
PHYSICAL REVIEW D 67, 094020 ~2003!
Nonperturbative propagators, running coupling, and the dynamical quark mass
of Landau gauge QCD
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The coupled system of renormalized Dyson-Schwinger equations for the quark, gluon, and ghost propaga-
tors of the Landau gauge QCD is solved within truncation schemes. These employ bare as well as nonpertur-
bativeAnsätze for the vertices such that the running coupling as well as the quark mass function are indepen-
dent of the renormalization point. The one-loop anomalous dimensions of all propagators are reproduced.
Dynamical chiral symmetry breaking is found; the dynamically generated quark mass agrees well with the
phenomenological values, and the corresponding results from lattice calculations. The effects of unquenching
the system are small. In particular the infrared behavior of the ghost and gluon dressing functions found in
previous studies is almost unchanged as long as the number of light flavors is smaller than four.
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I. INTRODUCTION

Based on many observations in hadron physics, the sp
taneous breaking of chiral symmetry and the dynamical g
eration of quark masses are expected to occur in quan
chromodynamics~QCD!. The precise origin of this nonper
turbative phenomenon as well as its relation to quark c
finement are still little understood. Further studies of the
issues have to build on reliable nonperturbative metho
and, as confinement is expected to be correlated with infra
singularities, continuum-based methods will be required
addition to Monte Carlo lattice calculations. To this end w
note that the Dyson-Schwinger equations~DSEs! of QCD
can address directly the infrared region of momentum.

The DSEs for the propagators of QCD form a coup
system of equations. In the Landau gauge these have
investigated along two lines of research. On the one ha
the DSEs of pure Yang-Mills theory have been explored w
the aim of revealing the infrared behavior of the ghost a
gluon propagator and their relation to gluon confinem
~see, e.g., the review@1# and references therein!. On the other
hand, the quark DSEs have been studied extensively for
purpose of model building. These models have been use
the framework of Bethe-Salpeter equations and finite te
perature field theory to describe the hadronic properties
reactions in a semiphenomenological way~see, e.g., the re
view @2# and references therein!.

In this article the numerical results for the coupled set
quark, gluon,and ghost propagators, including the back r
action of the quarks on the ghosts and gluons, are prese
for the first time. In the quark DSE we will study the mech
nism of dynamical chiral symmetry breaking by whic
physical quark masses are generated even though the
quark masses in the Lagrangian are zero. This is a gen
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nonperturbative effect, as it is well known that for vanishi
bare masses the renormalized masses remain zero at
order in perturbation theory. In addition to the phenomen
of mass generation we are interested in quark confinem
Single quark states have a nonvanishing color charge and
therefore not contained in the physical part of the state sp
of QCD. This physical subspace supports a posit
~semi!definite metric whereas the remaining state space
QCD contains negative norm states as well. Conseque
negative norm contributions to the quark propagator wo
provide evidence for quark confinement.

This paper is organized as follows. In the next sect
suitable Ansätze for the quark-gluon vertex will be con
structed such that the DSE for the quark propagator gua
tees the realization of two important consistency conditio
These are~i! the independence of the dynamically genera
quark mass function from the renormalization point and~ii !
the correct asymptotic behavior at large momenta such
the anomalous dimensions of dressing and mass funct
are correct in one-loop order. Fortunately, the correspond
DSEs for the fermions of QED are well studied~a short
overview is given, e.g., in@3#!. We will dwell on these results
and construct non-Abelian generalizations of Abelian ve
ces, which have the desired properties.

In the following section we present solutions for th
quenched system of quark, ghost, and gluon DSEs; i.e.,
neglect the quark-loop in the gluon equation. The Yang-M
sector is hereby treated in a truncation scheme for the g
and gluon equations that already has been employed in
@4#. This scheme improves on older ones@5,6#, provides an
explicit numerical solution for the infrared analysis given
Refs. @7,8#, and its results are in almost quantitative agre
ment with corresponding results of lattice calculations for
gluon and ghost propagators@9–12#. The main purpose of
calculating the quark propagator in quenched approxima
is to allow for a comparison with corresponding recent latt
results@13,14#. We find very good agreement of our resu
for the quark renormalization function and the momentu
©2003 The American Physical Society20-1
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FIG. 1. Diagrammatic repre-
sentation of the Dyson-Schwinge
equations for the gluon, ghost, an
quark propagators. The wiggly
dashed, and solid lines represe
the propagation of gluons, ghost
and quarks, respectively. A filled
blob represents a full propagato
and a circle indicates a one
particle irreducible vertex.
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dependent dynamical quark mass with the lattice result
the quark-gluon vertex functions constructed in Sec. II
employed. We then proceed to the unquenched case an
corporate the quark-loop into our truncation scheme for
ghost and gluon DSE. We present solutions for the
coupled system of DSEs for the quark, ghost, and glu
propagators. Compared to the quenched case we will
only moderate differences for the number of light flavo
Nf<3. Whereas we are able to demonstrate positivity vio
tion in the gluon propagator~and thus gluon confinemen!
we have not been able to draw definite conclusions on
~non-!positivity of the quark propagator. In the last secti
we summarize our results and present some conclusions

II. THE QUARK DYSON-SCHWINGER EQUATION

The coupled DSEs for the gluon, ghost, and quark pro
gators in Landau gauge QCD are shown in Fig. 1. As sta
in the Introduction we will employ first the quenched a
proximation, i.e., we will neglect the quark loop in the gluo
equation. This will allow us to assess the quality of our qu
DSE solution by comparing to lattice calculations of t
quark propagator@13# performed so far only in quenche
approximation. As we furthermore employ the gluon prop
09402
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gator obtained in Ref.@4# the unknown element to be dete
mined in the quark DSE is the dressed quark-gluon verte

Following the conventions and notations of Ref.@1# the
renormalized quark DSE with appropriate quark wave fu
tion and quark-gluon vertex renormalization constants,Z2
andZ1F , respectively, reads

S21~p!5Z2S0
21~p!1g2Z1FCF

3E d4q

16p4
gmS~q!Gn~q,q2p!Dmn~q2p!.

~1!

The factorCF5(Nc
221)/2Nc in front of the integral stems

from the color trace of the loop. The symbolGn(q,q2p)
denotes the full quark-gluon vertex. Suppressing color in
ces the quark and gluon propagators in Landau gauge
given by

S~p!5
1

2 ip”A~p2!1B~p2!
5A21~p2!

ip”1M ~p2!

p21M2~p2!
, ~2!
0-2
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S0~p!5
1

2 ip”1m0

, ~3!

Dmn~p!5S dmn2
pmpn

p2 D Z~p2!

p2
, ~4!

where the quark mass functionM is defined asM (p2)
5B(p2)/A(p2).

The inverse of the vector self-energy, 1/A(q2), is often
denoted as the ‘‘quark wave function renormalization.’’ T
bare quark propagatorS0(p2) contains the unrenormalize
quark massm0(L2) which depends on the cutoffL of the
theory. The bare mass is related to the renormalized m
mR(m2) via the renormalization constantZm :

m0~L2!5Zm~m2,L2!mR~m2!. ~5!

Herem2 is the~squared! renormalization scale. Note that th
propagator functionsA, B, and Z depend on this renormal
ization scale. Therefore in the following we will use the n
tation A(p2,m2), B(p2,m2), andZ(p2,m2).

The renormalized and the bare vector self-energy,A and
A0, are related by

A0
21~p2,L2!5Z2~m2,L2!A21~p2,m2!. ~6!

In Landau gauge the loop corrections to the vector s
energy are finite. CorrespondinglyZ2(m2,L2) stays finite
when the cutoff is sent to infinity, and we have
,Z2(m2,L2),1. Furthermore, in Landau gauge the gho
gluon vertex is not ultraviolet divergent, and we can choo
Z̃151 @15#. The Slavnov-Taylor identity for the quark-gluo
vertex renormalization factorZ1F thus simplifies@16#,

Z1F5
Z̃1Z2

Z̃3

5
Z2

Z̃3

. ~7!

Previous studies of the quark DSE in the so-called A
lian approximation~see, e.g., the review@2# or the recent
summary@17# and references therein! as well as the recen
investigation in Ref.@18# assume implicit cancellations be
tween the full quark-gluon vertex and the dressed glu
propagator in the integral over the kernel of the quark DS
Furthermore, in the tensor structure of the quark-gluon v
tex only a term proportional togm is employed.

In the current investigation we do not have to rely
implicit cancellations since we calculated explicit solutio
for the dressed gluon and ghost propagators@4#. We will also
construct explicit nonperturbativeAnsätze for the quark-
gluon vertex. We note that very recently lattice results for
quark-gluon vertex became available@19#. However, at
present the error bars from such simulations are too larg
use the lattice results as a guideline in the construction
reliable Ansätze for the quark-gluon vertex. To proceed w
assume that one may approximately factorize the qu
gluon vertex
09402
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Gn~q,k!5Vn
abel~p,q,k!W¬abel~p2,q2,k2!, ~8!

with p andq denoting the quark momenta andk5(q2p) the
gluon momentum. The non-Abelian factorW ¬abel multiplies
an Abelian partVn

abel , which carries the tensor structure o
the vertex. ThisAnsatzis motivated by the aim to respec
gauge invariance as much as possible on the present lev
truncation.

The Slavnov-Taylor identity~STI! for the quark-gluon
vertex is given by@16#

G21~k2!ikmGm~q,k!5S21~p!H~q,p!2H~q,p!S21~q!,

~9!

with G(k2) being the ghost dressing function andH(q,p)
the ghost-quark scattering kernel. At present the nonper
bative behavior of the ghost-quark scattering kernel is
known. Therefore we cannot solve this STI explicitly. How
ever, comparing the structure of Eq.~9! with the
corresponding Ward identity of QED,

ikmGm
QED~q,k!5S21~p!2S21~q!, ~10!

we are able to infer some information: Whereas the gh
fields of QED decouple from the theory and consequently
not show up in the Ward identity there is an explicit factor
G21(k2) on the left-hand side of Eq.~9!. We therefore sus-
pect the quark-gluon vertex of QCD to contain an additio
factor of G(k2) compared to the fermion-photon vertex
QED. Some additional ghost dependent structure seems
essary to account for the ghost-quark scattering kernel on
right-hand side of Eq.~9!. For simplicity we assume the
whole ghost dependence of the vertex to be contained
non-Abelian factor multiplying an Abelian tensor structur
For quenched calculations and in the context of angular
proximated DSEs a similar strategy has already been ado
in Refs.@20,21#. The Abelian part of the vertex,Vn

abel , will
be adopted in the following from analogAnsätze in QED.
The Ward identity~10! has been solved, e.g., in Ref.@22#
such that kinematical singularities are avoided. Furtherm
transverse parts of the fermion-photon vertex have b
fixed such that multiplicative renormalizability in the Abe
lian fermion DSE is satisfied for all linear covariant gaug
@23#. The resulting vertex is known as the Curtis-Penning
~CP! vertex.

The non-Abelian factorW¬abel is chosen such that th
resulting quark propagator satisfies two conditions:~i! The
quark mass functionM (p2) should be independent of th
renormalization pointm2; ~ii ! the anomalous dimensiongm
of the mass function known from perturbation theory sho
be recovered in the ultraviolet.

In the course of this section we will prove the verte
Ansatz
0-3
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W¬abel~p2,q2,k2!

5G2~k2,m2!Z̃3~m2,L2!
„G~k2,m2!Z̃3~m2,L2!…22d2d/d

@Z~k2,m2!Z3~m2,L2!#d
,

~11!

Vn
abel~p,q,k!

5Gn
CP~p,q,k! ~12!

5
A~p2,m2!1A~q2,m2!

2
gn1 i

B~p2,m2!2B~q2,m2!

p22q2

3~p1q!n1
A~p2,m2!2A~q2,m2!

2~p22q2!
~p”1q” !~p1q!n

1
A~p2,m2!2A~q2,m2!

2
@~p22q2!gn

2~p”2q” !~p1q!n#

3
p21q2

~p22q2!21@M2~p2!1M2~q2!#2
~13!

with the new parameterd to satisfy the conditions~i! and~ii !.
Again k denotes the gluon momentum andp andq the quark
momenta. The anomalous dimensiond of the ghost propaga
tor is d529Nc /(44Nc28Nf), i.e., the corresponding valu
at one loop order forNc colors andNf flavors. The Abelian
part of the vertex is given by the Curtis-Pennington~CP!
vertexGn

CP(p,q,k).
From a systematic point of view the newly introduc

parameterd in the non-Abelian part of the vertex is com
pletely arbitrary. Our numerical results, however, will ind
cate that values around the somewhat natural choiced50
match best with lattice simulations, see below.

For comparison we will also employ the much simp
vertexGn5Vn

abelW¬abel with W¬abel given by Eq.~11! and

Vn
abel~p,q,k!5Z2~m2,L2!gn , ~14!

where we have taken the bare Abelian vertex,gn , multiplied
with an extra factor ofZ2. In Landau gauge this constructio
also satisfies the conditions~i! and ~ii !, as will be shown in
the next two sections. Furthermore in the numerical tre
ment we will additionally employ a vertex where the la
transverse term in Eq.~13! is left out, i.e., a generalized
Ball-Chiu ~BC! vertex. In Landau gauge such a vertex a
satisfies the conditions~i! and ~ii !.

A. Multiplicative renormalizability of the quark equation

To proceed we first substitute the simpler vertexAnsatz
~14! into the quark equation~1!. By taking the Dirac trace
once with and once without multiplying the equation withp”
we project out the mass functionM (p2) and the vector self-
energyA(p2). To ease notation we will use in the followin
the abbreviationsx5p2, y5q2, and z5(p2q)2 for the
09402
t-
,

squared momenta, alsos5m2 for the squared renormaliza
tion point andL5L2 for the squared cutoff of the theory. W
arrive at

M ~x!A~x,s!5Z2~s,L !m0~L !1
Z2~s,L !

3p3

3E d4qH a~z!

z@y1M2~y!#
Z2~s,L !A21~y,s!

3
„G~z,s!Z̃3~s,L !…22d2d/d

@Z~z,s!Z3~s,L !#d
3M ~y!J , ~15!

A~x,s!5Z2~s,L !1
Z2~s,L !

3p3

3E d4qH a~z!

xz@y1M2~y!#
Z2~s,L !A21~y,s!

3
„G~z,s!Z̃3~s,L !…22d2d/d

@Z~z,s!Z3~s,L !#d

3S 2z1
x1y

2
1

~x2y!2

2z D J , ~16!

where we have used the following expression for the runn
couplinga in Landau gauge@5#

a~x!5
g2

4p
Z~x,s!G2~x,s!5a~s!Z~x,s!G2~x,s!. ~17!

From Eqs.~15! and ~16! it is clear that the choice of the
parameterd50 is special since then the only input from th
Yang-Mills sector is the running coupling.

The behavior of Eqs.~15!, ~16! under renormalization can
be explored by changing the renormalization points5m2 to
a new pointt5n2. We first note that the factor stemmin
from the non-Abelian part of the quark-gluon vertex is n
affected by such a change:

„G~z,s!Z̃3~s,L !…22d2d/d

@Z~z,s!Z3~s,L !#d
5

„G~z,t !Z̃3~ t,L !…22d2d/d

@Z~z,t !Z3~ t,L !#d
.

This can be seen easily with the help of the relations

G0~x,L !5G~x,s!Z̃3~s,L !, ~18!

Z0~x,L !5Z~x,s!Z3~s,L !, ~19!

between the unrenormalized and renormalized ghost
gluon dressing functions. Furthermore, the running coupl
a(z) is independent of the renormalization point, for a d
tailed discussion of this property using the expression~17!
see Ref.@5#.

From Eq.~6! we infer

Z2~ t,L !A21~x,t !5Z2~s,L !A21~x,s!. ~20!
0-4
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With the renormalization conditionA(t,t)51 we have

Z2~ t,L !5Z2~s,L !A21~ t,s!, ~21!

and subsequently

A~x,t !5A~x,s!A21~ t,s!. ~22!

Substituting Eqs.~21! and ~22! into the Dyson-Schwinge
equation~15! we find the mass functionM (x) to be indepen-
dent of the renormalization point, i.e., condition~i! is satis-
fied. Note that without the extra factor ofZ2 in the Abelian
part of the vertex~14! we would violate this condition.

Before we examine the case of the more sophistica
Curtis-Pennington type vertex~13! two remarks are in order
First, according to perturbation theory we haveA(x→`,s)
→1 and Z2(s,L)→1 for large renormalization pointss.
However, this is just a special case of the general relatio

A~x→`,s!→Z2~s,L !, ~23!

which can be inferred from Eqs.~21! and~22!. In Fig. 2 we
sketch the vector self-energy renormalized at two differ
pointss andt, with s in the perturbative andt in the nonper-
turbative region of momentum. Of course, this mechan
will be found again in the numerical results, see below.Sec-
ond, the appearance of the ghost and gluon renormaliza
factors Z3(L) and Z̃3(L) in the interaction kernel of the
quark equation is due to the non-Abelian part of the e
ployed quark-gluon vertexAnsatz. Certainly, the renormal-
ized functionsM (x) and A(x,s) should not depend on th
cutoff of the integral. The balance of cutoff dependent qu
tities in the equation is controlled by various factors
Z2(L) and Zm(L). We have to take care not to disturb th
balance by the vertexAnsatz. Thus the non-Abelian part o
the quark-gluon vertex contains such powers ofZ3(L) and
Z̃3(L) that the cutoff dependence of these quantities can
This can be easily checked using the scaling behavior

Z3~s,L !5S a~L !

a~s! D
g

,

Z̃3~s,L !5S a~L !

a~s! D
d

, ~24!

FIG. 2. Sketch of a finite renormalization from a perturbati
point s to a nonperturbative pointt for the vector self-energyA.
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of the renormalization factors forL→` and the relationg
12d1150 for the anomalous dimensions of the gluon a
the ghost, respectively.

Along the same lines as for the bare vertex construct
we prove condition~i! for the Curtis-Pennington type vertex
Plugging Eqs.~11!, ~13! into the quark equation~1! and pro-
jecting ontoM (x) andA(x) we arrive at

M ~x!A~x,s!5Z2~s,L !m0~L !

1
Z2~s,L !

3p3 E d4q
a~z!

z@y1M2~y!#

3
„G~z,s!Z̃3~s,L !…22d2d/d

@Z~z,s!Z3~s,L !#d
A21~y,s!

3F3

2
@A~x,s!1A~y,s!#M ~y!1

1

2
@DAM~y!

2DB#S 2z12~x1y!2
~x2y!2

z D
1

3

2
@A~x,s!2A~y,s!#M ~y!V~x,y!~x2y!G ,

~25!

A~x,s!5Z2~s,L !1
Z2~s,L !

3p3 E d4q
a~z!

xz@y1M2~y!#

3
„G~z,s!Z̃3~s,L !…22d2d/d

@Z~z,s!Z3~s,L !#d
A21~y,s!F S 2z1

x1y

2

1
~x2y!2

2z DA~x,s!1A~y,s!

2
2S DA

2
~x1y!

1DBM~y! D S 2
z

2
1~x1y!2

~x2y!2

2z D
1

3

2
@A~x,s!2A~y,s!#M ~y!V~x,y!

3S x22y2

2
2z

x2y

2 D G . ~26!

Here we have used the abbreviations

DA5
A~x,s!2A~y,s!

x2y
,

DB5
B~x,s!2B~y,s!

x2y
,

V~x,y!5
x1y

~x2y!21@M2~x!1M2~y!#2
.

0-5
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With the help of the relations~21! and~22! we find again the
quark equations~25!, ~26! to be consistently renormalized
Employing

B~x,t !5B~x,s!A21~ t,s! ~27!

it can be seen directly that the mass function

M ~x!5B~x,s!/A~x,s! ~28!

is independent of the renormalization point.@The same is
true for a Ball-Chiu type vertex, which is the Curtis
Pennington construction~13! without the transverse term
proportional toV(x,y). Note that in different gauges tha
Landau gauge only the Curtis-Pennington construct
would satisfy condition~i!, similar to QED@23#.#

B. Ultraviolet analysis of the quark equation

In this section we will show that theAnsätze~13! and~14!
for the quark-gluon vertex both lead to the correct pertur
tive limit of the quark mass functionM (x). We first examine
the case of the bare vertex construction, Eq.~15!.

The ghost and gluon dressing functionsG and Z are
slowly varying for large momenta according to their pertu
bative limit. For loop momentay larger than the externa
momentumx we are therefore justified to employ the angu
approximationG(z),Z(z)→G(y),Z(y), see Ref.@4#. Fur-
thermore, there is a regionx0,y,x where the approxima
tion G(z),Z(z)→G(x),Z(x) is adequate. We are then ab
to carry out the angular integrals in Eq.~15!. If we addition-
ally take the external momentumx to be large enough al
masses in the denominators become negligible since the
tegral is dominated by loop momentay'x. We then obtain

M ~x!A~x,s!5Z2~s,L !m0~L !

1
Z2~s,L !

p

a~x!

x E
x0

x

dyZ2~s,L !A21~y,s!

3
~G~z,s!Z̃3~s,L !!22d2d/d

@Z~z,s!Z3~s,L !#d
M ~y!

1
Z2~s,L !

p E
x

L

dy
a~y!

y
Z2~s,L !A21~y,s!

3
~G~z,s!Z̃3~s,L !!22d2d/d

@Z~z,s!Z3~s,L !#d
M ~y!, ~29!

where the integral fromy50 to y5x0 has already been ne
glected.

For large momentay.x0 the wave function renormaliza
tion A21 and the renormalization factorZ2 cancel each othe
according to Eq.~23!. The ultraviolet limit of the ghost and
gluon dressing functions from their respective DSEs
quenched approximation has been discussed in Ref.@4# and
found to be in agreement with resumed perturbation the
to one-loop order. As will be seen in the discussion beyo
quenched approximation below@see Eq.~89!#, we also ob-
tain the correct anomalous dimensions for the ghost
09402
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gluon dressing functionsG andZ in the case ofNf5” 0. We
thus use the general perturbative limit

G~z!5G~s!Fv logS z

sD11Gd

,

Z~z!5Z~s!Fv logS z

sD11Gg

, ~30!

with v5b0a(s)/(4p)5(11Nc22Nf)a(s)/(12p). If we
additionally substitute the scaling behavior of the renorm
ization constantsZ3 andZ̃3, Eq.~24!, and exploit the relation
g12d1150 we arrive at

M ~x!5m0~L !1
1

p

a~x!

x E
x0

x

dyM~y!1
1

pEx

L

dy
a~y!

y
M ~y!.

~31!

This well known equation describes the ultraviolet beha
ior of the quark mass function, see, e.g., Ref.@24#. Employ-
ing the perturbative form of the running coupling,

a~y!5a~s!Fv logS y

sD11G21

, ~32!

one obtains in the chiral limit,m0(L)50, the so-calledregu-
lar asymptoticform

M ~x!5
2p2gm

3

2^C̄C&

xS 1

2
ln~x/LQCD

2 ! D 12gm
. ~33!

Here^C̄C& denotes the chiral condensate which is discus
in more detail in the next section. In the case of nonvani
ing bare quark mass,m0(L)Þ0, Eq. ~31! is solved by the
irregular asymptoticform

M ~x!5M ~s!Fv logS x

sD11G2gm

. ~34!

In this case we furthermore find

gm5
12

11Nc22Nf
, ~35!

m0~L !5M ~s!Fv logS L

sD11G2gm

~36!

in accordance with perturbation theory.
We thus have shown that the bare vertex construction~14!

admits a solution for the mass functionM (x) which has the
correct perturbative behavior for large momenta. A simi
analysis is possible for the DSE with the Curtis-Penning
type vertex, Eq.~25!. As the vector self-energy goes to
constant in the limit of large momenta, Eq.~23!, all terms
proportional toA(x)2A(y) are suppressed in this limit. Fur
thermore, according to the perturbative expression~34! the
DB term contributes at most subleading logarithmic corr
0-6
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tions in Eq.~25!. The first term in the brackets reduces to t
bare vertex form becauseA(x,s)'A(y,s) for large momenta
x,y. Thus we obtain the same ultraviolet limit from Eq.~25!
as for the bare vertex construction. This is certainly also
case if a Ball-Chiu type vertex is employed.

III. THE QUARK PROPAGATOR IN QUENCHED QCD

In this section we will compare quark propagator resu
in quenched approximation for three different vertex typ
which share the non-Abelian part proposed in Eq.~11! but
differ in their Abelian parts. We will employ the bare verte
Eq. ~14!, and the Curtis-Pennington~CP! type vertex, Eq.
~13!. Furthermore, we use a Ball-Chiu~BC! type construc-
tion, which employs only the first three terms of the C
vertex. In Landau gauge all these vertexAnsätzesatisfy the
conditions~i! and~ii ! formulated above Eq.~11!. In order to
compare the different vertex types on a quantitative level
will calculate the pion decay constantf p and the chiral con-
densate from the respective solutions for the quark m
function.

Before doing so we have to specify the effective qua
interaction as input from the Yang-Mills sector.

A. Effective quark interaction

Via the Ansatzof the quark-gluon vertex the effectiv
quark interaction depends on the quark propagator funct
A(x,s) andM (x) themselves. These functions will be dete
mined self-consistently in the process of the solution of
quark DSE. As further input the running coupling and, ifd
50, the gluon and the ghost propagator are needed. T
will be taken from the results of Ref.@4#.

The DSEs of the Yang-Mills sector are scale-independ
and the underlying scale will be generated through dim
sional transmutation during renormalization. To translate
scale into physical units the scaleLQCD is, in quenched ap-
proximation, determined from the large-momentum behav
of the running coupling, or more precisely, by requirin
a(MZ

2)5a@(91.187 GeV)2#50.118. Technically this is
achieved by fitting the functional form of the running co
pling. We employ two different fit functions@25# for the
running couplinga(x):

Fit A: a~x!5
a~0!

ln@e1a1~x/LQCD
2 !a21b1~x/LQCD

2 !b2#
,

~37!

Fit B: a~x!5
1

a1~x/LQCD
2 !b Faa~0!

1
4p

b0
S 1

ln~x/LQCD
2 !

2
1

x/LQCD
2 21

D
3~x/LQCD

2 !bG . ~38!

The valuea(0)58.915/Nc is known from the infrared analy
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sis. In both fits the ultraviolet behavior of the solution fix
the scale,LQCD50.71 GeV. Especially the fit B is very ro
bust leading to a change inLQCD of less than 1% when
different fitting regions are chosen. Note that we have e
ployed a momentum-space subtraction~MOM! scheme, and
thusLQCD has to be interpreted asLMOM

Nf50 ; i.e., this scale has
the expected magnitude@26#. Fit A employs the four addi-
tional parameters:a151.106, a252.324, b150.004, and
b253.169. Fit B has only two free parameters:a51.020 and
b51.052.

In Landau gauge the gluon and ghost propagators are
fined by

Dmn~p!5S dmn2
pmpn

p2 D Z~p2!

p2
, ~39!

DG~p!52
G~p2!

p2
. ~40!

The gluon and ghost dressing functions,Z(p2) and G(p2),
respectively, are then described by

R~x!5
c~x/LQCD

2 !k1d~x/LQCD
2 !2k

11c~x/LQCD
2 !k1d~x/LQCD

2 !2k
,

Z~x!5S a~x!

a~m! D
112d

R2~x!, ~41!

G~x!5S a~x!

a~m! D
2d

R21~x!,

wherex5p2 andc,d are fitting parameters for the auxiliar
function R(x). They are given byc51.269 andd52.105.
Recall that the anomalous dimensiong of the gluon is re-
lated to the anomalous dimensiond of the ghost byg5
2122d andd529/44 for the number of flavorsNf50.

Whereas fit A is better in the region 0.3 GeV2,x
,1 GeV2 wherea is strongly rising, fit B is slightly better
in the region 1 GeV2,x,10 GeV2. As can be seen in Fig
3, both fits work very well and will be used as input belo

B. Pion decay constant, chiral condensate, and quark masses

A correct calculation of the pion decay constants involv
the pion Bethe-Salpeter amplitudes including the sublead
components, see, e.g., Refs.@27,28#. Apart from the dressed
quark propagator the Bethe-Salpeter equation involves c
plings between quarks and gluons. On the level of the qu
DSE we have substituted the full quark-gluon vertex by
vertexAnsatz. However, at present it is only known for ce
tain cases how such a vertexAnsatzin the quark DSE trans-
lates to the corresponding quark-gluon coupling in t
Bethe-Salpeter equation@29#. No method is known up to
now to derive the corresponding Bethe-Salpeter equation
dressed quark-gluon vertices as the BC- or CP-vertex c
structions.

We thus have to rely on the approximation@30#
0-7
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FIG. 3. Shown are the results for the gluon dressing functionZ, the ghost dressing functionG, and the running couplinga. The two sets
of fit functions are given in Eqs.~37! and ~38!. The b function corresponding to our DSE solution is compared to the one- and two-
expressions as well as to a polynomial ina.
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2 52

Nc

4p2
Z2~s,L !E dyy

M ~y!A21~y,s!

@y1M2~y!#2

3S M ~y!2
y

2

dM~y!

dy D , ~42!

which incorporates only the effects of the leading pi
Bethe-Salpeter amplitude in the chiral limit@31#. From a
comparison of the relative size of the amplitudes in mo
calculations@32,33# one concludes that the approximatio
~42! should lead to an underestimation off p by 10–20 %.

The renormalization point independentchiral condensate

^C̄C&, can be extracted from the ultraviolet behavior of t
quark mass function in the chiral limit@cf. Eq. ~33!#:

M ~x! →
x→L2p2gm

3

2^C̄C&

xS 1

2
ln~x/LQCD

2 ! D 12gm
. ~43!

HerebyLQCD is to be taken from a fit to the running cou
pling, cf. Eqs.~37!, ~38!.
09402
l

The renormalization point dependentchiral condensate

^C̄C&m can be calculated via@28#

2^C̄C&mªZ2~s,L !Zm~s,L !NctrDE d4q

~2p!4
Sch~q2,s!,

~44!

where the trace is over Dirac indices,Sch is the quark propa-
gator in the chiral limit, and the squared renormalizati
point is denoted bys5m2. To one-loop order both expres
sions for the condensate are connected by

^C̄C&m5S 1

2
ln~m2/LQCD

2 ! D gm

^C̄C&, ~45!

with gm being the anomalous dimension of the quark m
function.

For the calculation of the chiral condensate we first ha
to determine the mass renormalization constantZm(s,L).
Recall the formal structure of the mass equation~15!, which
is given as

M ~x!A~x,s!5Z2~s,L !Zm~s,L !mR~s!1Z2~s,L !PM~x,s!,

~46!

wherePM(x,s) represents the dressing loop. In order to e
0-8
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NONPERTURBATIVE PROPAGATORS, RUNNING . . . PHYSICAL REVIEW D67, 094020 ~2003!
tract Zm(s,L) from this equation we have to clarify th
meaning ofmR(s) which is related to the unrenormalize
mass by

m0~L !5Zm~s,L !mR~s!, ~47!

cf. Eq. ~5!. Evaluating Eq.~46! at the perturbative momen
tum x5s the matter seems clear. We achieve consiste
with Eqs.~34! and ~36!, if

mR~s!5M ~s!, ~48!

Zm~s,L !5Fv logS L

sD11G2gm

,

~49!

which is indeed the correct perturbative scaling of the ren
malization constantZm @2#.

Certainly one could implicitlydefine the finite partsof Zm
such that the relation~48! holds in general for all renormal
ization pointss. Then the parametermR in the renormalized
QCD-Lagrangian would already know about dynamical sy
metry breaking. However, as the mass parameters of Q
are supposed to be generated in the electroweak sector o
standard model one could equally well argue that it is m
systematic to exclude the effect of mass generation by str
interaction frommR .

In our numerical calculations we will chooses to be suf-
ficiently large, therefore Eq.~48! is valid anyway. ThenZm is
determined by

Zm~s,L !5
M ~x!A~x,s!2Z2~s,L !PM~x,s!

Z2~s,L !M ~s!

5
1

Z2~s,L !
2

PM~s,s!

M ~s!
. ~50!

For the last equation we have setx5s and have used the
renormalization conditionA(s,s)51.

In the numerical calculations we have to specify t
massesmR(s) as input. Choosing a perturbative renormaliz
tion point s allows one to evolve the massesmR(s) to a
different scalet by

mR~ t !5mR~s!S ln~s/LQCD
2 !

ln~ t/LQCD
2 !

D gm

. ~51!

For t5(2 GeV)2 typical values for the masses of the lig
quarks are given by the Particle Data Group@34#:

1

2
~mu1md!~2 GeV!'4.5 MeV,

ms~2 GeV!'100 MeV. ~52!

We will use similar masses in our calculations.

C. Renormalization scheme and numerical method

In the quark equation we employ a MOM regularizati
scheme similar to the one used for the ghost and gluon e
tions in Refs.@4,5#. For a fermion DSE this technique ha
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already been used in quenched QED4 @35#. The formal struc-
ture of the quark equation is given by

A~x,s!5Z2~s,L !1Z2~s,L !PA~x,s!, ~53!

M ~x!A~x,s!5Z2~s,L !Zm~s,L !mR~s!

1Z2~s,L !PM~x,s!. ~54!

We eliminateZ2 from the first equation by isolating it on th
left-hand side and subtracting the same equation forx5s.
With

1

Z2~s,L !
5

1

A~x,s!
1

1

A~x,s!
PA~x,s!, ~55!

we then have

1

A~x,s!
512

1

A~x,s!
PA~x,s!1PA~s,s!, ~56!

using the renormalization conditionA(s,s)51. In each it-
eration step we determineA(x) from Eq. ~56! and subse-
quently Z2 from Eq. ~55!. As a numerical check we dete
mine Z2 at different momentax5p2. In our calculations we
find Z2 to be independent ofp2 to a high accuracy. For the
mass functionM (x) we use

M ~x!A~x,s!5Z2~s,L !PM~x,s! ~57!

in the chiral limit and the subtracted equation

M ~x!A~x,s!5M ~s!1Z2~s,L !PM~x,s!2Z2~s,L !PM~s,s!

~58!

if chiral symmetry is broken explicitly, i.e.,m05” 0.
For the numerical iteration we employ a Newton meth

and represent the dressing functionsA(x) andM (x) with the
help of Chebychev polynomials. Furthermore, we use a
merical infrared cutoffe, which is taken small enough fo
the numerical results to be independent ofe. Numerical dif-
ficulties arise in the case of the Curtis-Pennington type v
tex and even more for the Ball-Chiu construction. If the e
ternal momentumx and the loop momentumy are both small
and close to each other then the derivative-like terms

DA5
A~x,s!2A~y,s!

x2y
, DB5

B~x,s!2B~y,s!

x2y
~59!

are hard to evaluate accurately. Although the functionsA(x)
and B(x) are constant in the infrared and consequen
should have derivatives close to zero, one encounters l
values forDA and DB due to numerical inaccuracies inA
andB. In order to evaluateDA andDB much more precisely
at small momenta we fit the expressions

A~x,s!5
A~0,s!

11a1~x/LQCD
2 !a2

, B~x,s!5
B~0,s!

11b1~x/LQCD
2 !b2

,

~60!

with the parametersa1 , a2 , b1, andb2 to the numerically
0-9
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FIG. 4. The mass functionM (x) and the inverse vector self-energy 1/A(x) of a chiral quark are shown. We compare the results for fi
different vertices with lattice data taken from Refs.@13,14#.
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evaluated functions. The scaleLQCD50.71 GeV has been
determined from the fits to the running coupling already
the last section.

For x2y smaller than a suitable matching point we c
culate the termsDA and DB from the fits. This procedure
eliminates the numerical errors in the derivative terms a
smoothes the numerical results considerably. In the cas
the Ball-Chiu type vertex the iteration process does not c
verge unless we use these fits.

The renormalization condition employed in the gho
gluon system of equations isG2(s)Z(s)51 with a(s)
50.118 at the squared renormalization points5m2. Further-
more we choose a transversal tensor to contract the g
equation, cf. Ref.@4#. The physical scale in the quenche
calculations is taken directly from the Yang-Mills result
i.e., we use the experimental valuea(MZ

2)50.118 of the
running coupling at the mass of theZ boson to fix the scale

D. Numerical results

In Fig. 4 we give our numerical solutions for the qua
mass function and the inverse vector self-energy in the ch
limit, employing ‘‘Fit A’’ for the effective quark interaction.
We compare results obtained with five differentAnsätze for
the quark-gluon vertex. For the generalized CP vertex
investigate the ‘‘natural’’ cased50, the value d5d
09402
d
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529/44, already adopted in Refs.@20,21#, and the valued
50.1. Furthermore we employed the bare vertex constr
tion and a Ball-Chiu type vertex. The corresponding mas
at the momentump250, the pion decay constantf p , the
renormalization point independent chiral condensate, and
fit parameters for the functions~60! are displayed in Table I.

The numerical results for the mass function all have
characteristic plateau in the infrared and show the reg
asymptotic behavior for large momenta, cf. Eq.~43!. The
bare vertex construction and the CP type vertex withd5d
both generate masses much smaller than typical phenom
logical values of 300–400 MeV. The BC- and the CP-ty
construction withd50 provide good results, whereas th
choiced50.1 leads to a somewhat large mass. The lat
calculations taken from Refs.@13# ~overlap fermions! and
@14# ~improved staggered action, Asqtad! favor masses
around 300 MeV with the caveat that they are obtained by
extrapolation from sizeable bare quark masses to the ch
limit. The numerical solutions for the wave function reno
malization 1/A can be seen in the right diagram of Fig.
Whereas the ultraviolet asymptotic behavior of all vert
constructions is similar we observe sizeable differences
small momenta. Again the bare vertex construction and
CP vertex withd5d are clearly disfavored by the lattic
data.
he

e

00

92
00
5

TABLE I. The massM (0), thepion decay constantf p calculated with Eq.~42!, the renormalization point
independent chiral condensate calculated with Eqs.~44! and~45!, and the condensate obtained by fitting t
expression~43! to the chiral mass function in the ultraviolet for all five vertex types. Recalld529/44 in
quenched approximation. If not stated otherwise the parameterd in the vertex construction is taken to b
d50. For the case of the CP vertex withd5d we did not get good fits in the infrared.

M~0! f p (2^C̄C&)1/3 (2^C̄C&)1/3

@MeV# @MeV# @MeV# ~calc.! @MeV#~fit! A21(0,MZ
2) a1 a2 b1 b2

Bare vertex 177 38.5 162 160 0.733 3.05 0.99 0.06 1.
CPd5d 150 50.5 223 225 0.910
BC vertex 293 62.6 276 284 0.523 1.10 0.99 0.29 0.
CP vertex 369 78.7 303 300 0.634 0.83 0.99 0.20 1.
CPd50.1 464 87.5 334 330 0.501 0.79 0.99 0.34 0.9
0-10
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FIG. 5. Results for three different forms of the running coupling in the quark equation: The running coupling calculated in Ref.@4# and
the two fits given in Eqs.~37!, ~38!.
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Our approximate calculation of the pion decay const
should underestimate the experimental valuef p593 MeV
by 10–20 %, cf. the discussion below Eq.~42!. We thus have
best results for the CP-vertex construction withd50 andd
50.1. Furthermore we obtain very good agreement betw
the two different methods to extract the chiral condens

Compared to the phenomenological value (2^C̄C&)1/3

'250 MeV most of our results are larger.
Apart from the cased5d we obtain very good fits for the

scalar and vector self-energy,A(x) andB(x), for small mo-
menta. The results for the parametersa1 , a2 , b1, andb2 in
the fit functions given by Eq.~60! can be found in Table I. It
is interesting to note that the exponentsa2 andb2 are found
to be very close to one. Such a behavior could indicat
simple underlying functional form of the quark propagat
This will be explored in future work by a numerical contin
ation of our results to negativep2, i.e., timelike momenta.

Figure 5 compares results for the bare vertex and the
type construction withd50 for three different forms of the
running coupling in the interaction kernel of the quark equ
tion. The two fit-functions, ‘‘Fit A’’ and ‘‘Fit B,’’ have been
given in Eqs.~37!, ~38!. Furthermore we used the runnin
coupling calculated from the quenched ghost and glu
09402
t
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DSEs in Ref.@4#. Although there is the~presumably! artifi-
cial bump atp2'0.1 GeV2 in the running coupling, the mas
functions obtained from the DSE result and from ‘‘Fit A’’ ar
virtually indistinguishable. ‘‘Fit B,’’ however, leads to some
what smaller masses. This observation suggests that ne
all the dynamically generated mass is produced from the
tegration strength abovep5500 MeV, indicated by the ver-
tical line in the plot of the running coupling. This is a favo
able result as it would have been very unsatisfying if t
artificial bump contributed a considerable amount to
quark mass function.

Finally we observe the effects of explicit chiral symmet
breaking in the plots of Fig. 6. We give results for thr
different quark masses,m(2 GeV)55 MeV, m(2 GeV)
5100 MeV, andm(1 GeV)51000 MeV. These values cor
respond roughly to the ones given by the Particle Data Gr
for the up/down-quark, the strange-quark, and the cha
quark @34#. For small momenta we note again that t
dressed vertex generates more mass in the quark equ
than the bare vertex construction. This effect becomes m
less dominant for the heavy quarks, where more and mor
the infrared mass stems from explicit chiral symmetry bre
ing and not from dynamical mass generation. Furthermo
mall quark
FIG. 6. These diagrams show our results when three different bare quark masses are employed. In the diagram on the right s
masses correspond to small values for 1/A in the infrared.
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in accordance with the analytical determination we obse
the same ultraviolet behavior of the mass function for b
vertex constructions.

IV. THE QUARK LOOP IN THE GLUON DSE

In this section we focus on the inclusion of the back
action of the quarks on the ghost-gluon system, i.e., we
finally solve the complete set of mutually coupled Dyso
Schwinger equations for the quark, gluon, and ghost pro
gator. To this end we incorporate the quark-loop in the tr
cation scheme for the gluon DSE which has been develo
in Ref. @4#.

The formal structure of the gluon equation is given by~cf.
Fig. 1!

@D~p!#mn
215Z3@D (0)~p!#mn

211Pmn
ghost~p!1Pmn

gluon~p!

1Pmn
quark~p!. ~61!

The contributions from the ghost and gluon loop,Pmn
ghost(p)

andPmn
gluon(p), are treated in detail in Ref.@4#. The contribu-

tion of the quark loop to the gluon equation is given by

Pmn
quark~p!52

g2Nf

2~2p!4
Z1FE d4q Tr$gmS~q!Gn~q,p!S~k!%,

~62!

wherep is the external gluon momentum andq and k5(q
2p) are the momenta of the two quarks running in the lo
~cf. Fig. 7!. The trace is over Dirac indices.

In Eqs. ~11!–~13! we have proposed an effective quar
gluon vertexGn with Abelian and non-Abelian parts suc

FIG. 7. Diagrammatical representation of the quark loop in
Dyson-Schwinger equation for the gluon propagator.
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that the quark equation is multiplicatively renormalizab
and one-loop perturbation theory is recovered for large m
menta. However, this construction is not capable to acco
as well for the one-loop behavior of the unquenched glu
equation unless we switch the momentum arguments of
non-Abelian partW¬abel, Eq. ~11!, from the gluon momen-
tum to quark momenta. In the quark equation such a cha
of momentum arguments would either break Lorentz sy
metry by preferring one quark line of the quark-gluon vert
or changes the ultraviolet behavior of the quark equation.
therefore have to use different momentum assignments
the quark-loop and the quark equation. Certainly, this i
deficiency which has to be resolved by a more elabor
vertex construction in future work. The aim of the prese
study, however, is to present an effective construction wh
captures essential properties of the theory.

Taking care of symmetries we propose the followingAn-
satzfor the non-Abelian part of the quark-gluon vertex in th
quark loop:

Wquark loop
¬abel ~y,z,x!5G~y!G~z!Z̃3~L !

3
~G~y!Z̃3~L !!2d2d/(2d)

@Z~y!Z3~L !#d/2

3
~G~z!Z̃3~L !!2d2d/(2d)

@Z~z!Z3~L !#d/2
. ~63!

Here x5p2 is the squared gluon momentum,y5q2 and z
5k25(q2p)2 are the squared quark momenta, andL5L2

is the squared cutoff. The Abelian partVn
abel of the vertex,

given in Eqs.~13!, ~14!, is symmetric with respect to the
quark momenta as well.

Plugging the Curtis-Pennington type vertex into the qu
loop and contracting the free Lorentz-indices with the ten
~cf. the treatment of the gluon DSE in Ref.@4#!

P mn
(z)~p!5dmn2z

pmpn

p2
, ~64!

we obtain

e

Pquark52
g2Nf

~2p!4
Z2E d4q

G~y!

y1M2~y!

G~z!

z1M2~z!

@G~y!G~z!Z̃3
2~L !#2d2d/(2d)

@Z~y!Z~z!Z3
2~L !#d/2

A22~y!A22~z!

3H A~y!1A~z!

2
@W1~x,y,z!A~y!A~z!1W2~x,y,z!B~y!B~z!#1

A~y!2A~z!

2~y2z!
@W3~x,y,z!A~y!A~z!

1W4~x,y,z!B~y!B~z!#1
B~y!2B~z!

y2z
@W5~x,y,z!A~y!B~z!1W6~x,y,z!B~y!A~z!#

1
@A~y!2A~z!#~y1z!

2$~y2z!21@M2~y!1M2~z!#2%
@W7~x,y,z!A~y!A~z!1W8~x,y,z!B~y!B~z!#J , ~65!

with the kernels
0-12
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W1~x,y,z!5
zz2

3x2
1zS 22z

3x
2

2zy

3x2 D 2
2

3
1

~22z!y

3x
1

zy2

3x2
, ~66!

W2~x,y,z!5
2~42z!

3x
, ~67!

W3~x,y,z!5
zz3

3x2
2z2S 11z

3x
1

zy

3x2D 1zS 1

3
1

~2z26!y

3x
2

zy2

3x2D 1
y

3
2

~z11!y2

3x
1

zy3

3x2
, ~68!
rb
on
b

t
th
m
b
c
t

en

all

ce
he
r
u

ve
op.
p.

nc-
op

ce-

-
ed
n.

s-
W4~x,y,z!5
22zz2

3x2
1zS 4

3x
1

4zy

3x2 D 2
2

3
1

4y

3x
2

2zy2

3x2
,

~69!

W5~x,y,z!5
zz2

3x2
2zS 11z

3x
1

2zy

3x2 D 1
1

3
1

~z23!y

3x
1

zy2

3x2
,

~70!

W6~x,y,z!5
zz2

3x2
2zS 32z

3x
1

2zy

3x2 D 1
1

3
1

~2z21!y

3x

1
zy2

3x2
, ~71!

W7~x,y,z!52
z2

x
1z1

y2

x
2y, ~72!

W8~x,y,z!52S 2
z

x
1

y

xD . ~73!

Note that the symmetry factor 1/2 and a factor 1/(3x) from
the left-hand side of the gluon equation have been abso
in the kernels. From this expression the corresponding
for the bare vertex construction can be read off easily
settingW32850 and replacing the remaining factor@A(y)
1A(z)#/2 in Eq. ~65! by unity.

A. Ultraviolet analysis of the quark loop

It is long known that the introduction of a cutoffL in the
gluon DSE results in artificial quadratic divergencies due
the violation of gauge invariance. Certainly, to recover
correct perturbative limit of the gluon propagator such ter
have to be removed from the gluon equation by a suita
regularization procedure. Quadratic divergencies only oc
in the part of the inverse gluon propagator proportional
dmn . Therefore one way to eliminate the quadratic diverg
cies is to project onto the part proportional topmpn @36# by
choosingz54 in the projection tensor~64!.

Another unambiguous way is to subtract the quadratic
divergent terms from the kernel by hand. This procedure
valid for generalz and allows one to estimate the influen
of spurious longitudinal terms in the right-hand side of t
gluon equation on the solutions by varying the parametez.
Certainly in a perfect truncation scheme the solution sho
be independent ofz.
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In Ref. @4# it has been described in detail how to remo
the quadratic divergencies in the ghost and gluon lo
Therefore in the following we concentrate on the quark loo
To identify the divergent terms we expand the dressing fu
tions in the integrand of the quark-loop around large lo
momentay with the difference (z2y) still larger than any
quark mass.

To leading order this expansion amounts in the repla
ments

G~z!→G~y!,

A~z!→A~y!,

A~y!2A~z!

y2z
→A8~y!,

B~y!2B~z!

y2z
→B8~y!,

@A~y!2A~z!#~y1z!

2$~y2z!21@M2~y!1M2~z!#2%
→ A8~y!~y1z!

2~y2z!
, ~74!

with the derivativesA8 andB8. Note that the first two equa
tions are identical to the angular approximation employ
previously in the ultraviolet analysis of the quark equatio
For large momentax and z the denominators in Eq.~65!
simplify and the angular integrals are trivially performed u
ing the integrals given in the Appendix. We arrive at

Pquark
UV 52

g2Nf

16p2
Z2E dyG2~y!

G~y!22d2d/d

Z~y!d
A22~y!

3H A~y!S 22

3y
1

42z

3x
1

2~42z!

3xy
M2~y! D

1
A8~y!

2 S 1

3
1

22~42z!y

3x

1S 22

3y
1

2~42z!

3x D M2~y! D
1B8~y!M ~y!S 2

3y
2

42z

3x D
1

A8~y!

2 S 4y

x
211

4

x
M2~y! D J . ~75!
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Keeping in mind a factor (1/y) hiding in the derivatives we
identify three quadratically divergent terms: (42z)/3x in the
second line,22(42z)y/3x in the third line, and 4y/x in the
last line. The first two of them are artifacts of the regulariz
tion and will be subtracted from the kernels. However,
encounter the additionalz-independent quadratic diverge
term 4y/x originating from the transverse part of the Curt
Pennington vertex. Such a term is already known from c
responding studies in QED@37#. Although first suggestions
have been made how the Curtis-Pennington vertex shoul
modified to avoid this problem@3#, a convincing solution has
not been found yet. In our study we therefore choose
pragmatic strategy of subtracting this term by hand toge
with the other quadratically divergent parts.

Moreover, we subtract all further terms proportional
(42z). Although these terms are not quadratically diverg
they are artifacts of the regularization. We then obtain
z-independent expression for the quark loop at large m
menta. In Ref.@4# similar z-independent expressions for th
ghost and gluon loop have been derived. We therefore ar
at a transversal right-hand side of the gluon equation
large momenta as required in Landau gauge.

Collecting all modifications together we have the ne
kernels

W̃1~x,y,z!5W1~x,y,z!2
~y1z!~42z!

6x
, ~76!

W̃2~x,y,z!50, ~77!

W̃3~x,y,z!5W3~x,y,z!1
2zy~42z!

3x
, ~78!

W̃4~x,y,z!5W4~x,y,z!2
~y1z!~42z!

3x
,

~79!

W̃5~x,y,z!5W5~x,y,z!2
~y1z!~42z!

6x
,

~80!

W̃6~x,y,z!5W6~x,y,z!2
~y1z!~42z!

6x
,

~81!

W̃7~x,y,z!5W7~x,y,z!2
~y2z!~y1z!

x
,

~82!

W̃8~x,y,z!5W8~x,y,z!. ~83!

Note that the subtracted terms are chosen to preserve
symmetry of the kernels with respect to the squared qu
momentay andz.

Without quadratic divergences we are in a position to
tract the leading logarithmic divergence of the quark loo
With modified kernels the ultraviolet limit of the quark loo
is given by
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Pquark
UV 52

g2Nf

16p2
Z2E dyG2~y!

G~y!22d2d/d

Z~y!d
A22~y!

3H A~y!
22

3y
1

A8~y!

2 S 1

3
1

22

3y
M2~y! D

1B8~y!M ~y!
2

3y
1

A8~y!

2 S 211
4

x
M2~y! D J .

~84!

Similar to the situation in the DSE for the quark mass fun
tion the leading ultraviolet term is the first term in the cur
brackets. For the ghost and gluon dressing functions we
ploy the perturbativeAnsatz

G~z!5G~s!Fv logS z

sD11Gd

,

Z~z!5Z~s!Fv logS z

sD11Gg

, ~85!

and determine the anomalous dimensionsd and g as well
as the coefficientv self-consistently as follows. Substitutin
the ultraviolet limit of the vector self-energy, Eq.~23!,
and choosing the perturbative renormalization condit
G(s)5Z(s)51 we arrive at

Pquark
UV ~p!5

2Nf

3~2d11!v

g2

16p2 H Fv logS L

sD11G2d11

2Fv logS x

sD11G2d11J . ~86!

Combining this expression with the results for the ghost a
gluon loop from Ref.@4# we obtain as the ultraviolet limit of
the gluon equation

Fv logS x

sD11G2g

5Z31S Ncg
2

96p2v~2d11!

2
7Ncg

2

48p2v~2d11!
1

2Nfg
2

48p2v~2d11!
D

3H Fv logS L

sD11G2d11

2Fv logS x

sD11G2d11J . ~87!

The corresponding expression for the ghost equation re
@4#
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Fv logS x

sD11G2d

5Z̃32
3Ncg

2

64p2v~g1d11!

3H Fv logS L

sD11Gg1d11

2Fv logS x

sD11Gg1d11J . ~88!

The renormalization constantsZ3(s,L) and Z̃3(s,L) cancel
the cutoff dependence, i.e., the respective first terms in
curly brackets. Thus the power and the prefactor of the s
ond term have to match with the left-hand side of the eq
tions. This leads to the anomalous dimensions

g5
213Nc14Nf

22Nc24Nf
,

~89!

d5
29Nc

44Nc28Nf

which are related byg12d1150 and in accordance with
one-loop perturbation theory for arbitrary numbers of col
Nc and flavorsNf . For the coefficientv one obtains

v5~11Nc22Nf !a~s!/~12p!5b0a~s!/~4p!. ~90!

When combined according to Eq.~17! our ghost and gluon
dressing functions lead to the correct one-loop running of
couplinga(x) at large momenta.

B. Infrared analysis of the quark loop

The infrared analysis of the ghost and gluon DSEs i
truncation with a bare ghost-gluon vertex has been p
formed in Refs.@4,7,8#. To leading order the power lawAn-
satz

Z~x!;x2k, G~x!;x2k, ~91!

for the ghost and gluon dressing functions at small mome
x5p2 has been employed. For a transverse projection te
~64!, i.e., z51, one obtainsk5(932A1201)/98'0.5954
for the exponent of the dressing functions and subseque
the fixed pointa(0)'8.915/Nc for the running coupling in
the infrared.

These results have been obtained in a truncation wh
the ghost-loop dominates the gluon-loop in the infrar
Therefore in order to investigate the effects of dynami
quarks in the system we compare the infrared behavior of
quark-loop with the one of the ghost-loop. Substituting t
Ansatz ~91! into the gluon equation and calculating th
ghost-loop along the lines of the infrared analysis given
Refs. @4,7# one finds the ghost-loop to be proportional
x22k. For the quark loop including the effects of dynam
cally generated quark masses we obtain

Pquark
IR ~p!;x22k121kd/d. ~92!
09402
e
c-
-

s

e

a
r-

ta
or

tly

re
.
l
e

e

n

Thereforethe quark loop is suppressed for small momen
provided the parameterd fulfills the condition

d,
22d

k
. ~93!

As we havek'0.5954 andd521/4 for Nc53 andNf53
we find the conditiond,0.84, which is satisfied for al
quark-gluon vertices employed in our calculation. From
numerical point of view we encounter serious instabilities
the quark equation onced is taken to be larger thand
'0.2.

We conclude that with dynamically generated qua
masses the quark loop does not change the infrared beh
of the ghost and gluon dressing functions found in Re
@7,8#. In pure Yang-Mills theory as well as in QCD we thu
have an infrared finite or vanishing gluon propagator an
ghost propagator which is more divergent than a simple p
The Kugo-Ojima confinement criterion@38,39# and Zwan-
ziger’s horizon condition@8,40# are both fulfilled not only in
pure Yang-Mills theory~see, e.g., Ref.@25#! but also in QCD.

The reasoning above reveals a self-consistent pic
valid for a small number of flavors: As has been demo
strated in our quenched calculations the combined stren
of the ghost and gluon propagator generates sizeable
namical quark masses in the quark DSE. In the unquenc
case these masses suppress the quark loop in the inf
such that the ghost and gluon propagators are hardly cha
in the infrared and in turn nearly the same amount of mas
generated in the quark equation as in the quenched case.
scenario is verified by our numerical calculations presen
in the next section. On the other hand for a sufficiently la
number of light flavors we expect a different self-consiste
picture to apply: Chiral symmetry should be restored. W
vanishing quark masses the quark loop will contribute to
gluon DSE at small momenta and the infrared behavior
the Yang-Mills sector will be changed. Especially it is e
pected that the value of the fixed point of the running co
pling is decreased dramatically. This in turn drives the qu
equation to the chirally symmetric solution withM (p2)
[0. This second self-consistent scenario as well as the s
ation under the presence of a small amount of explicit ch
symmetry breaking are subject to future investigations.

V. NUMERICAL RESULTS

The numerical treatment of the integrals in the ghost a
gluon equations has been described in detail in Ref.@4#. The
iteration process is done for the ghost-gluon system and
quark equations separately: we first iterate theNf mutually
uncoupled quark systems until convergence is achieved,
the output into the ghost and gluon system, iterate until
ghost-gluon system converges, feed the output back into
quark equations, and so on, until complete convergence o
equations is achieved. We renormalized at the points5m2

given bya(s)50.2 and used a transverse tensor to contr
the gluon equation,z51.

In contrast to the quenched calculation we fix the physi
scale of the system not by the conditiona(MZ

2)50.118 but
0-15
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TABLE II. A comparison between the quenched~qu.! and unquenched~unqu.! results for the quark mass M~0!, the pion decay constan
f p , the renormalization point independent chiral condensate, the running coupling at the mass of theZ boson, andLQCD

MOM for different
vertices and values of the parameterd. The unquenched calculations are done forNf53 chiral quarks. Furthermore, we haved5
29Nc /(44Nc28Nf)520.25 in the present case.

M~0! f p (2^C̄C&)1/3 LQCD
MOM

@MeV# @MeV# @MeV# a(MZ) @MeV#

Vertex qu. unqu. qu. unqu. qu. unqu. qu. unqu. qu. unqu

Bared50 177 176 38.5 38.4 160 170 0.118 0.146 710 748
CPd5d 150 133 50.5 46.3 225 230 0.118 0.146 710 746
CPd50 369 360 78.7 78.7 300 310 0.118 0.143 710 672
CPd50.1 464 437 87.5 85.5 330 330 0.118 0.142 710 640
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by adjusting the pion decay constant. This choice has
important advantage: Whereas the behavior of the runn
coupling for large momenta depends strongly onNf , the
pion decay constant turns out to be almost independent o
number of flavors. In our quenched calculation we obtain
f p578.7 MeV for the CP-type vertex withd50. Recalling
that our approximation~42! should lead to an underestima
tion of f p by about 10–20 % this value is in good accordan
with experiment asf p

exp.593 MeV. We therefore chose th
scale in the unquenched calculations to lead to the same
cay constant for the CP-type vertex withd50.

In Table II we compare results for the quenched and
quenched system of equations. The quark mass, the pion
cay constant, and the chiral condensate differ only sligh
for each vertex construction, respectively. The only sizea
difference occurs in the running coupling. As expected fr
perturbation theory the unquenched running forNf53 re-
sults in larger values of the running coupling atp25(MZ)2

compared to the quenched caseNf50. We obtaina(Mz)
'0.140, which is somewhat larger than usually quoted v
ues from experiment. However, such large values are no
excluded by experiment. A recent analysis of experimen
data fromt-decay suggestsa(Mz)'0.129 @41#. If we in-
crease the number of flavors in our calculation we encou
large numerical uncertainties and do not obtain converge
for Nf>5. This might be a signal that in the range 3,Nf
<5 the above discussed transition of the system to
chirally symmetric phase takes place.

All employed vertex constructions allow for nontrivial so
lutions of the quark equation corresponding to dynami
chiral symmetry breaking. However, similar to the quench
case and in accordance with the results of Refs.@20,21# the
bare vertex construction and the CP-type vertex withd5d
generate much too small quark masses compared with
cal phenomenological values. Ford50 we obtain good re-
sults for the quark mass, the pion decay constant and
chiral condensate, whereas the choiced50.1 leads to some
what large values. It is interesting to note thatd50 of all
values is preferred as in this case the quark equation
sembles most the fermion equation of QED.

In Fig. 8 we display the ghost, gluon, and quark dress
functions corresponding to the unquenched and quenc
cases withd50 from Table II@42#. We find different anoma-
lous dimensions in the ultraviolet corresponding to t
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change fromNf50 to Nf53, cf. Eqs.~30!, ~33!, ~89!. As
expected from the infrared analysis of the quark-loop
back reaction of dynamical quarks in the gluon equation d
not affect the infrared behavior of the ghost and gluon dre
ing functions. Consequently the infrared fixed point of t
running coupling is the same as in pure Yang-Mills theor

Our results for the case of explicitly broken chiral sym
metry are shown in Fig. 9. We chooseNf53 with renormal-
ized quark masses corresponding tomu/d(2 GeV)
54.6 MeV andms(2 GeV)596 MeV within our renormal-
ization scheme. These masses are well in the range sugg
by the Particle Data Group@34#, however, they should not b
identified directly as the PDG employs a modified minim
subtraction (MS) scheme. Compared to the chiral case
behavior of the ghost and gluon dressing functions har
changes. For the quark mass function we obtain the irreg
asymptotic solution in the ultraviolet as expected.

For further use, e.g., in phenomenological calculatio
we provide fits to our results for the quark propagator e
ploying the fit functions

M ~x!5
1

g11~x/LQCD
2 !g2

S g1M ~0!

1m̂F 2

ln~x/LQCD
2 !

2
2

~x/LQCD
2 !21

G gm

3~x/LQCD
2 !g2D , ~94!

@A~x,s!#215
@A~0,s!#211h1~x/LQCD

2 !1h2~x/LQCD
2 !2

11h3~x/LQCD
2 !1h4~x/LQCD

2 !2
,

~95!

with x5p2 and the six parametersg1 ,g2 ,h1 ,h2 ,h3, andh4.
We used the renormalization point independent current-qu
massm̂, which is related to the renormalized massM (s) by

m̂5M ~s!S 1

2
ln@s/LQCD

2 # D gm

, ~96!
0-16
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FIG. 8. Displayed are the ghost and gluon dressing function,Z andG, the running couplinga, the quark mass functionM, and the inverse
vector self-energy 1/A. The calculations are done quenched and unquenched withNf53 quarks in the chiral limit. The parameterd in the
vertices is set tod50.
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to one loop order. For the running coupling, the ghost and
gluon dressing function we use the form ‘‘Fit B,’’ given i
Eq. ~38! and the fit functions from Eq.~41!. In Table III we
give our values for all parameters as well as the numer
results forM (0) and@A(0)#21. Note that the scaleLQCD

MOM is
different to the corresponding scale in the chiral limit due
the different ultraviolet behavior of the quark-loop whe
quarks with nonvanishing bare masses are employed. W
plotted the fits are virtually indistinguishable from our resu
in Fig. 9.

Unquenched lattice calculations employing dynami
quarks are complex and time consuming@43#. To our knowl-
edge such simulations for the propagators of QCD have
yet been performed. From our results in the Dyso
Schwinger approach we do not expect drastic differences
tween quenched and unquenched propagators on the la
Note, however, that our calculation includes quark-loop c
rections to the gluon self-energy but not higher order ver
corrections like mesonic loops. In a model calculation of
pion charge radius such loops have been estimated to
tribute roughly at the order of 10%@44#.

Finally, we investigate possible positivity violations in th
gluon and quark propagators. According to the Osterwald
Schrader axiom of reflection positivity a two-point correl
tion function S of Euclidean field theory has to satisfy th
condition @45#

E
0

`

dtdt8 f̄ ~ t8,pW !S~2~ t1t8!,pW ! f ~ t,pW !.0 ~97!
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if a physical particle is described. Heref are complex valued
test functions. A violation of this condition signals the a
sence of the corresponding particle from the physical sp
trum of the theory, i.e., the particle is confined. The on
dimensional Fourier transformS(t,pW ) of the propagator
S(p0 ,pW ) is given by

S~ t,pW !ªE dp0

2p
S~p0 ,pW !eip0t. ~98!

Provided there is a region aroundt0 whereS(2t0 ,pW ),0 one
can choose a real test functionf (t) which peaks strongly a
t0 to show positivity violation. In the following we chosepW
50.

In the first diagram of Fig. 10 we display the Fouri
transform of the nontrivial partD(p2)5Z(p2)/p2 of the
gluon propagator. Clearly one observes negative values
large interval. The resulting positivity violation for the tran
verse gluon propagator in Landau gauge is a clear signa
gluon confinement. This corroborates previous findings
the quenched approximation@5#. These positivity violations
have also been observed in lattice studies, see Ref.@12# for
recent corresponding results or Ref.@46# for a review.

In the quark propagator positivity violations have be
found in model studies, which solve the quark Dyso
Schwinger equation with anAnsatzfor the gluon propagator
as input~see@2,47,48# and references therein!. Similar vio-
0-17
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FIG. 9. Results from the unquenched calculation withNf53 massive quarks. We used the renormalized massesmu/d(2 GeV)
'4.6 MeV andms(2 GeV)'96 MeV. Again we chosed50 for both vertices.
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lations have been found in~211!-dimensional QED@49#.
For the model of Ref.@33# or a propagator with complex
conjugate poles@50# we tested our numerical routines an
found positivity violations very easily. Contrary to thes
findings we do not observe positivity violations for the qua
propagator from the coupled set of DSEs. The lower pane
Fig. 10 shows our results for the Fourier transform of t
vector partsV(p2)5A(p2)/@p2A(p2)1B(p2)# and the sca-
lar partsS(p2)5A(p2)/@p2A(p2)1B(p2)# of our solutions
for the quark propagator employing four different quar
gluon vertices. All our solutions appear to be positive de
nite at the present level of numerical accuracy. Howeve
more accurate study is required to settle this point@51#. Fur-
thermore note that even if confirmed our findings are no
contradiction with the absence of quarks from the phys
spectrum of QCD as violation of positivity is a sufficient b
not a necessary condition for confinement.
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VI. SUMMARY

We have presented solutions of the~truncated! Dyson-
Schwinger equations for the propagators of Landau ga
QCD. We first concentrated on the Dyson-Schwinger eq
tion for the quark propagator. We proposed severalAnsätze
for the quark-gluon vertex which consist of an Abelian p
carrying the tensor structure of the vertex and a non-Abe
multiplicative correction. Our guiding principles for the con
struction of these vertices have been two important con
tions on the truncated quark equation: it should be multip
catively renormalizable and recover perturbation theory
large external momenta. In our truncation scheme the qu
mass function is, as required from general arguments, in
pendent of the renormalization point and has the corr
asymptotic behavior for large momenta.

In the quark equation both the ghost and gluon dress
function show up at least implicitly. In quenched approxim
e

0681
37
TABLE III. Parameters for the fits to the unquenched results withNf53, d520.25,gm512/27, andb0527/3, using the CP vertex with
d50. The renormalization points5497 GeV2 is determined by the conditiona(s)50.2. Note the change inLQCD

MOM as compared to the cas
of chiral quarks.

LQCD
MOM mR m̂ M (0)

@MeV# a b c d @MeV# @MeV# @MeV# g1 g2 A21(0,s) h1 h2 h3 h4

625 1.22 1.00 1.33 2.01 4.6 4.6 369 1.83 1.23 0.638 0.515 0.00688 0.562 0.0
96 98 528 2.96 1.03 0.671 0.302 0.00139 0.318 0.001
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FIG. 10. Here we display the one-dimensional Fourier transforms of the gluon propagator,D(2t,pW 2), and the scalar and vector parts

the quark propagator,sS(2t,pW 2) and sV(2t,pW 2). For the three momentum we chosepW 250. The timet is given in internal units. We
observe violation of reflection positivity for the gluon propagator but not for the quark propagator.
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sis
tion, which is suitable to compare to lattice results, we e
ploy solutions of the ghost and gluon Dyson-Schwing
equations taken from Ref.@4#. In a second step we include
the back reaction of the quarks on the ghost and gluon
tem and solved the quark, gluon, and ghost Dys
Schwinger equations self-consistently.

All our solutions exhibit dynamical chiral symmetr
breaking. However, only carefully constructed vertexAn-
sätze have been able to generate masses in the typical
nomenological range of 300–400 MeV. Constructions w
an Abelian part satisfying the Abelian Ward identity are s
perior to other vertexAnsätze. We obtained very good result
for the quark mass, the pion decay constant, and the c
condensate by employing a generalized Curtis-Penning
@23# vertex. In the chiral limit both the quark mass functio
and the vector self-energy coincide with recently obtain
lattice results@13,14# within the numerical uncertainty. Thi
agreement confirms the quality of our truncation and in t
shows that chiral extrapolation on the lattice works well.

In the unquenched case including the quark-loop in
gluon equation withNf53 light quarks we obtain only sma
corrections compared to the quenched calculations. In
ticular for the case of dynamically generated quark mas
the quark loop turns out to be suppressed in the gluon e
tion for small momenta. We thus showed on the level of o
09402
-
r

s-
-

e-

-

al
n

d

n

e

r-
es
a-
r

truncation that the Kugo-Ojima confinement criterion@38,39#
and Zwanziger’s horizon condition@8,40# are satisfied in
Landau gauge QCD.

Furthermore, we searched for positivity violations in t
gluon and quark propagators. We confirmed previous fi
ings @5# that the gluon propagator shows violation of refle
tion positivity. Thus the gluon is not contained in the phy
cal state space of QCD. We did not find similar violations f
the quark propagator. This issue is currently investigated
more detailed study@51#.
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APPENDIX: ANGULAR INTEGRALS

The angular integrals employed in the ultraviolet analy
are given by
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where the squared momentumz is defined asz5(p2q)2

5x1y22Axy cos(u).
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