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Nonlinear Regge trajectories and glueballs
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We apply a phenomenological approach based on nonlinear Regge trajectories to glueball states. The pa-
rameters, i.e., the intercept and threshold, or trajectory termination point beyond which no bound states should
exist, are determined from Pomerdscattering data. The systematic errors inherent to the approach are
discussed. We then predict the masses of the glueballs on the tensor trajectory. For comparison, the approach
is applied to available quenched lattice data. We find a discrepancy between the lattice-based thresholds and the
Pomeron threshold that we extract from data.
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[. INTRODUCTION screening of the flux tube, and, thysi) one can expect the
same qualitative behavior of the trajectories regardless of the
In a previous worK1] we presented theoretical arguments quantum number of the quark-antiquark meson.
and strong phenomenological evidence that Regge trajecto- In this paper we attempt to go beyond ordinary quark-
ries of ordinary quark-antiquark mesons are essentially nonantiquark mesons to trajectories for glueballs. However, it is

linear and can be well approximated, for all practical pur-not a priori clear that norgq mesons such as glueballs or
poses, by a specific function, the so-called square-root formhyprids can be satisfactorily described by the same form of
With a few additional assumptions intended to reduce thERegge trajectories as are ordinary mesons. Even though the

number of independent parameters, and, when possiblggninearity of Regge trajectories is due to color screening,
tested for self-consistency, we obtained a remarkable agree-

ment with both the bound(resonant state ¢>0) and scat- which is not exclusive t@q mesons, the behavior of glue in
tering (t<0) data. What makes this success even more im(_exotic systems can be different. In particular, in the case of
, lueballs there have been contradictory opinions about the

pressive is the fact that the input parameters, with thed!Ue s e
exception of one, were determined by the masses of only gasic nature of these states, ranging from solitonic through

few lowest-lying bound states. loops of glue to glue strings. The latest lattice QCD results
The theoretical motivation for our previous study was theindicate that the loops-of-glue picture does not agree with the
view that the properties of the gluon field, e.g., the flux tube Jattice spectra to the extent that the bag model does, thus
change with the increasing size of the hadron. At longsupporting a constituentlike picture for gluofis addition to
enough distances, a linear potential is simply a wrong apguarks [6]. (However, it should be kept in mind that the flux
proximation to the interaction of meson constituents. Theretube model is, by definition, a very simple model with a big
fore, Regge trajectories cannot be asymptotically lif@ain ~ symmetry group and so cannot be used to make detailed
t, even if they appear to be so over a limited range. dh predictions for the spectrum; the flux-tubelike distribution of
searching for a more practical approximation, we studiedhe fields should be measured inst¢athe same authors
nonlinear Regge trajectories corresponding to dual ampliview hybrids as states where a quark and an antiquark are
tudes with Mandelstam analyticifpAMA) [3] in a simpli-  subject to a potential corresponding, roughly speaking, to an
fied situation, that is, toy models which, nevertheless, mainexcited flux tube. They generate a plethora of these potentials
tain a resemblance to QCD1,4,5. After a thorough in quenched QCD. Obviously, in unquenched QCD the pic-
investigation, we argued th&at) DAMA amplitudes can be ture can be drastically different. It is, unfortunately, challeng-
expected to fit spectrdij) nonlinearity arises due to the color ing and difficult at present to capture the physics of string
breaking accurately with lattice methofs]. Here we focus
on pure gluonic states and only comment on the prospect of
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of the threshold, or termination point of the real part of the 1
trajectory, is subject to a large uncertainty. To reduce the aji(t)=aji(0)+y,[T—(Tji—1)"], 0< vs=5 ()
uncertainty, we add to our data set the mass of the lowest-
lying tensor glueball determined in R¢6]. (up to a power of a logarithi assuming thatyji(t) is an
[There are a number of other lattice QCD determinationsanalytic function having a physical cut from some valgi¢o
of this mass, see e.g. Refd], but the rms variation of the <o, it is polynomially bounded on the entire physical sheet,
values reported is only about 1%, which is considerablyand there exists a finite limit of the trajectory phase|tas
smaller than the uncertainties in the individual determina-— [10]. The subscripts$,j indicate dependence of the pa-
tions. Hence, choosing one specific case has a negligible efameters on the flavor content of the meson within a meson
fect on our results compared to the overalatistical and multiplet. In this paper we drop the subscripts for simplicity.
systematig uncertainties below and avoids a perhaps unreal- The parametery, is the universal asymptotic slope for
istic reduction of the total uncertainty. nonlinear trajectoriefl1],
With this addition, the uncertainties in the trajectory pa- Y .
rameters are significantly reduced while the values are little a()~=7(=0)"  [tl=e;
affected. We take the value of the threshold as an indicatioRnt 4 and the exponent are independent of quantum

of a _ma>_(imum mass beyond which no glueball states existy mbers. In order for the slope to be positive at srhaj,
bearing in mind that we are unable to prove at present thal.g - The intercepta;i(0) varies for different trajectories,
the square-root form will be as comparably efficient in de-anq in accordance with the Froissart bound should satisfy
scribing glueballs as it was for ordinary mesons. _aji(0)=<1. In reality, however, there is an exception — the
We should also note that the threshold we find here i§yiercept of the Pomeron trajectory is observed to be slightly

larger than v_vhat is inferred from trajectories fitted _to_larger than 1. The paramet&[;-is often called the trajectory
quenched lattice QCD glueball mass states. Whether this ig .oshold.

due to the difference between quenched and unquenched \gte that for|t|<T, Eq. (1) reduces to &quasjlinear
QCD, or the functional forms used for the trajectories, re- . '
mains unknown.
The choice of a specific trajectory within the allowed aﬂt)=aﬂO)+y7Tj”i— lt=ajﬂ0)+aj'i—(0)t. )
range of DAMA trajectories introduces an unknown system-
atic error. In case of ordinary mesons, our results justified the The value ofv is restricted to lie between 0 and 1/2, in
assumptions posteriori Due to insufficient data, this is not accordance with Ref9]. The valuer=0 should be under-
possible when dealing with pure glue trajectories. To estixtood as a limitv—0, v, fixed. In this limit, the difference
mate the systematic errors, we repeat the fit with the othegt fractional powers reduces to a logarithm, viz.,
limiting form of DAMA trajectories, the so-called logarith-
mic form. We take the difference between the thresholds ob-
tained as indicative of the systematic errors. a(t)=a(0) = yglog
While the Pomeron trajectory is the only glueball trajec-
tory for which unambiguous data exist, it may be, unfortu-
nately, affected by the gluon condensate. In the absence e “logarithmic” trajectory does not freeze-out when

experimental glue bound-state data, we use glueball MAasSES, -hesT. The real part continues to grow; the only change

from I_attlcel QCD. to detefm'f?e th_e thresholds of other, Iessfor t>T is that the trajectory acquires a constant imaginary
peculiar trajectories, bearing in mind that the masses are SuBért

ject to the quenched approximation.

This paper is organized as follows. Section Il starts with By
brief introduction to the DAMA trajectories, followed by our
fits to Pomgron d_ata. We compare the fits f_or the twq limiting a(t)=a(0)+ . \/f_ \/ﬁ]. (4
forms of trajectories, and discuss the physical meaning of the
results. Section Ill is devoted to glueball spectroscopy. Wanhent reachesT, the real part of the “square-root” trajec-
conclude with a comment on possible future applications. tory stops growing1 and there are no states with a higher

angular momentum thaky,,,=[ «(T)]. For this reason, the
parameterT is also called the trajectory termination point.
II. DAMA TRAJECTORIES AND FITS TO DATA This is true for any value of#0.

' ’)/IOgE lim YuV- (3)

v—0

1 t
TIog

Unlike a trajectory with any value of#0, the real part of

The upper bound om gives the so-called “square-root”
ajectory, viz.

The class of dual models called dual amplitudes with
Mandelstam analyticit{DAMA) [3] is a generalization of
Veneziano amplitudd$8] to the most general form consistent  In Ref.[1] we used only the square-root form of Ed)
with Mandelstam analyticity/DAMA has the Veneziano for spectroscopy purposes. We determined the valug, gf
limit «a(t)~t, but the transition to this limit occurs discon- from thep trajectory, and then it was taken as universal for

A. Fit with the square-root form

tinuously[9].] all other meson trajectories. Our calculation is in excellent
A meson trajectorya;i(t), can be parametrized on the agreement with various data, not only spectroscopic but scat-
entire physical sheet in the following form: tering as well, and is self-consistent, justifying the assump-
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Pomeron Data and Square Root Fit Y
) . . ay(t)=a(0)+ t 8)
with and without lattice glueball 2T 12
1.15 T T T T T T
ul | ] =1.08+0.1578 [GeV 2]t 9)
105 [ In order to determine the threshold with better accuracy,
additional data are needed. We use the mass of the lowest-
1 lying tensor glueball from Ref.[6], M(2"")=2.40
ai b +0.13 GeV. With this additional data point, the error on the
s T extracted threshold is reduced by factor of 2, while fRef
° ool the fit remains comparably small and the fitted parameter
values are essentially unchangseée Fig. 1 In this way we
0.85 ¢ P —> 0P data 1 obtain
Fit to Pomeron data only
08 — —~- Fit with M(2++) glueball ] a1,(0)=1.081+0.007,
®+P —> pP data
075
VT1p=1157-1.1 GeV, (10)
0.7 ‘ ‘ ‘ : ‘ ‘
-15  -1.25 -1 -075  -05  -025 0 2 -
£ (GeV)) x“/d.0.f=6.07/10. (12)

2 - -
FIG. 1. Pomeron data together with our best fits of the square- W& note that they*/d.o.f. in both cases is smaller than
root form: The dashed line fit includes the averaged m&6a* +) one would expect on general grounds. This is similar to the

as a data point; for the solid line fit only the scattering data werec@se observed in ReffL3] for other trajectories, presumably
used. for similar reasons.

tions a posteriori This leads us to believe that the extracted B. Fit with the logarithmic form
value of y,yis re_liable, and that the square-root formisclose Eyen though the logarithmic trajectory, EG), itself is
to the true functional form of meson trajectories. not realistic, since its real part grows without bouidcon-
Since y, must be a constarindependendf the flavor  yaqt 1o any other trajectory of our nonlinear form, E2),
content or quantum numbers of the meson, we apply thg;it, ,, 0], it is useful to study because the true trajectory
same value, can lie anywhere between the two limiting forms. In addition
y1,=3.65+0.05 GeV'! (5) to this reason, comparison pf the fits with the two limiting
12 ’ forms can, to some extent, illuminate the issue of systemat-
ics. There is undoubtedly a systematic error associated with
to th? data for the Pomerqn. . . the choice of DAMA trajectories as the class of trajectories
With the value of the universal asymptotic slope f'Xed’. We\vithin which the true trajectory lies, and this we cannot es-
%mate. There is an additional systematic error arising from
the specific choice of=1/2 within the model and from the

;eEtB[SlZ] shqwn _;n_ F(;g‘ 1"dW(fa L_Jse_fpnly;pafpbstmce ?t way we determine the parameters of the trajectories. It is this
energies 1L1s devod of signiticant contributions Tom ge ¢, uncertainty that we address in this section.

e;:chagg;‘s o;therf éh?n lilh? Tr?r??krlond tFor gotrnpar|son, W€ To fit the data with a logarithmic form, we first need to
show both S€ts of data. TMote that the data poin's correspong—etermme the value ofy,. In complete analogy with our

. 0 - _
megcttg dygl; ,;opcg:\?ri(k:)?th]i?)ﬁtsePrg{na:g(\j/i%otrr:g?;(?r?aﬁseesx calculation utilizing the square-root form, the valueygf, is
P ges. determined from the trajectory. We find

In Fig. 1, the solid line shows our best fit of the square-

parameter of the Pomeron trajectomy,,. Of the two data

root form, Eq.(4): Yiog=8.00+0.34. (12)
a15(0)=1.08+0.01, Note thaty,y, is dimensionless.
Our best fit of the logarithmic form, Ed3), to the scat-
@211_5& 2.08 GeV, (6) tering Pomeron data,

5 @jo(0)=1.08+0.01,
x°/d.0.f=6.07/9. (7)
VTiog=7.09£0.64 GeV, (13
The relatively large, 18% error on the fitted threshold is
caused in part by the data uncertainties, and in part by the x%/d.0.f=6.07/9 (14)
fact that all data points are concentrated in a small region of
t near zero; consequently|<T. The fit is essentially domi- is shown in Fig. 2. Also in Fig. 2, we show the fit to the
nated by the first term in the Taylor expansion of E4): scattering data plus mass of the tensor glueball, yielding
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Pomeron Data and Logarithmic Fit pass through the three experimentally well established
with and without lattice glueball points, specifically the intercept, and the mass and spin of the
p and theps,.

The straight line that crossgsand p; leads to an inter-
cept smaller that the observed value. This means that the
linear form is insufficienf1]. By ana posterioricomparison
of the DAMA trajectory to its truncated Taylor series, one
can see that the fit is basically dominated by terms up to
O(t?), viz.

11

105

095
= ~ ~ Y12 Y112
0.9 ayp(t)=a(0)+ —— st +—=o5t%, (20)
Tl/2 8Tl/2
0.85 * 1P —> ¢P data
Fit to Pomeron data only ~ ~ Y Y
0.8 — —~- Fit with M(2++) glueball 1 (1) =a(0)+ =+ ~(;g t, (21)
®vP -> pP data log Tlog

0.75

(We use the tilde to distinguish the trajectory from the
T " T R R Pomeron trajectory discussed so faFor example, the
t (GeV) square-root trajectory evaluated at the mass ofpthdiffers
from its Taylor series, Eq.20), by less than 0.5%.
FIG. 2. Pomeron data together with our best fits of the logarith- ~ Setting the Taylor series coefficients in E¢&0) and(21)
mic form: The dashed line fit includes the averaged mA¢2" ™) equal, we obtain
as a data point; for the solid line fit only the scattering data were

used. Trlog: 27-1/2 , (22)
a104(0) =1.078+0.007, Yiog™= Y12\ T112 (23)
VTiog=7.23-0.34 GeV, (15  This leads to the following relation for the Pomeron thresh-
olds:
x%/d.0.f=6.12/10. (16)
Tiog=2NT1 2\ T1p (24)

The addition of the bound state data point leads to a 2%

increase inyT,g and almost a factor of 2 reduction in its The numerical values we find are in a good agreement with
error. Recall that, for the square-root form, the threshold rethese relations.

mains almost the sanéess than 0.1% change _ Is there anything deep about these relations? Note that
Again, not surprisingly, the fit is dominated by the linear Egs. (22) and (23) are a direct consequence of the fit being
term dominated by up to quadratic termstiand our requirement
that the trajectory passxactlythrough the three input points.
Ylog Thus, Eq.(23) cannot hold for a universaly unless all
t)=a(0)+ —t 1 ! . . . : .
%iog(t) = (0) Tiog (7 thresholds are identical. Alternatively, the three-point restric-
tion is too strong and/or only one specific valuerotan be
=1.08+0.1590 [GeV 2]t. (18 correct.
C. Estimate of systematic error D. Understanding the systematic error in terms of toy models

The linear term dominance in all of our fits implies that  To understand this issue further, we turn to our toy models
the thresholds of the square root and logarithmic trajectoried,1]. Within the framework of our generalized string model, it
extracted from Pomeron data, are simply related. The relativis possible to reconstruct the potential from a Regge trajec-
size of the threshold for the two limiting forms follows di- tory [1,4]. Earlier we found that potentials corresponding to
rectly from comparison of the two linearized trajectories, Eg.the square-root and to the logarithmic trajectories, respec-
(8) and Eq.(17): tively, are very close, when normalized to the same
asymptotic value. Furthermore, they are also very close to a
potential found from a fit to lattice dafd 4] that we used in
another toy model, which consists, basically, of a leading
order Born-Oppenheimdi.OBO) approximation for a sys-

The ratio ofy,qq/v1/2 IS, in our calculation, fixed by the  tem of a very heavy quark and antiquark. In that toy model,
trajectory data used as input. To find the three parameters efe found that the spectrum could be equally well fitted by
the p trajectory (its intercept, threshold, and the universal both limiting forms of the Regge trajectories, with nearly the
parametery, for any chosernv), we restrict the trajectory to same thresholdgl].

Yiog
Tlog: ZEVTllz- (19
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The difference between the toy model study and the situexample, for thea, trajectory the square root form allowed
ation at hand is the following: In the toy model vii¢ the  for a J=8 state, whereas we concluded tllat6 should
data with many points, in effect optimizing parameters of theactually be the last state on the trajectory.
underlying potentials so that they prodwsimilar results for The glueball trajectory allows for very large values of
a large number of bound states. In the fit to real data, wd,,,,, possibly as high as 36. The specific valueJgf, is
have instead a very few lowest-lying bound states, soide  obviously subject to a large uncertainty, but our conclusion is
for the parameters of trajectories. Implicitly, we demand thafirm that the value will be significantly larger than that for
the underlying potentials produce tisameresults at those ordinary mesons, possibly even larger than that for heavy
input points. Since the points are the lowest-lying boundquarkonia. This raises the paradoxical possibility that kigh
states, this corresponds to “aligning” the potentials in theglueballs may be sufficiently narrow to identify experimen-
region relevant for the lowest-lying bound states, which cantally. (The only other states expected to be available to mix
and should be expected to, lead to different asymptotic valyith them would be heavy quarkonia. Such mixing is sup-
ues. Since the asymptotic value of the_ potential is_; directlypressed to perturbative values by the heavy quark mass.
related to the threshold of the Regge traject@yfeast in the Unfortunately, the Pomeron trajectory is the only glueball
toy mode), this translates into the thresholds for square romtrajectory for which experimental data are available, and we

and logarithmic trajectories being different. expect that there are certain exceptional aspects associated

. The difference between the extract'eq threshold_s is thus Aith it: As for the light quark-antiquark system, a perturba-
indicator of systematic errors. Combining errors in quadra,

ture, we conclude that the threshold for the Pomeron traject-l\./e analysis shows a strong at_tr_ac_tlon betyveen two gluons
. with a threshold at zero. Relativistically, this suggests that
tory is (9.4-1.6) GeV. . . X
the two-particle bound state will develop a negative mass-
squared, requiring15] the formation of a gluonic vacuum
condensatéwhich is known to occyrand a mass gap for the

As is obvious from Eqs(7) and(11), the square root form lowest scalar state above the shifted vacuum. The Pomeron
of the trajectory with the parameters fitted to scattering datarajectory does pass throughk-0 at a negative mass-squared
alone gives the same mass predictions as the fit to both thend there is, of course, no physical state there. If the lowest
scattering data and the tensor glueball mass, but with largenass scalar glueball is indeed the scalar state as shifted by
errors. The fit to both the scattering data and the mass of thiae formation of the gluon condensate, it need not appear at
2" glueball from a lattice may give quite precise predic-the mass expected from standard consideration of the daugh-
tions for higher excited states, providing the lattice value ister trajectories of the Pomeron.
close to the true mass of the glueball. Note that our method Such a distortion, however, does not appear to oft8f
works very well even for higher excited states. Using the fit,for the f,(980) trajectory in the case of light quarks, where
Eqg. (11), we obtain the following predictions for excited the issues of “four quark” states, as well as mixifigclud-
glueball masses: M(477)=4.21+0.21 GeV, M(6"")  ing with the scalar glueball also arise. However, one does
=5.41+0.28 GeV, and we obtain M(2"7)=2.38 not know if this apparent regularity will hold for the
+0.12 GeV, with the same central value obtained fromPomeron trajectory states as well. Therefore, it is also inter-
purely scattering Pomeron data. esting to investigate additional glueball states.

Based on our calculation we conclude that the threshold In the absence of other data, we turn to lattice QCD. So
for tensor glueballs can be expected in the region no lowefar, the spectrum of glueballs has only been calculated in
than 7—-8 GeV and no higher than 11-12 GeV. From theguenched QCD. Of the states listed in R, the 0 at
fitted values of the thresholds for various meson multiplets2.59+0.17 GeV and 2* at 3.10-0.18 GeV should form a
we know that the thresholds for the same flavors, but differcommon trajectory with an intercept3.58+1.48 and
ent multiplets, vary by less than 20%. We expect the same teghreshold T=3.90+0.91 GeV. Another trajectory is
be true for glueballs. formed by a I~ at 2.94:0.17 GeV and a 3~ at 3.55

Note that the glueball threshold is much larger than whatt 0.21 GeV. Its intercept is- 2.60+ 1.45 and threshold/T
we found for ordinary §q) light mesons. This is related to =4.87+1.25 GeV. Note the large errors of the extracted
the smaller(local in t, not asymptotic, of courseslope for  values. The remaining data from RE6] are ambiguous for
the Pomeron trajectory but also devolves from our DAMAour purposes because they can contain admixtures of higher
approach. From this higher value, we infer that a signifi-angular momentum states.
cantly larger number of higher states are available for glue- The values of thresholds extracted from lattice data are
balls than for mesons. significantly lower than the threshold of the Pomeron trajec-

It is also interesting to contemplate what the maximaltory, although, within the large errors, they are consistent
value of J=J,,,x may be for the states allowed. We recall with the lower limit of the Pomeron threshold. Moreover,
from our previous worK 1] that the square root trajectory since the thresholds for different trajectories of the same fla-
tends to overestimate the growth near the threshold; that isjors can be expected to differ as much as 20%, the apparent
at any given mass it tends to predict slightly high angulardisagreement is not alarming. Unquenched lattice data, there-
momentum for states approaching the threshold. This wafre, could be very useful for further advancing our under-
expected from model studies and further confirmed by fits tstanding of the nature of the Pomeron trajectory, in the ab-
light meson spectra where sufficient data were available. Fasence of further experimental evidence.

Ill. CONCLUSIONS ON GLUEBALL SPECTROSCOPY
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IV. FUTURE PROSPECTS lattice data are available for the bottomoniumlike hybrids

As a prospect for future work, we comment on the possi—[G]' If the physical states are nearly degenerate, i.e., spin

bility of apolving our aoproach to hvbrid mesons. which aresplittings are small, then the spin-averaged data can be used
of cﬁrrentr)i%%/eregst o bgt% experime>r/1t and theory’ In ek to extract the parameters of the Regge trajectories, and, in
the authors used the LOBO approximation to caiculate 'Specgamcular,_the threshold value can be reliable. For example,
tra of bottomonium as well as bottomoniumlike hybrids. Thel PuUre qq mesons, the bottom mass provides a sufficient
LOBO approximation was demonstrated to be an efficienfUPPression factor for the subleading splittings, whereas the
and reliable method. However, the potentials used as inpuf@a'm mass is insufficient. In the case of bottomoniumlike
are generated in quenched lattice QCD, and thus not all dfyPrids, most possible spin-dependent operators are sup-

the states predicted may survive in an unquenched theorfréssed by the heavy quark mass. However, there is a con-
Color screening due to light quarks can be expected to b ribution due to the angular momentum of the glue that can

come more and more important with the increasing size oP€ expected to be of the same magnitude as the LOBO split-
the hadron. tings. This invalidates any conclusions one could draw using
Exactly how many of the hybrid states can be reliably®Ur approach based on the leading-order splittings at present.
extracted from a quenched calculation is unclear. For exG1Ven more precise lattice data, it would be interesting to
ample, the wave function of the lowest-lying hybrid is found compare trajectory parameters of hybrids to those of ordinary
to be larger than that of the lowest-lying quarkonium, but™Mesens and or glueballs. _ _
still smaller than the scale where flux tube breakage is ex- 't should also be worthwhile to examine daughter trajec-
pected 6]. There is evidence that survival of the lowest-lying {0fi€S using our approach. Conversely to the above, a

hybrids as well-defined resonances remains conceiyable plethora of relevant experimental evidence is available. A
Unfortunately, implementing the physics of flux tube key question here is whether the thresholds for the daughter

breaking in lattice QCD is very difficult at present. This is trajectories are consistent with those found for the parents.
where our phenomenological approach can be of assistance.

The key gssumptiqn is that because thg curvature of the ACKNOWLEDGMENTS
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