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Nonlinear Regge trajectories and glueballs
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We apply a phenomenological approach based on nonlinear Regge trajectories to glueball states. The pa-
rameters, i.e., the intercept and threshold, or trajectory termination point beyond which no bound states should
exist, are determined from Pomeron~scattering! data. The systematic errors inherent to the approach are
discussed. We then predict the masses of the glueballs on the tensor trajectory. For comparison, the approach
is applied to available quenched lattice data. We find a discrepancy between the lattice-based thresholds and the
Pomeron threshold that we extract from data.

DOI: 10.1103/PhysRevD.67.094016 PACS number~s!: 12.39.Ki, 12.40.Nn, 12.40.Yx, 12.90.1b
ts
c
o

ur
rm
th
ib
re

im
th
ly

he
be
n
ap
re

ie
p

in

r

the

rk-
t is

r
of
the

ng,

n
of

the
ugh
lts
the
thus

x
ig
iled
of

are
an

tials
ic-
g-

ing

t of
n.

so
ec-
na-
oot
lue

nt
13
I. INTRODUCTION

In a previous work@1# we presented theoretical argumen
and strong phenomenological evidence that Regge traje
ries of ordinary quark-antiquark mesons are essentially n
linear and can be well approximated, for all practical p
poses, by a specific function, the so-called square-root fo
With a few additional assumptions intended to reduce
number of independent parameters, and, when poss
tested for self-consistency, we obtained a remarkable ag
ment with both the bound~resonant! state (t.0) and scat-
tering (t,0) data. What makes this success even more
pressive is the fact that the input parameters, with
exception of one, were determined by the masses of on
few lowest-lying bound states.

The theoretical motivation for our previous study was t
view that the properties of the gluon field, e.g., the flux tu
change with the increasing size of the hadron. At lo
enough distances, a linear potential is simply a wrong
proximation to the interaction of meson constituents. The
fore, Regge trajectories cannot be asymptotically linear@2# in
t, even if they appear to be so over a limited range oft. In
searching for a more practical approximation, we stud
nonlinear Regge trajectories corresponding to dual am
tudes with Mandelstam analyticity~DAMA ! @3# in a simpli-
fied situation, that is, toy models which, nevertheless, ma
tain a resemblance to QCD@1,4,5#. After a thorough
investigation, we argued that~i! DAMA amplitudes can be
expected to fit spectra,~ii ! nonlinearity arises due to the colo
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screening of the flux tube, and, thus,~iii ! one can expect the
same qualitative behavior of the trajectories regardless of
quantum number of the quark-antiquark meson.

In this paper we attempt to go beyond ordinary qua
antiquark mesons to trajectories for glueballs. However, i

not a priori clear that non-q̄q mesons such as glueballs o
hybrids can be satisfactorily described by the same form
Regge trajectories as are ordinary mesons. Even though
nonlinearity of Regge trajectories is due to color screeni

which is not exclusive toqq̄ mesons, the behavior of glue i
exotic systems can be different. In particular, in the case
glueballs there have been contradictory opinions about
basic nature of these states, ranging from solitonic thro
loops of glue to glue strings. The latest lattice QCD resu
indicate that the loops-of-glue picture does not agree with
lattice spectra to the extent that the bag model does,
supporting a constituentlike picture for gluons~in addition to
quarks! @6#. ~However, it should be kept in mind that the flu
tube model is, by definition, a very simple model with a b
symmetry group and so cannot be used to make deta
predictions for the spectrum; the flux-tubelike distribution
the fields should be measured instead.! The same authors
view hybrids as states where a quark and an antiquark
subject to a potential corresponding, roughly speaking, to
excited flux tube. They generate a plethora of these poten
in quenched QCD. Obviously, in unquenched QCD the p
ture can be drastically different. It is, unfortunately, challen
ing and difficult at present to capture the physics of str
breaking accurately with lattice methods@6#. Here we focus
on pure gluonic states and only comment on the prospec
extending our analysis to hybrid mesons in the conclusio

Encouraged by the lattice QCD analysis of Ref.@6#, we
apply the same phenomenological approach that worked
remarkably well for ordinary mesons to the Pomeron traj
tory. In a departure from our previous calculations, we a
lyze scattering data to fit parameters of the square-r
Regge trajectory. Naturally, in this case the extracted va

or
1.
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of the threshold, or termination point of the real part of t
trajectory, is subject to a large uncertainty. To reduce
uncertainty, we add to our data set the mass of the low
lying tensor glueball determined in Ref.@6#.

@There are a number of other lattice QCD determinatio
of this mass, see e.g. Refs.@7#, but the rms variation of the
values reported is only about 1%, which is considera
smaller than the uncertainties in the individual determi
tions. Hence, choosing one specific case has a negligible
fect on our results compared to the overall~statistical and
systematic! uncertainties below and avoids a perhaps unre
istic reduction of the total uncertainty.#

With this addition, the uncertainties in the trajectory p
rameters are significantly reduced while the values are l
affected. We take the value of the threshold as an indica
of a maximum mass beyond which no glueball states ex
bearing in mind that we are unable to prove at present
the square-root form will be as comparably efficient in d
scribing glueballs as it was for ordinary mesons.

We should also note that the threshold we find here
larger than what is inferred from trajectories fitted
quenched lattice QCD glueball mass states. Whether th
due to the difference between quenched and unquen
QCD, or the functional forms used for the trajectories,
mains unknown.

The choice of a specific trajectory within the allowe
range of DAMA trajectories introduces an unknown syste
atic error. In case of ordinary mesons, our results justified
assumptionsa posteriori. Due to insufficient data, this is no
possible when dealing with pure glue trajectories. To e
mate the systematic errors, we repeat the fit with the o
limiting form of DAMA trajectories, the so-called logarith
mic form. We take the difference between the thresholds
tained as indicative of the systematic errors.

While the Pomeron trajectory is the only glueball traje
tory for which unambiguous data exist, it may be, unfor
nately, affected by the gluon condensate. In the absenc
experimental glue bound-state data, we use glueball ma
from lattice QCD to determine the thresholds of other, le
peculiar trajectories, bearing in mind that the masses are
ject to the quenched approximation.

This paper is organized as follows. Section II starts wit
brief introduction to the DAMA trajectories, followed by ou
fits to Pomeron data. We compare the fits for the two limiti
forms of trajectories, and discuss the physical meaning of
results. Section III is devoted to glueball spectroscopy.
conclude with a comment on possible future applications

II. DAMA TRAJECTORIES AND FITS TO DATA

The class of dual models called dual amplitudes w
Mandelstam analyticity~DAMA ! @3# is a generalization of
Veneziano amplitudes@8# to the most general form consiste
with Mandelstam analyticity.@DAMA has the Veneziano
limit a(t);t, but the transition to this limit occurs discon
tinuously @9#.#

A meson trajectorya j ī (t), can be parametrized on th
entire physical sheet in the following form:
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a j ī ~ t !5a j ī ~0!1gn@Tj ī
n

2~Tj ī 2t !n#, 0<n<
1

2
~1!

~up to a power of a logarithm!, assuming thata j ī (t) is an
analytic function having a physical cut from some valuet0 to
`, it is polynomially bounded on the entire physical she
and there exists a finite limit of the trajectory phase asutu
→` @10#. The subscriptsi , j indicate dependence of the pa
rameters on the flavor content of the meson within a me
multiplet. In this paper we drop the subscripts for simplici

The parametergn is the universal asymptotic slope fo
nonlinear trajectories@11#,

a~ t !;2gn~2t !n, utu→`;

both gn and the exponentn are independent of quantum
numbers. In order for the slope to be positive at smallt, gn

.0. The intercepta j ī (0) varies for different trajectories
and in accordance with the Froissart bound should sat
a j ī (0)<1. In reality, however, there is an exception — th
intercept of the Pomeron trajectory is observed to be sligh
larger than 1. The parameterTj ī is often called the trajectory
threshold.

Note that for utu!T, Eq. ~1! reduces to a~quasi!linear
form:

a j ī ~ t !5a j ī ~0!1ngTj ī
n21

t5a j ī ~0!1a j ī
8 ~0!t. ~2!

The value ofn is restricted to lie between 0 and 1/2,
accordance with Ref.@9#. The valuen50 should be under-
stood as a limitn→0, gnn fixed. In this limit, the difference
of fractional powers reduces to a logarithm, viz.,

a~ t !5a~0!2g log logS 12
t

Tlog
D , g log[ lim

n→0
gnn. ~3!

Unlike a trajectory with any value ofnÞ0, the real part of
the ‘‘logarithmic’’ trajectory does not freeze-out whent
reachesT. The real part continues to grow; the only chan
for t.T is that the trajectory acquires a constant imagin
part.

The upper bound onn gives the so-called ‘‘square-root
trajectory, viz.

a~ t !5a~0!1g1/2@AT2AT2t#. ~4!

When t reachesT, the real part of the ‘‘square-root’’ trajec
tory stops growing, and there are no states with a hig
angular momentum thanl max5@a(T)#. For this reason, the
parameterT is also called the trajectory termination poin
This is true for any value ofnÞ0.

A. Fit with the square-root form

In Ref. @1# we used only the square-root form of Eq.~4!
for spectroscopy purposes. We determined the value ofg1/2
from ther trajectory, and then it was taken as universal
all other meson trajectories. Our calculation is in excelle
agreement with various data, not only spectroscopic but s
tering as well, and is self-consistent, justifying the assum
6-2
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NONLINEAR REGGE TRAJECTORIES AND GLUEBALLS PHYSICAL REVIEW D67, 094016 ~2003!
tions a posteriori. This leads us to believe that the extract
value ofg1/2 is reliable, and that the square-root form is clo
to the true functional form of meson trajectories.

Since gn must be a constantindependentof the flavor
content or quantum numbers of the meson, we apply
same value,

g1/253.6560.05 GeV21, ~5!

to the data for the Pomeron.
With the value of the universal asymptotic slope fixed,

can now fit the Pomeron scattering data to find the remain
parameter of the Pomeron trajectory,T1/2. Of the two data
sets @12# shown in Fig. 1, we use onlygp→fp since at
ZEUS energies it is devoid of significant contributions fro
exchanges other than the Pomeron. For comparison,
show both sets of data. Note that the data points corresp
ing to gp→r0p are consistently above thegp→fp as ex-
pected due to contributions from additional exchanges.

In Fig. 1, the solid line shows our best fit of the squa
root form, Eq.~4!:

a1/2~0!51.0860.01,

AT1/2511.5662.08 GeV, ~6!

x2/d.o.f.56.07/9. ~7!

The relatively large, 18% error on the fitted threshold
caused in part by the data uncertainties, and in part by
fact that all data points are concentrated in a small region
t near zero; consequently,utu!T. The fit is essentially domi-
nated by the first term in the Taylor expansion of Eq.~4!:

FIG. 1. Pomeron data together with our best fits of the squ
root form: The dashed line fit includes the averaged massM (211)
as a data point; for the solid line fit only the scattering data w
used.
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a1/2~ t !5a~0!1
g1/2

2AT1/2
t ~8!

51.0810.1578 @GeV22#t. ~9!

In order to determine the threshold with better accura
additional data are needed. We use the mass of the low
lying tensor glueball from Ref. @6#, M (211)52.40
60.13 GeV. With this additional data point, the error on t
extracted threshold is reduced by factor of 2, while thex2 of
the fit remains comparably small and the fitted parame
values are essentially unchanged~see Fig. 1!. In this way we
obtain

a1/2~0!51.08160.007,

AT1/2511.5761.1 GeV, ~10!

x2/d.o.f.56.07/10. ~11!

We note that thex2/d.o.f. in both cases is smaller tha
one would expect on general grounds. This is similar to
case observed in Ref.@13# for other trajectories, presumabl
for similar reasons.

B. Fit with the logarithmic form

Even though the logarithmic trajectory, Eq.~3!, itself is
not realistic, since its real part grows without bound@in con-
trast to any other trajectory of our nonlinear form, Eq.~2!,
with nÞ0], it is useful to study because the true trajecto
can lie anywhere between the two limiting forms. In additi
to this reason, comparison of the fits with the two limitin
forms can, to some extent, illuminate the issue of system
ics. There is undoubtedly a systematic error associated
the choice of DAMA trajectories as the class of trajector
within which the true trajectory lies, and this we cannot e
timate. There is an additional systematic error arising fr
the specific choice ofn51/2 within the model and from the
way we determine the parameters of the trajectories. It is
second uncertainty that we address in this section.

To fit the data with a logarithmic form, we first need
determine the value ofg log . In complete analogy with our
calculation utilizing the square-root form, the value ofg log is
determined from ther trajectory. We find

g log58.0060.34. ~12!

Note thatg log is dimensionless.
Our best fit of the logarithmic form, Eq.~3!, to the scat-

tering Pomeron data,

a log~0!51.0860.01,

ATlog57.0960.64 GeV, ~13!

x2/d.o.f.56.07/9 ~14!

is shown in Fig. 2. Also in Fig. 2, we show the fit to th
scattering data plus mass of the tensor glueball, yielding

e-

e
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BRISUDOVA et al. PHYSICAL REVIEW D 67, 094016 ~2003!
a log~0!51.07960.007,

ATlog57.2360.34 GeV, ~15!

x2/d.o.f.56.12/10. ~16!

The addition of the bound state data point leads to a
increase inATlog and almost a factor of 2 reduction in it
error. Recall that, for the square-root form, the threshold
mains almost the same~less than 0.1% change!.

Again, not surprisingly, the fit is dominated by the line
term

a log~ t !5a~0!1
g log

Tlog
t ~17!

51.0810.1590 @GeV22#t. ~18!

C. Estimate of systematic error

The linear term dominance in all of our fits implies th
the thresholds of the square root and logarithmic trajector
extracted from Pomeron data, are simply related. The rela
size of the threshold for the two limiting forms follows d
rectly from comparison of the two linearized trajectories, E
~8! and Eq.~17!:

Tlog52
g log

g1/2
AT1/2. ~19!

The ratio ofg log /g1/2 is, in our calculation, fixed by ther
trajectory data used as input. To find the three paramete
the r trajectory ~its intercept, threshold, and the univers
parametergn for any chosenn), we restrict the trajectory to

FIG. 2. Pomeron data together with our best fits of the logar
mic form: The dashed line fit includes the averaged massM (211)
as a data point; for the solid line fit only the scattering data w
used.
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pass through the three experimentally well establish
points, specifically the intercept, and the mass and spin of
r and ther3.

The straight line that crossesr and r3 leads to an inter-
cept smaller that the observed value. This means that
linear form is insufficient@1#. By ana posterioricomparison
of the DAMA trajectory to its truncated Taylor series, on
can see that the fit is basically dominated by terms up
O(t2), viz.

ã1/2~ t !.ã~0!1
g1/2

2T̃1/2
1/2

t1
g1/2

8T̃1/2
3/2

t2, ~20!

ã log~ t !.ã~0!1
g log

T̃log

t1
g log

2T̃log
2

t2. ~21!

~We use the tilde to distinguish ther trajectory from the
Pomeron trajectory discussed so far.! For example, the
square-root trajectory evaluated at the mass of ther3 differs
from its Taylor series, Eq.~20!, by less than 0.5%.

Setting the Taylor series coefficients in Eqs.~20! and~21!
equal, we obtain

T̃log.2T̃1/2, ~22!

g log.g1/2AT̃1/2. ~23!

This leads to the following relation for the Pomeron thres
olds:

Tlog.2AT̃1/2AT1/2. ~24!

The numerical values we find are in a good agreement w
these relations.

Is there anything deep about these relations? Note
Eqs. ~22! and ~23! are a direct consequence of the fit bei
dominated by up to quadratic terms int and our requiremen
that the trajectory passexactlythrough the three input points
Thus, Eq. ~23! cannot hold for a universalg unless all
thresholds are identical. Alternatively, the three-point rest
tion is too strong and/or only one specific value ofn can be
correct.

D. Understanding the systematic error in terms of toy models

To understand this issue further, we turn to our toy mod
@1#. Within the framework of our generalized string model,
is possible to reconstruct the potential from a Regge tra
tory @1,4#. Earlier we found that potentials corresponding
the square-root and to the logarithmic trajectories, resp
tively, are very close, when normalized to the sam
asymptotic value. Furthermore, they are also very close
potential found from a fit to lattice data@14# that we used in
another toy model, which consists, basically, of a lead
order Born-Oppenheimer~LOBO! approximation for a sys-
tem of a very heavy quark and antiquark. In that toy mod
we found that the spectrum could be equally well fitted
both limiting forms of the Regge trajectories, with nearly t
same thresholds@1#.

-

e
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NONLINEAR REGGE TRAJECTORIES AND GLUEBALLS PHYSICAL REVIEW D67, 094016 ~2003!
The difference between the toy model study and the s
ation at hand is the following: In the toy model wefit the
data with many points, in effect optimizing parameters of
underlying potentials so that they producesimilar results for
a large number of bound states. In the fit to real data,
have instead a very few lowest-lying bound states, andsolve
for the parameters of trajectories. Implicitly, we demand t
the underlying potentials produce thesameresults at those
input points. Since the points are the lowest-lying bou
states, this corresponds to ‘‘aligning’’ the potentials in t
region relevant for the lowest-lying bound states, which c
and should be expected to, lead to different asymptotic
ues. Since the asymptotic value of the potential is direc
related to the threshold of the Regge trajectory~at least in the
toy model!, this translates into the thresholds for square r
and logarithmic trajectories being different.

The difference between the extracted thresholds is thu
indicator of systematic errors. Combining errors in quad
ture, we conclude that the threshold for the Pomeron tra
tory is (9.461.6) GeV.

III. CONCLUSIONS ON GLUEBALL SPECTROSCOPY

As is obvious from Eqs.~7! and~11!, the square root form
of the trajectory with the parameters fitted to scattering d
alone gives the same mass predictions as the fit to both
scattering data and the tensor glueball mass, but with la
errors. The fit to both the scattering data and the mass o
211 glueball from a lattice may give quite precise pred
tions for higher excited states, providing the lattice value
close to the true mass of the glueball. Note that our met
works very well even for higher excited states. Using the
Eq. ~11!, we obtain the following predictions for excite
glueball masses: M (411)54.2160.21 GeV, M (611)
55.4160.28 GeV, and we obtain M (211)52.38
60.12 GeV, with the same central value obtained fro
purely scattering Pomeron data.

Based on our calculation we conclude that the thresh
for tensor glueballs can be expected in the region no lo
than 7–8 GeV and no higher than 11–12 GeV. From
fitted values of the thresholds for various meson multiple
we know that the thresholds for the same flavors, but dif
ent multiplets, vary by less than 20%. We expect the sam
be true for glueballs.

Note that the glueball threshold is much larger than w
we found for ordinary (qq̄) light mesons. This is related t
the smaller~local in t, not asymptotic, of course! slope for
the Pomeron trajectory but also devolves from our DAM
approach. From this higher value, we infer that a sign
cantly larger number of higher states are available for gl
balls than for mesons.

It is also interesting to contemplate what the maxim
value of J5Jmax may be for the states allowed. We reca
from our previous work@1# that the square root trajector
tends to overestimate the growth near the threshold; tha
at any given mass it tends to predict slightly high angu
momentum for states approaching the threshold. This
expected from model studies and further confirmed by fits
light meson spectra where sufficient data were available.
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example, for thea2 trajectory the square root form allowe
for a J58 state, whereas we concluded thatJ56 should
actually be the last state on the trajectory.

The glueball trajectory allows for very large values
Jmax, possibly as high as 36. The specific value ofJmax is
obviously subject to a large uncertainty, but our conclusion
firm that the value will be significantly larger than that fo
ordinary mesons, possibly even larger than that for he
quarkonia. This raises the paradoxical possibility that higJ
glueballs may be sufficiently narrow to identify experime
tally. ~The only other states expected to be available to m
with them would be heavy quarkonia. Such mixing is su
pressed to perturbative values by the heavy quark mass!

Unfortunately, the Pomeron trajectory is the only glueb
trajectory for which experimental data are available, and
expect that there are certain exceptional aspects assoc
with it: As for the light quark-antiquark system, a perturb
tive analysis shows a strong attraction between two glu
with a threshold at zero. Relativistically, this suggests t
the two-particle bound state will develop a negative ma
squared, requiring@15# the formation of a gluonic vacuum
condensate~which is known to occur! and a mass gap for th
lowest scalar state above the shifted vacuum. The Pom
trajectory does pass throughJ50 at a negative mass-square
and there is, of course, no physical state there. If the low
mass scalar glueball is indeed the scalar state as shifte
the formation of the gluon condensate, it need not appea
the mass expected from standard consideration of the da
ter trajectories of the Pomeron.

Such a distortion, however, does not appear to occur@13#
for the f 0(980) trajectory in the case of light quarks, whe
the issues of ‘‘four quark’’ states, as well as mixing~includ-
ing with the scalar glueball!, also arise. However, one doe
not know if this apparent regularity will hold for the
Pomeron trajectory states as well. Therefore, it is also in
esting to investigate additional glueball states.

In the absence of other data, we turn to lattice QCD.
far, the spectrum of glueballs has only been calculated
quenched QCD. Of the states listed in Ref.@6#, the 021 at
2.5960.17 GeV and 221 at 3.1060.18 GeV should form a
common trajectory with an intercept23.5861.48 and
threshold AT53.9060.91 GeV. Another trajectory is
formed by a 112 at 2.9460.17 GeV and a 312 at 3.55
60.21 GeV. Its intercept is22.6061.45 and thresholdAT
54.8761.25 GeV. Note the large errors of the extract
values. The remaining data from Ref.@6# are ambiguous for
our purposes because they can contain admixtures of hi
angular momentum states.

The values of thresholds extracted from lattice data
significantly lower than the threshold of the Pomeron traj
tory, although, within the large errors, they are consist
with the lower limit of the Pomeron threshold. Moreove
since the thresholds for different trajectories of the same
vors can be expected to differ as much as 20%, the appa
disagreement is not alarming. Unquenched lattice data, th
fore, could be very useful for further advancing our und
standing of the nature of the Pomeron trajectory, in the
sence of further experimental evidence.
6-5
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IV. FUTURE PROSPECTS

As a prospect for future work, we comment on the pos
bility of applying our approach to hybrid mesons, which a
of current interest to both experiment and theory. In Ref.@6#,
the authors used the LOBO approximation to calculate sp
tra of bottomonium as well as bottomoniumlike hybrids. T
LOBO approximation was demonstrated to be an effici
and reliable method. However, the potentials used as in
are generated in quenched lattice QCD, and thus not a
the states predicted may survive in an unquenched the
Color screening due to light quarks can be expected to
come more and more important with the increasing size
the hadron.

Exactly how many of the hybrid states can be reliab
extracted from a quenched calculation is unclear. For
ample, the wave function of the lowest-lying hybrid is foun
to be larger than that of the lowest-lying quarkonium, b
still smaller than the scale where flux tube breakage is
pected@6#. There is evidence that survival of the lowest-lyin
hybrids as well-defined resonances remains conceivable@16#.

Unfortunately, implementing the physics of flux tub
breaking in lattice QCD is very difficult at present. This
where our phenomenological approach can be of assista
The key assumption is that because the curvature of
Regge trajectory arises due to the screening and breaka
a flux tube, we can use the same~that is, square root! form of
the trajectories as for ordinary mesons.

It is also unfortunate that, at present, only spin-avera
v
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lattice data are available for the bottomoniumlike hybri
@6#. If the physical states are nearly degenerate, i.e., s
splittings are small, then the spin-averaged data can be
to extract the parameters of the Regge trajectories, and
particular, the threshold value can be reliable. For exam
in pure qq̄ mesons, the bottom mass provides a suffici
suppression factor for the subleading splittings, whereas
charm mass is insufficient. In the case of bottomoniuml
hybrids, most possible spin-dependent operators are
pressed by the heavy quark mass. However, there is a
tribution due to the angular momentum of the glue that c
be expected to be of the same magnitude as the LOBO s
tings. This invalidates any conclusions one could draw us
our approach based on the leading-order splittings at pres
Given more precise lattice data, it would be interesting
compare trajectory parameters of hybrids to those of ordin
mesons and or glueballs.

It should also be worthwhile to examine daughter traje
tories using our approach. Conversely to the above
plethora of relevant experimental evidence is available
key question here is whether the thresholds for the daug
trajectories are consistent with those found for the paren
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