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Factorization and Sudakov resummation in leptonic radiativeB decay
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Soft-collinear effective theory is used to prove factorization of theB→g ln decay amplitude at leading
power inL/mb , including a demonstration of the absence of nonvalence Fock states and of the finiteness of
the convolution integral in the factorization formula. Large logarithms entering the hard-scattering kernel are
resummed by performing a two-step perturbative matching onto the low-energy effective theory, and by
solving evolution equations derived from the renormalization properties of the leading-orderB-meson light-
cone distribution amplitude. As a by-product, the evolution equation for heavy-collinear current operators in
soft-collinear effective theory is derived.
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I. INTRODUCTION

The proposal of a ‘‘soft-collinear effective theory
~SCET! for the strong interactions of collinear and soft pa
ticles has been an important step toward understanding
factorization properties of hard exclusive processes in Q
@1–4#. In particular, it raises the prospects for rigorous
proving QCD factorization theorems for hadronic and rad
tive B-meson decays into light particles such asB→pp @5#
and B→K* g @6,7#, which are of great importance to th
physics program at theB factories. A challenge common t
these decays and many others is to understand the int
tions of collinear particles with the soft spectator quark
side theB meson, which give rise to convolutions of har
scattering kernels withB-meson light-cone distribution
amplitudes~LCDAs!. The first systematic analysis of thes
interactions in the framework of SCET has recently be
performed by two of us@8#.

The radiative, semileptonic decayB→g ln provides a
clean environment for the study of soft-collinear interactio
@9#. This process is particularly simple in that no hadro
appear in the final state. Yet, there is sensitivity to the lig
cone structure of theB meson, probed by the coupling of th
high-energy photon to the soft spectator quark inside
heavy meson. In the present paper, we apply the forma
of @8# to prove factorization for this decay and systematica
resum large Sudakov logarithms. The arguments we
present apply, with some modifications, to more complica
decays such asB→K* g.

Several other groups have recently studied the decaB
→g ln. In @10# a QCD factorization formula was establishe
at next-to-leading order~NLO! in as , and it was demon-
strated that the leading-order LCDA of theB meson is suffi-
cient to describe the decay amplitude at leading powe
L/mb ~with L a typical hadronic scale!, contrary to the find-
ings of @9#. QCD factorization formulas have also been pr
posed for the related processesB→gg and B→g l 1l 2

@11,12#. Arguments in favor of factorization in higher orde
were given in@13# using a formulation of SCET differen
from the one adopted here.

In the present work we provide the first complete proof
factorization for aB decay in which hard-spectator intera
0556-2821/2003/67~9!/094014~12!/$20.00 67 0940
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tions are relevant at leading power. We believe that our
proach is simpler and more transparent than that put forw
in @13#. The discussion of factorization we will present
more complete in that we prove the absence of nonvale
Fock-state contributions and the convergence of the con
lution integral to all orders in perturbation theory. We prese
the first correct result for the perturbative hard-scattering k
nel in a scheme which uses the conventional, ma
independent definition of the LCDA. In addition, we discu
in detail the complete renormalization-group~RG! resumma-
tion of large logarithms. To this end, we solve evolutio
equations for the different components of the hard-scatte
kernel, which follow from the renormalization properties
the B-meson LCDA. In this context we clarify the conne
tion between the anomalous dimension of heavy-collin
currents in SCET and the cusp anomalous dimension
countered in the study of Wilson loops with lightlike se
ments@14,15#.

Our main goal is to establish the QCD factorization fo
mula @10#

A~B2→g l 2n̄ l !

}mBf BQu E
0

`

dl1

f1
B ~ l 1 ,m!

l 1
T~ l 1 ,Eg ,mb ,m!

~1!

to all orders in perturbation theory and at leading power
L/mb . HereQu5 2

3 is the electric charge of the up-quark~in
units of e), f B is the B-meson decay constant,f1

B is a
leading-order LCDA of theB meson, andT511O(as) is a
perturbative hard-scattering kernel. Factorization holds
long as the photon is energetic in theB-meson rest frame
meaning thatEg is of the order of theb-quark mass. The
physics underlying the factorization formula is that a hig
energy photon coupling to the soft constituents of theB me-
son produces quantum fluctuations far off their mass sh
which can be integrated out in a low-energy effective theo
Specifically, when the photon couples to theb quark it takes
it off shell by an amount of ordermb

2 , producing a hard
quantum fluctuation that can be treated using the method
©2003 The American Physical Society14-1
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heavy-quark effective theory~HQET! @16#. ~The resulting
contribution to the amplitude is, in fact, power suppresse!
When the photon couples to a soft light parton inside thB
meson it produces a ‘‘hard-collinear’’ mode that is off sh
by an amount of ordermbL. Once these short-distanc
modes are integrated out, the decay amplitude factorizes
a soft component~the LCDA! and a hard-scattering kernel

For the analysis of theB→g ln decay amplitude we work
in theB-meson rest frame and choose the photon momen
along the z direction, such thatqm5Eg nm, where nm

5(1,0,0,1) is a lightlike vector. The two transverse polariz
tion states of the photon can be expressed in terms of
basis vectors«7

m 5(1/A2)(0,1,7 i ,0), which correspond to
left- and right-circular polarization, respectively. It is conv
nient to define a second light-cone vectorn̄m5(1,0,0,21).
Any 4-vector can then be expanded aspm5 1

2 (p1n̄m

1p2nm)1p'
m , wherep15n•p andp25n̄•p.

In order to prove the factorization formula~1! one needs
to show that@17#:
~1! The decay amplitude can be expanded in powers

transverse momenta and, at leading order, can be
pressed in terms of a convolution with theB-meson
LCDA as shown in Eq.~1!.

~2! After subtraction of infrared contributions correspondi
to the B-meson decay constant and LCDA, the leadi
contributions to the amplitude come from hard intern
lines, i.e., the hard-scattering kernelT is free of infrared
singularities to all orders in perturbation theory.

~3! The convolution integral of the hard-scattering kern
with the LCDA is convergent.

~4! Nonvalence Fock states do not give rise to leading c
tributions.

In @13# the authors have discussed factorization for the de
B→g ln, albeit without addressing the last two points in th
list. ~The same criticism applies to the treatment of fact
ization for the decayB→Dp presented in@18#.! The verifi-
cation of the third point is in essence a check that one
correctly identified the infrared degrees of freedom in
effective low-energy theory. If the integral in Eq.~1! di-
verged forl 1→0, this would imply that in addition to the
hard-collinear modes mentioned above one would nee
consider long-distance contributions from internal mome
collinear with the photon momentum, which are off-shell
an amount of orderL2. The fourth point addresses contrib
tions from nonvalence Fock states, which in the present c
correspond toB-meson matrix elements of trilocalq̄Gmnb
operators. While local operators of this type would be
higher dimension and hence power suppressed, nonloca
erators can contribute at leading power if their compon
fields are smeared over domains of size 1/L @8#. In the fol-
lowing section we will address all of the above and, for t
example ofB→g ln decay, provide the first complete proo
of a QCD factorization theorem including hard-spectator
teractions.

Before entering the technical details of the factorizat
proof, we stress that Eq.~1! provides the simplest example o
a factorization formula for a decay in which the har
09401
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scattering mechanism involves three different mass scale
hard scaleEg;mb , a soft scalel 1;L, and an intermediate
scaleA2Eg l 1;AmbL. Indeed, an analysis of one-loop dia
grams for the decay amplitude reveals that leading contr
tions arise from three different regions of loop momen
hard momentak;mb , soft momentak;L, and hard-
collinear momenta scaling like (k1 ,k2 ,k')
;(L,mb ,AmbL). This suggests a second stage of ‘‘pertu
bative’’ factorization@8,13,19#, which we will establish be-
low. It says that the hard-scattering kernel itself can be f
torized as

T~ l 1 ,Eg ,mb ,m!5HS 2Eg

m
,
2Eg

mb
D •JS 2Eg l 1

m2 D . ~2!

The hard componentH accounts for the short-distance co
rections from quantum fluctuations that are off shell by
amount of ordermb

2 . They arise from the coupling of hard o
hard-collinear particles to the heavy quark. The jet functioJ
accounts for short-distance fluctuations that are off shell
an amount of ordermbL, which result from the coupling of
hard-collinear particles to the light spectator quark. The f
torization formula~2! thus separates the physics on two d
ferent short-distance scales. While this is necessary to
full control over large logarithms arising in the perturbati
calculation of the hard-scattering kernel, it is not a necess
step in the proof of the QCD factorization formula~1!, which
describes the separation of short- and long-distance phy

II. PROOF OF FACTORIZATION

We use the formulation of SCET developed in@8#, where
it was argued that the discussion of exclusiveB decays into
light particles can be made most transparent by matching
QCD amplitudes onto a low-energy effective theory in whi
only long-distance modes are kept as dynamical degree
freedom. In the present case theB meson is the only hadron
in the process, and so the relevant degrees of freedom in
low-energy effective theory are soft partons. The stron
interaction Lagrangian consists of the ordinary QCD L
grangian for light quarks and gluons~restricted to the sub-
space of soft Fourier modes! and of the HQET Lagrangian
for heavy quarks. In the full theory the hadronic part of t
decay amplitude is given by theB-meson matrix element o
the time-ordered product of a weak, flavor-changing curr
and the electromagnetic current. At leading order in the
fective theory this object is matched onto flavor-chang
bilocal operators of the formA(em)(z)q̄s(z) . . . h(0), where
A(em) is the photon field,h is the effective-theory field for the
heavy b quark, andqs is the field for a softu quark. The
separation z between the fields is nearly lightlike,z2

;1/(mbL)'0. A space-time picture of the decay process
as follows: The virtual light quark produced at the we
vertex is off shell by an amount of ordermbL and almost
collinear with the photon direction. The electromagnetic v
tex is thus located at a distancezm5tnm1sn̄m1z'

m relative
to the weak vertex, wheret;1/L is the parametrically larg-
est component. Because of the scaling properties of the p
4-2
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FACTORIZATION AND SUDAKOV RESUMMATION IN . . . PHYSICAL REVIEW D67, 094014 ~2003!
ton and soft spectator momenta one can replaceq̄s(z)
.q̄s(tn) and A(em)(z).A(em)(sn̄) to leading power. From
the discussion in@8#, it follows that at leading order inL/mb
there exists a unique type of SCET operators that med
this decay and are allowed by gauge and reparametriza
invariance. They are

(
q5u,b

ieQq E d4xT$@ ūgm~12g5!b#~0!, @ q̄A” (em)q#~x!%

→(
i

E dsdt Ĉi~ t,s,v•q,mb ,m!

3Q̄s~ tn! A”c'
(em)~sn̄!

n”

2
G iH~0!

5(
i

E dt C̃i~ t,n̄•q,v•q,mb ,m!q̄s~ tn!S~ tn,0!

3A” c'
(em)~0!

n”

2
G ih~0!, ~3!

where H5S†h and Qs5S†qs with the path-ordered expo
nential

S~x!5P expS ig E
2`

0

dw n•As~x1wn! D ~4!

are gauge-invariant combinations of SCET fields and Wils
lines, and As is the soft gluon field. The combinatio
S(x,y)[S(x)S†(y) appearing in the last line of Eq.~3! rep-
resents a soft Wilson line connecting the two pointsx andy
on a straight segment. Physically, this string operator ar
because the virtual quark propagating between the two
tices can emit multiple soft gluons without power suppr
sion. The quantityA” c'

(em) is the electromagnetic analog of th
gauge-invariant collinear gluon field defined in@8#. To first
order ine we have

A” c'
(em)~0!5n̄agm

' E
2`

0

dweFam~wn̄!. ~5!

The Feynman rule for this object is simplye«” * , where« is
the photon polarization vector. Finally, from the fact that t
leptonic weak currentn̄gm(12g5) l is conserved~in the limit
where the lepton mass is neglected! it follows that the rel-
evant Dirac structuresG i in Eq. ~3! can be taken asG1
5gm(12g5) andG25nm(11g5).

In the last step in Eq.~3! we have used that the photo
momentumq is an external momentum, so that the integ
tion over s can be performed and leads to new coefficie
C̃i(t,n̄•q,v•q,mb ,m)5* dseisn̄•q Ĉi(t,s,v•q,mb ,m). Note
that the scalar productsn̄•q52Eg and v•q5Eg are both
determined in terms of the photon energy; however, fo
while it will be useful to distinguish between these two va
ables.

SCET power counting shows that the soft fieldsH andQs
scale likeL3/2, the integration variablet scales like 1/L, and
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the Wilson coefficientsC̃i scale like 1. It follows that the
hadronic components of the SCET operators on the rig
hand side of Eq.~3! scale likeL2, which is one power ofL
less than a local current containing two soft quark fiel
That one can write down such operators is a consequenc
the fact that transverse collinear fields have unsuppres
interactions with soft light quarks@8#. As a result, at leading
power the Wilson coefficientsC̃i receive contributions only
from Feynman diagrams with a photon attached to the li
spectator quark in theB meson.

Following @20#, we define the two leading-order LCDA
for the B meson in position space in terms of the HQE
matrix element

1

AmB

^0uq̄s~z!S~z,0!Gh~0!uB̄~v !&

52
iF ~m!

2
trF S f̃1

B ~t,m!2
z”

2t
@f̃2

B ~t,m!2f̃1
B ~t,m!# D

3G
11v”

2
g5G . ~6!

Here z250 is a null vector,v is the B-meson velocity, and
t5v•z2 i0. The quantity F(m) corresponds to the
asymptotic value of the productf BAmB in the heavy-quark
limit @21#. The two distribution amplitudes obey the norma
ization f̃6

B (0,m)51 att50. In our casez5tn, and because
of the presence of the factorn” in Eq. ~3! it follows that only
the functionf̃1

B (t,m) contributes, to which we refer asthe
leading-order LCDA. Note that with our choice of the ligh
cone basis vectorn we havet5tv•n5t. Performing the
relevant traces over Dirac matrices, we find that at lead
power in L/mb the decay amplitude vanishes if the phot
has right-circular polarization, while for a photon with lef
circular polarization it is given by

A~B2→gLl 2n̄ l !5
iGF

A2
Vubeūl~pl !«”2* ~12g5!vn~pn!

3AmBF~m! E dtC̃1~ t,n̄•q,v•q,mb ,m!f̃1
B ~ t,m!

1•••, ~7!

where the dots represent power-suppressed contributi
Only the SCET operator with Dirac structureG15
gm(12g5) contributes to the decay amplitude. In order
recast the above result in a form resembling the factoriza
formula ~1! we introduce the Fourier transforms of the W
son coefficient function and the LCDA as@8,20#

C1~ l 1 ,n̄•q,v•q,mb ,m!

5 E dt e2 i l 1tC̃1~ t,n̄•q,v•q,mb ,m!
4-3
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f1
B ~v,m!5

1

2p E dt eivtf̃1
B ~ t,m!. ~8!

The analytic properties of the functionf̃1
B (t,m) in the com-

plex t plane imply thatf1
B (v,m)50 if v,0. Finally, the

HQET parameterF(m) is related to the physicalB-meson
decay constant through f BAmB5KF(mb ,m)F(m)
3@11O(L/mb)#, where at NLO in theMS scheme@21#

KF~mb ,m!511
CFas~m!

4p S 3 ln
mb

m
22D . ~9!

Combining these results, it follows that the terms shown
the second line of Eq.~7! equal those on the right-hand sid
of the factorization formula~1! if we identify the hard-
scattering kernel as

Qu

l 1
T~ l 1 ,Eg ,mb ,m!5KF

21~mb ,m!C1~ l 1,2Eg ,Eg ,mb ,m!.

~10!

Let us now discuss factorization in the context of o
formalism. The fact that the position-space SCET opera
appearing on the right-hand side of Eq.~3! contain compo-
nent fields with lightlike separation implies that transve
parton momenta can be set to zero at leading power. As
have seen, this naturally leads to the appearance of LCD
In SCET the hard-scattering kernelT is identified with a
Wilson coefficient. The absence of infrared singularities th
follows from the very existence of a low-energy effecti
theory, because Wilson coefficients arise from matching
by construction are insensitive to infrared physics. At t
point we have achieved as much as@13#.

We proceed to prove the convergence of the convolu
integral in Eq.~1!. The key ingredient here is to note that th
invariance of SCET operators under reparametrizations
the light-cone basis vectorsn and n̄ @22# can be used to
deduce the dependence of Wilson coefficient functions on
separationt between the component fields of nonlocal ope
tors @8#. In our case, invariance of the operators in Eq.~3!

under the rescaling transformationnm→nm/a and n̄m

→an̄m ~with fixed v) implies that

C̃i~ t,n̄•q,v•q,mb ,m!5C̃i~at,an̄•q,v•q,mb ,m!

5H̃ i~v•q,mb ,m!• J̃~at,an̄•q,m!
~11!

to all orders in perturbation theory. In other words, the va
ablest and n̄•q can only appear in the combinationn̄•q/t,
but not individually.~Similarly, the variablet enters the ar-
gument of the LCDA in Eq.~6! in the reparametrization
invariant combinationt5tv•n.) In the second step we hav
used the fact thatv•q andmb enter only through interaction
of hard or hard-collinear gluons with the heavy quark. T
corresponding modes can be integrated out in a first ma
ing step and lead to the functionsH̃ i , which depend on the
Dirac structure of the weak current containing the hea
09401
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quark. The nonlocalities of the component fields in Eq.~3!
result from the coupling of hard-collinear fields to the so
spectator quark in theB meson. These effects live on scal
of order mbL and can be integrated out in a second st
leading to the functionJ̃. Since the coefficientsC̃i are di-
mensionless, it follows that~with a slight abuse of notation!

C̃i~ t,n̄•q,v•q,mb ,m!5H̃ i S 2v•q

m
,xgD • J̃S n̄•q

m2t
D , ~12!

wherexg[2v•q/mb52Eg /mb is a scaling variable of orde
1. Corrections to this perturbative factorization formula a
suppressed by a ratio of the intermediate scalen̄•q/t
;mbL and a hard scale of ordermb

2 . ~While the fact that
these corrections scale likeL/mb is an immediate conse
quence of our discussion here, it is not obvious in the con
of the approach proposed in@13,19#, which is based on an
expansion in powers ofAL/mb.! The corresponding resul
for the hard-scattering kernel obtained after Fourier trans
mation has the form shown in Eq.~2! if we identify

HS 2v•q

m
,xgD5KF

21~mb ,m!H̃1S 2v•q

m
,xgD ,

Qu

l 1
JS n̄•ql1

m2 D 5E dt e2 i l 1t J̃S n̄•q

m2t
D , ~13!

wheren̄•ql152q• l 52Eg l 1 . Since the dependence of th
coefficient functions on the renormalization scale is logari
mic, it follows that to all orders in perturbation theory th
Wilson coefficients in Eq.~12! scale like C̃i;1 modulo
logarithms. ~Correspondingly, the kernel scales likeT;1
modulo logarithms.! The convergence of the convolution in
tegral in Eq.~7! in the infrared regiont→`, corresponding
to the regionl 1→0 in the factorization formula~1!, then
follows to all orders in perturbation theory as long as t
integral converges at tree level. Because theB meson has a
spatial size of order 1/L due to confinement, the bilocal ma
trix element must vanish faster than 1/t for t@1/L, and so
the integral overt is convergent.

The absence of endpoint divergences in convolution in
grals is tied to the question of whether the infrared degree
freedom have correctly been identified in the effective the
@19#. Let us illustrate this point for the case at hand. Assu
the integral overl 1 in Eq. ~1! diverged logarithmically for
l 1→0. This would indicate that there were leading-pow
contributions to the decay amplitude from regions where
termediate propagators~such as the quark propagator in Fi
1 below! are collinear with the external photon. In additio
to the modes we call hard-collinear one then had to inclu
other, long-distance collinear modes in the construction
the effective theory, which would invalidate factorizatio
The decay amplitude would then be sensitive to the hadro
structure of the photon as well as the full Bethe-Salpe
wave function of theB meson. Our demonstration that th
region l 1→0 is power suppressed is thus an essential ing
dient of the factorization proof.
4-4
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FIG. 1. Tree-level matching calculation for the Wilson coefficientsC1 andC2, without ~left! and with~right! an external soft gluon. The
dashed line denotes the flavor-changing weak current. The resulting non-local operators in SCET are denoted by a crossed circ
lines represent effective heavy-quark fields in HQET.
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The final step in the factorization proof is to demonstr
the power suppression of more complicated projections o
the B meson involving higher Fock states or transverse p
ton momenta. The fact that such projections do not cont
ute at leading power follows from the rules for constructi
SCET operators out of gauge-invariant building blocks,
explained in@8#. Projections sensitive to transverse mome
tum components contain extra derivatives and so are po
suppressed. Projections corresponding to nonvalence F
states contain insertions of the soft~subscript ‘‘s’’ ! gluon
field

A s
n~x!5@S†~ iD s

nS!#~x!5 E
2`

0

dwna@S†gGs
anS#~x1wn!.

~14!

SinceAs scales likeL, such insertions lead to power su
pression unless this field is integrated over a domain of
tension 1/L. It follows that the only possibility for a leading
power contribution from nonvalence Fock states would be
include a factor of* du A s

n(un) with u;1/L ~up to dimen-
sionless Wilson coefficients of order 1!. An example of such
an HQET operator~omitting gauge strings and Dirac stru
tures! is * dt * dwwq̄s(tn)naGs

an(wn)h(0), which is indeed
of leading order;L2 in power counting. Reparametrizatio
invariance requires that this object must be accompanied
an additional factor ofn in the numerator@27#. Sincen•As
50 by definition, the only possibility would be to include a
insertion of * dun”A” s'(un) somewhere between the ligh
quark fieldQ̄s and the Dirac matrixG i in the SCET operators
in Eq. ~3!. However, any such insertion vanishes, sincen2

50. It is important for this argument that the heavy qua
can be integrated out before one removes the off-shell mo
resulting from soft-collinear interactions. The heavy qua
therefore decouples from such interactions. This ensures
the factorn” cannot appear to the right ofG i , and it excludes
the appearance ofv•n instead ofn” .

We have thus completed the proof of the factorizat
formula ~1! to all orders in perturbation theory, and at lea
ing power inL/mb . The remainder of this paper is devote
to the calculation of the hard-scattering kernel at NLO
RG-improved perturbation theory, including a complete
summation of large logarithms.

III. CALCULATION OF THE HARD-SCATTERING
KERNEL

The Wilson coefficientsC̃i in Eq. ~3! are derived by
matching perturbative expressions for operator matrix e
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ments in the full theory onto corresponding expressions
the effective theory. Because by construction the Wilson
efficients are insensitive to infrared physics the matching
be done using on-shell external quark states. We thus as
incoming momentambv to the heavy quark andl ~with l 2

50) to the soft light quark. At the tree level the releva
amplitude in the full theory is obtained from the first Fey
man diagram shown in Fig. 1. At leading power only phot
emission from the light spectator quark contributes; emiss
from theb quark is suppressed by one power ofL/mb . The
corresponding amplitude in the effective theory follows fro
the second diagram. A straightforward matching calculat
yields for the Wilson coefficients at this orderC15Qu / l 1

andC250, wherel 15n• l 2 i0. @In general, the variablel 1

is conjugate to the coordinatet in Eq. ~3!. In the present case
l 1 coincides with the plus component of the spectator m
mentum because of the particular external state we cho
for the matching calculation.# The corresponding results i
position space areC̃15 iQuu(t) and C̃250.

While these results are most easily derived by match
amplitudes with two external quarks, the Wilson coefficien
are independent of the nature of the external states. Alte
tively, therefore, they can be determined by matching am
tudes with external soft gluons. Gluon emissions from
external quark lines cancel in the matching, since those em
sions are the same in the full theory and in SCET. Howev
gluon emissions from the internal quark propagator, which
integrated out in the effective theory, are contained in
Wilson line S(tn,0), which sums up an infinite number o
soft gluon insertions. The one-gluon example is illustrated
the last two diagrams in Fig. 1. Evaluating these graphs
readily recovers the results given above. In that way o
confirms ~at the tree level! our general result about the ab
sence of operators containing additional insertions of the
gluon fieldAs .

Beyond tree level the coefficient functions can be writt
in the form

Ci5
Qu

l 1
Fd i11

CFas~m!

4p
ci1•••G . ~15!

To obtain the NLO correctionsci we evaluate the one-loop
contributions to the decay amplitude in the full theory and
SCET. The relevant diagrams in full QCD are shown in F
2. In addition there is a contribution from the wave-functio
renormalization for the heavy quark. Using the modifi
minimal subtraction (MS) regularization scheme with
d5422e dimensions and anticommutingg5, we find the
4-5
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FIG. 2. One-loop diagrams in the full theor
contributing at leading power to theB→g ln de-
cay amplitude.
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following expressions for the contributionsAi corresponding
to the coefficientsci ~before subtraction of the pole terms!:

A1
QCD5S mb

m D 22e F2
1

2e
2 ln2

2Egl 1

mb
2

22~122 lnxg!

3 ln
2Egl 1

mb
2

24 ln2 xg1
223xg

12xg
ln xg

22L2~12xg!222p2G1S 2Egl 1

m2 D 2eS 2
2

e
25D

1S 22v• l

m D 22e F2
1

e2
1 ln2 S 22v• l

l 1
D1

7p2

12 G ,

A2
QCD5S mb

m D 22exg ln xg

12xg
. ~16!

In the expression forA1
QCD the first bracket contains the ve

tex correction for the weak current and the contribution fro
wave-function renormalization for the heavy quark, the s
ond term corresponds to the vertex correction for the e
tromagnetic current and the self-energy insertion on the
termediate quark propagator, and the last term correspon
the box diagram. Note that the various terms depend on t
different mass scales:mb ~hard!, 2Eg l 1;mbL ~hard-
collinear!, and l;L ~soft!. Whereas the first two scales a
perturbative, the contribution from the box diagram is dom
nated by soft physics. Indeed, power counting shows that
hard and collinear contributions to the box graph only co
tribute at subleading power inL/mb , as has been observe
previously in @10#. Note that the box contribution involve
components of the soft spectator momentum other thanl 1

@9#. However, this dependence will cancel in the matchi
Finally, it is worth emphasizing that there is no leading co
tribution to the decay amplitude from the region of loo
momenta that are collinear~not hard-collinear! with the ex-
ternal photon momentum. If it were present, this would i
ply that nonperturbative effects related to the hadronic str
ture of the photon would contribute at leading pow
invalidating the factorization formula~1!.

In the next step we evaluate the corresponding contr
tions at one-loop order in the effective theory. Generica
they are of the form C1-loop^ ^OSCET& tree1Ctree
^ ^OSCET&1-loop. The second contribution, which involve
one-loop matrix elements of SCET operators convolu
with tree-level coefficient functions, must be subtracted fr
the amplitudes obtained in the full theory. The relevant d
grams are shown in Fig. 3. We find
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A1
SCET5S l 1

m D 22eS 2
1

e2
2

3p2

4 D 1S 22v• l

m D 22e

3F2
1

e2
1 ln2 S 22v• l

l 1
D1

7p2

12 G ,

A2
SCET50. ~17!

The first term in the expression forA1
SCET corresponds to the

first two diagrams in the figure, while the second term
obtained from the last graph. Note that this is precisely
same contribution as obtained from the box diagram in
full theory.

The difference of the expressions given in Eqs.~16! and
~17! determines the NLO contributions to the Wilson coef
cient functions. Subtracting the pole terms in theMS
scheme, we find

c1522 ln2
mb

m
1~524 lnxg! ln

mb

m
1 ln2

2Egl 1

m2
22 ln2 xg

1
223xg

12xg
ln xg22L2~12xg!272

p2

4
, ~18!

c25
xg ln xg

12xg
.

Our result for the Wilson coefficientC1 agrees with the ex-
pressions for the hard-scattering kernel given in@10# and
@13#; however, Eq.~10! shows that identifying the kerne
with C1 misses the large logarithms encountered when
HQET matrix elementF(m) is related to the physica
B-meson decay constant.~In other words, these papers im
plicitly assume anmb-dependent definition and normaliza
tion of theB-meson LCDA, which is unconventional. In ou
approach the LCDA is normalized to unity, and all ma
dependence is explicit in the hard-scattering kernel.! Includ-
ing these corrections and simplifying the answer, we obt
for the hard-scattering kernel at NLO the final result

FIG. 3. One-loop diagrams in the effective theory whose con
bution to the amplitude needs to be subtracted in the calculatio
the Wilson coefficients.
4-6
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FACTORIZATION AND SUDAKOV RESUMMATION IN . . . PHYSICAL REVIEW D67, 094014 ~2003!
T~ l 1 ,Eg ,mb ,m!

511
CFas~m!

4p F22 ln2
2Eg

m
12 ln

2Eg

m
1 ln2

2Egl 1

m2

2
xg ln xg

12xg
22L2~12xg!252

p2

4 G . ~19!

Note that, despite appearance, the scale dependence o
expression in brackets is of the form 2 ln2 (m/l1)
22 ln (m/l1)1m-independent terms, indicating that it can
canceled by the scale dependence of the LCDAf1

B ( l 1 ,m)
under the convolution integral in Eq.~1!. This would be im-
possible if the argument of the ln2 term depended on the har
scalesEg or mb .

IV. RG EVOLUTION AND RESUMMATION

The hard-scattering kernelT contains the logarithms
ln(2Eg /m) and ln(2Eg l1 /m2), which cannot be made sma
simultaneously for any choice of the renormalization sc
m. While for realistic values of the photon energy (Eg
;mb/2;2.5 GeV) these logarithms are numerically not t
large, it is conceptually interesting to gain control over t
perturbative expansion of the kernel by summing the vari
logarithms to all orders in perturbation theory.

It was proposed in@10# to choose the renormalizatio
scale of orderm2;mbL, and to identify the remaining larg
logarithms in Eq.~18! with those arising in the matching o
heavy-collinear current operators onto SCET. The precise
ture of this identification beyond one-loop order was ho
ever left unclear. In the spirit of an effective-theory approa
one would rather prefer to take the renormalization sc
further down to a valuem5few3LQCD independent of the
b-quark mass and the photon energy, yet large enough f
perturbative treatment. In this way all dependence on
large scalesmb andEg becomes explicit and is contained
Wilson coefficients of the effective theory.

To gain full control over the large logarithms in the pe
turbative expansion of the kernel we perform the match
onto SCET in two steps@8,13,19#. In the first step the off-
shell fluctuations of the heavyb quark are integrated out b
matching onto HQET. Hard-collinear modes with momen
scaling like (k1 ,k2 ,k');(L,mb ,AmbL) are integrated ou
in a second step. In contrast with@13#, we avoid the explicit
construction of the intermediate effective theory. Since t
theory is needed only for RG improvement, it suffices
perform the matching diagrammatically using the method
regions @23,24#. This approach allows us to compute th
functionsH andJ in Eq. ~2! systematically order by order in
perturbation theory. Specifically, because the intermed
mass scale of ordermbL always arises from a scalar produ
of a soft momentum with a collinear momentum, one c
perturbatively match onto the intermediate theory by sim
setting the soft momentuml 50. In that way only hard fluc-
tuations associated with couplings to the heavy quark
integrated out. This yields precisely the functionH. The jet
function then follows from the ratioJ5T/H.
09401
the

e

s

a-
-
h
le

a
e

g

a

s

f

te

n
y

re

Let us illustrate this for the case at hand. Forl 50 the
second and third diagrams in Fig. 2 involve scaleless in
grals that vanish in dimensional regularization, while the b
graph can readily be shown to vanish at leading power. T
remaining contribution from the weak vertex correction a
wave-function renormalization for the heavy quark yields

A1
QCDu l 505S mb

m D 22e F2
1

e2
2

5

2e
1

2 lnxg

e
22 ln2 xg

1
223xg

12xg
ln xg22L2~12xg!262

p2

12G ,

~20!

while the expression forA2
QCDu l 50 is the same as that fo

A2
QCD given in Eq. ~16!. All graphs in the effective theory

involve tadpole integrals and vanish in dimensional regu
ization. Hence, afterMS subtractions the above result dete
mines the hard functionH̃1 defined in Eq.~11!. Using the
first relation in Eq.~13!, it then follows that

HS 2Eg

m
,xgD511

CFas~m!

4p F22 ln2
2Eg

m
12 ln

2Eg

m

2
xg ln xg

12xg
22L2~12xg!242

p2

12G . ~21!

According to Eq.~2!, the difference between Eqs.~19! and
~21! determines the one-loop contribution to the jet functio
which is thus given by

JS 2Egl 1

m2 D 511
CFas~m!

4p S ln2
2Egl 1

m2
212

p2

6 D .

~22!

In order to proceed we need RG equations obeyed by
various coefficient functions. The fact that the decay am
tude in Eq.~1! is scale independent links the scale depe
dence of the hard-scattering kernel to the evolution of
LCDA f1

B (v,m) @20#. By analyzing the renormalization
properties of this function, one finds that the hard-scatter
kernel satisfies the integro-differential equation~for l 1.0)
@25,28#

d

d ln m
T~ l 1 ,m!5FGcusp~as! ln

m

l 1
1g~as!GT~ l 1 ,m!

1 E
0

`

dv l 1G~v,l 1 ,as!T~v,m!,

~23!

whereGcusp is the universal cusp anomalous dimension
miliar from the theory of the renormalization of Wilson loop
@14#. The functionG obeys* dv G(v,v8,as)50. At one-
loop order, it is given by
4-7
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BOSCHet al. PHYSICAL REVIEW D 67, 094014 ~2003!
G1-loop~v,v8,as!

52Gcusp
1-loop~as!F u~v2v8!

v~v2v8!
1

u~v82v!

v8~v82v!
G

1

,

~24!

where the plus distribution is defined such that, whenG is
integrated with a functionf (v), one must replacef (v)
→ f (v)2 f (v8) under the integral. It is straightforward t
check that our one-loop result in Eq.~19! is a solution to Eq.
~23! at orderas .

From the factorization property of the hard-scattering k
nel exhibited in Eq.~2! and the functional forms of the har
and jet functions given above, it follows that the hard co
ponent and the jet function obey the RG equations

d

d ln m
H~m!5F2Gcusp~as! ln

m

2Eg
1g~as!2g8~as!GH~m!,

~25!
d

d ln m
J~ l 1 ,m!5FGcusp~as! ln

m2

2Egl 1
1g8~as!GJ~ l 1 ,m!

1 E
0

`

dv l 1G~v,l 1 ,as!J~v,m!.

The reasoning here is analogous to an argument presente
Korchemsky and Sterman in their discussion of theB
→Xsg photon spectrum@26#. The anomalous dimensionsg
and g8 do not have a simple geometric interpretation a
must be determined by explicit calculation. From Eqs.~21!
and ~22! we find

g~as!522CF

as

4p
1O~as

2!, g8~as!5O~as
2!. ~26!

From the discussion above, it follows that in the interm
diate theory the amplitude is represented in terms of
time-ordered product of the electromagnetic current with
heavy-collinear SCET current operator of the typex̄ G1h,
wherex is a hard-collinear quark field. The correspondi
matching relation for such currents reads@2#

ūgm~12g5!b→C3
SCET~m!x̄gm~12g5!h1•••, ~27!

where the ellipses represent terms with different Dirac str
ture. The Wilson coefficientC3

SCET(m) coincides with our

function H̃1(m). The first relation in Eq.~25! then deter-
mines the exact form of the RG equation obeyed by
Wilson coefficients of heavy-collinear currents in SCE
which we have derived here for the first time. Based o
comparison of one-loop results obtained in SCET with
pressions presented in@26# for the photon energy spectrum i
inclusiveB→Xsg decays, previous authors have conjectu
a relation between the coefficient of the ln(m/2Eg) term in
Eq. ~25! and the cusp anomalous dimension@1,2#; however,
the nature and origin of this connection beyond one-lo
order was left unclear. Note, in particular, that the minus s
in front of the logarithm in the RG equation forH(m) does
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not allow for a simple interpretation in terms of a cusp s
gularity of a Wilson loop. Our derivation establishes tw
important facts: First, to all orders in perturbation theo
only a single logarithm of the ratiom/2Eg appears in the RG
equation. Secondly, the coefficient of the logarithm equ
minus the cusp anomalous dimension. The first observa
is a crucial one. The fact that no higher powers of logarith
appear in the RG equations cannot be inferred from a fix
order calculation in SCET. It follows from remarkable pro
erties of Wilson loops discussed long ago by Korchems
and Radyushkin@14#. Without this insight it would be im-
possible to integrate the RG equations. The second obse
tion implies that the coefficient of the logarithmic term
known to two-loop order, which allows for the resummatio
of Sudakov logarithms at NLO.

We now discuss the general solution of the evoluti
equations~23! and ~25!, which is nontrivial due to the con
volution integral involving the functionG(v,v8,as). Note
that the kernelG is not simply a function of the difference
(v2v8), and so the convolution cannot be turned into
product using Fourier transformation. Nevertheless, an e
solution can be written down in terms of a new function@25#

F~a,as!5 E dv v8G~v,v8,as!S v

v8
D 2a

. ~28!

At one-loop order we find from Eq.~24!

F 1-loop~a,as!5Gcusp
1-loop~as!@c~11a!1c~12a!12gE#,

~29!

wherec(z) is the logarithmic derivative of the EulerG func-
tion. We start by solving the first equation in Eq.~25! with
the initial condition forH(mh) evaluated at a high scalemh
;mb , for which it does not contain large logarithms. W
then evolve the functionH(m) down to an intermediate scal
m i;AmbL and multiply it by the resultJ( l 1 ,m i) for the jet
function, which at the intermediate scale is free of large lo
rithms and can be written in the general formJ( l 1 ,m i)
[J @as(m i), ln(2Eg l1 /mi

2)#. This determines the kerne
T( l 1 ,m i) at the intermediate scale. Finally, we solve E
~23! and compute the evolution down to a low-energy sc
m; few3LQCD. The exact solution is given by

T~ l 1 ,m!5H~mh!J @as~m i !,¹h#

3expU~ l 1 ,m,m i ,mh ,h!uh50 , ~30!

where the notationJ @as(m i),¹h# means that one must re
place each logarithm of the ratio 2Egl 1 /m i

2 by a derivative
with respect to an auxiliary parameterh. The evolution func-
tion U is given by
4-8
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U~ l 1 ,m,m i ,mh ,h!5E
as(mh)

as(m i )

da
Gcusp~a!

b~a! F ln
2Eg

mh
2 E

as(mh)

a da8

b~a8!
G2 E

as(mh)

as(m i )

da
g8~a!

b~a!

2 E
as(m i )

as(m)

da
Gcusp~a!

b~a! F ln
l 1

m
1 E

a

as(m) da8

b~a8!
G1 E

as(mh)

as(m)

da
g~a!

b~a!
1h ln

2Egl 1

m i
2

1 E
as(m i )

as(m) da

b~a!
F S 2h1 E

as(m i )

a

da8
Gcusp~a8!

b~a8!
,a D , ~31!

whereb(as)5das /d ln m. Close inspection shows that the result for the hard-scattering kernel is independent of th
matching scalesmh andm i .

Given this exact result, it is straightforward to derive approximate expressions for the kernel at given orders
improved perturbation theory, by using perturbative expansions of the anomalous dimensions andb function to the required
order. Unfortunately, controlling terms ofO(as) in the evolution functionU would require knowledge of the cusp anomalo
dimension at three-loop order~as well as knowledge of all other anomalous dimensions at two-loop order!, which at present
is lacking. We will, however, control the dependence on the variablesl 1 andEg to O(as). As usual, we write

b~as!522as (
n50

`

bnS as

4p D n11

, Gcusp~as!5 (
n50

`

GnS as

4p D n11

, ~32!

and similarly for the anomalous dimensionsg and g8. The relevant expansion coefficients areG054CF , G154CF

3@( 67
9 2p2/3)CA2 20

9 TFnf #, g0522CF , g0850, andb05 11
3 CA2 4

3 TFnf , b15 34
3 CA

22 20
3 CATFnf24CFTFnf . Defining the

ratios r 15as(m i)/as(mh) and r 25as(m)/as(m i), we obtain our final result

T~ l 1 ,m!5eU0(m,m i ,mh)S l 1

m D c ln r 2S 2Eg

mh
D 2c ln r 1H 11

CFas~mh!

4p F22 ln2
2Eg

mh
12 ln

2Eg

mh
2

xg ln xg

12xg
22L2~12xg!242

p2

12G
1

CF as~m i !

4p F S ln
2Eg l 1

m i
2

2c~11c ln r 2!2c~12c ln r 2!22gED 2

2c8~11c ln r 2!1c8~12c ln r 2!212
p2

6 G
1

G0

2b0
S G1

G0
2

b1

b0
D Fas~m!2as~m i !

4p
ln

l 1

m
2

as~m i !2as~mh!

4p
ln

2Eg

mh
G J , ~33!

wherec5G0/2b0, and

U0~m,m i ,mh!5
G0

4b0
2 H ~12 ln r 1!

4p

as~mh!
1~11 ln r 2!

4p

as~m!
2

8p

as~m i !
1

b1

2b0
~ ln2 r 11 ln2 r 2!

1S G1

G0
2

b1

b0
D S ln

r 1

r 2
122r 12

1

r 2
D J 2

g0

2b0
ln ~r 1r 2!2 ln

G~11c ln r 2!

G~12c ln r 2!
22gEc ln r 21O~as! ~34!
n
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corresponds to the evolution functionU evaluated with
h50, l 15m, and 2Eg5mh . The only piece missing for a
complete resummation at NNLO is theO(as) contribution to
U0, which is independent ofl 1 andEg .

In order to study the importance of RG improvement a
Sudakov resummation, we compare in the left-hand plo
Fig. 4 the result for the resummed hard-scattering kerne
Eq. ~33! with the one-loop approximation in Eq.~19!. We
choose the highest possible value of the photon ene
(Eg5mb/2 with mb54.8 GeV) so as to maximize the value
of the large logarithms, and plot the functionT( l 1 ,m) for
m51 GeV and different choices of the matching scalesmh
09401
d
n
in

y

andm i . Here and below, the ‘‘natural’’ choicesmh52Eg and
m i5A2EgLh, whereLh50.5 GeV serves as a typical had
ronic scale, are taken as default values. We use the two-
running coupling normalized atas(mb)50.22 and set
nf54 for the number of light quark flavors.~For simplicity,
we do not match onto a three-flavor theory even for lo
renormalization scales.! We find that resummation effects de
crease the magnitude of the radiative corrections, i.e.,
resummed kernel is closer to the tree-level value (T51) than
the one-loop result. The fact that after Sudakov resumma
the radiative corrections are moderate in magnitude pers
even for asymptotically largeb-quark masses. For instanc
4-9
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FIG. 4. RG-improved predictions for the hard-scattering kernel at maximum photon energy.Left: Results atm51 GeV. The bands refer
to different values of the intermediate matching scale:m i

25Lhmb ~center!, 2Lhmb ~top!, 0.5Lhmb ~bottom!. Their width reflects the
sensitivity to the high-energy matching scalemh

2 , varied between 2mb
2 and 0.5mb

2 . The dashed line shows the result obtained at one-l
order.Right: Dependence of the kernel on the renormalization scalem, varied between 0.75 GeV and 2.0 GeV as indicated on the cur
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setting mb550 GeV we find after resummationT( l 1 ,m)
50.74 at l 15m51 GeV. ~Fixed-order perturbation theor
breaks down for such large values of the quark mass. F
Eq. ~19! we would obtainT( l 1 ,m)50.08 with these param
eter values.! The figure also exhibits that our results a
stable under variation of the two matching scales. Vary
m i

2 andmh
2 by factors of 2 changes the result for the kernel

less than 10%. This suggests that the unknown NNLO c
rections to the functionU0 in Eq. ~34! are perhaps not very
important.

The scale dependence of the resummed expression fo
kernel is illustrated in the right-hand plot in Fig. 4, whic
shows the functional dependence ofT( l 1 ,m) for maximal
photon energy and several values ofm. The matching scales
are set to their default valuesmh5mb54.8 GeV andm i

5ALhmb.1.55 GeV. We observe a significant scale dep
dence of the kernel, especially as one lowersm below the
intermediate scalem i . In other words, the second stage
running ~for m,m i), which we have computed for the firs
time in the present paper, is numerically significant.

Finally, it is interesting to study resummation effects f
the convolution integral

I ~Eg!5 E
0

`

dl1

f1
B ~ l 1 ,m!

l 1
T~ l 1 ,Eg ,mb ,m!. ~35!

At the tree level, this integral has been denoted byI 0
51/lB , wherelB is a low-energy hadronic parameter@5#.
To evaluate the integral beyond the tree level one need
assume a particular form of the LCDA. In@20#, a model
function was derived from a QCD sum-rule analysis of t
matrix element of the bilocal HQET operator in Eq.~6!. This
study motivated the ansatz

f1
B ~ l 1 ,m0!5

l 1

lB
2

e2 l 1 /lB,

with

lB5
2

3
~mB2mb!'0.32 GeV. ~36!
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Such a nonperturbative calculation, which does not con
the scale dependence of the LCDA, is reasonable only
low hadronic scalem0. For larger values ofm evolution ef-
fects introduce a radiative tail in the LCDA. We thus expe
significant modifications of the convolution integral due
radiative corrections. While the functionI (Eg) is formally m
independent, our model estimate will depend on the value
the scalem0 at which the functional form given in Eq.~36! is
assumed to be correct. In Fig. 5, we show results for
function I (Eg) in units of I 0 for three different values ofm0.
After RG resummation we observe a modest reduction
I (Eg) with respect to its tree-level value, which is fairl
insensitive to the precise value ofm0 and only shows a mild
energy dependence. In a rough approximation we h
I (Eg)'0.75I 0. In contrast, the results obtained at one-lo
order are strongly sensitive to the choice ofm0 and exhibit a
more pronounced dependence on the photon energy.

V. CONCLUSIONS

We have applied soft-collinear effective theory to prove
QCD factorization formula for the radiative semileptonic d
cayB→g ln, stating that at leading power inL/mb the decay
amplitude can be written as a convolution of a perturbat

FIG. 5. Energy dependence of the convolution integralI (Eg)
normalized to its tree-level value, assuming the model~36! for the
LCDA at a low scalem0 such thatas(m0)50.5 ~top!, 0.75~center!,
and 1.0~bottom!. The matching scales are set to their default v
ues. The solid curves correspond to the resummed kernel, while
dashed ones are obtained at one-loop order.
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FACTORIZATION AND SUDAKOV RESUMMATION IN . . . PHYSICAL REVIEW D67, 094014 ~2003!
hard-scattering kernel with the leading-orderB-meson light-
cone distribution amplitude. Besides deriving the prec
form of this convolution and establishing that the kernel
infrared finite to all orders in perturbation theory, we ha
shown that the convolution integral is free of endpoint s
gularities, and that nonvalence Fock states of theB meson do
not contribute at leading power.

We believe that the analysis of the factorization proper
of the decay amplitude is most transparent in the framew
of the formulation of soft-collinear effective theory deve
oped in@8#, where full QCD is directly matched onto a low
energy effective theory in which only long-distance mod
are kept as dynamical degrees of freedom. In the present
these are the soft constituents of theB meson and the collin-
ear photon field. For more complicated processes with e
getic, light final-state mesons one would also have to in
duce collinear quark and gluon fields. Many of th
techniques used in our analysis~such as soft-collinea
gauge invariance, reparametrization invariance,
renormalization-group improvement! are equally relevant in
such a more general context.

The second part of our analysis was devoted to the ca
lation of the hard-scattering kernel in the factorization fo
mula using renormalization-group improved perturbat
theory. We have established a second, perturbative facto
tion formula, according to which the different short-distan
scales entering in the calculation of the kernel~hard scales of
order mb and hard-collinear scales of orderAmbL) can be
separated into a hard function and a jet function. The co
sponding two classes of large logarithms can be system
cally resummed by solving evolution equations derived fr
the renormalization properties of the leading-orderB-meson
light-cone distribution amplitude. As a by-product, we ha
elucidated the relation between the anomalous dimensio
heavy-collinear currents in the effective theory and the u
versal cusp anomalous dimension encountered in the s
of Wilson loops with lightlike segments. In contrast to pr
vious analyses, we have performed a complete resumma
of Sudakov logarithms down to a low-energy scalem;
s
s

n

da

09401
e

-

s
rk

s
se

r-
-

d

u-
-

a-

e-
ti-

of
i-
dy

on

few3LQCD independent of the heavy-quark mass. Only
that way all dependence onmb and the photon energyEg is
explicitly contained in the hard-scattering kernel. Our resu
~30! and ~31! give the exact analytic solution for the kerne
valid to all orders in perturbation theory.

The discussion of the decayB→g ln presented here ca
be taken over almost verbatim to analyze related proce
such asB→gg andB→g l 1l 2. The interesting observation
that at leading power the long-distance effects in these p
cesses are universal~for fixed photon energy! @12# can be
understood in our formalism as follows: Once short-distan
modes related to hard and collinear interactions with
heavy quark are integrated out at a scalemh;mb , the evo-
lution of the resulting operators in the effective theory
independent of the Dirac structure of the relevant curr
operators. This is true for the evolution of heavy-colline
currents~running from mh down to an intermediate scal
m i;AmbL), and for the bilocal heavy-light currents whos
matrix elements are expressed in terms of the leading-o
B-meson light-cone distribution amplitude~evolution from
m i down to a low-energy hadronic scale!. Process-dependen
corrections arise only in the initial matching at the hig
energy scale and thus are calculable in an expansion in p
ers ofas(mb).

From a phenomenological point of view, an importa
finding of our analysis is that Sudakov resummation does
lead to a strong suppression of the decay amplitudes. A
renormalization-group improvement we find moderate c
rections to the kernel which are smaller than at one-lo
order, and which stay at the level of 20–30 % even in
hypothetical case of asymptotically large heavy-quark ma
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