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The coupled system of renormalized Dyson-Schwinger equations for the quark, gluon, and ghost propaga-
tors of the Landau gauge QCD is solved within truncation schemes. These employ bare as well as nonpertur-
bative Ansazefor the vertices such that the running coupling as well as the quark mass function are indepen-
dent of the renormalization point. The one-loop anomalous dimensions of all propagators are reproduced.
Dynamical chiral symmetry breaking is found; the dynamically generated quark mass agrees well with the
phenomenological values, and the corresponding results from lattice calculations. The effects of unquenching
the system are small. In particular the infrared behavior of the ghost and gluon dressing functions found in
previous studies is almost unchanged as long as the number of light flavors is smaller than four.
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[. INTRODUCTION nonperturbative effect, as it is well known that for vanishing
bare masses the renormalized masses remain zero at each
Based on many observations in hadron physics, the spomrder in perturbation theory. In addition to the phenomenon
taneous breaking of chiral symmetry and the dynamical genef mass generation we are interested in quark confinement.
eration of quark masses are expected to occur in quantu@ingle quark states have a nonvanishing color charge and are
chromodynamicgQCD). The precise origin of this nonper- therefore not contained in the physical part of the state space
turbative phenomenon as well as its relation to quark conef QCD. This physical subspace supports a positive
finement are still little understood. Further studies of thesdsemjdefinite metric whereas the remaining state space of
issues have to build on reliable nonperturbative methodsQCD contains negative norm states as well. Consequently,
and, as confinement is expected to be correlated with infraredegative norm contributions to the quark propagator would
singularities, continuum-based methods will be required irprovide evidence for quark confinement.
addition to Monte Carlo lattice calculations. To this end we This paper is organized as follows. In the next section
note that the Dyson-Schwinger equatioi3SE9 of QCD  suitable Ansdze for the quark-gluon vertex will be con-
can address directly the infrared region of momentum. structed such that the DSE for the quark propagator guaran-
The DSEs for the propagators of QCD form a coupledtees the realization of two important consistency conditions.
system of equations. In the Landau gauge these have be@hese ardi) the independence of the dynamically generated
investigated along two lines of research. On the one handjuark mass function from the renormalization point &ingl
the DSEs of pure Yang-Mills theory have been explored withthe correct asymptotic behavior at large momenta such that
the aim of revealing the infrared behavior of the ghost andhe anomalous dimensions of dressing and mass functions
gluon propagator and their relation to gluon confinementare correct in one-loop order. Fortunately, the corresponding
(see, e.g., the reviefil] and references thergirOn the other DSEs for the fermions of QED are well studigd short
hand, the quark DSEs have been studied extensively for theverview is given, e.g., if3]). We will dwell on these results
purpose of model building. These models have been used iand construct non-Abelian generalizations of Abelian verti-
the framework of Bethe-Salpeter equations and finite temees, which have the desired properties.
perature field theory to describe the hadronic properties and In the following section we present solutions for the
reactions in a semiphenomenological wage, e.g., the re- quenched system of quark, ghost, and gluon DSEs; i.e., we
view [2] and references thergin neglect the quark-loop in the gluon equation. The Yang-Mills
In this article the numerical results for the coupled set ofsector is hereby treated in a truncation scheme for the ghost
quark, gluon,and ghost propagators, including the back re- and gluon equations that already has been employed in Ref.
action of the quarks on the ghosts and gluons, are present¢d]. This scheme improves on older ori&s6], provides an
for the first time. In the quark DSE we will study the mecha- explicit numerical solution for the infrared analysis given in
nism of dynamical chiral symmetry breaking by which Refs.[7,8], and its results are in almost quantitative agree-
physical quark masses are generated even though the barent with corresponding results of lattice calculations for the
quark masses in the Lagrangian are zero. This is a genuirgluon and ghost propagatof8—12. The main purpose of
calculating the quark propagator in quenched approximation
is to allow for a comparison with corresponding recent lattice
*Email address: chfi@tphys.physik.uni-tuebingen.de results[13,14. We find very good agreement of our results
"Email address: reinhard.alkofer@uni-tuebingen.de for the quark renormalization function and the momentum-
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dependent dynamical quark mass with the lattice results ifjator obtained in Ref.4] the unknown element to be deter-
the quark-gluon vertex functions constructed in Sec. Il aremined in the quark DSE is the dressed quark-gluon vertex.
employed. We then proceed to the unquenched case and in- Following the conventions and notations of REf] the
corporate the quark-loop into our truncation scheme for theenormalized quark DSE with appropriate quark wave func-
ghost and gluon DSE. We present solutions for the fulltion and quark-gluon vertex renormalization constaats,
coupled system of DSEs for the quark, ghost, and gluorandZ,g, respectively, reads
propagators. Compared to the quenched case we will find
only moderate differences for the number of light flavors _ 1
N;=<3. Whereas we are able to demonstrate positivity viola- STHP) =28 () +9°ZCr
tion in the gluon propagatofand thus gluon confinement q4
we have not been able to draw definite conclusions on the f a9 _ _

X Y, S(@)I'.(a,—p)D,.(d—P).
(non-)positivity of the quark propagator. In the last section T .
we summarize our results and present some conclusions. 1)

Il. THE QUARK DYSON-SCHWINGER EQUATION The factorCr=(N2—1)/2N, in front of the integral stems

The coupled DSEs for the gluon, ghost, and quark propaffom the color trace of the loop. The symbbl,(q.q—p)
gators in Landau gauge QCD are shown in Fig. 1. As statefenotes the full quark-gluon vertex. Suppressing color indi-
in the Introduction we will employ first the quenched ap- ¢€s the quark and gluon propagators in Landau gauge are
proximation, i.e., we will neglect the quark loop in the gluon given by
equation. This will allow us to assess the quality of our quark
DSE solution by comparing to lattice calculations of the 1 ip+M(p?)
quark propagatofl13] performed so far only in quenched S(p)= =AY 2)—p, )
approximation. As we furthermore employ the gluon propa- —ipA(p?) +B(p?) p2+M?2(p?)
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L,(a,k)=V3"(p,q, oW 2**(p?,g% k%), (8
So(p)=——/—, 3
—ip+mg
with p andqg denoting the quark momenta akeF (q—p) the
p.p,\ Z(p?) gluon momentum. The non-Abelian facta 3¢ multiplies
Du(p)=| 0.~ ”2 > (49 an Abelian partva*®', which carries the tensor structure of
P p the vertex. ThisAnsatzis motivated by the aim to respect

where the quark mass functiol is defined asM(p2) gauge invariance as much as possible on the present level of

— B(pz)/A( p2) truncation. . .
The inverse of the vector self-ener 2) is often The_Slgvnov-Taylor identitySTI) for the quark-gluon
gyAld"), is ofte vertex is given by 16]
denoted as the “quark wave function renormalization.” The
bare quark propagatd®,(p?) contains the unrenormalized
quark massny(A?2) which depends on the cutoff of the
theory. The bare mass is related to the renormalized massG ™~ *(k?)ik I ,(q,k)=S"*(p)H(q,p) —H(d,p)S *(q),
mg(x?) via the renormalization consta@t,: 9)

2y_ 272 2
Mo(A%) = Zm( % AT MR(%). ®) with G(k?) being the ghost dressing function akt{q,p)

the ghost-quark scattering kernel. At present the nonpertur-
propagator function\, B, andZ depend on this renormal- bative behavior of the ghost-quark s_cattering Igernel is un-
ization scale. Therefore in the following we will use the no- known. Therefpre we cannot solve this ST epr|_0|tIy. How-
tation A(p2 12), B(p% 12), andZ(p? ud). ever, comparing th_e structure of EqQ9) with the

The renormalized and the bare vector self-enefggnd ~ cOrresponding Ward identity of QED,
Ao, are related by

Here u? is the(squaredi renormalization scale. Note that the

Ao L(p? A% =Z5(u2 A2 A X(p?, 1) (6) ik, T2, k) =S"*(p) =S *(a), (10

In Landau gauge the loop corrections to the vector self-

energy are finite. CorrespondingB,(u?,A?) stays finite we are able to infer some information: Whereas the ghost
when the cutoff is sent to infinity, and we have O fields of QED decouple from the theory and consequently do
<Z,(u? A?)<1. Furthermore, in Landau gauge the ghost-not show up in the Ward identity there is an explicit factor of

gluon vertex is not ultraviolet divergent, and we can choosé> ~*(k?) on the left-hand side of Eq9). We therefore sus-

Z,=1[15]. The Slavnov-Taylor identity for the quark-gluon pect the quarzk-gluon vertex of QCD to_ contain an additional
vertex renormalization factdf,r thus simplifies16], factor of G(k") compared to the fermion-photon vertex of
QED. Some additional ghost dependent structure seems nec-
- essary to account for the ghost-quark scattering kernel on the
5 _ 4ty 24 0 right-hand side of Eq(9). For simplicity we assume the
1F 7y 73 whole ghost dependence of the vertex to be contained in a
non-Abelian factor multiplying an Abelian tensor structure.
Previous studies of the quark DSE in the so-called Abefor quenched calculations and in the context of angular ap-
lian approximation(see, e.g., the reviey2] or the recent proximated DSEs a similar strategy has already been adopted
summary[17] and references thergims well as the recent in Refs.[20,21]. The Abelian part of the vertex/2*®', will
investigation in Ref[18] assume implicit cancellations be- be adopted in the following from analognsaze in QED.
tween the full quark-gluon vertex and the dressed gluorThe Ward identity(10) has been solved, e.g., in R¢22]
propagator in the integral over the kernel of the quark DSEsuch that kinematical singularities are avoided. Furthermore
Furthermore, in the tensor structure of the quark-gluon vertransverse parts of the fermion-photon vertex have been
tex only a term proportional tg,, is employed. fixed such that multiplicative renormalizability in the Abe-
In the current investigation we do not have to rely onlian fermion DSE is satisfied for all linear covariant gauges
implicit cancellations since we calculated explicit solutions[23]. The resulting vertex is known as the Curtis-Pennington
for the dressed gluon and ghost propagafdtsWe will also ~ (CP) vertex.
construct explicit nonperturbativénsaze for the quark- The non-Abelian factoW2%¢' is chosen such that the
gluon vertex. We note that very recently lattice results for theresulting quark propagator satisfies two conditiofis:The
quark-gluon vertex became availabl@9]. However, at quark mass functioM (p?) should be independent of the
present the error bars from such simulations are too large teenormalization poin?; (ii) the anomalous dimensiop,
use the lattice results as a guideline in the construction obf the mass function known from perturbation theory should
reliable Ansdze for the quark-gluon vertex. To proceed we be recovered in the ultraviolet.
assume that one may approximately factorize the quark- In the course of this section we will prove the vertex
gluon vertex Ansatz
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Wabel(p2 g2 k?) squared momenta, also= u? for the squared renormaliza-
_ tion point andL = A? for the squared cutoff of the theory. We
(G(K?, u?)Z3(u?, A?))—2d-dls arrive at
[Z(K?, 1?)Z(u? AP)]
(1)  MOA(X,8)=Z5(s,L)mg(L) +

=G(k?, u?)Zs(u?A?)

Zy(s,L)

37

V2*e(p,q,k)
X f d“q{ Lz)zz(& L)A™X(y,s)

=TI'%(p,q.k) (12) ZLy+M3(y)]
> —2d—d/s
AR AR RY | BP% AT B (CEOZSL) Ty )b
- 2 e 02— QP [Z(z,5)Z5(s,L) ]
A(p?, 12— A(G?, u? Zx(s,L)
<(pra, P :(p)z_q(;j D prd)pa), AXS=Za(s L)+ =~
APZu?) =A@ u®) . a(2) .
+ 5 [(P=a%) v, Xf dq x4y+M2(y)]ZZ(S’L)A (y.s)
—(Ib_Q)(FH‘Q)V] X(G(Z,S)23(S,L))72d7d/5
" p*+q? 13 [Z(z,5)Z5(s,L)]°
(pz_q2)2+[M2(p2)+Mz(qz)]z X+y (x—y)2
. . L y X(—Z+—+ ) : (16)
with the new parametet to satisfy the condition§) and(ii). 2 2z

Again k denotes the gluon momentum ap@ndq the quark

momenta. The anomalous dimensi®of the ghost propaga- where we have used the following expression for the running
tor is 8= —9N./(44N.—8Ny), i.e., the corresponding value couplinge in Landau gaug¢s]

at one loop order foN. colors andN; flavors. The Abelian 2

part of 'E:hpe vertex is given by the Curtis-Penningt@P) a(x)= g—Z(X,S)GZ(X,S)Za(S)Z(X,S)GZ(X,s). (17)
vertexI'S"(p,q,k). 4

From a systematic point of view the newly introduced L .
parameterd in the non-Abelian part of the vertex is com- From Eqs.(15) and (16) it is clear that the choice of the

pletely arbitrary. Our numerical results, however, will indi- Parameted=0 is special since then the only input from the

cate that values around the somewhat natural chdic® Yang-Mills sector is the running coupling. o
match best with lattice simulations, see below. The behavior of Eqd(15), (16) under r'enc')rmallz'atlog can
For comparison we will also employ the much simpler P& €xplored by changing the renormalization paintu” to
vertexT", = VaPehyabel with wrabel given by Eq.(11) and & NEW pointt= v2. We first note that the factor stemming
vy ' from the non-Abelian part of the quark-gluon vertex is not

Vaelp k) =Z,( w2 A2)y (14) affected by such a change:
where we have taken the bare Abelian vertgx, multiplied (G(z,9)Z5(s,L)) > _ (G(z,H)Zy(t,L) 2
with an extra factor o¥,. In Landau gauge this construction [Z(z,s)ZS(s,L)]d [Z(Z,t)23(t,|_)]d '

also satisfies the conditiorfy and (ii), as will be shown in
the next two sections. Furthermore in the numerical treatThis can be seen easily with the help of the relations
ment we will additionally employ a vertex where the last,

transverse term in Eql3) is left out, i.e., a generalized GO(X,L)=G(X,S)23(S,L), (18
Ball-Chiu (BC) vertex. In Landau gauge such a vertex also
satisfies the conditiong) and (ii). Zo(X,L)=2(x,8)Z5(s,L), (19

between the unrenormalized and renormalized ghost and
. ) i gluon dressing functions. Furthermore, the running coupling
To proceed we first substitute the simpler verfexsatz  4(z) is independent of the renormalization point, for a de-

(14) into the quark equatioiil). By taking the Dirac trace tajled discussion of this property using the expressibn
once with and once without multiplying the equation wth  gee Ref[5].

A. Multiplicative renormalizability of the quark equation

we project out the mass functivi(p?) and the vector self- From Eq.(6) we infer
energyA(p?). To ease notation we will use in the following
the abbreviationsx=p?, y=q?, and z=(p—q)? for the Z,(t,L)A"Y(x,t)=Z,(s,L)A"L(x,s). (20)
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of the renormalization factors fdr—o and the relationy
+26+1=0 for the anomalous dimensions of the gluon and
the ghost, respectively.

Along the same lines as for the bare vertex construction
we prove conditior(i) for the Curtis-Pennington type vertex.
Plugging Eqgs(11), (13) into the quark equatiofil) and pro-

Z(t,L)

-

S X

FIG. 2. Sketch of a finite renormalization from a perturbative
point s to a nonperturbative poirtfor the vector self-energp.

With the renormalization conditioA(t,t)=1 we have
Z,(t,L)=Z5(s,L)A"X(t,s), (21)
and subsequently
A(x,t)=A(x,5)A"(t,s). (22

Substituting Eqs(21) and (22) into the Dyson-Schwinger
equation(15) we find the mass functio (x) to be indepen-
dent of the renormalization point, i.e., conditiGn is satis-
fied. Note that without the extra factor &f, in the Abelian
part of the vertexX14) we would violate this condition.

Before we examine the case of the more sophisticated
Curtis-Pennington type vertgt3) two remarks are in order.

Zy(s,L)
First, according to perturbation theory we hat¢x—o=,s)  A(X,S)=Zy(s,L)+ 3.3 f dq
o

—1 and Z,(s,L)—1 for large renormalization points.
However, this is just a special case of the general relation

A(x—,8)—Z5(s,L), (23

which can be inferred from Eq$21) and(22). In Fig. 2 we
sketch the vector self-energy renormalized at two different
pointss andt, with sin the perturbative antin the nonper-
turbative region of momentum. Of course, this mechanism
will be found again in the numerical results, see belBerc-
ond, the appearance of the ghost and gluon renormalization

factors Zg(L) and Z5(L) in the interaction kernel of the
quark equation is due to the non-Abelian part of the em-
ployed quark-gluon verteAnsatz Certainly, the renormal-
ized functionsM(x) and A(x,s) should not depend on the
cutoff of the integral. The balance of cutoff dependent quan-
tities in the equation is controlled by various factors of
Z5(L) andZ,(L). We have to take care not to disturb this
balance by the verteAnsatz Thus the non-Abelian part of
the quark-gluon vertex contains such powersZgfL) and

Z5(L) that the cutoff dependence of these quantities cancel.
This can be easily checked using the scaling behavior

a(L)\?

L)

-~ a( °
Zy(s,L)= (m) , (29

094020-5

A(x,t) jecting ontoM (x) andA(x) we arrive at

M(X)A(X,8) =Z5(s,L)mo(L)

Zy(s,L) [, a(z)
" 370 fd qz[y+|\/|2(y)]
X(G(z,sﬁs(s,u)*z"*d’&

[Z(sz)ZS(S1L)]d

A (y,s)

3 1
X E[A(x,s)+A(y,S)]M(y)+ E[AAM(y)

—AB]| —z+2(x+y)—

(x—y)z>
Z

3
+ z[A(x,s) —A(y,s)IM (y)Q(x,y)(x—y)},

(25
a(z)
xZ4y+M23(y)]
(G(2,5)Z4(s,L)) 2792 X+y
Taszenr I
(x—y)?\A(x,s)+A(Y,s) [AA
T ) 2 _(T(X“’)
_ 2
+ABM(y)>(—;+(x+y)—(X22y)
3
+E[A(x,S)—A(y,S)]M(y)Q(x,y)
2_\,2 _
><<X 2y —z%”. (26)

Here we have used the abbreviations

A A(x,8)—A(y,s)

X—y
B(x,s)— By,
AB= (x,s) (yS)’
X—y
X+y
Q(x,y)=

(x—y)2+[MA(x)+M2(y)]?



C. S. FISCHER AND R. ALKOFER PHYSICAL REVIEW 17, 094020 (2003

With the help of the relation€1) and(22) we find again the gluon dressing function& andZ in the case oN;#0. We
quark equationg25), (26) to be consistently renormalized. thus use the general perturbative limit
Employing

S5
z
B(x,1)=B(x,9)A L(t,s) 27 G(2)=G(s)| wlog| 5| +1
it can be seen directly that the mass function 7 y
Z(z)=Z(s)|wlog| = | +1 (30
M(x)=B(x,s)/A(X,s) (28 S

is independent of the renormalization poifithe same is With = Boa(s)/(47)=(1IN.—2N¢)a(s)/(12m). If we
true for a Ball-Chiu type vertex, which is the Curtis- additionally substitute the scaling behavior of the renormal-
Pennington constructioif13) without the transverse term ization constantZs andZ3, Eq.(24), and exploit the relation
proportional toQ)(x,y). Note that in different gauges than y+245+1=0 we arrive at

Landau gauge only the Curtis-Pennington construction

would satisfy conditior(i), similar to QED[23].] M(x)=m (L)+_ f dyM(y)+—f dy 2y (y) M(y)
o - .
B. Ultraviolet analysis of the quark equation (3D
In this section we will show that thansaze (13) and(14) This well known equation describes the ultraviolet behav-

for the quark-gluon vertex both lead to the correct perturbaior of the quark mass function, see, e.g., Ré#i]. Employ-
tive limit of the quark mass functiokl (x). We first examine  ing the perturbative form of the running coupling,

the case of the bare vertex construction, Edp).

The ghost and gluon dressing functios and Z are
slowly varying for large momenta according to their pertur- aly)=a(s)
bative limit. For loop moments larger than the external
momentunx we are therefore justified to employ the angularone obtains in the chiral limitng(L) =0, the so-calledegu-
approximationG(z),Z(z) —G(y),Z(y), see Ref[4]. Fur- lar asymptoticform
thermore, there is a regioxy<y<x where the approxima-

-1

+1| (32

y
w log S

tion G(z),Z(z)—G(x),Z(x) is adequate. We are then able 27y —(\5\1’)
to carry out the angular integrals in E@.5). If we addition- M(x)= I=m" (33
ally take the external momentumto be large enough all x(zln(x/AéCD)

masses in the denominators become negligible since the in-

tegral is dominated by loop momenya-x. We then obtain Here(‘l_f\lf> denotes the chiral condensate which is discussed

M (X)A(X,S)=Z,(s,L)mg(L) in more detail in the next section. In the case of nonvanish-
ing bare quark massng(L)#0, Eq.(31) is solved by the

Zy(s,L) a(x) [x i i
N 2(s,L) )f dyZy(s.LIA 1(y.s) irregular asymptoticform
™ X Jxg -
X m
M(x)=M log| =|+1 4
(G(Z 3)23(5 L)) 2d—- d/zSM( ) (X) (S) w Og(S (3 )
y
[Z(2,9)Z4(s,L)]° In this case we furthermore find
Zz(S L) (y) N
Zy(sLIAH(y.) e 2 35
™ 1IN.—2N¢’
(B(z9Z5(sL) 2 v, @9 Ly ]
[Z(z,9)Z5(s,L)]® - Mo(L)=M(s)| wlog| ¢ +1}
: (36)
where the integral frony=0 to y=X, has already been ne-
glected. in accordance with perturbation theory.
For large momentg>x, the wave function renormaliza- We thus have shown that the bare vertex construgtidn

tion A~ and the renormalization factdr, cancel each other admits a solution for the mass functidh(x) which has the
according to Eq(23). The ultraviolet limit of the ghost and correct perturbative behavior for large momenta. A similar
gluon dressing functions from their respective DSEs inanalysis is possible for the DSE with the Curtis-Pennington
quenched approximation has been discussed in[Rgind  type vertex, Eq.25). As the vector self-energy goes to a
found to be in agreement with resumed perturbation theorgonstant in the limit of large momenta, E@®3), all terms

to one-loop order. As will be seen in the discussion beyongroportional toA(x) —A(y) are suppressed in this limit. Fur-
guenched approximation belojgee Eq.(89)], we also ob- thermore, according to the perturbative expressigd) the
tain the correct anomalous dimensions for the ghost andB term contributes at most subleading logarithmic correc-
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tions in EqQ.(25). The first term in the brackets reduces to thesis. In both fits the ultraviolet behavior of the solution fixes
bare vertex form becauggx,s)~A(y,s) for large momenta the scaleAqcp=0.71 GeV. Especially the fit B is very ro-
X,¥. Thus we obtain the same ultraviolet limit from Eg5) bust leading to a change iNgcp Of less than 1% when
as for the bare vertex construction. This is certainly also thalifferent fitting regions are chosen. Note that we have em-
case if a Ball-Chiu type vertex is employed. ployed a momentum-space subtractidtOM) scheme, and
thus A ocp has to be interpreted a&;,’\\',lg,\f; i.e., this scale has
lll. THE QUARK PROPAGATOR IN QUENCHED QCD the expected magnitude6]. Fit A employs the four addi-

tional parametersa;=1.106, a,=2.324, b;=0.004, and

: In this section we WlII_compare quar.k propagator resultsb2:3.169. Fit B has only two free parameteas: 1.020 and
in quenched approximation for three different vertex types

: . : b=1.052.
which share the non-Abelian part proposed in Ed) but
differ in their Abelian parts. We will employ the bare vertex, fimlar(]j t):;ndau gauge the gluon and ghost propagators are de-
Eq. (14), and the Curtis-PenningtofCP) type vertex, Eq.
(13). Furthermore, we use a Ball-Ch{BC) type construc- p.p,\ Z(p?)
tion, which employs only the first three terms of the CP DMV(p)=< Ouv— ”2 ) > (39
vertex. In Landau gauge all these vertemsaze satisfy the p p
conditions(i) and (ii) formulated above Eq11). In order to
compare the different vertex types on a quantitative level we G(p?)
will calculate the pion decay constaft and the chiral con- Dg(p)=— > (40
densate from the respective solutions for the quark mass p
function.

Before doing so we have to specify the effective quarkThe gluon and ghost dressing functio@{p?) and G(p?),
interaction as input from the Yang-Mills sector. respectively, are then described by

2 K 2 2k
A. Effective quark interaction R(X) = C(X/AQ(;D) er(X/AQCZD) —

Via the Ansatzof the quark-gluon vertex the effective 1+ c(x/ Agep) *+d(x/ Agep) ™
qguark interaction depends on the quark propagator functions a(x) | 1+20
A(x,s) andM(x) themselves. These functions will be deter- Z(x)= (— R2(x), (42)
mined self-consistently in the process of the solution of the a(p)
quark DSE. As further input the running coupling anddif a(x)| "
=0, the gluon and the ghost propagator are needed. These G(x)=(— “1(x),
will be taken from the results of Reff4]. a(p)

The DSEs of the Yang-Mills sector are scale-independent
and the underlying scale will be generated through dimenwherex=p? andc,d are fitting parameters for the auxiliary
sional transmutation during renormalization. To translate thi§unction R(x). They are given byc=1.269 andd=2.105.
scale into physical units the scaleycp is, in quenched ap- Recall that the anomalous dimensignof the gluon is re-
proximation, determined from the large-momentum behaviotated to the anomalous dimensighof the ghost byy=
of the running coupling, or more precisely, by requiring —1—26 and 6= —9/44 for the number of flavorsl;=0.
a(M3)=a[(91.187 GeV§]=0.118. Technically this is Whereas fit A is better in the region 0.3 Ge¥x
achieved by fitting the functional form of the running cou- <1 GeV* wherea is strongly rising, fit B is slightly better
pling. We employ two different fit function§25] for the  in the region 1 Ge¥<x<10 GeV’. As can be seen in Fig.

running couplinga(x): 3, both fits work very well and will be used as input below.
a(0) B. Pion decay constant, chiral condensate, and quark masses
FitA: a(x)= 5 > , . . .
In[e+ay(x/ Adcp)®2+ bl(X/AQCD)bz] A correct calculation of the pion decay constants involves
3 the pion Bethe-Salpeter amplitudes including the subleading

components, see, e.g., RefR7,28. Apart from the dressed

FitB:  a(x)= aa(0) qL_Jark propagator the Bethe-Salpeter equation involves cou-
: a+(XIA2qp)P plings between quarks and gluons. On the level of the quark
Qch DSE we have substituted the full quark-gluon vertex by a
A 1 1 vertex Ansatz However, at present it is only known for cer-
+— T > ) tain cases how such a vert&xsatzin the quark DSE trans-
Bo\In(x/Agep) X/ Adep—1 lates to the corresponding quark-gluon coupling in the
Bethe-Salpeter equatiof29]. No method is known up to
X(X/A(ZQCD)b _ (39) now to derive the corresponding Bethe-Salpeter equation for
dressed quark-gluon vertices as the BC- or CP-vertex con-
structions.
The valuex(0)=8.915N, is known from the infrared analy- We thus have to rely on the approximatif80]
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FIG. 3. Shown are the results for the gluon dressing fundiahe ghost dressing functidg, and the running coupling. The two sets
of fit functions are given in Eqg37) and (38). The B8 function corresponding to our DSE solution is compared to the one- and two-loop
expressions as well as to a polynomialdan

o &z s L)J' dyyM(y)Ail(y’s) _The renormaliz]a\tic:n poin.t dependerthiral condensate
m T 22 —[y+ MZ(y)]2 (¥W), can be calculated viE28] )
dM —(WW) ,:=7,(5,L)Z(S,L)Ntr f ——S.1(g%s),
> M(Y)*% d(Y)), (42) < >,u 2( m( ct'D (2’”_)4 ch(d
y (44)

where the trace is over Dirac indice%y, is the quark propa-
gator in the chiral limit, and the squared renormalization
point is denoted bys= 2. To one-loop order both expres-
sions for the condensate are connected by

which incorporates only the effects of the leading pion
Bethe-Salpeter amplitude in the chiral lini81]. From a

comparison of the relative size of the amplitudes in mode
calculations[32,33 one concludes that the approximation

(42) should lead to an underestimation fof by 10—20 %. — 1 5 2 Ym
The renormalization point independenhiral condensate, (VW)= 5'”(,“ IAgep) | (W), (49
(W), can be extracted from the ultraviolet behavior of the ) ] )
quark mass function in the chiral limficf. Eq. (33)]: }Nltht_ym being the anomalous dimension of the quark mass
unction.
_ For the calculation of the chiral condensate we first have
X=L2 g2y (VW) to determine the mass renormalization constag(s,L).
M(x) — T=¥m* (43 Recall the formal structure of the mass equatid®), which
x(zln(x/AéCD)) is given as
M(X)A(Xas):ZZ(SIL)Zm(SaL)mR(S)+ZZ(S7L)HM(X1S)1
Hereby A ocp is to be taken from a fit to the running cou- (46)
pling, cf. Egs.(37), (38). wherelly,(x,s) represents the dressing loop. In order to ex-
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tract Z,(s,L) from this equation we have to clarify the already been used in quenched QHEB5]. The formal struc-

meaning ofmg(s) which is related to the unrenormalized ture of the quark equation is given by

mass by A(X,S) = Z(5,L) + Zo(s,L)TIo(X,5), (53
mO(L)zzm(SvL)mR(S)! (47)

cf. Eq. (5). Evaluating Eq.(46) at the perturbative momen-
tum x=s the matter seems clear. We achieve consistency
with Egs. (34) and(36), if

M(X)A(X,S) =Z5(s,L)Zn(s,L)mg(S)
+2Z5(s,L)ITy(X,s). (54)

We eliminateZ, from the first equation by isolating it on the

MR(s)=M(s), (48 left-hand side and subtracting the same equatiorxfes.
- With
L Ym
Zn(s,L)= wlog(g +1 , 1 L L
(49) Zos) A T A(xs AXS. (59

which is indeed the correct perturbative scaling of the renorye then have
malization constanZ, [2].

Certainly one could implicitlydefine the finite partef Z,, 1 1
such that the relatiofd8) holds in general for all renormal- A(X,s) B A(X,s)
ization pointss. Then the parameteng in the renormalized
QCD-Lagrangian would already know about dynamical sym-using the renormalization conditioA(s,s)=1. In each it-
metry breaking. However, as the mass parameters of QCBration step we determin&(x) from Eg. (56) and subse-
are supposed to be generated in the electroweak sector of thgently Z, from Eq. (55). As a numerical check we deter-
standard model one could equally well argue that it is morenine Z, at different momenta=p?. In our calculations we
systematic to exclude the effect of mass generation by strongnd z, to be independent gi? to a high accuracy. For the

ITA(X,8) +1IA(S,S), (56)

interaction frommg. mass functiorM (x) we use
In our numerical calculations we will choosdo be suf-
ficiently large, therefore Eq48) is valid anyway. Theiz,,, is M(X)A(X,8) =Z5(s,L)ITy(X,s) (57)

determined by ] o ,
in the chiral limit and the subtracted equation
M(X)A(X,S) —Z5(s,L)IT\(X,S)
Zy(s,L)= Z,(s.L)M(3) M (X)A(X,S) =M (S) + Z,(s,L) [T (X,5) — Z,(s,L) Ty (S,s)

(58)

1 ITy(s,s)
T Zy(sL)  M(s)

(500 if chiral symmetry is broken explicitly, i.emy#0.

For the numerical iteration we employ a Newton method
and represent the dressing functigkx(x) andM (x) with the
help of Chebychev polynomials. Furthermore, we use a nu-
merical infrared cutoffe, which is taken small enough for
the numerical results to be independentofNumerical dif-
ficulties arise in the case of the Curtis-Pennington type ver-
tex and even more for the Ball-Chiu construction. If the ex-
ternal momentunx and the loop momentumare both small

Ym and close to each other then the derivative-like terms
(51

For the last equation we have sets and have used the
renormalization conditioi(s,s)=1.

In the numerical calculations we have to specify the
massesng(s) as input. Choosing a perturbative renormaliza-
tion point s allows one to evolve the massesz(s) to a
different scalet by

In(s/Acp)

Mg(t) =mg(s) |n(t/AéCD)

A(x,s)—A(yY,s B(x,s)—B(y,s
aal A i— vs) 5B ))(_ 09 e
For t=(2 GeV) typical values for the masses of the light y y

quarks are given by the Particle Data Grdgd]: are hard to evaluate accurately. Although the functiafs)

1 and B(x) are constant in the infrared and consequently
7 (my+my)(2 GeV)=~4.5 MeV, should have derivatives close to zero, one encounters large
values forAA and AB due to numerical inaccuracies &
mg(2 GeV)~100 MeV. (520  andB. In order to evaluatA A andAB much more precisely

_ o _ _ at small momenta we fit the expressions
We will use similar masses in our calculations.

A(0s) B(0s)
= 7 & B(xs)= 7 b
1+a3(X/Agep) ™2 1+by(X/Agep) ™2
In the quark equation we employ a MOM regularization (60)

scheme similar to the one used for the ghost and gluon equa-
tions in Refs.[4,5]. For a fermion DSE this technique has with the parametera;, a,, b;, andb, to the numerically

C. Renormalization scheme and numerical method A(X,S)
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FIG. 4. The mass functioM (x) and the inverse vector self-energyAflx) of a chiral quark are shown. We compare the results for five
different vertices with lattice data taken from Rdf$3,14].

evaluated functions. The scalegcp=0.71 GeV has been =-9/44, already adopted in Ref0,21, and the value
determined from the fits to the running coupling already in=0.1. Furthermore we employed the bare vertex construc-
the last section. tion and a Ball-Chiu type vertex. The corresponding masses

For x—y smaller than a suitable matching point we cal-at the momentunp?=0, the pion decay constarft_, the
culate the terms\A and AB from the fits. This procedure renormalization point independent chiral condensate, and the
eliminates the numerical errors in the derivative terms andit parameters for the function80) are displayed in Table I.
smoothes the numerical results considerably. In the case of The numerical results for the mass function all have a
the Ball-Chiu type vertex the iteration process does not concharacteristic plateau in the infrared and show the regular
verge unless we use these fits. asymptotic behavior for large momenta, cf. Hd3). The

The renormalization condition employed in the ghost-pare vertex construction and the CP type vertex withs
gluon system of equations 'Q_Z(S)_Z(S):_l with «(s)  poth generate masses much smaller than typical phenomeno-
=0.118 at the squared renormalization pairtu?. Further- logical values of 300-400 MeV. The BC- and the CP-type
more we choose a transversal tensor to contract the gluo&nnstruction withd=0 provide good results, whereas the
equatiop, cf._Ref[4]. The physical scale in the. quenched choiced=0.1 leads to a somewhat large m:ass. The lattice
ic:lcuvlvaglounsse Itsh;al;ige?;;?gg%/a:r\?;u;(hl\i Z;Kin()g-ll\ﬁlzlglsofretilgts, calculz?\tions taken from Ref$13] (overlap fermions and
r.uﬁ’ning coupling at the mass of tIZebosoZn to f.ix the scale [14] (improved staggered action, Asgiadavor masses

" around 300 MeV with the caveat that they are obtained by an

extrapolation from sizeable bare quark masses to the chiral
limit. The numerical solutions for the wave function renor-

In Fig. 4 we give our numerical solutions for the quark malization 1A can be seen in the right diagram of Fig. 4.
mass function and the inverse vector self-energy in the chirdlvhereas the ultraviolet asymptotic behavior of all vertex
limit, employing “Fit A” for the effective quark interaction. constructions is similar we observe sizeable differences for
We compare results obtained with five differéltsazefor  small momenta. Again the bare vertex construction and the
the quark-gluon vertex. For the generalized CP vertex weCP vertex withd= & are clearly disfavored by the lattice
investigate the “natural” cased=0, the valued=46 data.

D. Numerical results

TABLE I. The masaM(0), thepion decay constarit, calculated with Eq(42), the renormalization point
independent chiral condensate calculated with E4$.and(45), and the condensate obtained by fitting the
expression43) to the chiral mass function in the ultraviolet for all five vertex types. Reéall-9/44 in
quenched approximation. If not stated otherwise the parandeiterthe vertex construction is taken to be
d=0. For the case of the CP vertex with= § we did not get good fits in the infrared.

M(0) f. (_<6\I,>)1/3 (—<\I_I\II>)1/3
[MeV] [MeV] [MeV](calc) [MeV]{fit)y AYOM3) a a, by b,

Bare vertex 177 38.5 162 160 0.733 3.05 0.99 0.06 1.00
CPd=46 150 50.5 223 225 0.910

BC vertex 293 62.6 276 284 0.523 1.10 0.99 0.29 0.92
CP vertex 369 78.7 303 300 0.634 0.83 0.99 0.20 1.00
CPd=0.1 464 87.5 334 330 0.501 0.79 099 0.34 0.95
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FIG. 5. Results for three different forms of the running coupling in the quark equation: The running coupling calculated 4 d&vef.
the two fits given in Eqs(37), (398).

Our approximate calculation of the pion decay constanDSEs in Ref[4]. Although there is thépresumably artifi-
should underestimate the experimental vafye=93 MeV  cial bump atp?~0.1 GeV in the running coupling, the mass
by 10—20 %, cf. the discussion below E42). We thus have functions obtained from the DSE result and from “Fit A” are
best results for the CP-vertex construction watis 0 andd  virtually indistinguishable. “Fit B,” however, leads to some-
=0.1. Furthermore we obtain very good agreement betweeWhat smaller masses. This observation suggests that nearly
the two different methods to extract the chiral condensatey|| the dynamically generated mass is produced from the in-

Compared to the phenomenological value (@ W))3
~250 MeV most of our results are larger.

Apart from the case = 6 we obtain very good fits for the
scalar and vector self-energy(x) andB(x), for small mo-
menta. The results for the parametais a,, by, andb, in

tegration strength aboye=500 MeV, indicated by the ver-
tical line in the plot of the running coupling. This is a favor-
able result as it would have been very unsatisfying if the
artificial bump contributed a considerable amount to the
quark mass function.

the fit functions given by Eq60) can be found in Table I. It Finally we observe the effects of explicit chiral symmetry
is interesting to note that the exponeatsandb, are found  breaking in the plots of Fig. 6. We give results for three
to be very close to one. Such a behavior could indicate aifferent quark massesm(2 GeV)=5 MeV, m(2 GeV)
simple underlying functional form of the quark propagator.=100 MeV, andm(1 GeV)=1000 MeV. These values cor-
This will be explored in future work by a numerical continu- respond roughly to the ones given by the Particle Data Group
ation of our results to negative?, i.e., timelike momenta.  for the up/down-quark, the strange-quark, and the charm-
Figure 5 compares results for the bare vertex and the CRyuark [34]. For small momenta we note again that the
type construction witid=0 for three different forms of the dressed vertex generates more mass in the quark equation
running coupling in the interaction kernel of the quark equa-than the bare vertex construction. This effect becomes much
tion. The two fit-functions, “Fit A” and “Fit B,” have been less dominant for the heavy quarks, where more and more of
given in Egs.(37), (38). Furthermore we used the running the infrared mass stems from explicit chiral symmetry break-
coupling calculated from the quenched ghost and gluoring and not from dynamical mass generation. Furthermore,

m=1000 MeV E

=~

= 107k m=100 MeV
3"
2 _
= 07f 7 3
10%F Emel00MeY 27 — bare: m=5, 100, 1000 MeV14
E ety -- CP: m=5, 100, 1000 MeV 1
N 0.6E m=5MeV E
[ — bare vertex 6 E
L -- CP-vertex E 3
10-3 covonl vl v vl vl vl v el 0’5: sl vl vl vl vl e il
10 10 ' 10 1w 1w 10 1wt 10 10 107 10t 10 10 10 100 10t 10

x=p [GeV*] x=p° [GeV?]

FIG. 6. These diagrams show our results when three different bare quark masses are employed. In the diagram on the right small quark
masses correspond to small values fok i the infrared.
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q that the quark equation is multiplicatively renormalizable
£> and one-loop perturbation theory is recovered for large mo-
menta. However, this construction is not capable to account
as well for the one-loop behavior of the unquenched gluon
k equation unless we switch the momentum arguments of the
non-Abelian partw 3¢ Eq. (11), from the gluon momen-
FIG. 7. Diagrammatical representation of the quark loop in thetum to quark momenta. In the quark equation such a change
Dyson-Schwinger equation for the gluon propagator. of momentum arguments would either break Lorentz sym-
metry by preferring one quark line of the quark-gluon vertex
in accordance with the analytical determination we observer changes the ultraviolet behavior of the quark equation. We
the same ultraviolet behavior of the mass function for boththerefore have to use different momentum assignments for

vertex constructions. the quark-loop and the quark equation. Certainly, this is a
deficiency which has to be resolved by a more elaborate
IV. THE QUARK LOOP IN THE GLUON DSE vertex construction in future work. The aim of the present

) ) ) ] study, however, is to present an effective construction which

finally solve the complete set of mutually coupled Dyson-satzfor the non-Abelian part of the quark-gluon vertex in the
Schwinger equations for the quark, gluon, and ghost Propaguark loop:

gator. To this end we incorporate the quark-loop in the trun-
icnatFizoer} s[z?eme for the gluon DSE which has been developed \/V;S‘abrﬁ'.oo;(y,z,X):G(y)G(Z)Zo,(L)

The formal structure of the gluon equation is given(bfy (G(y)Z5(L)) 9~ 929
i X
Fo- [2(y)Z(L)]"
[D(P)],.y=Za[D(p)],.;+ T (p) + 115, p)

(G(z)Z4(L)) 929
T ). (61 T ZzaL)

(63

The contributions from the ghost and gluon l06p2>*(p)  Here x=p? is the squared gluon momentuyi=g? and z

andH%’ﬂ"”(p), are treated in detail in Reffi4]. The contribu-  =k?=(q—p)? are the squared quark momenta, drdA?

tion of the quark loop to the gluon equation is given by is the squared cutoff. The Abelian parf®®' of the vertex,

2 given in Egs.(13), (14), is symmetric with respect to the
uar 97Ny quark momenta as well.

15" (p) =~ 2(27T)4ZlFJ’ d*q Tr{y,S(a)T,(a.p)S(k)}, Plugging the Curtis-Pennington type vertex into the quark

(62) loop and contracting the free Lorentz-indices with the tensor
(cf. the treatment of the gluon DSE in Réf))

wherep is the external gluon momentum adand k=(q

—p) are the momenta of the two quarks running in the loop, Orer_ o 2 PuPy

(cf. Fig. 7). The trace is over Dirac indices. P u(P)= 8y, g?,
In Egs. (11)—(13) we have proposed an effective quark-

gluon vertexI', with Abelian and non-Abelian parts such we obtain

(64)

ﬂz fd4 G(Y) G(z) [G(y)G(Z)zg(L)]fd*d/(Zﬁ)
(2m)*? VEMEY) 2+ M3(2)  [Z(y)2(2)Z3(L)] %

A3 y)A2(2)

quark— —

y A(y)+A(2) A(y)—A(2)

3 IWA(XY 2AA@) +Walx,y, 2)B(Y)B(2) 1+ —5 == [Wa(x,y. DAA(2)

B(y)—B(2)
+W4(X1yIZ)B(y)B(Z)] + ?[Ws(xyyaZ)A(Y)B(z) +W6(X1yvz)B(y)A(Z)]
[Aly)-A(@)](y+2) [
2{(y=2)?+[M*(y)+ M*(2)]?}

W2(x,y,2)A(Y)A(2) + Ws(x,y,2)B(Y)B(2)] [, (65

with the kernels
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{2 [2-¢ 25y 2 (2-Qy  ¢y?
Wl(X,yl)—&JrZ(W—y 3 ™ Py (66)
2(4-17)
WZ(vaaz)_ 3X 1 (67)
{2 1+ Yy 1 (20-6)y &y?| y (L+Ly* ¢y°
Wsy:2)= 2272 3 Y52 T3 Tax . 32 T3 3x e’ ©€8)
|
—27 4 ary\ 2 a4y 2yy? In Ref.[4] it has been described in detail how to remove
W, (X,y,z)= > +z(— —2)—— 2y a7 the quadratic divergencies in the ghost and gluon loop.
X 3x 3x?) 3 3 3x Therefore in the following we concentrate on the quark loop.
69 1o identify the divergent terms we expand the dressing func-
2 _ 2 tions in the integrand of the quark-loop around large loop
= g’i_ ﬁ Zﬂ E ({=3)y ZL momentay with the difference £—y) still larger than any
Ws(X,Y,2) z + + 5+ + ,
3x2 3x  3x?) 3 3x 3x2 quark mass.
(70 To leading order this expansion amounts in the replace-
ments
2 [3-¢ 2fy) 1 (={-Dly
Wg(X,Y,2) _2_2(?+§ t3t T3 G(2)—G(y),
oy A(2)—A(y),
+ J—
32’ 7y AY)-AD)
—— —AY),
22 y2 y—2
W7(x,y,z)=—;+z+y—y, (72 B(y)—B(2) ,
— =, B,
Wog( ) 2( z + Y (73 ’
X,Y,2)=2| —=+=]. ,
sy XX [A(y)-A@)](y+2) A (y)(y+2)

2 2 22y 2(y—2z) (74)
Note that the symmetry factor 1/2 and a factor ¥)(%rom 2{(y—2)°+[M“(y)+M*(2)]%} y
the left-hand side of the gluon equation have been absorbed, o i
in the kernels. From this expression the corresponding on¥ith the derivativesA” andB’. Note that the first two equa-
for the bare vertex construction can be read off easily byions are identical to the angular approximation employed

settingW,_g=0 and replacing the remaining factpa(y)  Previously in the ultraviolet analysis of the quark equation.
+A(2)]/2 in Eq. (65) by unity. For large momentx and z the denominators in Eq65)

simplify and the angular integrals are trivially performed us-

A. Ultraviolet analysis of the quark loop ing the integrals given in the Appendix. We arrive at

It is long known that the introduction of a cutoff in the w o 9N , Gly) 2o
gluon DSE results in artificial quadratic divergencies due to quark= @ZZJ dyG (y)Ty)dA y)
the violation of gauge invariance. Certainly, to recover the
correct perturbative limit of the gluon propagator such terms — 4—¢ 2(4-10)
have to be removed from the gluon equation by a suitable X A(y)(gﬂL vl 3xy MZ(V))
regularization procedure. Quadratic divergencies only occur
in the part of the inverse gluon propagator proportional to A(y)(1 —2(4-Qy
4, Therefore one way to eliminate the quadratic divergen- T (§+ 3x
cies is to project onto the part proportionalggp, [36] by
choosingZ=4 in the projection tensoi64). -2 2(4-0)\ ,

Another unambiguous way is to subtract the quadratically + 3y + T 3x M=(y)

divergent terms from the kernel by hand. This procedure is
valid for general{ and allows one to estimate the influence
of spurious longitudinal terms in the right-hand side of the
gluon equation on the solutions by varying the paraméter
Certainly in a perfect truncation scheme the solution should
be independent of.

2 4-¢
+B’(y)M(y)(3y 3X)
A'(y) [4y
+T(7_

4
1+;M2(y))]. (75
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Keeping in mind a factor (¥) hiding in the derivatives we 92N, G(y) 2d-d/
identify three quadratically divergent terms:<4)/3x in the Mo — _222f dyG?(y) T ATAY)
second line~2(4— ¢)y/3x in the third line, and ¥/x in the 167 Z(y)

last line. The first two of them are artifacts of the regulariza- —2 A1 -

tion and will be subtracted from the kernels. However, we X[A(y)—+ —<_+ _|\/|2(y)>
encounter the additionaj-independent quadratic divergent 3y 2 13 3y

term 4y/x originating from the transverse part of the Curtis- 2 A(y) 4

Pennington vertex. Such a term is already known from cor- + B’(y)M(y)3—+ 5 ( -1+ —Mz(y)) }
responding studies in QE[B7]. Although first suggestions y X

have been made how the Curtis-Pennington vertex should be (84)

modified to avoid this probler8], a convincing solution has
not been found yet. In our study we therefore choose th

pragmatic strategy of subtracting this term by hand togethe%.‘imilar to th? situatior] in the DS.E for t'he quark. mass func-
with the other quadratically divergent parts. tion the leading ultraviolet term is the first term in the curly

Moreover, we subtract all further terms proportional to brackets. For the ghost and gluon dressing functions we em-

(4—¢). Although these terms are not quadratically divergentploy the perturbativéinsatz
they are artifacts of the regularization. We then obtain a

{-independent expression for the quark loop at large mo- 7 3
menta. In Ref[4] similar {-independent expressions for the G(z2)=G(s)| wlog S +1
ghost and gluon loop have been derived. We therefore arrive
at a transversal right-hand side of the gluon equation for
large momenta as required in Landau gauge. z Y
Collecting all modifications together we have the new Z(z)=Z2(s)| wlog s +1], (85
kernels
v (y+2)(4-9) and determine the anomalous dimensighand y as well
Wi (X,Y,2) =W,(X,y,2) — ", 76 s : y as well
1(%.y.2) 1(%y.2) 6X (76) as the coefficient» self-consistently as follows. Substituting
the ultraviolet limit of the vector self-energy, Eq23),
Wz(x,yyz)zo, (77) and choosing the perturbative renormalization condition
G(s)=Z(s)=1 we arrive at
. 22y(4—{)
Ws(X,y,2) =W3(x,y,z) + —ax (78)
2 26+1
oYY (p)= 2N J [ a)log(— +1
= _ (y+2)(4=0) WAkt 3(26+1)w 1642 s
W4(X1yvz)_W4(X7yvz)_ 3X y 25+1
(79 —| wlog E)Jrl ] (86)
~ (y+2)(4-¢)
W =W -
5(x.y,2)=Ws(X,y,2) 6x ’ Combining this expression with the results for the ghost and
(80)  gluon loop from Ref[4] we obtain as the ultraviolet limit of
i ) the gluon equation
~ (y+z2)(4—¢
We(x,y,2)=Ws(x,y,2) = =5 —,
—y N 2
@) olog 2| 1] —zgr|——
s 96m2w(25+1)
@ _w _(y=2)(y+2)
7(X1yvz)_ 7(X1yvz) X ’ B 7NC92 . 2Nf92
(82) 48m2w(26+1)  48mlw(25+1)
Ws(X,Y,2) = Wq(X,Y,2). 83 25+1
8(X,y,2) =Wsg(X,y,2) (83 | wlog =] +1
Note that the subtracted terms are chosen to preserve the
symmetry of the kernels with respect to the squared quark X 20+1
momentay andz —|wlog| o +1 : (87

Without quadratic divergences we are in a position to ex-
tract the leading logarithmic divergence of the quark loop.
With modified kernels the ultraviolet limit of the quark loop The corresponding expression for the ghost equation reads
is given by [4]
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-5 3N.g2 Thereforethe quark loop is suppressed for small momenta
wlogl =|+1| =2Z3— ¢ provided the parametef fulfills the condition
S 64m’w(y+5+1)
-265
y+6+1

X wlog g +1 d< K (93

y+o+1 As we havex~0.5954 andS= —1/4 for N.=3 andN;=3
—|wlog| o] +1 (88)  we find the conditiond<0.84, which is satisfied for all

quark-gluon vertices employed in our calculation. From a

Th lizati ¢ L dFa(s L | numerical point of view we encounter serious instabilities in
€ renormalization cons ank(s,L) ana 3(.5’ ) cancel - the quark equation oncd is taken to be larger thanl
the cutoff dependence, i.e., the respective first terms in the

curly brackets. Thus the power and the prefactor of the sec-
ond term have to match with the left-hand side of the equa
tions. This leads to the anomalous dimensions

We conclude that with dynamically generated quark
masses the quark loop does not change the infrared behavior
of the ghost and gluon dressing functions found in Refs.
[7,8]. In pure Yang-Mills theory as well as in QCD we thus

y= M have an infrared finite or vanishing gluon propagator and a
22N~ 4N¢ ghost propagator which is more divergent than a simple pole.

(899  The Kugo-Ojima confinement criteriof88,39 and Zwan-

—9N, ziger’s horizon conditiory8,40] are both fulfilled not only in

o= m pure Yang-Mills theorysee, e.g., Ref25]) but also in QCD.

The reasoning above reveals a self-consistent picture
Wh|Ch are re'ated by)/+25+ 1=0 and in accordance with Valid fOI’ a Sma” number Of ﬂaVOI‘SZ As haS been demon'
one-loop perturbation theory for arbitrary numbers of colorsstrated in our quenched calculations the combined strength
N, and flavorsN; . For the coefficients one obtains of the ghost and gluon propagator generates sizeable dy-
namical quark masses in the quark DSE. In the unquenched
w= (1IN~ 2Ny a(s)/(127) = Boa(s)/(47). (90)  case these masses suppress the quark loop in the infrared
such that the ghost and gluon propagators are hardly changed
When combined according to E(:ﬂ_7) our ghost and gluon in the infrared and in turn nearly the same amount of mass is
dressing functions lead to the correct one-loop running of théenerated in the quark equation as in the quenched case. This
coupling «(x) at large momenta. scenario is verified by our numerical calculations presented
in the next section. On the other hand for a sufficiently large
number of light flavors we expect a different self-consistent
picture to apply: Chiral symmetry should be restored. With
The infrared analysis of the ghost and gluon DSEs in asanishing quark masses the quark loop will contribute to the
truncation with a bare ghost-gluon vertex has been pergluon DSE at small momenta and the infrared behavior of
formed in Refs[4,7,8]. To leading order the power laAn-  the Yang-Mills sector will be changed. Especially it is ex-
satz pected that the value of the fixed point of the running cou-
2k C pling is decreased dramatically. This in turn drives the quark
Z(x)~x, - G)~x"", 91 equation to the chirally symmetric solution witht (p2)
=0. This second self-consistent scenario as well as the situ-
tion under the presence of a small amount of explicit chiral
%rymmetry breaking are subject to future investigations.

B. Infrared analysis of the quark loop

for the ghost and gluon dressing functions at small moment
x=p? has been employed. For a transverse projection tens
(64), i.e., =1, one obtainsk=(93—/1201)/98<0.5954
for the exponent of the dressing functions and subsequently
the fixed pointa(0)~8.915N. for the running coupling in

the infrared. The numerical treatment of the integrals in the ghost and
These results have been obtained in a truncation whergiuon equations has been described in detail in R&f.The

the ghost-loop dominates the gluon-loop in the infrarediteration process is done for the ghost-gluon system and the

Therefore in order to investigate the effects of dynamicalyyark equations separately: we first iterate fhemutually

quarks in the system we compare the infrared behavior of thgncoupled quark systems until convergence is achieved, feed

quark-loop with the one of the ghost-loop. Substituting thethe output into the ghost and gluon system, iterate until the

Ansatz (91) into the gluon equation and calculating the ghost-gluon system converges, feed the output back into the

ghost-loop along the lines of the infrared analysis given ingyark equations, and so on, until complete convergence of all

Refs.[4,7] one finds the ghost-loop to be proportional to equations is achieved. We renormalized at the psinf.?

X~ 2. For the quark loop including the effects of dynami- given by a(s)=0.2 and used a transverse tensor to contract

V. NUMERICAL RESULTS

cally generated quark masses we obtain the gluon equationy=1.
R et xd)s In contrast to the quenched calculation we fix the physical
Hguan{ P)~X : (92)  scale of the system not by the conditietM2)=0.118 but
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TABLE II. A comparison between the quench@i) and unquenche@inqu) results for the quark mass(®), the pion decay constant
f ., the renormalization point independent chiral condensate, the running coupling at the mas< dfosen, andAgg,g" for different
vertices and values of the parametér The unquenched calculations are done fgr=3 chiral quarks. Furthermore, we have=

—9N./(44N.—8N¢)=—0.25 in the present case.

o f- (~(ruye ARy
[MeV] [MeV] [MeV] a(My) [MeV]
Vertex qu. unqu. qu. unqu. qu. unqu. qu. unqu. qu. unqu.
Bared=0 177 176 385 384 160 170 0.118 0.146 710 748
CPd=56 150 133 50.5 46.3 225 230 0.118 0.146 710 746
CPd=0 369 360 78.7 78.7 300 310 0.118 0.143 710 672
CPd=0.1 464 437 87.5 85.5 330 330 0.118 0.142 710 640

by adjusting the pion decay constant. This choice has anhange fromN;=0 to N=3, cf. Egs.(30), (33), (89). As
important advantage: Whereas the behavior of the runningxpected from the infrared analysis of the quark-loop the
coupling for large momenta depends strongly lp, the  back reaction of dynamical quarks in the gluon equation does
pion decay constant turns out to be almost independent of theot affect the infrared behavior of the ghost and gluon dress-
number of flavors. In our quenched calculation we obtainedng functions. Consequently the infrared fixed point of the
f,=78.7 MeV for the CP-type vertex with=0. Recalling running coupling is the same as in pure Yang-Mills theory.
that our approximatiori42) should lead to an underestima-  Our results for the case of explicitly broken chiral sym-
tion of f . by about 10—20 % this value is in good accordancemetry are shown in Fig. 9. We choobk=3 with renormal-
with experiment ad &P=93 MeV. We therefore chose the ized quark masses corresponding tm,4(2 GeV)
scale in the unquenched calculations to lead to the same de=4.6 MeV andmy(2 GeV)=96 MeV within our renormal-
cay constant for the CP-type vertex witls0. ization scheme. These masses are well in the range suggested
In Table Il we compare results for the quenched and unby the Particle Data Grou84], however, they should not be
quenched system of equations. The quark mass, the pion diglentified directly as the PDG employs a modified minimal
cay constant, and the chiral condensate differ only slightlysubtraction MS) scheme. Compared to the chiral case the
for each vertex construction, respectively. The only sizeabldehavior of the ghost and gluon dressing functions hardly
difference occurs in the running coupling. As expected fromchanges. For the quark mass function we obtain the irregular
perturbation theory the unquenched running fg=3 re-  asymptotic solution in the ultraviolet as expected.
sults in larger values of the running couplingpEt=(M)? For further use, e.g., in phenomenological calculations,
compared to the quenched cade=0. We obtaina(M,) we provide fits to our results for the quark propagator em-
~0.140, which is somewhat larger than usually quoted valploying the fit functions
ues from experiment. However, such large values are not yet

excluded by experiment. A recent analysis of experimental

data from r-decay suggesta(M,)~0.129[41]. If we in- M (x)= (91M(0)

crease the number of flavors in our calculation we encounter gl+(x/AéCD)92

large numerical uncertainties and do not obtain convergence y
for Ny=5. This might be a signal that in the rangecBl; R 2 3 2 "
<5 the above discussed transition of the system to the IN(x/A3cp)  (XIABep) —1

chirally symmetric phase takes place.
All employed vertex constructions allow for nontrivial so-
lutions of the quark equation corresponding to dynamical X(X/Aéco)”), (94)
chiral symmetry breaking. However, similar to the quenched
case and in accordance with the results of Rgf8,21] the

bare vertex construction and the CP-type vertex withs A0S)T 2+ he (/A2 )+ ho( X/ A2 )2
generate much too small quark masses compared with typi-[ A(x,s)]~ = [A(0s)] 1(2 aco) 2(2 SCD) ,
cal phenomenological values. Fdr=0 we obtain good re- 1+ha(xX/Agep) +ha(X/ Agep)

sults for the quark mass, the pion decay constant and the (99

chiral condensate, whereas the chaiee0.1 leads to some-

what large values. It is interesting to note thkt0 of all  with x=p? and the six parametets ,g,,h;,h,,h;, andh,.
values is preferred as in this case the quark equation repke used the renormalization point independent current-quark

sembles most the fermion equation of QED. _massm, which is related to the renormalized madgs) by
In Fig. 8 we display the ghost, gluon, and quark dressing

functions corresponding to the unquenched and quenched 1 .y
cases wittd=0 from Table 11[42]. We find different anoma- S + 2 "
lous dimensions in the ultraviolet corresponding to the m M(S)<2ln[S/AQCD]) ’ (%6)

094020-16



NONPERTURBATIVE PROPAGATORS, RUNNING . .. PHYSICAL REVIEW b7, 094020 (2003

100 e PP T 4 [T

— quenched 1
.. Nf=3, bare vertex 3
- Nf=3, CP-vertex

— quenched

~ 10} - E
C ‘e Nf=3, bare vertex ROENCHS =
] w'N BF ‘
-- Nf=3, CP-vertex b
1F =
1 10 g ]
A vl n - sl sl il 0: BT RV AT R BT R BT RSP MWt narrvn
107 10® 100 10" 100 10° 10’ 10 10° 10* 10° 10”100 10 1w 100 10* 10t
2 2 2
x=p" [GeV’] x=p~ [GeV]
10O BT T T T T T T T E T T T T T T
E 1E
107E 3 E
2: ] 09
10° E E
= o ] 08
2107 E =
U E E % ________________________ — NgF3,  bare vertex 3
ok . =0t L quenched, bare vertex
S F —NgF3,  CP-vertex 3 3 - — Ni=3,  CP-vertex E
105 == quenched, CP-vertex 06F - = quenched, CP-vertex E
E — N=3, bare vertex E E
0% quenched, bare vertex 05E E
Ll vl ccvd el veid il e SN 3
10 5 ") T 0 T 0.4 Bl il ol | | ul ol il 1
10 10 10 010 10 107 10t 1w 1 10t 10w 1t
X=p [GeVZ] x=p2 [GeVZ]

FIG. 8. Displayed are the ghost and gluon dressing funcB@ndG, the running coupling, the quark mass functidd, and the inverse
vector self-energy . The calculations are done quenched and unquenched\itt8 quarks in the chiral limit. The parameteiin the
vertices is set tal=0.

to one loop order. For the running coupling, the ghost and thé a physical particle is described. Herare complex valued
gluon dressing function we use the form “Fit B,” given in test functions. A violation of this condition signals the ab-
Eq. (38) and the fit functions from Eq41). In Table Ill we  sence of the corresponding particle from the physical spec-
give our values for all parameters as well as the numericafrum of the theory, i.e., the particle is confined. The one-

results forM (0) and[A(0)] . Note that the S,Ca'ﬁ,ggg IS gimensional Fourier transfornS(t,p) of the propagator
different to the corresponding scale in the chiral limit due to S
S(po.p) is given by

the different ultraviolet behavior of the quark-loop when
guarks with nonvanishing bare masses are employed. When
plotted the fits are virtually indistinguishable from our results
in Fig. 9.

quuenched lattice calculations employing dynamical
quarks are complex and time consum[Ag]. To our knowl-  pyoyided there is a region aroutgwhereS(—to,p)<0 one
edge such simulations for the propagators of QCD have ngfyn choose a real test functiétt) which peaks strongly at

yet been performed. From our results in the Dyson- h itivity violation. In the followi h
Schwinger approach we do not expect drastic differences bédo 0 Show positivity violation. In the following we chose

tween quenched and unquenched propagators on the lattice O , ) ) ) )
Note, however, that our calculation includes quark-loop cor- [N the first diagram of Fig. 10 we display the Fourier
rections to the gluon self-energy but not higher order verteransform of the nontrivial parD(p®) =Z(p®)/p? of the
corrections like mesonic loops. In a model calculation of thegluon propagator. Clearly one observes negative values on a
pion charge radius such loops have been estimated to cokarge interval. The resulting positivity violation for the trans-
tribute roughly at the order of 10944]. verse gluon propagator in Landau gauge is a clear signal for
Finally, we investigate possible positivity violations in the gluon confinement. This corroborates previous findings in
gluon and quark propagators. According to the Osterwalderthe quenched approximatidBb]. These positivity violations
Schrader axiom of reflection positivity a two-point correla- have also been observed in lattice studies, see [R2f.for
tion function S of Euclidean field theory has to satisfy the recent corresponding results or Ref6] for a review.
condition[45] In the quark propagator positivity violations have been
found in model studies, which solve the quark Dyson-
Schwinger equation with aAnsatzfor the gluon propagator
as input(see[2,47,48 and references therginSimilar vio-

- d .
S(t6)= [ S2S(po.prere ©8)

Jomdtdt’f_(t’,5)8(—(t+t’),5)f(t,5)>0 (97)
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FIG. 9. Results from the unquenched calculation wiMh=3 massive quarks. We used the renormalized masggg2 GeV)
~4.6 MeV andmy(2 GeV)~96 MeV. Again we chosel=0 for both vertices.

lations have been found if2+1)-dimensional QED[49]. VI. SUMMARY
For the model of Ref[33] or a propagator with complex

conjugate pole$50] we tested our numerical routines and We have presented solutions of titeuncated Dyson-

i o . Schwinger equations for the propagators of Landau gauge
f_our_1d positivity violations vely_e_asny. Cpntrary to these QCD. We first concentrated on the Dyson-Schwinger equa-
findings we do not observe positivity violations for the quarktion for the quark propagator. We proposed sevawsaze
propagator from the coupled set of DSEs. The lower panel of, the quark-gluon vertex which consist of an Abelian part
Fig. 10 shows our results for the Fourier transform of thecarrying the tensor structure of the vertex and a non-Abelian
vector parto(p?) =A(p%)/[p?A(p?) + B(p?)] and the sca- muyltiplicative correction. Our guiding principles for the con-
lar partog(p®) =A(p?)/[p*A(p®) +B(p?)] of our solutions  struction of these vertices have been two important condi-
for the quark propagator employing four different quark-tions on the truncated quark equation: it should be multipli-
gluon vertices. All our solutions appear to be positive defi-catively renormalizable and recover perturbation theory for
nite at the present level of numerical accuracy. However, grge external momenta. In our truncation scheme the quark
more accurate study is required to settle this pf#df. Fur-  mass function is, as required from general arguments, inde-
thermore note that even if confirmed our findings are not ipendent of the renormalization point and has the correct
contradiction with the absence of quarks from the physicabsymptotic behavior for large momenta.

spectrum of QCD as violation of positivity is a sufficient but  In the quark equation both the ghost and gluon dressing
not a necessary condition for confinement. function show up at least implicitly. In quenched approxima-

TABLE Ill. Parameters for the fits to the unquenched results Wits 3, 6= —0.25, y,,=12/27, and3,= 27/3, using the CP vertex with
d=0. The renormalization poirs=497 GeV} is determined by the conditiom(s) =0.2. Note the change mgg,g” as compared to the case

of chiral quarks.

AQED Mg m  M(0)
[Mev] a b c d [MeVv] [MeVv] [MeV] 9, g, AY0s) h h, hs hy

625 122 100 133 201 4.6 4.6 369 1.83 1.23 0.638 0.515 0.00688 0.562 0.00681
96 98 528 296 1.03 0.671 0.302 0.00139 0.318 0.00137
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FIG. 10. Here we display the one-dimensional Fourier transforms of the gluon propz{gatotr,ﬁz), and the scalar and vector parts of

the quark propagatorrs(—t,ﬁz) and UV(—t,ﬁz). For the three momentum we cho§é=0. The timet is given in internal units. We
observe violation of reflection positivity for the gluon propagator but not for the quark propagator.

tion, which is suitable to compare to lattice results, we em4runcation that the Kugo-Ojima confinement criter[@8,39
ploy solutions of the ghost and gluon Dyson-Schwingerand Zwanziger's horizon conditiof8,40] are satisfied in
equations taken from Refi4]. In a second step we included Landau gauge QCD.
the back reaction of the quarks on the ghost and gluon sys- Furthermore, we searched for positivity violations in the
tem and solved the quark, gluon, and ghost Dysongluon and quark propagators. We confirm_ed previous find-
Schwinger equations self-consistently. ings[5] that the gluon propagator shows violation of reflec-

All our solutions exhibit dynamical chiral symmetry tion positivity. Thus the gluon is not contained in the physi-
breaking. However, only carefully constructed vert@r- cal state space of QCD. We_ did not find S|m|l_ar V|olfat|ons for
saze have been able to generate masses in the typical phéhe quark propagator. This issue is currently investigated in a
nomenological range of 300-400 MeV. Constructions withT0re detailed studs1].
an Abelian part satisfying the Abelian Ward identity are su-
perior to other verteXAnsdze We obtained very good results
for the quark mass, the pion decay constant, and the chiral We are indebted to P. Maris and P. Watson for a critical
condensate by employing a generalized Curtis-Penningtoreading of the manuscript and useful comments. We are
[23] vertex. In the chiral limit both the quark mass function grateful to P. Bowman for communicating lattice data. We
and the vector self-energy coincide with recently obtaine¢hank S. Ahlig, J. Bloch, K. Langfeld, H. Reinhardt, C. Rob-
lattice result§13,14] within the numerical uncertainty. This ©rts, L. von Smekal, P. Tandy, and A. Williams for helpful
agreement confirms the quality of our truncation and in turrdiscussions. This work has been supported by the DAAD and
shows that chiral extrapolation on the lattice works well. ~ the DFG under contracts Al 279/3-4 and GRKG&iropean

In the unquenched case including the quark-loop in thldraduate school Tingen—Basgl C.S.F. was supported by
gluon equation withN; = 3 light quarks we obtain only small "€ European Graduate School Basel-Tuebingen.
corrections compared to the quenched calculations. In par-
ticular for the case of dynamically generated quark masses

the quark loop turns out to be suppressed in the gluon equa- The angular integrals employed in the ultraviolet analysis
tion for small momenta. We thus showed on the level of ourare given by
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