. : ]
Numerical results as a function of the choice @fare P 5 s EETT PERSUCPESE PF DONTEITRTY PE e iy o oo :

114F

shown in Fig. 1 for the sample test model defined in Sec. VI 300 Relfé)r?nahzauggoscaleQ7[0§eV] 800 900
of Ref.[10]. This model is defined by dimensional reduction
(ﬁ') input parameters at a scal® =640 GeV: FIG. 1. The real parM o of the pole mass of the lightest Higgs
boson of supersymmetry for the sample test model of R&€f, as
g’'=0.36, g=0.65, g;=1.06, a function of the choice of renormalization scgeThe solid line is
the result of the calculation presented here. The dashed line shows
y=0.90, y,=0.13, y,=0.10, (16) the result if all effects involving electroweak couplings and lepton
and slepton interactions are removed from the two-loop contribu-
and, in GeV, tion, corresponding to previous approximations.
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this leads to a minimum at range, the value oo calculated by the method described
here varies by less than 100 MeV. Even for the larger range
vu(Qo)=172 GeV; v4(Qp)=17.2 GeV. (19 600 GeV<Q<900 GeV, the variation oMo is about 320

. , MeV. For reference, the precise result of the calculation at
Then the parameters of the modgicludingv,,v4) are run Qo=640 GeV isMo=115.628 GeV in this model.

to any other scal® using the two-loop RG equations of "gor comparison, also shown in Fig. 1 as the dashed line is
Refs.[15,10. There, the parameteys andb are adjusted to  the result which should correspond to previous approxima-
ensure thateq is minimized; as shown in Ref10] this  tions[3,8] in which electroweak, tau, stau, and tau sneutrino
readjustment is very small when the full two-loop effective interactions 0.9'.y,.a,) are neglected in the two-loop part
potential is used. Then the pole mass is found as describgd9]. Because the terms implicated in E80) are simply not
above to determindl 0, which is graphed in Fig. 1 as the included in this approximation, the instabilities of the full
solid line. Ideally, this would be independent@f so the fact  calculation at special values & do not appear. The more
that it does not give an indication of the effects of our ap-important comparison occurs at the better choice of la@er
proximations. as in the previous paragraph. There, the dashed-line estimate
A striking feature of the graph is the presence of instabili-is significantly larger, and shows a stronger scale depen-
ties nealQ =463 GeV(where the tree-level squared mass ofdence, than the calculation presented here with the complete
h® passes through)Dand Q=568 GeV(where the Landau- V@
gauge tree-level squared masses of the Nambu-Goldstone | have checked that similar results are obtained in a wide
bosonsG® G~ pass through 0[17]. The point is that for variety of MSSM models with dimensional parameters at or

small tree-level scalar squared massgs, the effective po- below the TeV scale, including models with larger and
tential scales like smaller tarB and different superpartner mass hierarchies and

mixing angles. | find that the calculatéd,,o is quite gener-
ally stable to within a few hundred MeV or less over a wide
range which includes the geometric mean of the top squark
masses and excludes any scales where tree-level scalar
wherec?, are constants a:slf/)—>0. Thus, whileVg4 is well — squared masses vanish. However, the scale-dependence of
defined and continuous in that limit, derivatives of it are not.Mpo should not be confused with the actual theoretical error,
(The Nambu-Goldstone bosons hag?:(), so the corre- which is probably somewhat Iarger. This is because some
sponding singularities are less sevefihese and nearby val- fraction of the neglected contributions is going to be scale
ues ofQ simply represent bad choices, where the approxiindependent. o .
mation being made for the p0|e mass is invalidated by |arge To improve the Sltuatlon.stlllzfurt?er, one must calculate
logarithms. If it were available, the use 6F®(p2=s,0), the full two-loop self-energie$l®(p?). The present work
rather than the approximatidi(®(0), would eliminate the has shown that the effects of the electroweak couplings in
instability for choices of renormalization scale at which thethis are certainly not negligible compared to our eventual
Goldstone boson masses happen to varfihis is easily —ability to measurévipo at colliders. The method outlined here
checked for the analogous case at one-loop order, where réill also be a useful check on a future calculation of
placingT®(p?) by II1)(0) leads to similar but milder nu- 11?(p?) in Landau gauge, since it will have to coincide with
merical instabilities, because o¥M==3,(m2)2n(nm?)y/4  thep”—0 limit. _ _
n f 2_.0.1 Theref h Idd) ; ¢| b 4 ful  The viability of any given model scenario can be tested by
- formg— .]_ erefore, one should simply be carefu ducti lobal fits o q h b bl
to avoid such choices for the renormalization s¢al@| conducting global Tits 0lvipe and many other observablé
For largerQ, the result forM o is nicely stable. A likely masses, cross sections, and decay rates to a set of underlying

good range of scale choices is 600 GeXQ<700 GeV. madel parameters. .If supersymmetry is_ part of our f‘!t“fe*
This range includes the geometric mean of the top-squarwer.‘ the determination dflyo will play an important role in
masses, a traditional guess for the optimal scale for eva\Iua{(-aSt'r.1g the whqle structure of the softly broken supersym-
ing M. It also includes the scale at whitho is equal to metric Lagrangian.

the tree-level valuen,o, and the scale at which the two-loop  This work was supported in part by NSF Grant No. PHY-
corrections to the Goldstone boson masses vanish. In thi3140129.

V=3 mi[cfin(m3)+cin(m3)]+--- (20
s
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