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Factorization and Sudakov resummation in leptonic radiativeB decay
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Soft-collinear effective theory is used to prove factorization of Bie yl v decay amplitude at leading
power in A/my, including a demonstration of the absence of nonvalence Fock states and of the finiteness of
the convolution integral in the factorization formula. Large logarithms entering the hard-scattering kernel are
resummed by performing a two-step perturbative matching onto the low-energy effective theory, and by
solving evolution equations derived from the renormalization properties of the leading®rdeson light-
cone distribution amplitude. As a by-product, the evolution equation for heavy-collinear current operators in
soft-collinear effective theory is derived.
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[. INTRODUCTION tions are relevant at leading power. We believe that our ap-
proach is simpler and more transparent than that put forward
The proposal of a *“soft-collinear effective theory” in [13]. The discussion of factorization we will present is
(SCET) for the strong interactions of collinear and soft par- more complete in that we prove the absence of nonvalence
ticles has been an important step toward understanding tHeock-state contributions and the convergence of the convo-
factorization properties of hard exclusive processes in QCOution integral to all orders in perturbation theory. We present
[1-4]. In particular, it raises the prospects for rigorously the first correct result for the perturbative hard-scattering ker-
proving QCD factorization theorems for hadronic and radianel in a scheme which uses the conventional, mass-
tive B-meson decays into light particles suchBas: 7o [5]  independent definition of the LCDA. In addition, we discuss
and B—K*y [6,7], which are of great importance to the in detail the complete renormalization-gro(iRG) resumma-
physics program at thB factories. A challenge common to tion of large logarithms. To this end, we solve evolution
these decays and many others is to understand the interagquations for the different components of the hard-scattering
tions of collinear particles with the soft spectator quark in-kernel, which follow from the renormalization properties of
side theB meson, which give rise to convolutions of hard- the B-meson LCDA. In this context we clarify the connec-
scattering kernels withB-meson light-cone distribution tion between the anomalous dimension of heavy-collinear
amplitudes(LCDAs). The first systematic analysis of these currents in SCET and the cusp anomalous dimension en-
interactions in the framework of SCET has recently beercountered in the study of Wilson loops with lightlike seg-
performed by two of u$8]. ments[14,15.
The radiative, semileptonic decay— ylv provides a Our main goal is to establish the QCD factorization for-
clean environment for the study of soft-collinear interactionsmula[10]
[9]. This process is particularly simple in that no hadrons
appear in the final state. Yet, there is sensitivity to the light-  4(B~— I —jl)
cone structure of thB meson, probed by the coupling of the
high-energy photon to the soft spectator quark inside the = pB(l, )
heavy meson. In the present paper, we apply the formalism *mgfgQy fo dI+|—
of [8] to prove factorization for this decay and systematically

T(I+ iE'yvmb!M)
+

resum large Sudakov logarithms. The arguments we will 1)
present apply, with some modifications, to more complicated
decays such aB—K* y. to all orders in perturbation theory and at leading power in

Several other groups have recently studied the d&ay A/My. HereQ,= 5 is the electric charge of the up-quaik
— ylv. In[10] a QCD factorization formula was established units of ), fg is the B-meson decay constany? is a
at next-to-leading orde(NLO) in as, and it was demon- leading-order LCDA of theB meson, and’=1+0(ay) is a
strated that the leading-order LCDA of tBemeson is suffi- perturbative hard-scattering kernel. Factorization holds as
cient to describe the decay amplitude at leading power ifong as the photon is energetic in tBemeson rest frame,
A/m, (with A a typical hadronic scalecontrary to the find- meaning thatE,, is of the order of theb-quark mass. The
ings of[9]. QCD factorization formulas have also been pro-physics underlying the factorization formula is that a high-
posed for the related processBs—yy and B—y |1~ energy photon coupling to the soft constituents of Bhime-
[11,17. Arguments in favor of factorization in higher orders son produces quantum fluctuations far off their mass shell,
were given in[13] using a formulation of SCET different Which can be integrated out in a low-energy effective theory.
from the one adopted here. Specifically, when the photon couples to thguark it takes

In the present work we provide the first complete proof ofit off shell by an amount of ordem?, producing a hard
factorization for aB decay in which hard-spectator interac- quantum fluctuation that can be treated using the methods of
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heavy-quark effective theoryHQET) [16]. (The resulting scattering mechanism involves three different mass scales: a
contribution to the amplitude is, in fact, power suppressed.hard scaleE ,~m,, a soft scald . ~A, and an intermediate
When the photon couples to a soft light parton insideBhe scaley2E, | , ~ym,A. Indeed, an analysis of one-loop dia-
meson it produces a “hard-collinear” mode that is off shell grams for the decay amplitude reveals that leading contribu-
by an amount of ordemyA. Once these short-distance tions arise from three different regions of loop momenta:
modes are integrated out, the decay amplitude factorizes inféard momentak~m,, soft momentak~A, and hard-

a soft componentthe LCDA) and a hard-scattering kernel. collinear — momenta  scaling  like k¢ k- k)

For the analysis of thB— yl v decay amplitude we work ~(A,my,VmpA). This suggests a second stage of “pertur-
in the B-meson rest frame and choose the photon momenturative” factorization[8,13,19, which we will establish be-
along the z direction, such thatg”=E., n“, where n* low. It says that the hard-scattering kernel itself can be fac-
=(1,0,0,1) is a lightlike vector. The two transverse polariza-{orized as
tion states of the photon can be expressed in terms of the
basis vectors;’{z(ll\/i)(o,l,ii,0), which correspond to
left- and right-circular polarization, respectively. It is conve-
nient to define a second light-cone vectot=(1,0,0-1).

Any 4-vector can then be expanded g&=2%(p,.n*  The hard componertl accounts for the short-distance cor-
- rections from quantum fluctuations that are off shell by an
amount of ordemﬁ. They arise from the coupling of hard or
hard-collinear particles to the heavy quark. The jet funcfion
§ccounts for short-distance fluctuations that are off shell by
an amount of ordemyA, which result from the coupling of
) . ) Kard-collinear particles to the light spectator quark. The fac-
pressed in term§ of a convolution with tf&meson torization formula(2) thus separates the physics on two dif-
LCDA as shown in Eq(1). o _ferent short-distance scales. While this is necessary to gain
(2) After subtraction of infrared contributions correspondllngfu" control over large logarithms arising in the perturbative
to the B-meson decay constant and LCDA, the leadingca|cylation of the hard-scattering kernel, it is not a necessary
contributions to the amplitude come from hard internalsiep in the proof of the QCD factorization formutB, which

lines, i.e., the hard-scattering kerriels free of infrared  describes the separation of short- and long-distance physics.
singularities to all orders in perturbation theory.

(3) The convolution integral of the hard-scattering kernel
with the LCDA is convergent.
(4) Nonvalence Fock states do not give rise to leading con- We use the formulation of SCET developed &, where
tributions. it was argued that the discussion of exclusielecays into
In [13] the authors have discussed factorization for the decalght particles can be made most transparent by matching full
B— vl v, albeit without addressing the last two points in this QCD amplitudes onto a low-energy effective theory in which
list. (The same criticism applies to the treatment of factor-only long-distance modes are kept as dynamical degrees of
ization for the deca@— D 7 presented if18].) The verifi- freedom. In the present case tBaneson is the only hadrqn
cation of the third point is in essence a check that one hal§ the process, and so the relevant degrees of freedom in the
correctly identified the infrared degrees of freedom in thelow-energy effective theory are soft partons. The strong-
effective low-energy theory. If the integral in E¢l) di-  interaction Lagrangian consists of the ordinary QCD La-
verged forl , —0, this would imply that in addition to the 9rangian for light quarks and gluorieestricted to the sub-
hard-collinear modes mentioned above one would need tgPace of soft Fourier modeand of the HQET Lagrangian
consider long-distance contributions from internal momentdor heavy quarks. In the full theory the hadronic part of the
collinear with the photon momentum, which are off-shell by decay amplitude is given by ttg-meson matrix element of
an amount of ordeA2. The fourth point addresses contribu- the time-ordered produ_ct of a weak, fIaV(_)r-changln_g current
tions from nonvalence Fock states, which in the present casdd the electromagnetic current. At leading order in the ef-
correspond taB-meson matrix elements of trilocalG*"b fective theory this object is matched onto flavor-changing

operators. While local operators of this type would be ofPilocal operators of the f_orm‘(em)(z)q_s(z) -..h(0), where
higher dimension and hence power suppressed, nonlocal oe(em) is the photon fieldh is the effective-theory field for the
erators can contribute at leading power if their componenfi€@vy b quark, andgs is the field for a softu quark. The
fields are smeared over domains of siza 18]. In the fol- ~ Separationz between the fields is nearly lightlikez’
lowing section we will address all of the above and, for the™1/(myA)~0. A space-time picture of the decay process is
example ofB— yl v decay, provide the first complete proof &s follows: The virtual light quark produced at the weak
of a QCD factorization theorem including hard-spectator in-vertex is off shell by an amount of ordem,A and almost
teractions. collinear with the photon direction. The electromagnetic ver-
Before entering the technical details of the factorizationtex is thus located at a distanzé=tn*-+sn*+z{" relative
proof, we stress that E@l) provides the simplest example of to the weak vertex, where-1/A is the parametrically larg-
a factorization formula for a decay in which the hard- est component. Because of the scaling properties of the pho-

2E, I,

PE

2, 25 o

T(I+,E7,mb,,u,)=H( R

+p_n*)+p/, wherep,.=n-p andp_=n-p.
In order to prove the factorization formu{d) one needs
to show thaf17]:
(1) The decay amplitude can be expanded in powers o
transverse momenta and, at leading order, can be e

Il. PROOF OF FACTORIZATION
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ton and soft spectator momenta one can replag(e) the Wilson coefficient; scale like 1. It follows that the
~q4(tn) and AC™(z)=A(™(sn) to leading power. From hadronic components of the SCET operators on the right-

the discussion ifig], it follows that at leading order in/m,  hand side of Eq(3) scale likeA?, which is one power ofA
there exists a unique type of SCET operators that mediat€ss than a local current containing two soft quark fields.

this decay and are allowed by gauge and reparametrizatiohhat one can write down such operators is a consequence of
invariance. They are the fact that transverse collinear fields have unsuppressed

interactions with soft light quarki$]. As a result, at leading
. 4 — — (em power the Wilson coefficient€,; receive contributions only
qg{,b 1eQq f d*%T{[uy"(1-5)b)(0), [aA“™a](0} from Feynman diagrams with a photon attached to the light
spectator quark in thB meson.
Y f dsdt G(t,s,0- My 1) Following [20], we define the two leading-order LCDAs
i S0 0 My, pt for the B meson in position space in terms of the HQET
matrix element

_ —#h
X Qq(tn) AL™(sn) STH(0)

1 _
—(0[as(2)S(z,00'h(0)|B(v))

=> fdt”ci(t,ﬁ-q,u-q,mb,M)Es(tn)S(tn,O) Jmg

| iF(w)

= 2tr

~B 4 ~B ~B
h (¢+(T,M)—2—T[¢(T,,u)—¢+(7,,u)]>
X AE™(0) 5Tih(0), 3 .
XT

+9
. > 7’5}- (6)
where H=S"h and Q,=S'q, with the path-ordered expo-
nential
Herez?=0 is a null vectory is the B-meson velocity, and
7=v-z—i0. The quantity F(x) corresponds to the
asymptotic value of the produdt/mg in the heavy-quark
limit [21]. The two distribution amplitudes obey the normal-
are gauge-invariant combinations of SCET fields and Wilsoqzationai‘(o,#) =1 at7=0. In our casg=tn, and because

gnes, i”: ASSTiS the soft gll_’o?h fi(lald:[ I_The fcgmbination of the presence of the factdrin Eq. (3) it follows that only
(x,y)=S(x)S'(y) appearing in the last line of EG3) rep- functiong® (r,u) contributes, to which we refer ahe

resents a soft Wilson line connecting the two poxndy . . . .
on a straight segment. Physically, this string operator ariselgadlng—or_der L(;:DA' Noﬁe that_v¥|th OE; cr|130|cfe of _the ,:'r?ht'
because the virtual quark propagating between the two vefONe hasis vecton we haver=1v-n=t. Feriorming the

tices can emit multiple soft gluons without power Suppres_relevant traces over Dirac matrices, we find that at leading

sion. The quantityzx(cjm) is the electromagnetic analog of the power in A/mj, the decay amplitude vanishes if the photon

gauge-invariant collinear gluon field defined[i8]. To first h_as rlght-cwc_ular_ pol_arlzat_lon, while for a photon with left-
order ine we have circular polarization it is given by

S(x)zPexp(ig ﬁo dw n- Ag(Xx+wn) (4)

_ 0 _ H
AE™(0)=n,y,, J _,, dweRHwn). G AB oyl )= %vubeU'(p')é*(l— 75)0,(P,)

The Feynman rule for this object is simph¢*, wheree is U — ~5
the photon polarization vector. Finally, from the fact that the X ymgF () f dtCy(t,n-q,v -0, My, ) GZ(t, 1)

leptonic weak currenty,(1— ys)l is conservedin the limit
where the lepton mass is neglectédfollows that the rel-
evant Dirac structured’; in Eq. (3) can be taken a3';
=y*(1—vys5) andl',=n*(1+ ys). where the dots represent power-suppressed contributions.
In the last step in Eq(3) we have used that the photon Only the SCET operator with Dirac structuré,;=
momentumg is an external momentum, so that the integra-y#(1— ys) contributes to the decay amplitude. In order to
tion overs can be performed and leads to new coefficientsrecast the above result in a form resembling the factorization
Ci(t,n-q,v-q.my,u)=J dsés™a C,(t,s,v-q,m,,u). Note formula (1) we introduce the Fourier transforms of the Wil-

that the scalar products-q=2E, andv-q=E, are both son coefficient function and the LCDA 8,20
determined in terms of the photon energy; however, for a
ngile it will be useful to distinguish between these two vari- Cy(l4,n-q,0-q,my,u)
ables.

SCET power counting shows that the soft fieldsand O
scale likeA®?, the integration variablescales like 1A, and

+o, (7)

= f dte '+Cy(t,n-q,0-q,mp, 1)
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5 1 o guark. The nonlocalities of the component fields in E).
¢ (o,p)= zJ’ dte“'p3(t,u). (8)  result from the coupling of hard-collinear fields to the soft
spectator quark in thB meson. These effects live on scales

The analytic properties of the functi&ﬁﬁ(t,ﬂ) in the com- of ordermbA and c-an~be .integrated out. i.n a~second .step,
plex t plane imply that¢§(m ©)=0 if @<0. Finally, the leading to the function). Since the coefficient€; are di-

HQET parameteF () is related to the physica-meson mensionless, it follows thatwvith a slight abuse of notation
decay constant  through fgyVmg=Kg(my,u)F(u) —
X[14+O(A/my)], where at NLO in theMS schemd21] j(%) , (12
nt
©) wherex,=2v -q/m,=2E, /m, is a scaling variable of order

1. Corrections to this perturbative factorization formula are

Combining these results, it follows that the terms shown ingyppressed by a ratio of the intermediate scala/t
the second line of Eq7) equal those on the right-hand side ~myA and a hard scale of orden?. (While the fact that
of the factorization formula(1) if we identify the hard-  hese corrections scale lik&/m, is an immediate conse-
scattering kernel as guence of our discussion here, it is not obvious in the context
Q of the approach proposed ji3,19, which is based on an
=T(,,Ey My, u) =Ke(my,0)Cy(1 4, 2E, E,,my, ). €xpansion in powers of A/my,.) The corresponding result

for the hard-scattering kernel obtained after Fourier transfor-

(10 mation has the form shown in E@) if we identify

~  — ~ [2v-Q
Ci(t,n-q,v-q,mp,pu)=H; %

KF(mb,M)=1+CFa—S(“)<3lnﬂ—2>.

4

.+

Let us now discuss factorization in the context of our
formalism. The fact that the position-space SCET operators
appearing on the right-hand side of E) contain compo-
nent fields with lightlike separation implies that transverse
parton momenta can be set to zero at leading power. As we Q.
have seen, this naturally leads to the appearance of LCDAs. J
In SCET the hard-scattering kernél is identified with a
Wilson coefficient. The absence of infrared singularities then — .
follows from the very existence of a low-energy effective W“ef?f."q'+:29"ZZEv .. Since t_he erenden_ce of the
theory, because Wilson coefficients arise from matching an&qeffl_ment functions on the renorr_nallzatlon spale is logarith-
by construction are insensitive to infrared physics. At thismic, it follows that to all orders in perturtlatlon theory the
point we have achieved as much[48)]. Wilson coefficients in Eq.(12) scale like C;~1 modulo

We proceed to prove the convergence of the convolutiodogarithms. (Correspondingly, the kernel scales like-1
integral in Eq.(1). The key ingredient here is to note that the modulo logarithmg.The convergence of the convolution in-
invariance of SCET operators under reparametrizations ofgral in Eq.(7) in the infrared regiort—, corresponding

the light-cone basis vectons and n [22] can be used to to the regionl , —0 ir_l the factori_zation formulgl), then
deduce the dependence of Wilson coefficient functions on thfP!lows to all orders in perturbation theory as long as the

separatiort between the component fields of nonlocal operaint€gral converges at tree level. Because Bhmeson has a
tors [8]. In our case, invariance of the operators in E3). spatial size of order IV due to confinement, the bilocal ma-
trix element must vanish faster thart T6r t>1/A, and so

the integral ovet is convergent.

2v-q ) . - (ZU-q )
— X, | =K (M, u)H4{| — %, |,
w % Fo(mp,pw)H;y “

un

PE

=f dte +1J

n-q
—) 9

I

under the rescaling transformation*—n#/a and n#

—an* (with fixed v) implies that The absence of endpoint divergences in convolution inte-
-~ — ~ — grals is tied to the question of whether the infrared degrees of
Ci(t,n-q,v-q,mp,u)=Ci(at,an-q,v-q,my, 1) freedom have correctly been identified in the effective theory
_ _ _ [19]. Let us illustrate this point for the case at hand. Assume
=Hi(v-q,my,u)-I(at,an-q,u) the integral ovel , in Eq. (1) diverged logarithmically for

(1) |, —0. This would indicate that there were leading-power
. . . contributions to the decay amplitude from regions where in-
to all orders_ln perturbation theory. In other wordithe Vari-iomediate propagatofsuch as the quark propagator in Fig.
ablest andn-q can only appear in the combinationg/t, 1 pelow are collinear with the external photon. In addition
but not individually. (Similarly, the variablet enters the ar-  to the modes we call hard-collinear one then had to include
gument of the LCDA in Eq(6) in the reparametrization- other, long-distance collinear modes in the construction of
invariant combinationr=tv -n.) In the second step we have the effective theory, which would invalidate factorization.
used the fact that- g andm, enter only through interactions The decay amplitude would then be sensitive to the hadronic
of hard or hard-collinear gluons with the heavy quark. Thestructure of the photon as well as the full Bethe-Salpeter
corresponding modes can be integrated out in a first matciyave function of theB meson. Our demonstration that the
ing step and lead to the functiof , which depend on the regionl,—0 is power suppressed is thus an essential ingre-
Dirac structure of the weak current containing the heavydient of the factorization proof.
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FIG. 1. Tree-level matching calculation for the Wilson coefficieBisandC,, without (left) and with(right) an external soft gluon. The
dashed line denotes the flavor-changing weak current. The resulting non-local operators in SCET are denoted by a crossed circle. Double
lines represent effective heavy-quark fields in HQET.

The final step in the factorization proof is to demonstratements in the full theory onto corresponding expressions in
the power suppression of more complicated projections ontthe effective theory. Because by construction the Wilson co-
the B meson involving higher Fock states or transverse parefficients are insensitive to infrared physics the matching can
ton momenta. The fact that such projections do not contribbe done using on-shell external quark states. We thus assign
ute at leading power follows from the rules for constructingincoming momentan,v to the heavy quark ant (with |2
SCET operators out of gauge-invariant building blocks, as=0) to the soft light quark. At the tree level the relevant
explained in[8]. Projections sensitive to transverse momen-amplitude in the full theory is obtained from the first Feyn-
tum components contain extra derivatives and so are powenan diagram shown in Fig. 1. At leading power only photon
suppressed. Projections corresponding to nonvalence Fo@mission from the light spectator quark contributes; emission
states contain insertions of the s@#ubscript ‘s”) gluon  from theb quark is suppressed by one power/ofm,. The
field corresponding amplitude in the effective theory follows from

0 the second diagram. A straightforward matching calculation
A(x)=[SN(iD?9)](x)= f dwn,[STgG&"S](x+wn). yields for the Wilson coefficients at this orde@,=Q, /I
—o andC,=0, wherel , =n-1—i0. [In general, the variable,
(14  is conjugate to the coordinatén Eq.(3). In the present case,
| . coincides with the plus component of the spectator mo-

Smce_As scales I|k_eA_, su_ch_msertlons lead to POWET SUP- entum because of the particular external state we choose
pression unless this field is integrated over a domain of ex:

tension 1A. It follows that the only possibility for a leading- for Fhe matching ~ca|cg|at|o]1.The c~orrespond|ng results in
power contribution from nonvalence Fock states would be t0Sition space ar€,=iQ,6(t) andC,=0. ,
include a factor off du .4 Z(un) with u~1/A (up to dimen- While these results are most easily derived by maiching
sionless Wilson coefficients of ordej. An example of such amp_lltudes with two external quarks, the Wilson coefiicients
an HQET operatofomitting gauge strings and Dirac struc- &€ independent of the nature of the external states. Alterna-

) — v L tively, therefore, they can be determined by matching ampli-
turegis [ dt [ dWWgs(_tn)”aGs (wn)h(0), whichisindeed v yas with external soft gluons. Gluon emissions from the
of leading order~ A in power counting. Reparametrization eyternal quark lines cancel in the matching, since those emis-
invariance requires that this object must be accompanied byjons are the same in the full theory and in SCET. However,
an additional factor ofi in the numeratof27]. Sincen-As  4y0n emissions from the internal quark propagator, which is
=0 by definition, the only possibility would be to include an jnegrated out in the effective theory, are contained in the
insertion of J duhAs (un) somewhere between the light- \wjison line S(tn,0), which sums up an infinite number of
quark fieldQs and the Dirac matrit’; in the SCET operators  soft gluon insertions. The one-gluon example is illustrated in
in Eq. (3). However, any such insertion vanishes, simée the last two diagrams in Fig. 1. Evaluating these graphs one
=0. It is important for this argument that the heavy quarkreadily recovers the results given above. In that way one
can be integrated out before one removes the off-shell modesnfirms (at the tree levelour general result about the ab-
resulting from soft-collinear interactions. The heavy quarksence of operators containing additional insertions of the soft
therefore decouples from such interactions. This ensures thgtuon field As.

the factorn cannot appear to the right 0f , and it excludes Beyond tree level the coefficient functions can be written
the appearance af- n instead ofth. in the form
We have thus completed the proof of the factorization
formula (1) to all orders in perturbation theory, and at lead- Qu Crag(u)
ing power inA/m, . The remainder of this paper is devoted Ci:t St —7 —Ci (15

to the calculation of the hard-scattering kernel at NLO in

RG-|mproved perturbatlon theory, including a complete "®“To obtain the NLO corrections; we evaluate the one-loop
summation of large logarithms.

contributions to the decay amplitude in the full theory and in
lIl. CALCULATION OF THE HARD-SCATTERING SCET. Th_e relevant_diagramg in _fuII QCD are shown in I_:ig.
KERNEL 2. In addition there is a contribution from the wave-function
renormalization for the heavy quark. Using the modified
The Wilson coefficientsC; in Eq. (3) are derived by minimal subtraction KIS) regularization scheme with
matching perturbative expressions for operator matrix eled=4—2e dimensions and anticommutings, we find the
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% éGG“ ‘g FIG. 2. One-loop diagrams in the full theory
3 « % 8 contributing at leading power to tH&— yl v de-
& £ 8 cay amplitude.

e T T o

following expressions for the contributiods corresponding || 2 1 372 —2p.]) "2
to the coefficients; (before subtraction of the pole terins ASCET= (;) S ibe +( P’ )
€
—2€
my 1 2E.l. B 2
AQCD=(—) — = In>—%=-2(1-21nx,) 1, pfz2vl) 7m
“w 2¢ mﬁ Y X —?4‘“’] I +§,
2E.l, 2-3x
XIn—L-—41In’x + ’Inx ASCET=0. 1
thJ Y 1_Xy Y 2 ( 7)
SE1LN T 2 The first term in the expression f&;°" corresponds to the
—2L2(1—X7)—2—772 + 72+ (———5) first two diagrams in the figure, while the second term is
2 € obtained from the last graph. Note that this is precisely the
_2 ) same contribution as obtained from the box diagram in the
+(—ZU'| € 1+| ,[—2v-l +777' full theory.
o €2 : (I 12 |’ The difference of the expressions given in E@$) and

(17) determines the NLO contributions to the Wilson coeffi-
me\ =26 In x cient functions. Subtracting the pole terms in thMS
AQCD_ b Y Y
SCP=

1-x, (16) scheme, we find

In the expression foAPP the first bracket contains the ver- ¢ — _ 5 2™ 4 (5_41nx ) In"2 4 |2 2B ey
tex correction for the weak current and the contribution from 2 Y wu? 7
wave-function renormalization for the heavy quark, the sec-

; 2—3x 2
ond term corresponds to the vertex correction for the elec- 4 ’In X, —2Ly(1—-x,)~ 7~

tromagnetic current and the self-energy insertion on the in- 1-x, 4’
termediate quark propagator, and the last term corresponds to

the box diagram. Note that the various terms depend on three  x_|nx

different mass scalesm, (hard, 2E,|,~myA (hard- Cy= 71—
collinean, andl~ A (soft). Whereas the first two scales are
perturbative, the contribution from the box diagram is domi-

nated by soft physics. Indeed, power counting shows that thQur r(_asult ]Eor tt?]e Vr\]/ils((j)n cotttaffi_cier(tkl ag:ee_s Wi[tgﬁ)t]he edx-
hard and collinear contributions to the box graph only conPressions for the hard-scattering kerne! given an

tribute at subleading power in/my, as has been observed [1.3]; howe_ver, Eq.(10) shows Fhat identifying the kernel
previously in[10]. Note that the box contribution involves \|’_|VlthE_C|_31 mli[s§es tlhe IartgFe Ioggnthmlstegc?un:sred r\]/vhgn Ithe
components of the soft spectator momentum other than BQ m?j rx eeme? r(l(lu) trlms reag tr? € pnysica
[9]. However, this dependence will cancel in the matching. -meson decay constantin other words, these papers Im-

Finally, it is worth emphasizing that there is no leading con-,f.’l'c'“}:c tissgme amﬁ—éﬂg&endﬁn; (_jefmmon an? nolrmlallza—
tribution to the decay amplitude from the region of loop lon of thes-meson » WRICh 1S unconventional. in our

momenta that are collined@not hard-collinegrwith the ex- approach the_ LCDA.'S. normalized to “r?'ty' and all mass
ternal photon momentum. If it were present, this would im__dependence IS e>_<pI|C|t In th? ha_rdfscatterlng keyriatlud- .
ply that nonperturbative effects related to the hadronic struc 9 these corrections and simplifying the answer, we obtain
ture of the photon would contribute at leading power,for the hard-scattering kernel at NLO the final result
invalidating the factorization formulél).

In the next step we evaluate the corresponding contribu-
tions at one-loop order in the effective theory. Generically,
they are of the form Cyp0p®(Oscenieet Ciree
®(Oscen1100p- The second contribution, which involves
one-loop matrix elements of SCET operators convoluted
with tree-level coefficient functions, must be subtracted from FIG. 3. One-loop diagrams in the effective theory whose contri-
the amplitudes obtained in the full theory. The relevant dia-bution to the amplitude needs to be subtracted in the calculation of
grams are shown in Fig. 3. We find the Wilson coefficients.

(18)

1-x,°
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T(4,E),my,u) Let us illustrate this for the case at hand. HerO the
second and third diagrams in Fig. 2 involve scaleless inte-

Crag(p) ,2E, 2E, ,2E,l.  grals that vanish in dimensional regularization, while the box
=1+ ———|~2In T+2 In—=+In"—3 graph can readily be shown to vanish at leading power. The
# remaining contribution from the weak vertex correction and
%_Inx 2 wave-function renormalization for the heavy quark yields
— I —2-2L,(1-x,)—5——|. (19
1% 4 2l 1 5 2lInx
A?CDho:(% =5t L-21n?x,
Note that, despite appearance, the scale dependence of the 1 e 2¢
expression in brackets is of the form Z{w/l,) )
—2In (u/ )+ u-independent terms, indicating that it can be i 2_3X7|nx —2L,(1-x,)—6— ™
canceled by the scale dependence of the LGB, ,u) 1-x, 7 2 7 12’
under the convolution integral in E¢L). This would be im- 20

possible if the argument of theAiterm depended on the hard

scalesk,, or my. . . .
Y b while the expression foAS“Y|,_, is the same as that for

ASCP given in Eq.(16). All graphs in the effective theory
IV. RG EVOLUTION AND RESUMMATION involve tadpole integrals and vanish in dimensional regular-
The hard-scattering kerneT contains the logarithms ization. Hence, afteMS subtractions the above result deter-

In(2E,/x) and In(ZE,/I+/,u2), which cannot be made small mines the hard functioi, defined in Eq.(11). Using the

simultaneously for any choice of the renormalization scaldirst relation in Eq.(13), it then follows that

w. While for realistic values of the photon energ¥ (

~my/2~2.5 GeV) these logarithms are numerically not too 2E, Crag(p)

large, it is conceptually interesting to gain control over the H(_’X7> =1+ 4 [

perturbative expansion of the kernel by summing the various

logarithms to all orders in perturbation theory. X, Inx,
It was proposed if10] to choose the renormalization T

scale of ordep>~myA, and to identify the remaining large

logarithms in Eq(18) with those arising in the matching of According to Eq.(2), the difference between Eqgl9) and

heavy-collinear current operators onto SCET. The precise ng1) getermines the one-loop contribution to the jet function,
ture of this identification beyond one-loop order was how-\yhich is thus given by

ever left unclear. In the spirit of an effective-theory approach
one would rather prefer to take the renormalization scale

2E 2E
—2IM—24+2In—=
w w

2

—2L,(1-x,)—4— a 21)

Y

2

further down to a valug.=fewX A ocp independent of the 2Bl ) _ 14 Cras(p) In2 26Ny T

b-quark mass and the photon energy, yet large enough for a w? A w? 6

perturbative treatment. In this way all dependence on the (22
large scalesn, andE,, becomes explicit and is contained in

Wilson coefficients of the effective theory. In order to proceed we need RG equations obeyed by the

To gain full control over the large logarithms in the per- various coefficient functions. The fact that the decay ampli-
turbative expansion of the kernel we perform the matchingude in Eq.(1) is scale independent links the scale depen-
onto SCET in two stepf8,13,19. In the first step the off- dence of the hard-scattering kernel to the evolution of the
shell fluctuations of the heavy quark are integrated out by LCDA ¢%(w,x) [20]. By analyzing the renormalization
matching onto HQET. Hard-collinear modes with momentaproperties of this function, one finds that the hard-scattering
scaling like k. ,k_,k,)~(A,my,VmyA) are integrated out kernel satisfies the integro-differential equatidor |, >0)
in a second step. In contrast with3], we avoid the explicit [25,2§
construction of the intermediate effective theory. Since this
theory is needed only for RG improvement, it suffices to u
perform the matching diagrammatically using the method of dTT(I + -M):[Fcus;{as) In|—+ v(as) | T(l4 )
regions[23,24. This approach allows us to compute the K *
functionsH andJ in Eq. (2) systematically order by order in o
perturbation theory. Specifically, because the intermediate +f dol 'l a)T(w,u),
mass scale of orden,A always arises from a scalar product 0
of a soft momentum with a collinear momentum, one can (23
perturbatively match onto the intermediate theory by simply
setting the soft momentuin=0. In that way only hard fluc- wherel'¢,g,is the universal cusp anomalous dimension fa-
tuations associated with couplings to the heavy quark areniliar from the theory of the renormalization of Wilson loops
integrated out. This yields precisely the functiBin The jet  [14]. The functionT’ obeys dw I'(w,»’,as)=0. At one-
function then follows from the ratid=T/H. loop order, it is given by
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rl-'oop(w,w',as) not allow for a simple interpretation in terms of a cusp sin-
gularity of a Wilson loop. Our derivation establishes two
1-100p, fo-—o') o' —-o) important facts: First, to all orders in perturbation theory

= _rcusp (as) +

only a single logarithm of the ratin/2E , appears in the RG
equation. Secondly, the coefficient of the logarithm equals
(24 minus the cusp anomalous dimension. The first observation
is a crucial one. The fact that no higher powers of logarithms
. . . appear in the RG equations cannot be inferred from a fixed-
integrated W',th a functlonf(w), one .mUSt _replacef(w) order calculation in SCET. It follows from remarkable prop-
—f(w)~f(w’) under the integral. It is straightforward 10 gnies of Wilson loops discussed long ago by Korchemsky
check that our one-loop result in EQ.9) is a solution to Eq. 54 Radyushkiri14]. Without this insight it would be im-
(23 atorderas. _ possible to integrate the RG equations. The second observa-
From the factorization property of the hard-scattering kero, impjies that the coefficient of the logarithmic term is
nel exhibited in Eq(2) and the functional forms of the hard | ,5\vn to two-loop order, which allows for the resummation
and jet functions_ given qbove, it follows that thg hard com-4¢ 5 dakov logarithms at NLO.
ponent and the jet function obey the RG equations We now discuss the general solution of the evolution
equations(23) and (25), which is nontrivial due to the con-

w(w—w') o (o —o) +’

where the plus distribution is defined such that, wheis

i H(M):[—Fcus[(as) |nL+y(aS)—y’(as) H(w),  volution integral involving the functiod'(w,®’,as). Note
nu 2E, that the kernel is not simply a function of the difference
d ) (25  (w—w'), and so the convolution cannot be turned into a
_ M , duct using Fourier transformation. Nevertheless, an exact
I ,m)=|T In + I, Procuict using '
dinu (I p) { cusif ) 2E,l, yias) 31 solution can be written down in terms of a new functj@s|

+ f“dwur(w,u,asﬂ(w,m-
0

—a
w
) ) Fla,ag)= fdw w’F(w,w’,as)(—) . (28
The reasoning here is analogous to an argument presented by '

Korchemsky and Sterman in their discussion of tBe
— Xsy photon spectrunj26]. The anomalous dimensions
and y' do not have a simple geometric interpretation andAt one-loop order we find from Eq24)
must be determined by explicit calculation. From E(&L)
and(22) we find
FHOR @, ag) =T gt ag) [¥(1+a) + ¢(1—a) +2¥g],

y(@)=—2Ci=+0(ad), ¥'(a)=0(ad). (26 @9

~ From the discussion above, it follows that in the interme-yherey(z) is the logarithmic derivative of the Eulér func-
diate theory the amplitude is represented in terms of thgion. Wwe start by solving the first equation in E@5) with
time-ordered product of the electromagnetic current with gne jnitial condition forH(«p,) evaluated at a high scaje,

heavy-collinear SCET current operator of the typd';h, ~my, for which it does not contain large logarithms. We
where x is a hard-collinear quark field. The correspondingthen evolve the functioki(x) down to an intermediate scale
matching relation for such currents red@3 wi~mpA and multiply it by the resuld(l . ,u;) for the jet
_ _ function, which at the intermediate scale is free of large loga-
uy*(1=y5)b—C3F () x¥*(1=ys)h+---, (27 rithms and can be written in the general ford{l . )

Ej[as(/j,i),|n(2E7|+//Li2)]. This determines the kernel

: - SCET o i T(l 4 ,u;) at the intermediate scale. Finally, we solve Eq.
ture. The Wilson coefficienC3™"(x) coincides with our (53 and compute the evolution down to a low-energy scale
function H,(w). The first relation in Eq(25) then deter-  ,~ fewxX Aqcp. The exact solution is given by
mines the exact form of the RG equation obeyed by the
Wilson coefficients of heavy-collinear currents in SCET,

where the ellipses represent terms with different Dirac struc

which we have derived here for the first time. Based on a T4, m)=H(un) TLas(m),V,]
comparison of one-loop results obtained in SCET with ex-
pressions presented|[i#6] for the photon energy spectrum in xexpU(l i, i ien, )| =0, (30)

inclusiveB— X4y decays, previous authors have conjectured

a relation between the coefficient of the i2E,) term in

Eq. (25) and the cusp anomalous dimensidn2]; however, where the notation7[ as(u;),V,] means that one must re-
the nature and origin of this connection beyond one-loopplace each logarithm of the ratidEg,I+/,ui2 by a derivative
order was left unclear. Note, in particular, that the minus sigrwith respect to an auxiliary parametgr The evolution func-
in front of the logarithm in the RG equation fét(w) does  tion U is given by
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ag(ui) [ousd @)
U I s M My ’ :f o
(F s i s pen s m) ) Ba)

2E, Ja da’

_f“s(”i) y' (@)
aur)  Bl@)

Hh as(un) Bla')
ag(w) r [ ag(w) da’ ag(n) @ 2E.|
_j ° da cusil @) In—++f ° +f ° aY( )+7;n 72+
asui) Bla) o Ja Bla’) aguy)  Bla) ik

as(n) da @ Fcus[(a’)
— — do’ —,a, 31
' jas(ﬂi) B(a) ]:( 7]+ fas(ﬂi) “ Bla’) a) o

where B(ags) =dag/dIn w. Close inspection shows that the result for the hard-scattering kernel is independent of the two
matching scaleg, and u; .

Given this exact result, it is straightforward to derive approximate expressions for the kernel at given orders in RG-
improved perturbation theory, by using perturbative expansions of the anomalous dimensigh$uacton to the required
order. Unfortunately, controlling terms @i(«) in the evolution functiord would require knowledge of the cusp anomalous
dimension at three-loop ordéas well as knowledge of all other anomalous dimensions at two-loop)osdeich at present
is lacking. We will, however, control the dependence on the varidbleandE, to O(ag). As usual, we write

n+1

a n+1 * a
an) o+ Tasfed=2 Tolz-| (32)

Blag)=—2as nZO Bn

and similarly for the anomalous dimensions and y’. The relevant expansion coefficients arg=4Cr, I'1=4C¢
X[ (5= 7?3)Ca— B Tene], ¥o=—2C¢, y5=0, andBo=5Ca— 3TN, B1=% CAi—FCaTeni—4CTen; . Defining the
ratiosr = ag( i)/ as(up) andr,=ag(w)/ag(ui), we obtain our final result

[ \chra/og \—clnry Cra (:th) 2E 2E X, Inx ?
T, , :er(M,Minh)(_+> (_“/) 1+ — 22 o 2= o In =X = 2 Y o (1—X,)—4— —
I+ M) w h A Mh Mh 1_Xy 2( }’) 12
Cradp)| [ 2E,I ’ m
+ F4;“' ==~ y(L+cinry) —y(l-clnry) =2y | —y'(I+cinry)+y (I-clnry)—1- -+
Mi
To E_&) adm)—as(pw) | Ve as(pi) —as(pn) ,nE} (33)
2B0\ o Bo 4m M 4m mn )
wherec=TI'y/283,, and
Uo( ) FO((1| )477 +(1+ 1 )477 8W+ﬁl(lz+l2>
) =—=1(1—Inry) —— nry) ——— ———+ — (In®ry+ In’r
ol b i sbin) = 2 Y ae(en) Pagw) adm) 2B 1T E

r, g ry 1 Yo I'(1+clinry)
+(F—0—IB—O)<|HG+2—F1—E —2—180|n(l'1r2)—|nm_—clnr2)—2‘yEC|nr2+O(aS) (34

corresponds to the evolution functiod evaluated with andy;. Here and below, the “natural” choices,= 2E ., and
7=0, 1, =u, and ZE = uy,. The only piece missing for a ui=2E,Ap, whereA,=0.5 GeV serves as a typical had-
complete resummation at NNLO is tl «) contribution to  ronic scale, are taken as default values. We use the two-loop
Uo, which is independent df, andE,. running coupling normalized aix(m,)=0.22 and set

In order to study the importance of RG improvement andn;=4 for the number of light quark flavoréfor simplicity,
Sudakov resummation, we compare in the left-hand plot irve do not match onto a three-flavor theory even for low
Fig. 4 the result for the resummed hard-scattering kernel imenormalization scalesWe find that resummation effects de-
Eqg. (33) with the one-loop approximation in Eq19). We  crease the magnitude of the radiative corrections, i.e., the
choose the highest possible value of the photon energsesummed kernel is closer to the tree-level vallie() than
(E,=my/2 with m,=4.8 GeV) so as to maximize the values the one-loop result. The fact that after Sudakov resummation
of the large logarithms, and plot the functidifl . ,ux) for  the radiative corrections are moderate in magnitude persists
u=1 GeV and different choices of the matching scalgs even for asymptotically largb-quark masses. For instance,
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FIG. 4. RG-improved predictions for the hard-scattering kernel at maximum photon ehefgResults aju=1 GeV. The bands refer
to different values of the intermediate matching scalé=A,m, (centej, 2A,m, (top), 0.5A,m, (bottom). Their width reflects the
sensitivity to the high-energy matching scal@, varied between @2 and 0.5n2. The dashed line shows the result obtained at one-loop
order.Right: Dependence of the kernel on the renormalization spalearied between 0.75 GeV and 2.0 GeV as indicated on the curves.

setting my,=50 GeV we find after resummatiom(l . ,u) Such a nonperturbative calculation, which does not control
=0.74 atl.=u=1 GeV. (Fixed-order perturbation theory the scale dependence of the LCDA, is reasonable only at a
breaks down for such large values of the quark mass. Fron®w hadronic scalgu,. For larger values of. evolution ef-

Eq. (19) we would obtainT (I, , ) =0.08 with these param- fects introduce a radiative tail in the LCDA. We thus expect
eter values. The figure also exhibits that our results are Significant modifications of the convolution integral due to
stable under variation of the two matching scales. Varyingadiative corrections. While the functidgE ) is formally

M|2 and,u,ﬁ by factors of 2 changes the result for the kernel byindependent, our.model estlmate will dep_end on the vglue of
less than 10%. This suggests that the unknown NNLO corthe scaleu, at which the functional form given in E36) is
rections to the functiot),, in Eq. (34) are perhaps not very assumed to be correct. In Fig. 5, we show results for the
important. functionlI (E,) in units of I, for three different values q,.

The scale dependence of the resummed expression for tHter RG resummation we observe a modest reduction of
kernel is illustrated in the right-hand plot in Fig. 4, which | (E,) with respect to its tree-level value, which is fairly
shows the functional dependence ©fi . ,u) for maximal  insensitive to the precise value pf and only sho_ws a mild
photon energy and several values;of The matching scales energy dependence. In a rough approximation we have
are set to their default valueg,=m,=4.8 GeV andu; I(E,)~0.73. In contrast, the results.obtained at o_ng-loop
= JA,my=1.55 GeV. We observe a significant scale depen®rder are strongly sensitive to the choicewqf and exhibit a
dence of the kernel, especially as one lowardelow the ~More pronounced dependence on the photon energy.
intermediate scalg; . In other words, the second stage of
running (for u<u;), which we have computed for the first V. CONCLUSIONS
time in the present paper, is numerically significant.

Finally, it is interesting to study resummation effects for
the convolution integral

We have applied soft-collinear effective theory to prove a
QCD factorization formula for the radiative semileptonic de-
cayB— vyl v, stating that at leading power ik/m, the decay

- B, ) amplitude can be written as a convolution of a perturbative
I(E'y): f d|+ I T(I+1E'yamb1/*l')' (35)
0 + 1
At the tree level, this integral has been denoted IRy 08—
=1/\g, where\g is a low-energy hadronic parameté]. o mm— =
To evaluate the integral beyond the tree level one needs to ~ 0.6 I
assume a particular form of the LCDA. [i20], a model B oadl | e eEememe —
function was derived from a QCD sum-rule analysis of the =

matrix element of the bilocal HQET operator in E§). This 0.2 s
study motivated the ansatz

01 12 14 16 18 2 22 24
| E, [GeV
¢E(I+!MO):_29_I+/)\BI ! [ ]
Ag FIG. 5. Energy dependence of the convolution inted(&,)
normalized to its tree-level value, assuming the md@é) for the
LCDA at a low scaleu such thatwg(uo) =0.5 (top), 0.75(centey,
and 1.0(bottom. The matching scales are set to their default val-
N :z(m —my)~0.32 GeV (36) ues. The solid curves correspond to the resummed kernel, while the
BT3B T ' ' dashed ones are obtained at one-loop order.

with
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hard-scattering kernel with the leading-ord@meson light-  fewX Aqcp independent of the heavy-quark mass. Only in
cone distribution amplitude. Besides deriving the precisahat way all dependence an, and the photon enerdy, is
form of this convolution and establishing that the kernel isexplicitly contained in the hard-scattering kernel. Our results
infrared finite to all orders in perturbation theory, we have(30) and(31) give the exact analytic solution for the kernel,
shown that the convolution integral is free of endpoint sin-valid to all orders in perturbation theory.
gularities, and that nonvalence Fock states ofBmeson do The discussion of the decdy— vyl v presented here can
not contribute at leading power. be taken over almost verbatim to analyze related processes
We believe that the analysis of the factorization propertiesuch asB— yy andB— y | 7| ~. The interesting observation
of the decay amplitude is most transparent in the frameworkhat at leading power the long-distance effects in these pro-
of the formulation of soft-collinear effective theory devel- cesses are universéfor fixed photon energy[12] can be
oped in[8], where full QCD is directly matched onto a low- understood in our formalism as follows: Once short-distance
energy effective theory in which only long-distance modesmodes related to hard and collinear interactions with the
are kept as dynamical degrees of freedom. In the present caReavy quark are integrated out at a scaje~m,, the evo-
these are the soft constituents of ®eneson and the collin- |ution of the resulting operators in the effective theory is
ear photon field. For more complicated processes with eneindependent of the Dirac structure of the relevant current
getic, light final-state mesons one would also have to introoperators. This is true for the evolution of heavy-collinear
duce collinear quark and gluon fields. Many of the currents(running from u, down to an intermediate scale
techniques used in our analysisuch as soft-collinear ,,~m,A), and for the bilocal heavy-light currents whose
gauge invariance, reparametrization invariance, angnatrix elements are expressed in terms of the leading-order
renormalization-group improvemerdre equally relevant in - B-meson light-cone distribution amplitudevolution from
such a more general context. i down to a low-energy hadronic scal®rocess-dependent
The second part of our analysis was devoted to the calcltorrections arise only in the initial matching at the high-

lation of the hard-scattering kernel in the factorization for-energy scale and thus are calculable in an expansion in pow-
mula using renormalization-group improved perturbationers of a(m,).

theory. We have established a second, perturbative factoriza- From a phenomenological point of view, an important

tion formula, according to which the different ShOFt-diStanCefinding of our analysis is that Sudakov resummation does not
scales entering in the calculation of the kerfielrd scales of |ead to a strong suppression of the decay amplitudes. After
orderm, and hard-collinear scales of ordgm,A) can be renormalization-group improvement we find moderate cor-

separated into a hard function and a jet function. The correrections to the kernel which are smaller than at one-loop

sponding two classes of large logarithms can be systematprder, and which stay at the level of 20-30% even in the

cally resummed by solving evolution equations derived fromhypothetical case of asymptotically large heavy-quark mass.
the renormalization properties of the leading-orBemeson
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