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Complete basis for power suppressed collinear-ultrasoft operators

Dan Pirjol*
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218

Iain W. Stewart†

Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195
~Received 21 December 2002; published 13 May 2003!

We construct operators that describe power corrections in mixed collinear-ultrasoft processes in QCD. We
treat the ultrasoft-collinear Lagrangian toO(l2) and heavy-to-light currents involving collinear quarks to
O(l), including new three body currents. A complete gauge invariant basis is derived which has a full
reduction in Dirac structures and is valid for matching at any order inas . The full set of reparametrization
invariance~RPI! constraints is included, and is found to restrict the number of parameters appearing in Wilson
coefficients and to rule out some classes of operators. The QCD ultrasoft-collinear Lagrangian has twoO(l2)
operators in its gauge invariant form. For theO(l) heavy-to-light currents there are (4,4,14,14,21) subleading
~scalar, pseudoscalar, vector, axial-vector, tensor! currents, where (1,1,4,4,7) have coefficients that are not
determined by RPI. In a frame wherev'50 andn•v51 the total number of currents reduces to (2,2,8,8,13),
but the number of undetermined coefficients is the same. The role of these operators and universality of jet
functions in the factorization theorem for heavy-to-light form factors is discussed.
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I. INTRODUCTION

The soft-collinear effective theory~SCET! constructed in
@1–4# offers a systematic description of processes involv
energetic particles. It has an expansion in a small param
l;p' /Q, wherep' is a typical transverse momentum an
Q the large energy scale. Hard exclusive and inclusive p
cesses in QCD are usually described using the powerful t
niques of QCD factorization and light-cone expansions@5,6#.
SCET encompasses and extends these frameworks, a
particular allows a model independent description of effe
caused by the interplay between energetic collinear parti
and soft particles beyond leading order in the power exp
sion. These effects can be described in a rigorous way b
solely on QCD, but are not included in purely collinear e
pansions. The study of operators that describe these m
collinear-ultrasoft~collinear-usoft! effects is the purpose o
this paper. For recent applications of SCET in hard scatte
processes andB decays see Refs.@7–13,15#.

Since our focus is on mixed collinear-usoft interaction
we consider collinear quark fieldsjn,p , collinear gluon fields
An,p

m , usoft heavy quark fieldshv , usoft light quark fields
qus , and usoft gluonsAus

m . ~We follow the notation in Refs.
@2,3#, but for simplicity will often suppress the momentu
labelp on the collinear fields.! These degrees of freedom ca
interact in a local manner in Lagrangians and currents. T
is in contrast with collinear-soft couplings whose interactio
are mediated by off-shell fluctuations@4#, and appear in ex-
ternal operators. We comment on collinear-soft interacti
at the end of the paper.

The derivation of the leading order collinear quark a
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gluon LagrangiansL jj
(0) andL cg

(0) can be found in Refs.@2,4#,
and a description of the gauge symmetries of SCET can
found in Refs.@3,4#. For details on power counting we refe
to Ref.@12#. The heavy-to-light currents at large energy,Jhl ,
were derived to leading order in Ref.@2#, including one-loop
matching for all the Wilson coefficients. The running of the
Wilson coefficients was considered in Refs.@1,2#.

In the context of the SCET, power suppressed correcti
were first considered in Ref.@10#, and theO(l) suppressed
currentsJhl and collinear quark Lagrangians were derive
The authors showed that a reparametrization invaria
~RPI! uniquely fixes the Wilson coefficients of their sublea
ing currents and Lagrangian in terms of the leading or
coefficients.1 In Ref. @11# the RPI of SCET was extended t
the most general three classes~I,II,III !, and the multipole
expansion of the collinear quark Lagrangian was treated
higher orders inl and were shown not to receive anomalo
dimensions. In Ref.@12# the presence of additionalO(l)
heavy-to-light currents was pointed out that were missing
Ref. @10#.

The study of power corrections in SCET was continued
Ref. @13# and several important results were obtained
mixed usoft-collinear operators. In particular the mix
usoft-collinear quark LagrangianLjq was first considered
and was derived toO(l,l2) working at tree level, but to all
orders in attachments ofn̄•An;l0 gluon fields. In a similar
fashion heavy-to-light currents were derived toO(l2), and
linear combinations of currents that are invariant under

1A similar application of Lorentz invariance was used to deri
constraints on the form of higher-twist contributions to structu
functions in deep inelastic scattering in@16#. For this case, invari-

ance under changes in the light-cone vectorn̄m was used to derive

constraints on matrix elements^puTc̄(0)Gc(ln̄m)up&.
©2003 The American Physical Society05-1
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three types of RPI were identified. It was also shown that
operators inLjq are not renormalized based on an analysis
arbitrary N-loop diagrams in the hard region of QCD. Th
mixed usoft-collinear quark LagrangianLjq was extended to
a gauge invariant form with covariant derivatives in R
@14#.

The purpose of the present paper is to answer some o
questions regarding our knowledge of the power suppres
usoft-collinear Lagrangian and heavy-to-light currents. T
includes the number ofJhl currents atO(l), since even at
tree level the full reduction of Dirac structures has not
been implemented. For bothJhl andLjq we also construct a
complete basis which is valid for matching at any order
as , and therefore includes all operators that can be indu
by radiative corrections or operator mixing. We work in t
most general possible frame throughout~e.g., allowingv'

Þ0, v•nÞ1), and consider all the restrictions from RP
including the transformation of Wilson coefficients. Final
we include the mixed usoft-collinear pure glue Lagrang
beyond leading order~LO! ~which follows from an extension
of work in Refs.@4,11#!. The above results are obtained b
considering the full implications of RPI, and including a
possible operators allowed from collinear gauge invarian
power counting, and the reduction of Dirac structures fr
the effective theory fields.2

For the heavy-to-light currents atO(l) an important re-
sult we find is a new type of ‘‘three-body’’ currents, whic
have not been previously considered in the literature.3 In
Refs.@10,12,13# the attention was restricted to SCET ope
tors of two-body typeJ5( j̄ . . . W)(hv), where the two
products in parentheses are collinear gauge invariant, an
ellipses denote combinations of collinear derivatives. B
yond tree level but at the same order inl, we find that
three-body structures can appear for some of the curre
having the formJ5( j̄ . . . W)(W† . . . W)(hv) with three
collinear gauge invariant factors. We show the RPI can
used to determine for which currents this happens. We
show that RPI greatly restricts the form of the three-bo
operators, so that they always involve a collinear gluon fi
strength. The two-body operators have hard Wilson coe
cients which are functions of a single parameterC(v1),
while the new three-body operators have two parameter
efficientsC(v1 ,v2). Analogous three-body structures cou

2Note that in deriving the complete basis forJhl we restrict our-
selves toO(l), which is one order less than the order to which t
tree-level matching results are known from Ref.@13#. We treatLjq

to O(l2), and give a detailed account of how the gauge invari
form in Ref. @15# was derived. In cases where our results are
stricted to those in Refs.@10,13# we find agreement, as discussed
more detail in the body of the paper. The results derived here
sufficient for the proof of a factorization theorem for heavy-to-lig
form factors to all orders inas and leading order in 1/Q @15#.

3In the final stages of this paper, Ref.@17# appeared where soft
collinear light-to-light currents are considered. Although differe
from the usoft-collinear heavy-to-light case studied here, we n
that three-body currents were also found. Further remarks are le
a note added at the end.
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appear in the usoft-collinear LagrangianLjq at higher orders
in perturbation theory; however, using constraints from sy
metries of SCET we prove that this does not occur.

Our results are relevant to the study of decay channels
B mesons which involve energetic hadrons in the final sta
For instance, the results derived in this paper are neces
ingredients in the factorization formula for heavy-to-lig
form factors proven in Ref.@15# ~for earlier work on factor-
ization in heavy-to-light form factors see Refs.@18,19#, and
for results from QCD sum rules see Refs.@20#!. The factor-
ization theorem is valid to all orders inas and leading order
in 1/Q, Q5$mB ,E%, and separates contributions from th
scalesp2;Q2, p2;QL, and p2;L2, whereL is a had-
ronic scale. It states that a generic form factor can be s
into two types of contributions,F5 f F(Q)1 f NF(Q), where
@15#

f F~Q!5N0E
0

1

dzE
0

1

dxE
0

`

dr1 T~z,Q,m0!

3J~z,x,r 1 ,Q,m0 ,m!fM~x,m!fB~r 1 ,m!, ~1!

f NF~Q!5Ck~Q,m! zk
M~QL,m!, ~2!

N05 f Bf MmB /(4E2), and the two terms both scale a
1/Q3/2. This scaling is model independent and is in agre
ment with that derived from QCD sum rules@21#. In Eq. ~1!
fM and fB5fB

6 are standard nonperturbative light-con
distribution amplitudes, cf.@19,22#. The hard coefficientsCk
and T can be calculated in an expansion inas(Q) and are
simply related to the Wilson coefficients of theO(l0,l1)
current operatorsJhl . The jet functionJ is dominated by
momentap2.QL. If we then wish to expand inas(AQL)
using the techniques developed in Ref.@15#, J is calculable
in terms of time-ordered products of the SCETI operatorsJhl
and Ljq that we study here. At tree-level@i.e.

O„as(AQL)1 as(Q)0
…] one finds thatJ contains ad(z

2x), and in ratios of form factors the results forf F then
agree with terms computed in Ref.@19#. The z dependence
first shows up atO(as

2) as does a possible dependence
fB

2 . However, as we show in Sec. VI it is possible to abso
the fB

2 terms into a redefinition of thezk
M to all orders in

perturbation theory.
The factorization formula provides a clean separation

the ‘‘soft’’ non-factorizable~NF! contributions and ‘‘hard’’
factorizable~F! terms without double counting. It also give
us a procedure to systematically improve the predictions
any order in perturbation theory at leading order in 1/Q. The
value ofT andCk can depend on which heavy-to-light pro
cess we consider, whereasfM and fB

6 are universal func-
tions. Thezk’s are also universal since only azM(E) appears
for decays to pseudoscalarsM, and az'

M(E) andz i
M(E) ap-

pear ifM is a vector meson. The jet functionsJ are common
among certain classes of form factors and also do not dep
on the precise state~e.g.p or h). The f NF terms satisfy the
so-called large energy form factor relations@15#, as expected
from the prior loose definitions of these terms as ‘‘soft’’ co
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COMPLETE BASIS FOR POWER SUPPRESSED . . . PHYSICAL REVIEW D67, 094005 ~2003!
tributions@2,19,23#.4 Note that we have not bothered to sep
rate p2;QL and p2;L2 fluctuations in thezk

M functions,
since it is not clearly beneficial phenomenologically. T
factorization theorem does tell us thatzk

M;(L/Q)3/2; how-
ever, it does not distinguish between factors ofmb andE in
this Q23/2. It also does not numerically favor thef F or f NF

term; for instance, it is possible that the leadingas(AQL) in
J is compensated for by an analogous factor inzk

M .
We start in Sec. II by reviewing the general constrai

imposed on SCET operators following from collinear gau
invariance, spin structure reduction, and reparametriza
invariance. In Sec. III we study the implications of the
predictions for the subleading usoft-collinear Lagrang
Luc. In Sec. IV we present detailed results for SCET c
rents. Using the example of the scalar current as the p
gogical example, we demonstrate the construction of
complete basis ofO(l) operators contributing to the wea
currents, which closes under RPI transformations. Exp
results are then also derived for the pseudo-scalar, ve
axial-vector, and tensor heavy-to-light currents toO(l). In
Sec. V we summarize the one-loop matching results for
currents, give explicit results forLjq Feynman rules, and
discuss the basis of currents in the particular framev'50,
n•v51.

II. OPERATOR CONSTRAINTS IN SCET

In this section we briefly review the symmetries a
structure of SCET which will be important for our constru
tion of operators. We refer to Refs.@1–4,10,11# for more
details.

SCET includes infrared degrees of freedom correspond
to the relevant low energy scales in the problem. These
typically those with momentum that are collinearpc

m

;Q(l2,1,l), soft ps
m;Q(l,l,l), or ultrasoft ~usoft! pus

m

;Q(l2,l2,l2), where the components here are in a lig
cone basis (1,2,'). Each type of mode has effectiv
theory quark and gluon fields, which are then organized i
operators with a well-defined power counting inl. It is con-
venient to introduce light-cone unit vectors (nm ,n̄m) satisfy-
ing n25n̄250, n•n̄52, in terms of which a vector has com
ponentspm5(n•p,n̄•p,p'

m). The couplings of the fields ar
described by an effective Lagrangian, while the couplings
external sources appear as additional operators or curr
Both the Lagrangian and currents are constructed such
they include constraints from power counting, spin symm
tries, and collinear and~u!soft gauge invariance.

The soft-collinear effective theory also contains a kin
matical reparametrization invariance symmetry. Lorentz
variance is broken by introducing the vectorsn andn̄, but is
restored order by order inl, by requiring invariance of op-

4These relations were first derived in Ref.@23# using low energy
effective theory~LEET! @24#. However, for studying energetic had
rons with QCD the LEET framework is known to be inconsiste
@1,25#; for instance, it does not bind an energetic quark-antiqu
pair into a meson in heavy-to-light decays@26#.
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erators under a simultaneous change inn and/orn̄ and com-
pensating changes in the effective theory fields. This r
arametrization invariance~RPI! symmetry of SCET was firs
considered in Ref.@10#, and was then extended to the mo
general three classes~I,II,III ! of allowed transformations in
Ref. @11#.5 The three types are defined by the infinitesim
change they induce on the light-cone unit vectors: type-In

→n1D'), type-II (n̄→n̄1«'), and type-III @n→(1

1a)n,n̄→(12a)n̄#. Herea;«';l0, while D';l. It is
the analog of the reparametrization invariance of hea
quark effective theory~HQET! under changes in the heav
quark velocityv @28#, wherev251. We will use HQET for
heavy quark fields@29#.

The restrictions we consider for finding the most gene
set of power suppressed gauge invariant operators are a
lows:

~i! Power counting and gauge invariance which determ
what basic building blocks are allowed at the order we
considering.

~ii ! Which auxiliary vectors are available~such asn, n̄, v,
. . . ) that can be used to construct the most general se
allowed scalars, tensors, and Dirac structures.

~iii ! Eliminate operators which are redundant by integ
tion by parts, or equations of motion.

~iv! Impose type-III reparametrization invariance. If
non-trivial invariant can be formed with the label operato
such as (n•v P̄), then include Wilson coefficients that de
pend on these quantities.

~v! Impose all constraints from type-I and type-II re
arametrization invariance.

To impose the five constraints we start by writing minim
sets of independent operators compatible with the gen
principles in ~i!, ~ii !, and ~iii !. We then require RPI invari-
ance order by order in thel power counting. To do this we
found it useful to split the RPI transformations into two ca
egories, those that act within the order we are conside

d j
(l0) , with j 5I,II,III, and those which connect operators t

one higher orderd j
(l) . At leading order the type-II and type

III d j
(l0) transformations already provide non-trivial co

straints on the allowed form of operators. In contrast thed j
(l)

transformations allow us to derive relations valid to all o
ders in as between the Wilson coefficients of operators
different orders inl. These relations are similar to the ca
of RPI in HQET @28,30#, where we note in particular the
important relations derived for coefficients of subleadi
heavy-to-heavy currents in Ref.@31#. We start by summariz-
ing restrictions that follow from collinear gauge invarian
and power counting in Sec. II A, spin structure reductions
Sec. II B, and RPI in Sec. II C.

t
k

5The nature of Lorentz symmetries on the light-cone are w
known@27#. The new point in SCET@10,11# is that for any collinear
process these symmetries are realized in a way that leads to
trivial restrictions both on operators at a given order in the pow
counting and between operators at different orders in the pow
counting.
5-3
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To separate the momentum scales we follow Ref.@2# and
use collinear quark fieldsjn,p(x) @and gluon fieldsAn,p

m (x)]
which have momentum labelsp for the large components o
the collinear momenta, and residual coordinatesxm;1/l2

@2#. Thus, all derivatives on collinear fields are the same s
as derivatives on usoft fields,]m;l2. This setup implements
the multipole expansion in momentum space@32#. Note that
our analysis of power corrections differs from Ref.@13# in
two ways, the first being that in Ref.@13# the momentum
scales were separated by performing the multipole expan
in position space, which, however, leads to an equiva
formulation. We do find that concise results for the pow
suppressed corrections are obtained with the momen
space version. Secondly, we derive our basis of operators
implement all symmetry constraints working order by ord
in the power counting, rather than constructing invaria
and then expanding inl. This made it simpler to derive a
complete gauge invariant basis at the desired order w
working in a general frame.

A. Power counting and gauge invariance

The SCET is derived from QCD by integrating out flu
tuations with p2@Q2l2, where in typical processesl
5(LQCD/Q)k with k51 or k51/2. Infrared fluctuations are
then described by effective theory fields. A gauge invari
power counting for fields can be fixed by demanding that
kinetic terms in the action are orderl0. For the collinear
fields this gives jn;l8 for the quarks, and (n•An ,
n̄•An ,An

'm);(l2,l0,l) for the collinear gluons,hv;q
;l3 for usoft quarks, andAus

m ;l2 for usoft gluons@1,2#.
Derivatives on these fields count as]m;l2. The larger col-
linear momenta are picked out by introducing label opera
P̄;l0 and P'

m;l @3#. For example,P̄ jn,p5(n̄•p) jn,p .
For notational convenience we define collinear covariant
rivatives

i n̄•Dc5P̄1gn̄•An , iD c
'm5P'

m1gAn
'm , ~3!

and ultrasoft covariant derivatives

i n̄•Dus5 i n̄•]1gn̄•Aus , iD us
'm5 i ]'

m1gAus
'm . ~4!

For thenm components, it is only the combination

in•D5 in•]1gn•An1gn•Aus , ~5!

that ever appears. In general a derivative without a subsc
involves the sum of the collinear and usoft pieces,Dm5Dc

m

1Dus
m , and it is this combination which is RPI invariant@11#

~implying that the anomalous dimensions of terms that
pear in the multipole expansion are related!.

Integrating out the off-shell fluctuations builds up a co
linear Wilson line, W, built out of collinear gluon fields
which are not suppressed in the power counting@3#

W5F (
perms

expS 2
g

P̄ n̄•An,q~x! D G , ~6!
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where the label operators only act on fields inside the squ
brackets. Up to the important fact thatW has been multipole
expanded, it is the Fourier transform of a standard posit
space Wilson line,W(2`,x). Factors ofW;l0 can be in-
cluded in operators without changing the order in the pow
counting. However, their location is restricted by colline
gauge transformations,Uc , under which W→UcW @3#.
SinceP̄;l0 in the power counting the hard Wilson coeffi
cients can be arbitrary functions of the momentum or m
menta,v i , picked out by the label operator,C(v i ,m) @3#.
These coefficients can be computed by matching with Q
at the hard scalem.Q and running with the renormalizatio
group.

If we consider a general Wilson coefficient and opera
C^ O, then the covariant derivative

i n̄•Dc5W P̄ W†, ~7!

so it is always possible to put all the Wilson lines inO and
the dependence on the momenta picked out byP̄ into C. We
will find it convenient to use the notation

~ j̄nW!v1
5@ j̄nWd~v12n•vP̄†!#,

~W†Dc
' mW!v2

5@W†Dc
' mW d~v22n•vP̄†!#, ~8!

where again the label operators do not act outside the sq
brackets. The factor ofn•v is included next toP̄ to make it
a type-III RPI invariant. Thus, the momentum labelsv i do
not transform under RPI. The products of fields in Eq.~8!
are color singlets under the collinear gauge symme
so the momentum labelsv i are gauge invariant. These prod
ucts still transform under an usoft gauge tran
formation Uus as (j̄nW)→( j̄nW)Uus

† and (W†Dc
'mW)

→Uus(W
†Dc

'mW)Uus
† . We will elaborate on how RPI af-

fects Wilson coefficients in SCET in Sec. II C below.
For Lagrangians and currents where the variablevm is not

available we cannot make use of the definitions in Eqs.~8!. It
is still convenient to make use of a similar notation:

~ j̄nW!z1
5@ j̄nWd~z12P̄†!#,

~W†Dc
'mW!z2

5@W†Dc
'mW d~z22P̄†!#, ~9!

where we use the variableszi rather thanv i . Under a type-
III transformation thezi transform liken̄ so the delta func-
tion is homogeneous~and compensated for by an integratio
measuredzi).

Using the scalings for fields and derivatives the pow
counting for an arbitrary diagram,ld, can be determined
entirely from its operators using@12#

d541(
k

~k24!@Vk
C1Vk

S1Vk
SC#1~k28!Vk

U . ~10!

Here Vk
C,S,SC,U count the number of orderlk operators

which have collinear fields, soft fields, both, or neither,
5-4
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spectively. For any operator the power ofk is derived by
adding up the powers ofl in its components so, for instanc
j̄nn”̄ in•Djn;l4 counts asV4

C51. Since the operators ar
gauge invariant so is their value ofk and also the powe
counting of any diagram using the result ford in Eq. ~10!. In
this paper we focus on operators withVk

S5Vk
SC50.

We have also found it convenient to define additional p
gluon operators. In particular we will use the purely colline
field strength

igBc
'm5@ i n̄•Dc,iD c

'm#. ~11!

We will also make use of the mixed tensors

ign•M5 ign•Bc5@ i n̄•Dc,in•D#,

igM” '5@ i n̄•Dc,iD”'
us#. ~12!

In fact the operatorsM” ' and n•M , together withig n̄•M

5@ i n̄•Dc,i n̄•Dus# can be combined into a single obje
closed under usoft Lorentz transformations, which tra
forms in the desired way under the collinear and usoft ga
symmetries

igM” 5F i n̄•Dc,iD” us1
n”̄

2
gn•AnG . ~13!

Finally the following results for manipulating covariant d
rivatives on Wilson lines also prove to be useful:

~W†iD”Q c
'W!5@W†iD”Q c

'W#2P”'
† 5F 1

P̄W†igB” c
'WG2P”'

† ,

~W†iD”W c
'W!5@W†iD”W c

'W#1P”'5F 1

P̄W†igB” c
'WG1P”' .

~14!

B. Reduction in spin structures

Collinear quarks and heavy usoft quarks have spin
with only two non-zero components. In four component n
tation this is encoded in projection formulas for the fields

Pnjn5jn , Pvhv5hv , ~15!

where Pn5(n”n”̄ )/4 and Pv5(11v” )/2. We also define the
orthogonal projectorPn̄5(n”̄n” )/4 wherePn1Pn̄51. A quark
bilinear with a heavy ultrasoft quark and light colline
quark, therefore, only has four possible non-trivial Dir
structures. On the other hand, if the heavy ultrasoft quar
replaced by a massless ultrasoft quark which has a four c
ponent spinor then there are eight possible Dirac structu
When generating operators we should be careful not to
clude redundant Dirac structures. Therefore, it is conven
to have a canonical basis which we can project results o
to check their interdependence. For this purpose we cho
the basis
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j̄nG1hv , G15H n”̄

2
,
n”̄g5

2
,g'

mJ ,

j̄nG2qus , G25H 1,
n”̄

2
,g5,

n”̄g5

2
,g'

m ,
n”̄g'

m

2 J . ~16!

Any general Dirac structure can be projected onto a lin
combination of terms in this basis with the help of the fo
lowing formulas:

j̄nGhv5 j̄nG1hv ,

G15
n”̄

2
trFn”

2
Pn̄GPvG2

n”̄g5

2
trFn”

2
g5Pn̄GPvG

1g'
mtr@gm

'Pn̄GPv# ~17!

and

j̄nGqus5 j̄nG2qus ,

G251 trFn”n”̄

8
GG1

n”̄

2
trFn”

4
GG1g5trFn”n”̄g5

8
GG

2
n”̄g5

2
trFn”g5

4
GG1g'

mtrFgm
'n”n”̄

8
GG

2
n”̄g'

m

2
trFn”gm

'

4
GG . ~18!

The number of independent structures is quite logical,
j̄nGhv each field is determined by two-component spino
and there are 23254 terms in the basis. Forj̄nGqus only
the collinear spinor has two components and there ar
3458 terms in our basis. Our choice of basis in Eqs.~17!
differs from Ref.@2# where the choiceG15$1,g5 ,g'

m% was
used, and calculations were given in a frame wherev•n
51 andv'50. Whenvm is kept arbitrary we have found th
basis in Eqs.~16! is more convenient since it retains its o
thonormality in an arbitrary frame.

The projection formulas in Eqs.~17! can be used to re
duce the possible Dirac structures in constructing a comp
basis of operators. It is convenient to definer'

m

[ i emabgnan̄bvg and v'
m5vm2n•v n̄m/22n̄•vnm/2, since

thenv'
m , r'

m , nm, n̄m form a complete vector basis. To reduc
the Dirac structures we can use relations such as

v”'812
n•v
2

n”̄ , n”̄v”'8n”̄22n̄•v, g'
m8gm2

n•v
2

n”̄ ,

r'
mg5822v'

m12g'
m1n”̄g'

mn•v,

n”̄ r'
mg582n”̄v'

m24n̄•vg'
m22n”̄g'

m , ~19!
5-5
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i emnabnavb

n”̄g5

2
8 ismn2~vmgn2vngm!

2
1

2
~ n̄mnn2nmn̄n!2

n̄•v
2

~nmgn2nngm!

1
n•v
2

~ n̄mgn2n̄ngm!, . . . ,

where the8 indicates that these are only true between
fields in Eqs.~17!. ~The complete set of relations is rath
lengthy and is not shown.! The relations in Eqs.~19! allow
the structures on the left to be traded for those on the r
~with more than one iteration in some cases!. Using the pro-
jection formulas it is straightforward to show that the mo
general Dirac structure possible for the LO scalar curre
are$1,n”̄ %, while the vector and axial-vector currents have t
basis shown in Eq.~74!, and the tensor currents depend
the basis in Eq.~92!.

C. Reparametrization invariance

The decomposition into collinear fields requires introdu
ing two light-like vectorsn and n̄, such thatn25n̄250 and
n•n̄52. These vectors break five of the six Lorentz gene
tors. This part of the Lorentz symmetry is restored order
order in the power counting by requiring invariance und
reparametrization transformations onn and n̄ @11#:

type I,

nm→nm1Dm
' ,

n̄m→n̄m , ~20a!

type II,

nm→nm ,

n̄m→n̄m1«m
' , ~20b!

and type III,

nm→~11a!nm ,

n̄m→~12a! n̄m , ~20c!

where D';l, while «';a;l0. In general one has two
options for constructing RPI invariants:~i! construct opera-
tors out of completely RPI invariant quantities and then
pand these in powers ofl, ~ii ! construct operators order b
order in l and transform them to see what linear combin
tions are invariant, and which operators are ruled out. In
paper we will adopt approach~ii !, since starting with the
most general gauge invariant sets and then reducing t
allows us to be confident that we do not miss operators
could arise at any order in perturbation theory.

For our purposes it is convenient to divide the RPI tra
formations into two subsets, those which include ter
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within the same order inl denoted byd I
(l0) , d II

(l0) , and

d III
(l0) , and those which cause orderl suppressed transforma

tions denoted byd I
(l) andd II

(l) . All type-III transformations
act within the same order inl and it is easy to construc
invariants under type III. We simply need to have the sa
number ofn’s (n̄’s! in the numerator and denominator, o
have products ofn times n̄. The transformations of type
and type II are more involved. From Ref.@11# the transfor-

mations that have terms of the same order inl are ford I
(l0)

n•D→n•D1D'
•D' , D'

m→D'
m2

D'
m

2
n̄•D, ~21a!

and ford II
(l0)

n̄m→n̄m1«'
m , D'

m→D'
m2

nm

2
«'•D' ,

g'
m→g'

m2
nm

2
«”'2

«'
m

2
n” , ~21b!

and the transformations that start one power down inl in-
clude ford I

(l)

nm→nm1D'
m , D'

m→D'
m2

n̄m

2
D'

•D' ,

j̄n→ j̄nS 11
n”̄D”'

4
D ,

g'
m→g'

m2
D'

m

2
n”̄2

n̄m

2
D”' , ~22!

and ford II
(l)

n̄•D→n̄•D1«'•D' , D'
m→D'

m2
«'

m

2
n•D,

j̄n→ j̄nS 11D”Q '

1

n̄•DQ

«”'

2 D ,

W→F S 12
1

n̄•D
«'

•D'DWG . ~23!

Here W is the RPI completedW, and involves the Fourier
transform with respect toy of a position space Wilson line
involving (n̄•An1n̄•Aus)(sn̄1x) taken froms52` to 0
@13#. When expanded inl, W5W1O(l2), where W in-
volves only then̄•An field as in Eq.~6!.

If we start by considering LO operators then they must
invariant under thed (l0) transformations in Eqs.~21! all by
themselves. Thed (l) transformations of the LO terms con
nect them to NLO operator’sd (l0) transformations. Since in
the collinear sector onlyd (l0,l1) terms exist this pattern re
peats at all higher orders in the power counting. Note t
5-6
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here we will not need to consider HQET RPI under the
locity vm. Since the transformationvm→vm1Dv

m , where
Dv

m;LQCD/Q;l2, this type of RPI only needs to be take
into account at one-higher order than the order we are w
ing. The combined SCET and HQET RPI transformatio
were used in theO(l2) analysis ofJhl in Ref. @13#.

Finally we consider a new feature of RPI in SCE
namely how Wilson coefficients are affected by reparame
zation invariance. Our analysis is similar in spirit to Re
@31#, where heavy-to-heavy HQET currents with coefficien
depending on the change in velocity,C(v•v8), were ana-
lyzed. If we adopt the view of building invariants at all o
ders inl then the coefficients in SCET must also be fun
tions of invariants, such as operators like

C̄nC~2 iDQ •V!GHv , ~24!

whereCn , Hv are invariants including the quark fieldsjn ,
hv , andV m is the RPI version of the velocityvm @28#. When
expanded inl the leading term involving the covariant de
rivative in C can be traded forW and P̄ using Eq. ~7!,
C(2 in•v n̄•DQ c)5WC(n•vP̄†)W†. Here we will use the
opposite but equivalent arrangement of starting with a c
rent that is leading order inl,

j̄nWC~n•vP̄†!hv , ~25!

and then determining how both the operatorsandcoefficient
transform under RPI. We then determine which structures
required at one higher order inl to cancel this change, an
which allowed higher order structures are left unconstrain

III. COLLINEAR-ULTRASOFT LAGRANGIAN

In this section we discuss the mixed ultrasoft-colline
Lagrangians toO(l2). These actions are power suppress
@7#, and start atO(l) @13#. In Sec. III A we consider the
derivation from integrating out components of the full theo
field, which gives a tree level derivation of the action~for
further explanation of this approach see Refs.@2,4,13#!. In
Ref. @13# this procedure was used to derive a form for t
mixed ultrasoft-collinear quark Lagrangian, but a manifes
gauge invariant form was not determined. In Ref.@14# the
analysis was extended to give manifestly gauge invariant
erators in terms of covariant derivatives. In Sec. III A w
review the details of how a derivation of a gauge invaria
form of the action was carried out in Ref.@15# where the
result is purely in terms of field strengths.

However, since the analysis in Sec. III A is only valid
tree level, it misses~i! non-trivial Wilson coefficients in the
tree level operators, and~ii ! new operators whose coeffi
cients can have zero tree-level matching. In Ref.@13# point
~i! was addressed and it was shown diagrammatically tha
non-trivial Wilson coefficients are generated. However, po
~ii ! has not yet been addressed, so additional operators c
still be induced by matching at some higher order in pert
bation theory. In Sec. III B we show that both points~i! and
~ii ! can be simultaneously solved by using the full set
symmetries of SCET when constructing operators. We a
09400
-

k-
s

i-

s

-

r-

re

d.

r
d

y

p-

t

o
t
uld
r-

f
o

extend the derivation to the mixed usoft-collinear pure glu
sector.

A. Matching for Luc at tree level, but all orders
in n̄"An gluons

In this section we discuss in detail the matching calcu
tion for the mixed usoft-collinear quark Lagrangian@15#. The
part of our discussion from Eqs.~26! to ~30! follows Ref.
@13#, but with our momentum space notation. We start w
the actionL5c̄ iD” c and decompose it with SCET fields

L5 j̄n

n”̄

2
in•Djn1 j̄niD”'j n̄1 j̄ngA” cqus1q̄usgA” cjn

1q̄usgA” cj n̄1q̄usiD” usqus1F j̄ n̄iD”'jn1 j̄ n̄

n”

2
i n̄•Dj n̄

1 j̄ n̄gA” cqusG , ~26!

where theD is usoft plus collinear,Dc is purely collinear,
and collinear momentum conservation has been enfor
Varying with respect toj̄ n̄ gives an equation of motion to
eliminate this field from the term in square brackets

j n̄ 5 2
1

i n̄•D

n”̄

2
@ iD”'jn1gA” nqus#,

j̄ n̄ 5 @ q̄usgA” n2 j̄niD”Q '#
n”̄

2

1

i n̄•DQ
. ~27!

Plugging this into Eq.~26! and expanding we find that th
two collinear quark terms exactly reproduce terms in
gauge invariant multipole expanded action in Ref.@11#.6 Us-
ing Eq. ~10! the terms with two ultrasoft quarks and>2
collinear gluons first show up atd53, i.e.O(l3) @13#, and
are therefore neglected. The mixed usoft-collinear qu
terms are

Ljq5F j̄ngA” nqus1 j̄n

n”̄

2
iD”'

1

i n̄•D
gA” nqusG

1F q̄us gA” n jn1q̄us gA” n

1

i n̄•D
iD”'

n”̄

2
jnG .

~28!

Taking Eq.~28! and expanding to second order inl gives

L jq
(1)5 j̄nS gA”'

c 2 iD”'
c 1

i n̄•Dc

gn̄•AcD qus1H.c.,

6Note that in QED theO(l) pure collinear quark Lagrangian ca
be written in terms ofFmn @13#. With the momentum space multi
pole expansion this manipulation is not necessary to achiev
gauge invariant result@33,34#.
5-7
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L jq
(2)5 j̄n

n”̄

2 S gn•Ac1 iD”'
c 1

i n̄•Dc

gA”'
cD qus

2 j̄niD”'
us 1

i n̄•Dc

gn̄•Ac qus1H.c., ~29!

where the superscripts denote the power suppressionl
and l2. In each of the last terms inL jq

(1,2) we use 12W

51/(i n̄•Dc)gn̄•Ac , and in the first term ofL jq
(2) we write

gA”'
c 5 iD”'

c 2P”' and thenqus5@W1(12W)#qus . Thus,

L jq
(1)5 j̄n~ iD”'

c W2P”'!qus1H.c.,

L jq
(2)5 j̄n

n”̄

2 S gn•Ac1 iD”'
c 1

i n̄•Dc

~ iD”'
c2P”'!D

3@W1~12W!#qus1 j̄niD”'
us~W21!qus1H.c.

5 j̄n

n”̄

2 S gn•Ac1 iD”'
c 1

i n̄•Dc

iD”'
cD Wqus

2 j̄n

n”̄

2
iD”'

c 1

i n̄•Dc

P”' qus1 j̄nS n”̄

2
in•Dus1 iD”'

usD
3~W21!qus1H.c. ~30!

In manipulatingL jq
(2) we used the fact that integration b

parts is allowed on the (12W)qus term and we can then us
the equation of motion for the collinear quark to give a te
(2 in•Dus)(12W) which we collected with theiD”'

us(W
21) term. The result in Eqs.~30! agrees with Ref.@13#, up
to the fact that we performed the multipole expansion
momentum space.

In Eq. ~30! we did not drop theP”' q50 terms since we
want to make explicit the fact that it is the combinatio
( iD”'

c W2P”')5@ iD”'
c W# which starts with at least one

collinear gluon. Written this way it appears that ourL jq
(1) is

not collinear gauge invariant. In the transformed result
non-invariant term cancels if we useP”'qus50, but then it is
not explicit that the operator starts with one-collinear gluo
so L jq

(1) has either one or the other explicit. ForL jq
(2) Eqs.

~30! still involve the gluon fieldAn
m so the gauge invarianc

of this expression is not at all clear. However, the abo
considerations indicate that it should be possible to write
the terms in Eqs.~30! in terms of gluon field strengths, an
thereby achieve a manifestly gauge invariant action t
starts with one-collinear gluon. This derivation was carr
out in Ref. @15#, but no details of the calculation were d
scribed there. These details are described below in Eqs.~31!
through~35!.

To proceed we note that using Eq.~11!, igBc'
n W

5@ i n̄•Dc ,iD c
'n#W5 i n̄•DciD c

'nW2 iD c
'nWP̄. Making

similar manipulations forn•M andM” ' we can write
09400
e
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e
ll

t
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igB” c
'W5 i n̄•Dc~ iD” c

'W2P”'!2$ iD” c
'W2P” c

'%P̄

1$gn̄•Ac%P”' ,

ign•MW5 i n̄•Dcin•DW2P̄in•Dus2$ in•DW

2 in•Dus%P̄, ~31!

igM” 'W5 i n̄•DciD”'
usW2P̄iD”'

us1$ iD”'
us2 iD”'

usW%P̄.

Now we take purely usoft fields on the right, and divide
the left by i n̄•Dc . In Eq. ~31! the terms in curly brackets
start at one-collinear gluon, so even in the presence
1/(i n̄•Dc) these terms are non-singular and can safely
dropped using the fact that the label operators give zero
the usoft field. This gives

1

i n̄•Dc

igB”'Wqus5~ iD” c
'W2P”'!qus ,

1

i n̄•Dc

ign•MWqus5~ in•DW2 in•Dus!qus

2~W21!in•Dusqus , ~32!

1

i n̄•Dc

igM” 'Wqus5 iD”'
us~W21!qus

2~W21!iD”'
usqus .

These expressions allow us to write covariant derivatives
ing on Wilson lines in terms of field strengths.

Using Eqs.~32! for L jq
(1) in Eqs. ~30!, we arrive at the

final result

L jq
(1)5 j̄n

1

i n̄•Dc

igB” c
'Wqus1H.c. ~33!

This form is particularly nice since it is explicitly collinea
and usoft gauge invariant and, furthermore, explicitly sta
at one-collinear gluon due to theB' . To see the gauge in
variance note that under a collinear gauge transformationUc

we have jn→Ucjn , W→UcW, B”'→Uc B”' Uc
† , and

(n̄•Dc)
21→Uc(n̄•Dc)

21 Uc
† so all factors ofUc cancel.

Under an ultrasoft gauge transformationUu we have jn

→Uujn , W→UuWUu
† , B”'→Uu B”' Uu

† , (n̄•Dc)
21

→Uu(n̄•Dc)
21 Uu

† , and qus→Uuqus so all factors ofUu

also cancel. In Fig. 3 in Sec. V C we show the one and t
gluon Feynman rules that follow fromL uc

(1) in Eq. ~33!. A
non-trivial check on our manipulations is that the same Fe
man rules can be obtained from Eqs.~30! by using the free
equations of motion.

We now proceed to further simplifyL jq
(2) in Eqs. ~30!.

Using Eqs.~32! leaves
5-8
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L jq
(2)5 j̄n

1

i n̄•Dc

igM” Wqus1 j̄n

n”̄

2
iD”'

c 1

~ i n̄•Dc!
2

3 igB”'
cWqus1 j̄n~W21!iD” usqus1H.c., ~34!

where in the first and last terms we used the fact thatn” jn
50 to write a fullgm in M” andD” us . For the last term in Eq
~34! we can now use the equation of motion for the us
quark field to give our final result

L jq
(2)5 j̄n

1

i n̄•Dc

igM” Wqus1 j̄n

n”̄

2
iD”'

c 1

~ i n̄•Dc!
2

3 igB”'
cWqus1H.c. ~35!

Again in this form the action is collinear and usoft gau
invariant and, furthermore, explicitly starts at one-colline
gluon due to the field strengthB’s and M ’s. In the way we
have written the result it is invariant under usoft Loren
transformations onxm which separately rotategm andDus

m .
Finally we note that the mixed usoft-collinear quark a

tions in Eqs.~33! and ~35! proved to be important for the
proof of a factorization formula for heavy-to-light decays
Ref. @15#. In the next section we analyze the most gene
possible basis forL jq

(1,2) beyond tree level, which follow
purely from symmetry considerations and also discuss po
suppressed terms in the collinear gluon action.

B. Most general basis forLuc

The ultrasoft-collinear quark Lagrangian can be expan
in a power series in the parameterl. It is not possible to
construct an invariant operator that is dimension-4 and o
l0. Therefore, we have the series

Ljq5L jq
(1)1L jq

(2)1 . . . . ~36!

Since this is a Lagrangian, insertions of these operators
not inject momentum, and we are free to integrate by part
long as we are careful not to generate singular terms.

To construct the most general quark actionL jq
(1) we can

use a single collinear quark fieldjn;l, an ultrasoft quark
field qus;l3, and aDc

'm;l. These factors give a dimen
sion 4 operator, and from the power counting formula in E
~10! they gived51 which is the correct order forL jq

(1) . To
satisfy collinear gauge invariance without changing the or
in the power counting we make use of the Wilson lineW to
write (j̄nW) and (W†iD c

'mW). Since the Lagrangian is
scalar we must dot the indexm into another vector. The
possible Dirac structures are restricted by the fact thatn” jn
50. They are also restricted by type-III RPI, for instan
n”̄gm is not invariant and therefore is ruled out~in the case of
the heavy-to-light currents we can make use of the prod
n•v, son•v n”̄ is allowed!. Taking these constraints into ac
count leavesgm as the only possibility. Thus, we have r
ducedL uc

(1) to the form

~ j̄nW!r~P̄,m!~W†iD” c
'W!qus1H.c., ~37!
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where the coefficientr is dimensionless andiD” c
' acts to the

left or right. However, by type-III RPI invariance the coeffi

cientr(P̄,m) cannot be a function ofP̄, leaving onlyr(m).
Now r is a dimensionless function of the dimension-full p
rameterm and can only be equal to a constant~assuming no
new dynamical scales likeLQCD are generated by renorma
izing L uc

(1)). Now P”'q50 sinceq carries no perpendicula
momenta of orderl, so using Eq. ~14! we see that

(W†iD”W c
'W) can be traded for aB” c

' operator. ForiD”Q c
' we

obtain the sameB” c
' operator, plus (j̄nW)P”'

† q50, which fol-
lows from the fact thatqus , and by momentum conservatio

( j̄nW), carries zero collinear' momentum. Fixing the con-
stantr51 by tree level matching then leaves

L jq
(1)5 j̄nW

1

P̄W†igB” c
'Wqus1H.c.

5 j̄n

1

i n̄•Dc

igB” c
'Wqus1H.c. ~38!

In this form it is clear that the operator is collinear and us
gauge invariant and generates terms with>1 collinear gluon
as required by momentum conservation. Finally, it is easy
show that its orderl0 type-I and type-II variations vanish
since from Eqs.~21! only the transformation ofDc

' must be

considered and d I
(l0)Bc

'}@ i n̄•Dc ,i n̄•Dc#50, while

d II
(l0)B” c

'}n” which gives zero sincen” jn50.
The above line of reasoning can be repeated atO(l2). By

power counting and gauge invariance we can now have
(W†in•DW) or two (W†Dc

'mW) factors with derivatives to
the left or right. Again we can use Eq.~14! to simplify the
covariant derivative terms. We must have an operator star
with a one-collinear gluon, and again the (W†DW) factor
next toqus must be in square brackets and can be turned
a gluon field strength. Also by type-III RPI the Wilson coe
ficients must again be numbers, except for operators w
three or more invariant collinear products inL jq

(2) where they
can be functions of the ratiozi of minus momenta. Taking
into account these constraints leaves three poss
operators7

L 1
(2)5r1 ~ j̄nW!S W†

1

i n̄•Dc

igM” WD qus1H.c.,

7This assumes we have eliminated a possible four quark ope
using the collinear gluon equations of motion@15#,

g2( j̄nWTAn”̄W†jn)1/P̄2( j̄nWTAn”̄qus)5 j̄nn”̄ /(2i n̄•Dc) ign•MWqus

12j̄nn”̄ /$2(i n̄•Dc)
2% @ iD c m

' ,igBc
'm#Wqus . This conclusion is not

changed if we consider the most general possible four-quark op
tors allowed by all the symmetry constraints.
5-9
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L 2
(2)5E dz1dz2 r2S z2

z1
D ~ j̄nW!z1

n”̄

2
~W†iD”W c

'W!z2

3
1

P̄ S W†
1

i n̄•Dc

igB” c
'WD qus1H.c. ~39!

L 3
(2)5E dz1dz2 r3S z2

z1
D ~ j̄nW!z1

3
n”̄

2
~W†iDW c

'mW!z2

1

P̄ S W†
1

i n̄•Dc

igBcm
' WD

3qus1H.c.,

where (. . . )zi
[@ . . . d(zi2P̄†)#, and we have used ou

freedom to integrate by parts to make the perp covar
derivatives act to the right. Note that the overalln̄•p mo-
mentum is zero, so nozi label is used on theB” c

' bracketed
term ~following the convention in Ref.@3#!. Again the pres-
ence or absence of factors ofn”̄ are completely fixed by type
III RPI. Now consider the type-I and type-II RPI transform
tions. Computing the orderl variations of L uc

(1) and
simplifying the resulting expressions gives

d I
(l)L jq

(1)52 j̄n

n”̄

2

1

i n̄•Dc

igB”'
c D”'

2
Wqus

2 j̄n

1

i n̄•Dc

~d I
(l0)igM” '!Wqus1H.c.,

d II
(l)L jq

(1)52 j̄nH iD” c
'

1

~ i n̄•Dc!
2

igB” c
'

«”'

2

1
1

i n̄•Dc

«”'

2
ign•M

1
1

i n̄•Dc

~d II
(l0)igM” '!J Wqus1H.c. ~40!

The d I ,II
(l0) igM” ' terms appear since in the RPI transform

tions in Eqs.~22! it is the full D'
m which transforms. For the

orderl0 variations ofL j
(2) we find

d I
(l0)L 1

(2)5r1 j̄nH 1

i n̄•Dc

n”̄

2
D'•B'

1
1

i n̄•Dc

~d I
(l0)igM” '!J Wqus1H.c.,
09400
nt

-

d II
(l0)L 1

(2)5r1 j̄nH 1

i n̄•Dc

«”'

2
ign•M

1
1

i n̄•Dc

~d II
(l0)igM” '!J Wqus1H.c.,

d I
(l0)L 2

(2)52E dz1dz2 r2S z2

z1
D ~ j̄nW!z1

d~z2!

3
n”̄D”'

4

1

P̄ S W†
1

i n̄•Dc

igB” c
'WD qus1H.c.,

~41!

d II
(l0)L 2

(2)52E dz1dz2 r2S z2

z1
D ~ j̄nW!z1

~W†iD”W c
'W!z2

3
«”'

2

1

P̄ S W†
1

i n̄•Dc

igB” c
'WD qus

1E dz1dz2 r2S z2

z1
D ~ j̄nW!z1

~W†iD”W c
'W!z2

3
1

P̄ S W†
1

i n̄•Dc

ig «'•Bc
'WD qus1H.c.,

d I
(l0)L 3

(2)52E dz1dz2 r3S z2

z1
D ~ j̄nW!z1

d~z2!

3
n”̄

4

1

P̄ S W†
1

i n̄•Dc

igD'
•Bc

'WD qus1H.c.,

d II
(l0)L 3

(2)5E dz1dz2 r3S z2

z1
D

3~ j̄nW!z1

«”'

2
~W†iDW c

'mW!z2

3
1

P̄ S W†
1

i n̄•Dc

igBcm
' WD qus .

Comparing Eqs.~40! and~41! we see that it is not possible t
form an invariant involvingL 3

(2) so r350, while an invari-
ant can be formed fromL jq

(1)1L 1
(2)1L 2

(2) by taking r151
andr2(z2 /z1)51. Sincer2 is independent ofz1 /z2 the in-
tegrals overz1,2 can be performed. Therefore, we can wr
our final result for the first two orders in the usoft-colline
quark Lagrangian as

L jq
(1)5 j̄n

1

i n̄•Dc

igB” c
'Wqus1H.c.,

L jq
(2a)5 j̄n

1

i n̄•Dc

igM” Wqus1H.c., ~42!
5-10
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L jq
(2b)5 j̄n

n”̄

2
iD”'

c 1

~ i n̄•Dc!
2

igB”'
cWqus1H.c.

These terms agreeexactly with the result from tree leve
matching in Eqs.~33! and~35!. The analysis here shows th
no other terms are induced by matching at any order inas .

Next we proceed to analyze power suppressed term
the collinear gluon action. Starting with the LO colline
gluon action @4#, L cg

(0) and making it RPI invariant with
iD m5 iD c

m1 iD us
m gives

Lcg5
1

2g2
tr $@ iD m,iD n#2%. ~43!

It is straightforward to see that no other gauge invariant p
glue dimension-4 operators are possible. We could buil
more general gauge invariant operator out of a string om

terms@WiD m iW †#zi
, with m24 factors of 1/P̄ to make up

the mass dimensions. However, type-III RPI then dema
m24 factors ofn̄m i

in the numerators which, usingn̄•DW
50, collapses the operator to the casem54. Finally, since
W transforms under type-II RPI, as in Eqs.~22!, but iD m

does not, we find that these operators must have Wilson
efficientsC(zi) that are independent of thezi parameters. In
this case all factors ofW cancel out and we are left with Eq
~43! ~after performing thezi integrals and fixing the coeffi
cient at tree level!. Expanding Eq.~43! we see that the orde
l andl2 suppressed terms are

L cg
(1)5

2

g2
tr$@ iD m,iD c

'n#@ iDm ,iD us n
' #%,

L cg
(2)5

1

g2
tr$@ iD m,iD us

'n#@ iDm ,iD us n
' #%

1
1

g2
tr$@ iD us

'm ,iD us
'n#@ iD cm

' ,iD cn
' #%

1
1

g2
tr$@ iD m,in•D#@ iDm ,i n̄•Dus#%

1
1

g2
tr$@ iD us

'm ,iD c
'n#@ iD cm

' ,iD usn
' #%, ~44!

whereD m5Dc
m1n̄mn•Dus/2.

In Ref. @4# the gauge fixing terms in the LO gluon actio
were given in a general covariant gauge. We do not bothe
consider the possibility of other leading order gauge fix
terms since we have some residual freedom to choose t
terms however we like. In an RPI invariant form the term
from Ref. @4# are
09400
in

e
a

s

o-

to

se

Lcg52 tr$c̄n †iD m ,@ iD m,cn#‡%1
1

a
tr $@ iD m ,An

m#

3@ iD n ,An
n#%, ~45!

and the subleading terms in their expansion are

L cg
(1)52 tr$c̄n †iD'm

us ,@ iD c
'm ,cn#‡%

12 tr$c̄n†iD'm
c ,@ iD us

'm ,cn#‡%1
2

a
tr $@ iD'm

us ,An
'm#

3@ iD n ,An
n#%, ~46!

L cg
(2)52 tr$c̄n†iD'm

us ,@ iD us
'm ,cn#‡%

1tr$c̄n†i n̄•Dus,@ in•D,cn#‡%

1tr$c̄n†in•D,@ i n̄•Dus ,cn#‡%1
1

a
tr $@ iD'm

us ,An
'm#

3@ iD'n
us ,An

'n#%1
1

a
tr $@ i n̄•Dus,n•An#@ iD n ,An

n#%.

~47!

IV. MOST GENERAL BASIS FOR HEAVY-TO-LIGHT
CURRENTS

In this section we give our derivation of the most gene
basis of heavy-to-light currents atO(l). The scalar current
is given in great detail, and forms the basis of the analysis
the other Dirac structures. Expanding the heavy-to-light c
rents in powers ofl we write

Jhl5J(d)1K (d)1 . . . , ~48!

for the LO currents (J(d)), and NLO currents (K (d)). The
superscript denotes whether the current is scalar (d5s),
pseudo-scalar (d5p), vector (d5v), axial-vector (d5a),
or tensor (d5t). For the preliminary basis where only con
straints from gauge invariance, power counting, and type
RPI invariance are imposed we use a calligraphic nota
J (d)1K (d)1 . . . , andthen switch to Roman for the fina
basis that is invariant under all the type-I and type-II co
straints. We will also make use of a convolution notation

J(d)5E dv C(d)S v

mb
,

m

mb
D J(d)~v!, ~49!

whereJ(d)(v) contains fields and operators with the notati
in Eqs. ~8! and the Wilson coefficientsC(d)(v̂,m/mb) are
numerical functions of the convolution parameter~wherev̂
5v/mb).

A. Scalar currents

From gauge invariance and power counting the most g
eral leading order heavy-to-light current has the fo
j̄nWGhv @2#. Forv'Þ0 the most general allowed scalar sp
5-11
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structures from Sec. II B are thenG5$1,n”̄ %. Type-III RPI
demands that then”̄ is accompanied by either ann•v or a
1/n̄•v. Thus after imposing constraints~i!–~iv! of Sec. II we
are left with the possible leading order currents

J 1
(s)5c1

(s) j̄nWhv , J 2
(s)5c2

(s) j̄nWn•v
n”̄

2
hv ,

J 3
(s)5c3

(s) j̄nW
n”̄

2 n̄•v
hv , ~50!

whereci are dimensionless Wilson coefficients. With type-
RPI invariance theci can only depend on the combinatio
(n•v P̄), the b-quark massmb , and the renormalization
scalem. Now consider the orderl0 type-I and II RPI trans-
formations in Eqs.~21!. Since none of the operators in Eq

~50! involve quantities that haved I
(l0) transformations they

are invariant under type-I at this order. However, under
analogous type-II transformations

d II
(l0)J 1

(s)50, d II
(l0)J 2

(s)5c2
(s) j̄nWS n•v

«”'

2 Dhv ,

d II
(l0)J 3

(s)5c3
(s) j̄nWS «”'

2n̄•v
2

n”̄

2~ n̄•v !2
«'•v D hv .

~51!

Thus, it is not possible to form an invariant involving th
currentsJ2,3

(s) , and only the currentJ 1
(s) is allowed. There-

fore, we can rewrite our final result for the most gene
leading order scalar current as

J0
(s)5C0

(s)S 2n•vP̄
mb

,
m

mb
D j̄nWhv . ~52!

Since the Wilson coefficient is dimensionless it can only b
function of the dimensionless ratios of parameters as sho
The minus sign in the first variable is included so thatP̄
gives the total outgoing momentum ofj̄nW. Switching to the
convolution notation in Eq.~49! and definingv̂5v/mb we
can write Eq.~52! as

J0
(s)5E dvC0

(s)~v̂,m/mb!J0
(s)~v!,

J0
(s)~v!5~ j̄nW!vhv . ~53!

Thus our notation is thatJ0
(s) contains the Wilson coefficient

while J0
(s)(v) is purely the field operator. With the convolu

tion notation in Eqs.~53! the Wilson coefficients are jus
numerical functions which do not transform under RPI. W
will often suppress the dependence of Wilson coefficients
m/mb in what follows.

Next consider currents that are suppressed by a powe
l. At this order the only additional structure we can use i
Dc

' m;l, where the derivative acts to the left or to the rig
09400
e

l

a
n.

n

of
a
.

To form the most general collinear gauge invariant we ta
(W†Dc

' mW), which we then insert between the (j̄nW) and
hv to satisfy the usoft gauge invariance. Since the two c
linear factors are invariant by themselves they can have
bitrary labelsv1,2. Thus we have operators with the stru
ture

~ j̄nW!v1
G ~W†Dc

'mW!v2

1

P̄†
hv . ~54!

The factor of 1/P̄† is included to make the Wilson coeffi
cients dimensionless. To make a scalar current them super-
script in Eq. ~54! can be dotted into agm or vm in G. In
either case the most general remaining Dirac structure
volves either 1 orn”̄ as follows from Sec. II B. Thus, com
bining the constraints from gauge invariance, spin reduct
and type-III RPI leaves eightO(l) suppressed currents

K j
(s)5E dv1dv2bj

(s)~v̂1 ,v̂2!K j
(s)~v1 ,v2!, ~55!

where j 51, . . . ,8, and thebi coefficients are dimensionles
functions of v̂1,25v1,2/mb and m/mb . The eight operators
are

K$1,2%
(s) ~v1 ,v2!5~ j̄nW!v1

~W†iD”Q c
'W!v2

1

P̄† H n”̄

2
,

1

n•vJ hv ,

K$3,4%
(s) ~v1 ,v2!5~ j̄nW!v1

~W†iv•DQ c
'W!v2

1

P̄†

3H n”̄

2
,

1

n•vJ hv , ~56!

K$5,6%
(s) ~v1 ,v2!5~ j̄nW!v1

~W†iD”W c
'W!v2

1

P̄† H n”̄

2
,

1

n•vJ hv ,

K$7,8%
(s) ~v1 ,v2!5~ j̄nW!v1

~W†iv•DW c
'W!v2

3
1

P̄† H n”̄

2
,

1

n•vJ hv .

Note that the dependence of the Wilson coefficients on
labelsv i account for insertions of 1/P̄† in all possible loca-
tions. Just as for the leading currents we cannot usen̄•v to
form a type-III invariant in Eqs.~56! as it leads to currents
which cannot be made invariant under type-II transform
tions @the transformed currents would depend one'•v/
(n̄•v)2 in a way that could not be canceled#.

Next consider the type-I transformations for the curre
in Eqs.~56!. For these subleading currents only thel0 trans-
formations are necessary since we are only working to or
l. Under type-I onlyDc

' transforms and we have
5-12
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d I
(l0)~W†iDQ c

'mW!v2
52

D'
m

2
~W†i n̄•DQ cW!v2

51
D'

m

2
P̄†d~v22n•vP̄†!,

d I
(l0)~W†iDW c

'mW!v2
52

D'
m

2
~W†i n̄•DW cW!v2

52
D'

m

2
P̄d~v22n•vP̄†!. ~57!

SinceP̄hv50 it is easy to see that each ofK5,6,7,8
(s) are type-I

invariant all by themselves. The other currents do transfo
and using Eqs.~57! gives

d I
(l0)K 1

(s)~v1 ,v2!5d~v2!~ j̄nW!v1
S 2n”̄D”'

4
D hv ,

d I
(l0)K 2

(s)~v1 ,v2!5d~v2!~ j̄nW!v2S D”'

2n•v Dhv ,

d I
(l0)K 3

(s)~v1 ,v2!5d~v2!~ j̄nW!v1
S n”̄D'•v

4
D hv ,

~58!

d I
(l0)K 4

(s)~v1 ,v2!5d~v2!~ j̄nW!v1S D'•v
2n•v Dhv ,

d I
(l0)K5,6,7,8

(s) ~v1 ,v2!50.

The delta functionsd(v2) cause only the coefficient
b1,2,3,4

(s) (v̂1,0) to appear in the transformation ofK$1,2,3,4%
(s) . We

also need the orderl variation of the LO current in Eqs
~53!. In this computation we must be careful to note that
d(v2n•vP̄†) in ( j̄nW)v depends onn•v, and therefore
also transforms

d I
(l0) d~v2n•vP̄†!52v•D'P̄† d8~v2n•vP̄†!

52
v•D'

n•v
d

dv
v d~v2n•vP̄†!.

~59!

Using Eqs.~22! we find a term from transforming the delt
function and a term from transforming the collinear qua
field

d I
(l)J0

(s)~v!5~ j̄nW!v S n”̄D”'

4
D hv2

v•D'

n•v
d

dv
v~j̄nW!vhv .

~60!

Demanding invariance under the transformations in Eqs.~58!
and ~60! gives non-trivial constraints on the Wilson coef
cients inJ0

(s) andK i
(s) . From Eqs.~58! the currentsK$1,2,3,4%

(s)

are invariant by themselves provided thatb$1,2,3,4%
(s) (v̂1,0)
09400
,

e

50. However, in Eq.~60! the first term can only be cancele
by a K 1

(s) with b1
(s)(v̂,0)5C0

(s)(v̂). To cancel the second

term we integrate by parts to give avd/dv5v̂d/dv̂ acting
on C0

(s) . This term can then be canceled byb4
(s)(v̂1,0)5

22v̂ d/dv̂ C0
(s)(v̂). Thus, the summary of type-I invariant

is J01K 1
(s)1K 4

(s) , K$5,6,7,8%
(s) , K$2,3%

(s) , with any

b5,6,7,8
(s) (v̂1 ,v̂2) and coefficients

b1
(s)~v̂,0!5C0

(s)~v̂ !, b2,3
(s)~v̂,0!50,

b4
(s)~v̂,0!522v̂ d/dv̂C0

(s)~v̂ !. ~61!

Now consider the type-II transformations. The analog
of Eq. ~59! is

d II
(l)d~v2n•vP̄†!52n•v«'•P'

† d8~v2n•vP̄†!

52n•v«'•P'
† d

dv
d~v2n•vP̄†!.

~62!

For the orderl variation of the LO currentJ0
(s)(v) we have

terms from the transformation of the delta function, the c
linear quark field, and the Wilson lineW

d II
(l)J0~v!5n•v«'•P'

d

dv
~j̄nW!v hv

1S j̄niD”Q c
'

1

i n̄•DQ c

«”'

2
WD

v

hv

2S j̄n

1

i n̄•Dc

i«'•DW c
'WD

v

hv . ~63!

In the subleading currentsK i
(s) both n̄m and Dc

' have l0

transformations.8 A iD” c
' transforms to give an” , so since

n” jn50 it is easy to see thatK$2,6%
(s) are invariant under type-II

transformations at this order. The transformations for the
maining currents are more involved,

d II
(l0)K$2,6%

(s) ~v1 ,v2!50,

d II
(l0)K 1

(s)~v1 ,v2!5~ j̄nW!v1
~W†iD”Q c

'W!v2

«”'

2

1

P̄†
hv ,

d II
(l0)K 3

(s)~v1 ,v2!5~ j̄nW!v1
H «”'

2
~W†iv•DQ c

'W!v2

2
n•v n”̄

4
~W†i«'•DQ c

'W!v2
J 1

P̄†
hv ,

8Since d IIP̄5O(l) the transformation of the delta functions i
K i

(s) only appears at one higher order.
5-13
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d II
(l0)K 4

(s)~v1 ,v2!52
1

2
~ j̄nW!v1

~W†i«'•DQ c
'W!v2

3
1

P̄†
hv , ~64!

d II
(l0)K 5

(s)~v1 ,v2!5~ j̄nW!v1
~W†iD”W c

'W!v2

«”'

2

1

P̄†
hv ,

d II
(l0)K 7

(s)~v1 ,v2!5~ j̄nW!v1
H «”'

2
~W†iv•DW c

'W!v2

2
n•v n”̄

4
~W†i«'•DW c

'W!v2
J 1

P̄†
hv ,

d II
(l0)K 8

(s)~v1 ,v2!52
1

2
~ j̄nW!v1

~W†i«'•DW c
'W!v2

1

P̄†
hv .

It is straightforward to see that it is not possible to form
type-II invariant using only the currentsK$1,3,4,5,7,8%

(s) . How-
ever, it is possible to form an invariant taking a combinati
of K$1,4,8%

(s) with J0
(s) . To facilitate this we rewrite Eq.~63! as

d II
(l1)J0

(s)~v!5E dv1Fn•v
d

dv
~j̄nW!v1

3$~W†i«'•DW c
'W!v2v1

1~W†i«'•DQ c
'W!v2v1

%hv

2~ j̄nW!v1
~W†iD”Q c

'W!v2v1

1

P̄†

«”'

2
hv

2~ j̄nW!v1

1

v12v
~W†i«'•DW c

'W!v2v1
hvG .

~65!

To derive Eq. ~65! we used «'•P' j̄nWhv

5 j̄ni«'•DW c
'Whv1 j̄ni«'•DQ c

'Whv , and the fact that thev1

integration can be carried out with the delta function
( j̄nW)v1

to get back a product of operators with momentu

labelv where the intermediateWW† cancel out. Now for the
d/dv terms in Eq. ~65! we can integrate by parts i

@C0(v̂) d II
(l1)J0

(s)(v)# so that the derivative acts on the Wi

son coefficientC0
(s)(v̂). It is then evident that the third term

in Eq. ~65! can be canceled byd II
(l0)K 1

(s) with b1
(s)(v̂1 ,v̂

2v̂1)5C0
(s)(v̂), the second term is canceled byd II

(l0)K 4
(s)

with b4
(s)(v̂1 ,v̂2v̂1)522v̂d/dv̂ C0

(s)(v̂), and the first

and fourth terms are canceled byd II
(l0)K 8

(s) with b8
(s)(v̂1 ,v̂

2v̂1)522v̂ d/dv̂ C0
(s)(v̂)22v̂/(v̂12v̂)C0

(s)(v̂). There-
fore, type-II RPI rules out the operatorsK3,5,7

(s) and leaves
only the invariants
09400
J0
(s)1K 1

(s)1K 4
(s)1K 8

(s) , K 2
(s) , K 6

(s) . ~66!

For type-II invariance their coefficients can have a
b$2,4%

(s) (v̂1 ,v̂2), but require

b1
(s)~v̂1 ,v̂2v1!5C0

(s)~v̂ !,

b4
(s)~v̂,v̂2v1!522v̂

d

dv̂
C0

(s)~v̂ !,

b8
(s)~v̂1 ,v̂2v1!522v̂

d

dv̂
C0

(s)~v̂ !

2
2v̂

~v̂12v̂ !
C0

(s)~v̂ !. ~67!

The restrictions on the Wilson coefficients are summ
rized in Table I. Comparing the invariants in Eqs.~61! and
~67!, we see that the combinations in Eq.~66! are the most
general combinations invariant under type I and type II w
the restrictions in Eqs.~67! plus b2

(s)(v̂,0)50. However,
with this constraint onb2

(s) the operatorK 2
(s) is actually iden-

tical to K 6
(s) with an unconstrained coefficientb6

(s) . To see

this note that within square brackets@W†iD”W c
'W#v2

5@W†iD”Q c
'W#v2

52@W†igB” c
'W#v2

/v2, so the difference

comes fromiD”Q c
' acting also on (j̄nW) in K 2

(s) . However,

since the factor (j̄nW) on the left is a collinear color single
we can write

~W†iD”Q c
'W!v2

5@W†iD”Q c
'W#v2

2P”'
† ~W†W!v2

5@W†iD”Q c
'W#v2

2P”'
† d~v2!, ~68!

and the last term vanishes sinceb2(v1,0)50. Given this
result and the constraints in Eqs.~67! it is convenient to
define

K1
(s)~v!5E dv1 K 1

(s)~v1 ,v2v1!,

K2
(s)~v!5v̂E dv1 $K 4

(s)~v1 ,v2v1!

1K 8
(s)~v1 ,v2v1!%, ~69!

K3
(s)~v!5vE dv1 ~v12v!21 K 8

(s)~v1 ,v2v1!,

K4
(s)~v1 ,v2!5~v̂11v̂2! K 6

(s)~v1 ,v2!.

From RPI it is only these operators that can ever appear.
has ruled out some currents and restrictedK1,2,3

(s) to only de-
pend on one parameter. Once we know this, we can sim
forgetabout theK i

(s) and work directly with theKi
(s) . Using

capital B’s for their Wilson coefficients, our final basis o
subleading scalar operatorsK124

(s) is
5-14
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TABLE I. Summary of RPI constraints on the coefficients of the scalar currents in Eq.~56!. The first column shows the constraints fro

type-I RPI onbi
(s)(v̂1,0), the second column shows the constraint onbi

(s)(v̂1 ,v̂2) from type-II RPI, and the third column gives th

combined constraint. A generic entry, such asb2
(s)(v̂1 ,v̂2) in the second row of the RPI-II column, indicates no constraint. The final curr

are displayed in Eq.~71!, and are defined so that they automatically satisfy these constraints.

RPI-I RPI-II

bi
(s)(v̂1,0)5 bi

(s)(v̂1 ,v̂2)5 Combined constraints

b1
(s)

C0
(s)(v̂1) C0

(s)(v̂11v̂2) b1
(s)(v̂1 ,v̂2)5C0

(s)(v̂11v̂2)
b2

(s) 0 b2
(s)(v̂1 ,v̂2) b2

(s)(v̂1 , 0)50
b3

(s) 0 0 b3
(s)(v̂1 ,v̂2)50

b4
(s)

22v̂1C0
(s)8(v̂1) 22(v̂11v̂2)C0

(s)8(v̂11v̂2) b4
(s)(v̂1 ,v̂2)522(v̂11v̂2)C0

(s)8(v̂11v̂2)
b5

(s)
b5

(s)(v̂1,0) 0 b5
(s)(v̂1 ,v̂2)50

b6
(s)

b6
(s)(v̂1,0) b6

(s)(v̂1 ,v̂2) b6
(s)(v̂1 ,v̂2) unconstrained

b7
(s)

b7
(s)(v̂1,0) 0 b7

(s)(v̂1 ,v̂2)50
b8

(s)
b8

(s)(v̂1,0) 22(v̂11v̂2)C0
(s)8(v̂11v̂2) b8

(s)(v̂1 ,v̂2)522(v̂11v̂2)C0
(s)8(v̂11v̂2)

12S11
v̂1

v̂2
DC0

(s)~v̂11v̂2! 12S11
v̂1

v̂2
DC0

(s)~v̂11v̂2!
on

om

gr

s
dy

is
e

rs
ar-
D

nts
the
ise.
nts
K123
(s) 5E dvB123

(s) ~v̂ !K123
(s) ~v!,

K4
(s)5E dv1dv2B4

(s)~v̂1 ,v̂2!K4
(s)~v1 ,v2!, ~70!

where

K1
(s)~v!52S j̄n

n”̄

2
iD”Q c

'WD
v

1

P̄†
hv ,

K2
(s)~v!5

v•P'

mb
~ j̄nW!v hv , ~71!

K3
(s)~v!5S j̄n

1

n•v i n̄•Dc

iv•DW c
' WD

v

hv ,

K4
(s)~v1 ,v2!5

1

mb
~ j̄nW!v1S 1

P̄W†igB” c
'WD

v2

hv ,

and the RPI type-I and type-II constraints on the Wils
coefficients become

B1
(s)~v̂ !5C0

(s)~v̂ !, B2
(s)~v̂ !522C0

(s)8~v̂ !,

B3
(s)~v̂ !522C0

(s)~v̂ !. ~72!

The prime here denotes a derivative with respect tov̂. Thus,
we conclude that there are 4 subleadingO(l) scalar heavy-
to-light currents. The coefficientB4

(s)(v̂1 ,v̂2) is completely
unconstrained, while the other coefficients are fixed fr
RPI invariance.

In Ref. @13# it was noted thatJ0
(s) , K1

(s) , and K3
(s) are

connected by RPI, and for these operators our results a
09400
ee

with taking their matching calculation in Eq.~120! and mul-
tiplying by a common Wilson coefficient. The operatorK2

(s)

does not appear in Ref.@13# because the derivative on it
coefficient causes it to vanish at tree level. Our three-bo
operatorK4

(s) is also new. In the limit thatB4(v̂1 ,v̂2) de-

pendsonly on the sumv̂15v̂11v̂2 we can switch variables
to v̂1 ,v̂1 and reduceK4

(s) to a two-body operator. At tree
level this is always possible since the Wilson coefficient
independent of thev i . To see how the reduction works w
write

E dv1K4
(s)~v1 ,v12v1!5

1

mb
S j̄nW

1

P̄W†igB” c
'WD

v1

hv

5
1

mb
~ j̄n@ iD”W c

'W# !v1
hv , ~73!

where in the last line we used Eq.~14!. The derivative struc-
ture of this two-body operator is similar to that of operato
in Refs.@12,13#; however, the specific spin structure appe
ing in Eq. ~73! does not appear from matching the QC
scalar current at tree level. Beyond tree levelB4 can depend
separately onv1 andv2 and the reduction in Eq.~73! is not
valid.

B. Vector currents

The steps for deriving the general set of vector curre
are very similar to the steps for the scalar currents in
previous section, so our presentation will be more conc
At LO gauge invariance plus power counting allows curre
of the form j̄nWZm hv . Imposing type-III RPI invariance
allows the Dirac structures
5-15
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Zm5H gm ,gmn”̄n•v,
gmn”̄

n̄•v
,nmn”̄ ,

nm

n•v
,nmn̄•v,vm ,vm

3n”̄n•v,
vmn”̄

n̄•v
,n̄mn•v,

n̄m

n̄•v
,n̄mn”̄ ~n•v !2,

n̄mn”̄n•v

n̄•v
,

n̄mn”̄

~ n̄•v !2J . ~74!

However, it is easy to show that all structures involvingn̄ are

ruled out by thed II
(l0) transformations. Thus, at leading ord

there are only three allowed vector currents

J123
(v) 5E dvC123

(v) ~v̂ !J123
(v) ~v!, ~75!

where the coefficients are functions ofv̂5v/mb andm/mb ,
and

J123
(v) ~v!5~ j̄nW!vH gm ,vm ,

nm

n•vJ hv . ~76!

The choices$1,2,3% correspond to the three different Dira
structures, and our basis in Eq.~76! agrees with Ref.@10#.

At NLO the power counting only allows a singleD' to
appear. For the possible spin structures it is easy to see
type-II RPI invariance does not allow the vector index to
in an n̄m or any factors ofn̄•v to appear just as for the
leading currents. Imposing the constraints from gauge inv
ance, spin reduction, and type-III RPI then leaves 28O(l)
suppressed currents@ j 51, . . . ,28#

K j
(v)5E dv1dv2 bj

(v)~v̂1 ,v̂2! K j
(v)~v1 ,v2!, ~77!

with operators

K126
(v) ~v1 ,v2!5~ j̄nW!v1

~W†iD”Q c
'W!v2

1

P̄†
G126

m hv ,

K7,8
(v)~v1 ,v2!5~ j̄nW!v1

~W†iDQ c
'mW!v2

3
1

P̄†H n”̄

2
,

1

n•vJ hv ,

K9214
(v) ~v1 ,v2!5~ j̄nW!v1

~W†iv•DQ c
'W!v2

1

P̄†
G126

m hv ,

~78!

K15220
(v) ~v1 ,v2!5~ j̄nW!v1

~W†iD”W c
'W!v2

1

P̄†
G126

m hv ,
09400
hat

i-

K21,22
(v) ~v1 ,v2!5~ j̄nW!v1

~W†iDW c
'mW!v2

1

P̄†

3H n”̄

2
,

1

n•vJ hv ,

K23228
(v) ~v1 ,v2!5~ j̄nW!v1

~W†iv•DW c
'W!v2

1

P̄†
G126

m hv ,

where the sixG i
m matrices are

G126
m 5H n”̄gm

2
,
n”̄vm

2
,

n”̄nm

2n•v
,

gm

n•v
,

vm

n•v
,

nm

~n•v !2J . ~79!

Working out the transformations of the leading and su
leading currents in a similar way as was done for the sc
currents we find that the type-I invariants areJ1

(v)1K 1
(v)

1K 12
(v) , J2

(v)1K 2
(v)1K 13

(v) , J3
(v)1K 3

(v)1K 8
(v)1K 14

(v) , K j
(v) ,

K k
(v) , where j 5$4,5,6,7,9,10,11% and k5$15, . . . ,28%.

Type-I invariance allows any coefficientsbk
(v)(v̂1 ,v̂2), but

restrictsb1214
(v) (v̂1 ,v̂2) as shown in the second column o

Table II.
Looking at the transformations under type-II we find th

the invariants are independent of the$gm ,vm ,nm% choice.
Our results for the type-II invariants areJ1

(v)1K 1
(v)1K 12

(v)

1K 26
(v) , J2

(v)1K 2
(v)1K 13

(v)1K 27
(v) , J3

(v)1K 3
(v)1K 8

(v)1K 14
(v)

1(K 22
(v)1K 28

(v)), (K 22
(v)2K 28

(v)), while K,
(v) for ,

5$4,5,6,18,19,20% are invariant by themselves. For the
combinations type-II invariance allows anyb,

(v)(v̂1 ,v̂2), but
restrictsb123,7,9217,21228

(v) as shown in the third column o
Table II. Furthermore, currents K m

(v) with m
5$7,9,10,11,15,16,17,21,23,24,25% are ruled out~i.e. bm

(v)

50).
It is easy to see that the type-I and type-II conditions

Table II are compatible. The combined set of constraints
given by those in the fourth column. Using Eq.~68! we can
show that the constrainedK$4,5,6%

(v) are redundant with
K$18,19,20%

(v) , respectively, just as was done for the scalar c
rent withK 2

(s) andK 6
(s) . We can also use Eq.~68! to convert

K8
(v)(v̂1 ,v̂2)2K14

(v)(v̂1 ,v̂2) into a term proportional to

d(v2) and a term that is redundant withK22
(v)(v̂1 ,v̂2)

2K28
(v)(v̂1 ,v̂2).

From the combined constraints we can then define a n
complete set of allowed vector operators,K1214

(v) . Therefore
after imposing type-I and type-II RPI plus all other co
straints we are left with our final set of allowed vector cu
rent operators,

K1210
(v) 5E dv B1210

(v) ~v̂ ! K1210
(v) ~v!,

K11214
(v) 5E dv1dv2 B11214

(v) ~v̂1 ,v̂2! K11214
(v) ~v1 ,v2!,

~80!
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TABLE II. Summary of RPI constraints on the coefficients of the vector currents in Eq.~78!. The first column shows the constraints fro
type-I RPI onbi

(s)(v,0), the second column shows the constraint onbi
(s)(v1 ,v2) from type-II RPI, and the third column gives the combine

constraint. The final currents are displayed in Eq.~81!, and are defined so that they automatically satisfy these constraints.

RPI-I RPI-II

bi
(v)(v̂1,0)5 bi

(v)(v̂1 ,v̂2)5 Combined constraints

b123
(v)

C123
(v) (v̂1) C123

(v) (v̂11v̂2) b123
(v) (v̂1 ,v̂2)5C123

(v) (v̂11v̂2)
b426

(v) 0 b426
(v) (v̂1 ,v̂2) b426

(v) (v̂1 , 0)50
b7

(v) 0 0 b7
(v)(v̂1 ,v̂2)50

b8
(v)

22 C3
(v)(v̂1) b8

(v)(v̂1 ,v̂2) b8
(v)(v̂1,0)522 C3

(v)(v̂1)
b9211

(v) 0 0 b9211
(v) (v̂1 ,v̂2)50

b12,13
(v)

22 v̂1 C1,2
(v)8(v̂1) 22(v̂11v̂2)C1,2

(v)8(v̂11v̂2) b12,13
(v) (v̂1 ,v̂2)522(v̂11v̂2)C1,2

(v)8(v̂11v̂2)
b14

(v)
22 v̂1 C3

(v)8(v̂1) 22(v̂11v̂2)C3
(v)8(v̂11v̂2) b14

(v)(v̂1 ,v̂2)522(v̂11v̂2)C3
(v)8(v̂11v̂2)

12 C3
(v)(v̂1) 2b8

(v)(v̂1 ,v̂2) 2b8
(v)(v̂1 ,v̂2)

b15217
(v)

b15217
(v) (v̂1,0) 0 b15217

(v) (v̂1 ,v̂2)50
b18220

(v)
b18220

(v) (v̂1,0) b18220
(v) (v̂1 ,v̂2) b18220

(v) (v̂1 ,v̂2) unconstrained
b21

(v)
b21

(v)(v̂1,0) 0 b21
(v)(v̂1 ,v̂2)50

b22
(v)

b22
(v)(v̂1,0) b22

(v)(v̂1 ,v̂2) b22
(v)(v̂1 ,v̂2) unconstrained

b23225
(v)

b23225
(v) (v̂1,0) 0 b23225

(v) (v̂1 ,v̂2)50
b26,27

(v)
b26,27

(v) (v̂1,0) 22(v̂11v̂2)C1,2
(v)8(v̂11v̂2) b26,27

(v) (v̂1 ,v̂2)522(v̂11v̂2)C1,2
(v)8(v̂11v̂2)

22 C1,2
(v)(v̂11v̂2) 22 C1,2

(v)(v̂11v̂2)
b28

(v)
b28

(v)(v̂1,0) 22(v̂11v̂2)C3
(v)8(v̂11v̂2) b28

(v)(v̂1 ,v̂2)522(v̂11v̂2)C3
(v)8(v̂11v̂2)

12S11
v̂1

v̂2
DC3

(v)~v̂11v̂2! 12S11
v̂1

v̂2
DC3

(v)~v̂11v̂2!

2b22(v̂1 ,v̂2) 2b22(v̂1 ,v̂2)
ffi-
re-
where

K123
(v) ~v!52S j̄n

n”̄

2
iD”Q c

'WD
v

1

P̄†

3H gm ,vm ,
nm

n•vJ hv ,

K4
(v)~v!5S gma2

nmva

n•v D
3~ j̄niDQ ca

' W!v

1

P̄†

1

n•v
hv ,

K527
(v) ~v!5

v•P'

mb
~ j̄nW!vH gm ,vm ,

nm

n•vJ hv ,

~81!

K8210
(v) ~v!5S j̄n

1

n•v i n̄•Dc

iv•DW c
' WD

v

3H gm ,vm ,
nm

n•vJ hv ,
09400
K11213
(v) ~v1 ,v2!5

1

mb
~ j̄nW!v1H gm ,vm ,

nm

n•vJ
3S 1

P̄W†igB” c
'WD

v2

hv ,

K14
(v)~v1 ,v2!5

1

mb
~ j̄nW!v1S gma2

nmva

n•v D
3S 1

P̄W†igBc a
' WD

v2

hv .

The coefficientsB$11,12,13,14%
(v) in Eqs.~80! depend on two pa-

rametersv1,2 and are unconstrained. The remaining coe
cients depend on only one parameter and are fixed by
parametrization invariance

B123
(v) ~v̂ !5C123

(v) ~v̂ !, B527
(v) ~v̂ !522C123

(v) 8~v̂ !,

B8210
(v) ~v̂ !522C123

(v) ~v̂ !, B4
(v)~v̂ !522C3

(v)~v̂ !.
~82!

The form of the currentsK1,2
(v) agree with Ref.@10#, and if

we take a frame wheren•v51 and v'50 then K3,4
(v) also
5-17
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agree. Reference@10# looked at type-I RPI of the vector cur
rents and our constraints onB124

(v) agree with the ones foun
there. ~We note that the authors of Ref.@10# also checked
these results with explicit one-loop computations.! At tree-
level one matches onto the currentsK1,8

(v) and the two-body
limit of K13

(v) @using the analog of Eq.~73!#, and we agree
with Ref. @13# on the form of these currents and the R
constraint betweenK1

(v) andK8
(v) . The structures in Eq.~81!

which are new and which only appear beyond tree level
K527,9212,14

(v) and the three-body form ofK13
(v) .

C. Pseudoscalar and axial-vector currents

The results for the pseudoscalar and axial-vector hea
to-light currents can be directly obtained from the analy
for the scalar and vector currents, respectively. The anal
is identical except for the extrag5 in the Dirac structure. For
the pseudoscalar currents we have the basis$n”̄ /2,1/n•v%g5,
while for the axial-vector currents we haveG$1, . . . ,6%

m g5,
where G j

m is defined in Eq.~79!. At LO the most genera
allowed pseudoscalar current are thus

J0
(p)5E dvC0

(p)~v̂,m/mb!J0
(p)~v!,

J0
(p)~v!5~ j̄nW!v1

g5hv , ~83!

while the axial-vector currents are

J123
(a) 5E dvC123

(a) ~v̂ !J123
(a) ~v!,

J123
(a) ~v!5~ j̄nW!vH gm ,2vm ,2

nm

n•vJ g5hv .

~84!

At NLO we again have eight possible pseudo-scalar c
rentsK j

(p) and 28 possible axial-vector currentsK j
(a) before

imposing all type-I and type-II constraints. After imposin
the RPI constraints we find results very similar to those
Eqs. ~71! and ~81!. Thus for the final NLO pseudoscala
currents we have

K123
(p) 5E dvB123

(p) ~v̂ !K123
(p) ~v!,

K4
(p)5E dv1dv2 B4

(p)~v̂1 ,v̂2!K4
(p)~v1 ,v2!, ~85!

where

K1
(p)~v!52S j̄n

n”̄

2
iD”Q c

'WD
v

1

P̄†
g5hv ,

K2
(p)~v!5

v•P'

mb
~ j̄nW!v g5hv , ~86!
09400
I

re

y-
s
is

r-

n

K3
(p)~v!5S j̄n

1

n•v i n̄•Dc

iv•DW c
' WD

v

g5hv ,

K4
(p)~v1 ,v2!5

1

mb
~ j̄nW!v1

g5S 1

P̄W†igB” c
'WD

v2

hv ,

and the RPI type-I and type-II constraints on the Wils
coefficients are

B1
(p)~v̂ !5C0

(p)~v̂ !, B2
(p)~v̂ !522C0

(p) 8~v̂ !,

B3
(p)~v̂ !522C0

(p)~v̂ !. ~87!

For the final axial-vector NLO currents we find

K1210
(a) 5E dv B1210

(a) ~v̂ ! K1210
(a) ~v!,

K11214
(a) 5E dv1dv2 B11214

(a) ~v̂1 ,v̂2!

3K11214
(a) ~v1 ,v2!, ~88!

where

K123
(a) ~v!52S j̄n

n”̄

2
iD”Q c

'WD
v

1

P̄†

3H gm ,2vm ,2
nm

n•vJ g5hv ,

K4
(a)~v!52S gma2

nmva

n•v D
3~ j̄niDQ ca

' W!v

1

P̄†

1

n•v
g5hv ,

K527
(a) ~v!5

v•P'

mb
~ j̄nW!vH gm ,2vm ,

2
nm

n•vJ g5hv , ~89!

K8210
(a) ~v!5S j̄n

1

n•v i n̄•Dc

iv•DW c
'WD

v

3H gm ,2vm ,2
nm

n•vJ g5hv ,

K11213
(a) ~v1 ,v2!5

1

mb
~ j̄nW!v1H gm ,2vm ,2

nm

n•vJ
3g5S 1

P̄W†igB” c
'WD

v2

hv ,
5-18
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K14
(a)52

1

mb
~ j̄nW!v1S gma2

nmva

n•v D
3g5S 1

P̄W†igBc a
' WD

v2

hv .

The coefficientsB$11,12,13,14%
(a) in Eqs.~80! depend on two pa-

rametersv1,2 and are unconstrained. The remaining coe
cients depend on only one parameter and are fixed by
arametrization invariance

B123
(a) ~v̂ !5C123

(a) ~v̂ !, B527
(a) ~v̂ !522C123

(a) 8~v̂ !,

B8210
(a) ~v̂ !522C123

(a) ~v̂ !, B4
(a)~v̂ !522C2

(a)~v̂ !.
~90!

The form of the pseudo-scalar and axial-vector currents
very analogous to the scalar and vector currents, so ra
than comparing with the literature we simply refer to t
comparisons in the proceeding sections for which part of
results were previously known.

D. Tensor currents

At leading order inl, there are four tensor currents, d
fined as

J124
mn ~v!5~ j̄nW!v G124

mn hv , ~91!

where the most general allowed Dirac structures are

G124
mn 5H ismn, g [m,vn] ,

1

n•v
g [m,nn] ,

1

n•v
n[m,vn] J ,

~92!

whereg [m,vn]5gmvn2gnvm , etc. As before, non̄m can ap-
pear at leading order from type-II RPI.

At O(l), 44 currents can be written down before impo
ing the RPI constraints. They can be chosen as

K128
(t) 5~ j̄nW!v1

~W†iD”Q c
'W!v2

H n”̄

2
G124

mn ,
1

n•v
G124

mn J 1

P̄†
hv,

K9214
(t) 5~ j̄nW!v1

~W†iDQ c'
[m,W!v2

G126
n] 1

P̄†
hv , ~93!

K15222
(t) 5~ j̄nW!v1

~W†iv•DQ c
'W!v2

3H n”̄

2
G124

mn ,
1

n•v
G124

mn J 1

P̄†
hv ,

and

K23230
(t) 5~ j̄nW!v1

~W†iD”W c
'W!v2

3H n”̄

2
G124

mn ,
1

n•v
G124

mn J 1

P̄†
hv ,
09400
-
p-

re
er

r

-

K31236
(t) 5~ j̄nW!v1

~W†iDW c'
[m,W!v2

G126
n] 1

P̄†
hv ,

~94!

K37244
(t) 5~ j̄nW!v1

~W†iv•DW c
'W!v2

3H n”̄

2
G124

mn ,
1

n•v
G124

mn J 1

P̄†
hv .

The Dirac matrix with one indexG126
m is defined as in Eq.

~79!

G126
m 5H n”̄

2 S gm ,vm ,
nm

v•nD ,
1

n•v S gm ,vm ,
nm

v•nD J . ~95!

The constraints from type-I and type-II RPI are derived
before. The final constraints on the Wilson coefficientsb1244
are shown in Table III.

After imposing the constraints from the table one finds
final minimal set of tensor heavy-light currents in the effe
tive theory atO(l)

K1214
(t) 5E dvB1214

(t) ~v!K1214
mn ~v!,

K15221
(t) 5E dv1dv2B15221

(t) ~v1 ,v2!K15221
mn ~v1 ,v2!.

~96!

There are 14 independentO(l) two-body operators given
explicitly by

K124
(t) ~v!52S j̄n

n”̄

2
iD”Q c

'WD
v

1

P̄†
G124

mn hv ,

K5,6
(t)~v!5~ j̄niDQ c'

a W!v

1

P̄†
$ga[m,gn]

1vaG3
mn , ga[m,vn]2vaG4

mn%hv , ~97!

K7210
(t) ~v!5

1

mb
~v•P'!~ j̄nW!vG124

mn hv ,

K11214
(t) ~v!5S j̄n

1

n̄• iD c

iv•DW c
'WD

v

1

n•v
G124

mn hv .

Their coefficients are fixed by reparametrization invarian
in terms of theO(l0) Wilson coefficientsC124

(t) (v) as

B124
(t) ~v!5C124

(t) ~v!, B5
(t)~v!52C3

(t)~v!,

B6
(t)~v!522C4

(t)~v!, B7210
(t) ~v!522C124

(t)8 ~v!,

B11214
(t) ~v!522C124

(t) ~v!. ~98!

In addition, there are 7 three-body collinear operat
given by
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TABLE III. Summary of RPI constraints on the coefficients of the tensor currents in Eqs.~93!. The first column shows the constrain
from type-I RPI onbi(v,0), the second column shows the constraint onbi(v1 ,v2) from type-II RPI, and the third column gives th
combined constraint. Each6 refers to the first and second terms in their row, respectively. The final currents are displayed in Eqs.~97!, ~99!,
and are defined so that they automatically satisfy these constraints.

RPI-I RPI-II

bi
(t)(v̂1,0)5 bi

(t)(v̂1 ,v̂2)5 Combined constraints

b124
(t)

C124
(t) (v̂1) C124

(t) (v̂11v̂2) b124
(t) (v̂1 ,v̂2)5C124

(t) (v̂11v̂2)

b528
(t) 0 b528

(t) (v̂1 ,v̂2) b528
(t) (v̂1 , 0)50

b9211
(t) 0 0 b9211

(t) (v̂1 ,v̂2)50

b12
(t)

2 C3
(t)(v̂1) b12

(t)(v̂1 ,v̂2) b12
(t)(v̂1,0)52 C3

(t)(v̂1)

b13
(t)

22 C4
(t)(v̂1) b13

(t)(v̂1 ,v̂2) b13
(t)(v̂1,0)522 C4

(t)(v̂1)

b14
(t) 0 b14

(t)(v̂1 ,v̂2) b14
(t)(v̂1,0)50

b15218
(t) 0 0 b15218

(t) (v̂1 ,v̂2)50

b19,20
(t)

22 v̂1 C1,2
(t)8(v̂1) 22(v̂11v̂2)C1,2

(t)8(v̂11v̂2) b19,20
(t) (v̂1 ,v̂2)522(v̂11v̂2)C1,2

(t)8(v̂11v̂2)

b21,22
(t)

22 v̂1 C3,4
(t)8(v̂1) 22(v̂11v̂2)C3,4

(t)8(v̂11v̂2) b21,22
(t) (v̂1 ,v̂2)522(v̂11v̂2)C3,4

(t)8(v̂11v̂2)

12 C3,4
(t) (v̂1) 6b12,13

(t) (v̂1 ,v̂2) 6b12,13
(t) (v̂1 ,v̂2)

b23226
(t)

b23226
(t) (v̂1,0) 0 b23226

(t) (v̂1 ,v̂2)50

b27230
(t)

b27230
(t) (v̂1,0) b27230

(t) (v̂1 ,v̂2) b27230
(t) (v̂1 ,v̂2) unconstrained

b31233
(t)

b31233
(t) (v̂1,0) 0 b31233

(t) (v̂1 ,v̂2)50

b34236
(t)

b34236
(t) (v̂1,0) b34236

(t) (v̂1 ,v̂2) b34236
(t) (v̂1 ,v̂2) unconstrained

b37240
(t)

b37240
(t) (v̂1,0) 0 b37240

(t) (v̂1 ,v̂2)50

b41,42
(t)

b41,42
(t) (v̂1,0) 22(v̂11v̂2)C1,2

(t)8(v̂11v̂2) b41,42
(t) (v̂1 ,v̂2)522(v̂11v̂2)C1,2

(t)8(v̂11v̂2)

12 S11
v̂1

v̂2
DC1,2

(t)~v̂11v̂2! 12 S 11
v̂1

v̂2
D C1,2

(t)~v̂11v̂2!

b43,44
(t)

b43,44
(t) (v̂1,0) 22(v̂11v̂2)C3,4

(t)8(v̂11v̂2) b43,44
(t) (v̂1 ,v̂2)522(v̂11v̂2)C3,4

(t)8(v̂11v̂2)

12S11
v̂1

v̂2
DC3,4

(t)~v̂11v̂2! 12S 11
v̂1

v̂2
D C3,4

(t)~v̂11v̂2!

6b34,35(v̂1 ,v̂2) 6b34,35(v̂1 ,v̂2)
y
ed

e

d

K15218
(t) ~v1 ,v2!5

1

mb
~ j̄nW!v1

G124
mn S 1

P̄W†igB” c,'WD
v2

hv ,

K19
(t)~v1 ,v2!5

1

mb
~ j̄nW!v1

~ga[m,gn]1vaG3
mn!

3S 1

P̄W†igBc,'
a WD

v2

hv , ~99!

K20
(t)~v1 ,v2!5

1

mb
~ j̄nW!v1

~ga[m,vn]2vaG4
mn!

3S 1

P̄W†igBc,'
a WD

v2

hv ,
09400
K21
(t)~v1 ,v2!5

1

mb
~ j̄nW!v1

ga[m,nn]

1

n•v

3S 1

P̄W†igBc,'
a WD

v2

hv .

Their coefficientsB15221
(t) (v̂1 ,v̂2) are not constrained by an

symmetry of the effective theory and have to be determin
by an explicit matching calculation.

At tree level one matches onto the currentsK1,11
(t) and the

two-body limit of K17
(t) @using the analog of Eq.~73!#, and we

agree with Ref.@13# on the form of these currents and th
RPI constraint betweenK1

(t) andK11
(t) . The remaining opera-

tors in Eqs.~97! and ~99! are new and only appear beyon
tree level~including the three-body structure ofK11

(t)).
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V. SUMMARY FOR COEFFICIENTS, OPERATORS, AND FEYNMAN RULES

In this section we summarize results that should be useful for future phenomelogical applications. In Sec. V A we
rize the full set of known matching results and compare with the literature, in Sec. V B we give simplified expressions
basis of currents in the framev'50, n•v51, and in Sec. V C we give Feynman rules for the subleading currents andL jq

(1,2) .

A. Matching results for the currents

In this section we summarize the one-loop matching results for the LO and next-to-leading order~NLO! Jhl Wilson
coefficients. Withv̂ i5v/mb these coefficients are defined in previous sections asCi

(d)(v̂,m/mb) andBi
(d)(v̂ i ,m/mb), respec-

tively, where~d! denotes whether the current is a scalar, pseudoscalar, vector, axial-vector, or a tensor.
For the LO currents the basis we use is different~though equivalent! to the basis used in Ref.@2#. Since the one-loop

matching for the LO coefficients can be found in Ref.@2# it is useful to have the explicit relation between our basis
coefficientsCi

(d) and the coefficientsCj ( j 51 –12) that can be found there. We find

C0
(s)5C1 , C1

(v)5C3 , C1
(a)5C6 , C1

(t)5C10,

C0
(p)5C2 , C2

(v)5C5 , C2
(a)5C8 , C2

(t)52C12,

C3
(v)5C42C3 , C3

(a)5C72C6 , C3
(t)5C102C9 ,

C4
(t)5C121C102C11. ~100!
i
nt

-
s

n in

on
At tree level the matching between QCD and SCET
scheme independent. Matching with the full QCD curre
ū$1,g5 ,gm ,gmg5 ,ismnb we find

C0
(s)5C0

(p)5C1
(v)5C1

(a)5C1
(t)51,

C2
(v)5C3

(v)5C2
(a)5C3

(a)5C2
(t)5C3

(t)5C4
(t)50. ~101!

At one loop we use the modified minimal subtraction (MS)
scheme with naive dimensional regularization~NDR! and
match atm5mb to determine theCi

(d)(v̂,m/mb). Using Eqs.
~100! and results in Ref.@2# one finds

C0
(s,p)~v̂,1!512

as~mb!CF

4p H 2 ln2~v̂ !12 Li2~12v̂ !

2
2 ln~v̂ !

12v̂
1

p2

12J ,

C1
(v,a)~v̂,1!512

as~mb!CF

4p H 2 ln2~v̂ !12 Li2~12v̂ !

1 ln~v̂ !S 3v̂22

12v̂
D 1

p2

12
16J ,

C1
(t)~v̂,1!512

as~mb!CF

4p H 2 ln2~v̂ !12 Li2~12v̂ !

1 ln~v̂ !S 4v̂22

12v̂
D 1

p2

12
16J ,
09400
s
s C2

(v,a)~v̂,1!5
as~mb!CF

4p H 2

~12v̂ !
1

2v̂ ln~v̂ !

~12v̂ !2 J ,

~102!

C2
(t)~v̂,1!50,

C3
(v,a)~v̂,1!5

as~mb!CF

4p H ~122v̂ !v̂ ln~v̂ !

~12v̂ !2
2

v̂

12v̂
J ,

C3
(t)~v̂,1!5

as~mb!CF

4p H 22v̂ ln~v̂ !

12v̂
J ,

C4
(t)~v̂,1!50,

where CF54/3 for color SU(3). To determine the coeffi-
cients for scalesmbLQCD,m2,mb

2 we require their anoma
lous dimensions.9 The LO and NLO anomalous dimension
are universal and the running of these coefficients is give
Ref. @2# ~or for the casev̂51 in Ref. @1#!.

At NLO in l tree level matching of the QCD currentūGb
onto SCET gives@10,12,13#

Jtree
(1a)52 j̄n,p8

n”̄

2
iD”Q c

'W
1

P̄†
Ghv ,

Jtree
(1b)52 j̄n,p8G

n”

2
iD”W c

'W
1

n•vmb
hv , ~103!

9The full NLO result requires a two-loop anomalous dimensi
which uses information from Ref.@35#.
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Jtree
(1c)52

2

n•v
j̄n,p8G

1

i n̄•DW c

iv•DW c
'Whv .

The normalization in Eqs.~103! was first derived forJ(1a) in
Ref. @10#, and forJ(1b,1c) in Ref. @13#. Comparing Eqs.~103!
with our basis of currents we see that for any choice ofG the
Jtree

(1a,1c) match onto a subset of our two-body currents. On
other hand,Jtree

(1b) does not appear in the basis of two-bo
currents. Instead it is obtained from the projection of a sub
s-
h
c

t
co

s

m

o
ct
a

ira

th

ffi

09400
e

et

of the three-body currents for cases where the correspon

coefficientsBi(v̂2 ,v̂2) depend only on the sumv̂11v̂2.
This is certainly the case at tree level since the coefficie

are v̂ i independent. The three-body structure of the curre
can only show up at the level of one-loop matching.

Using Eqs.~103! to determine the tree-level value of th
NLO Wilson coefficients of the operators in Eqs.~71!, ~81!,
~86!, ~89!, ~97!, ~99!, we find
LO
B1
(s,p)51, B1

(v,a)51, B9,10
(v,a)50, B1

(t)51, B12214
(t) 50,

B2
(s,p)50, B224

(v,a)50, B11,12
(v,a)50, B226

(t) 50, B15,16
(t) 50,

B3
(s,p)522, B527

(v,a)50, B13
(v,a)521, B7210

(t) 50, B17
(t)51,

B4
(s,p)50, B8

(v,a)522, B14
(v,a)50, B11

(t)522, B18221
(t) 50. ~104!

These results are in agreement with the RPI constraints in Eqs.~72!, ~82!, ~87!, ~90!, ~98!. Coefficients in Eqs.~104! that are
zero indicate that the corresponding currents vanish at tree level since they are first matched onto at one loop~or beyond!. The
full one-loop matching for all theO(l) currents is not currently known from direct computations. However, many of the N
coefficients are fixed in terms of the LO coefficients by RPI, namelyB023

(s,p)(v̂), B1210
(v,a) (v̂), andB1214

(t) (v̂). Summarizing Eqs.
~72!, ~82!, ~87!, ~90!, ~98! we have

B1
(s,p)5C0

(s,p) , B2
(s,p)522C0

(s,p) 8 , B3
(s,p)522C0

(s,p) ,

B123
(v,a)5C123

(v,a) , B4
(v,a)522C3

(v,a) , B527
(v,a)522C123

(v,a) 8 , B8210
(v,a) 522C123

(v,a) ,

B124
(t) 5C124

(t) , B5
(t)52C3

(t) , B6
(t)522C4

(t) , B7210
(t) 522C124

(t)8 ,

B11214
(t) 522C124

(t) , ~105!
st

n-

or,
is

d as

et
ffi-
-

where to save space thev̂ andm dependence of the expre
sions on both sides of these equalities is suppressed. T
results can be used to determine the matching for these
efficients atm5mb using Eqs.~102!. They also imply that
the anomalous dimensions of these coefficients are de
mined by the anomalous dimension of the leading order
efficients @2#, so their values for scalesmbLQCD,m2,mb

2

are known.
For the coefficients of the 3-body operator

B4
(s,p)(v̂1 ,v̂2), B11214

(v,a) (v̂1 ,v̂2), and B15221
(t) (v̂1 ,v̂2), nei-

ther the one-loop matching results, nor even the LO ano
lous dimensions, are currently known.

Finally, we note that it is possible to relate the pseud
scalar and axial-vector coefficients from the scalar and ve
coefficients. For massless quarks the QCD diagrams
SCET diagrams change in a trivial way under the ch
transformation,q→g5q, andjn→g5jn , provided we work
in a scheme such as NDR. Therefore in this scheme
Wilson coefficients of operators with and withoutg5 are re-
lated~see, for example, Ref.@2# for the relations between LO
coefficients!. In other renormalization schemes these coe
cients may differ.
ese
o-

er-
-

,

a-

-
or
nd
l

e

-

B. Summary of O„l… currents in the frame v�Ä0, n"vÄ1

In Secs. IV A through IV D we have derived the mo
general basis of heavy-to-light current toO(l) in an arbi-
trary frame. However, for applications it is often most co
venient to pick a frame wherev'50 andv•n51. In this
frame the currentsK2,3

(s,p) , K5210
(v,a) , andK7214

(t) drop out. Thus
there are only~2,2,8,8,13! order O(l) heavy-to-light cur-
rents which are~scalar, pseudo-scalar, vector, axial-vect
tensor!. In this section we summarize our results with th
choice of basis vectors.

In this frame our leading order results for theJhl currents
with a complete set of Dirac structures can be summarize

J(0)5E dv Ci
(d)~v̂ !Ji

(0)~v!,

Ji
(0)~v!5~ j̄nW!v G i

(d) hv , ~106!

where in G i
(d) the ~d! specifies the type of current~scalar,

vector, . . . !, the i specifies the member of the complete s
of possible structures of that type, and the Wilson coe
cients areCi

(d)(v̂). For the minimum basis of Dirac struc
tures we found
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G0
(s)51, G0

(p)5g5 ,

G$1,2,3%
(v) 5$gm , vm , nm%, ~107!

G$1,2,3%
(a) 5$gmg5 , vmg5 , nmg5%,

G$1,2,3,4%
(t) 5$ ismn , g [m,vn] , g [m,nn] , n[m,vn]%,

which is simply a linear combination of the basis in Ref.@2#.

FIG. 1. Feynman rules for theO(l) currentsJ(1a) in Eqs.~108!
with zero and one gluon~the fermion spinors are suppressed!. For
the collinear particles we show their~label, residual! momenta,
where label momenta arep,q;l0,1 and residual momenta arek,t

;l2. Momenta with a hat are normalized tomb , p̂5p/mb , etc.
e

e

y
,
th

-

09400
At orderl our corresponding results forJhl in this frame can
be summarized as

J(1a)5E dv Bi
(d)~v̂ !Ji

(1a)~v!,

J(1b)5E dv1 dv2 Bi
(d)~v̂1 ,v̂2! Ji

(1b)~v1 ,v2!,

~108!

Ji
(1a)~v!5~ j̄niDQ ca

' W!v

1

P̄†
Y i

(d)a hv ,

Ji
(1b)~v1 ,v2!5

1

mb
~ j̄nW!v1

Q i
(d)a

3S 1

P̄W†igBc a
' WD

v2

hv ,

where
Y1
(s)a5g'

a n”̄

2
, Q4

(s)a5g'
a , Y1

(p)a5g'
a n”̄

2
g5 , Q4

(p)a5g5g'
a ,

Y124
(v)a5H g'

a n”̄

2
gm, g'

a n”̄

2
vm, g'

a n”̄

2
nm, g'

amJ , Q11214
(v)a 5$gmg'

a , vmg'
a , nmg'

a , g'
ma%,

Y124
(a)a5H g'

a n”̄

2
gm, g'

a n”̄

2
vm, g'

a n”̄

2
nm, g'

amJ g5 , Q11214
(a)a 5$gmg5g'

a , vmg5g'
a , nmg5g'

a , g'
mag5%, ~109!

Y126
(t)a 5H ig'

a n”̄

2
smn, g'

a n”̄

2
g [m,vn] , g'

a n”̄

2
g [m,nn] , g'

an[m,vn] , g'
a[m,gn]nn] ,g'

a[m,vn]J ,

Q15221
(t)a 5$ ismng'

a , g [m,vn]g'
a , g [m,nn]g'

a , n[m,vn]g'
a , g'

a[m,gn]nn] , g'
a[m,vn] ,g'

a[m,nn]%.
di-

ar
es
Note that due to Eq.~14! the form ofJ(1b) in Eqs. ~108! is
identical to the form of the currents that was used in R
@15# since@W†iDW ca

' W#5@1/P̄ W†igBc a
' W#.

C. Feynman rules for Jhl and Ljq

In this section Feynman rules are given for theO(l)
heavy-to-light currentsJ(1a) and J(1b) in Eqs. ~108! which
are valid in a frame wherev'50 andv•n51. We also give
the Feynman rules that follow from the final form of th
L jq

(1,2a,2b) Lagrangians in Eqs.~42!.
For the subleading currents the zero and one gluon Fe

man rules forJ(1a) and J(1b) are shown in Figs. 1 and 2
respectively.~From the results in the preceding sections
Feynman rules for the currents withv'Þ0 andv•nÞ1 can
also be easily derived.! For J(1a) the Wilson coefficients de
f.

n-

e

pend only on the totall0 collinear momentum, while for
J(1a) the coefficients depend on how the momentum is
vided between the quark and gluons. TheJ(1a) current has
non-vanishing Feynman rules with zero or oneAn

' gluon and

any number ofn̄•An gluons. The possible gluons that appe
in the J(1b) currents are similar, but the current vanish
unless it has one or more collinear gluons present.

For the mixed usoft-collinear Lagrangians from Eqs.~42!,

L jq
(1)5 j̄n

1

i n̄•Dc

igB” c
'Wqus1H.c.,

L jq
(2a)5 j̄n

1

i n̄•Dc

igM” Wqus1H.c., ~110!
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L jq
(2b)5 j̄n

n”̄

2
iD”'

c 1

~ i n̄•Dc!
2

igB”'
cWqus1H.c.,

all Feynman rules involve at least one collinear gluon. Fr
L jq

(1) we obtain Feynman rules with zero or oneAn
' gluons

and any number ofn̄•An gluons. The one- and two-gluo
results are shown in Fig. 3.

For L jq
(2a) we have Feynman rules with zero or on

$n•An ,Aus
' % gluon and any number ofn̄•An gluons. The one-

and two-gluon results are shown in Fig. 4. Finally, forL jq
(2b)

one finds Feynman rules with zero, one, or twoAn
' gluons

and any number ofn̄•An gluons. In this case the one- an
two-gluon Feynman rules are shown in Fig. 5. Note that i
important to treat the contributions fromL jq

(2a) and L jq
(2b)

separately since they show up in different parts of the hea
to-light factorization formulas derived in Ref.@15# and
shown in Eq.~1!.

For L jq
(2a)1L jq

(2b) the Feynman rules are different tha
one would derive using the intermediate form Eqs.~30!,
since in transforming to the final form the equations of m
tion were applied. However, observable predictions that
consistently made with either set of Feynman rules w
agree.

VI. LEADING POWER PREDICTIONS FOR B
TO PSEUDOSCALAR MESONS

As a phenomenological example, we consider the fo
factors forB→p,n, or more generally the form factors fo

FIG. 2. Feynman rules for theO(l) currentsJ(1b) in Eqs.~108!
with zero and one gluon. For the collinear particles we show th
~label, residual! momenta, where label momenta arep,q,qi;l0,1

and residual momenta arek,t;l2. Momenta with a hat are normal

ized tomb , p̂5p/mb , etc.

FIG. 3. Feynman rules for the subleading usoft-collinear L
grangianL jq

(1) with one and two collinear gluons~springs with lines
through them!. The solid lines are usoft quarks while dashed lin
are collinear quarks. For the collinear particles we show their~label,
residual! momenta.~The fermion spinors are suppressed.!
09400
s
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B→P whereP is a pseudoscalar meson~calculations using
the factorization theorem in Eq.~1! for the vector meson are
just as straightforward!. For pseudoscalars there are thr
form factors in QCD, which are conventionally defined by

^P~p!uq̄gmbuB̄~pb!&5 f 1~q2!F pb
m1pm2

mB
22mP

2

q2
qmG

1 f 0~q2!
mB

22mP
2

q2
qm,

^P~p!uq̄ismnqnbuB̄~pb!&52
f T~q2!

mB1mP
@q2~pb

m1pm!

2~mB
22mP

2 ! qm#, ~111!

whereq5pb2p.
For the region whereQ5$E,mb%@LQCD ~i.e. smallq2)

one can use large energy factorization to study the form
tors. For pions our expansion parameterLQCD/n̄•p
;0.5 GeV/(2E) becomes 1/4 forE.1 GeV. This makes
the region ofq2 where the expansion is valid roughly
&q2&10 GeV2. In SCET the form factorsf 1 , f 0 , f T split
themselves up into contributions associated with three m

ir

-

FIG. 4. Feynman rules for theO(l2) usoft-collinear Lagrangian
L jq

(2a) with one and two gluons. The spring without a line through
is an usoft gluon. For the collinear particles we show their~label,
residual! momenta, where label momenta arep,q,qi;l0,1 and re-
sidual momenta arek,t,t i;l2. Note that with the field redefinition
made in Ref.@36# the only change to these Feynman rules is that
gn

' in the second line should be dropped.

FIG. 5. Feynman rules for theO(l2) usoft-collinear Lagrangian
L jq

(2b) with one and two gluons. For the collinear particles we sh
their ~label, residual! momenta, where label momenta arep,q,qi

;l0,1 and residual momenta arek,t,t i;l2.
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mentum regions: Wilson coefficients forp2;Q2, two jet
functions Ja,b for p2;QLQCD, universal light-cone wave
functions forp2;LQCD

2 , and a single non-factorizable form
factorzP ~containing bothp2;QLQCD andp2;LQCD

2 ). The
leading contributions therefore split into factorizable~F! and
non-factorizable~NF! contributions.10 This decomposition
was defined by the proof of a factorization formula for the
form factors in Ref.@15#

f QCD~q2!5 f F~Q!1 f NF~Q!1 . . . ,

f F~Q!5N0E
0

1

dzE
0

1

dxE
0

`

dr1T~z,Q,m0!

3J~z,x,r 1 ,Q,m0 ,m! fP~x,m! fB~r 1 ,m!,

~112!

f NF~Q!5Ck~Q,m! zk
P~QL,m!,

where f F(Q); f NF(Q);Q23/2 and the ellipses denote term
that are suppressed by more powers of 1/Q. Here fB

5fB
6 .

To separate the scalesQ2 andQL we match QCD onto a
SCETI . The scalesQL andL2 are then separated by matc
ing SCETI onto a SCETII @15#. Operators in SCETI are di-
vided into F and NF categories depending on the form of
result of factoring usoft gluons from collinear fields.
SCETI the F contributions are from the time-ordered pro
ucts

T1
F5E d4xT$J(1a)~0!,iL jq

(1)~x!%,

T2
F5E d4xT$J(1b)~0!,iL jq

(1)~x!%,

T3
F5E d4xT$J(0)~0!,iL jq

(2b)~x!%, ~113!

where the currents are taken from Eqs.~108! and the usoft-
collinear Lagrangians from Eqs.~110!. After factorization of
usoft and collinear fields, theTi

F’s are matched onto soft
collinear SCETII operators. The collinear matrix elemen
are given in terms of jet functionsJ(z,x,r 1 ,Q), and the soft
operators are given in terms ofB light-cone wave functions
f6(r 1) defined as@19,22#

^0uq̄~x2!Sn~x2,0! Ghv~0!uB̄~v !&

52
i

2
f BmBE dr 1e2( i /2)r 1x2

TrH 11v”
2

Fn”n”̄

4
fB

1~r 1!

1
n”̄n”

4
fB

2~r 1!Gg5 GJ . ~114!

10Here the phrase non-factorizable simply refers to the fact
the matrix elements cannot be expressed in terms of convolut
with the standard light-cone wave functions.
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A few general properties of the factorizable termf F(Q)
can be given without an explicit computation. First, the m
trix elements ofT1,2

F can only depend onfB
1(r 1). This fol-

lows from the explicit form of the subleading Lagrangia
L jq

(1) , where jn5(n”n”̄ /4)jn, so the usoft fieldqus appears

only in the combinationq̄us(n”n”̄ /4). Using Eq.~114! this im-
plies that only thefB

1(r 1) term gives a nonvanishing con
tribution. On the other hand, the factorizable operatorT3

F

depends on the combinationq̄us(n”̄ /2), so its matrix element
can only containfB

2(r 1). At tree level the jet functionJ
from the matrix element ofT3

F vanishes, but a nonzero resu
could appear at one-loop order. However, the matrix elem
of T3

F contains the leading order currentJ(0), so it obeys the
same symmetry relations as those derived for the nonfac
izable partf NF(Q) @15#. Therefore, although this matrix el
ement is factorizable it does not increase the number of
known non-perturbative functions since fo
phenomenological analysesfB

2 can be absorbed inzk
M . With

this choice, all remaining factorizable contributions are e
pressible in terms of justfB

1(r 1).
Using the approach explained in@15# we can obtain the

results for the form factors. After factorization of usoft an
collinear fields the T-products of collinear fields comin
from T1,2

F are given by@using Eqs.~108! and ~110!#

J v
1a~x![T@ j̄niDQ ca

' W#v
iA~0!

3FW†igB”'
cW

1

P̄†
W† jnG

0

jB

~x!,

J v1 ,v2

1b ~x![TF @ j̄nW#v1F 1

P̄W†igB'a
c WG

v2

G iA

~0!

3FW†igB”'
cW

1

P̄†
W† jnG

0

jB

~x!, ~115!

wherei , j are Dirac indices and hereA,B are color indices in
the fundamental representation. The functionsJ1a,1b are col-
linear gauge invariant and satisfy the spin structure c
straintsn”J1a,1b5J1a,1bn”50, and tr@J1a,1b#50.

Taking into account constraints from the Dirac structu
of the effective theory fields one can easily find the m
general form of the operators appearing in the matching
J 1a,1b onto operators in SCETII . The jet functionsJa,b are
defined by the terms which contribute on a pseudoscalar s

J v
1a~x!5 id~x1!d2~x'!@g'

an”g5# j i dAB
1

v

3E dh̄E dr1

2p
e2( i /2)r 1x2

Ja~ h̄,r 1!

3F ~ j̄nW! d~h̄2P̄1!
n”̄

2
g5~W†jn!G

II

1•••,

~116!

at
ns
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J v1 ,v2

1b ~x!5 id~x1!d2~x'!@g'
an”g5# j i dAB

1

v11v2

3E dh̄E dr1

2p
e2( i /2)r 1x2

Jb~v̄,h̄,r 1!

3F ~ j̄nW!d~h̄2P̄1!
n”̄

2
g5~W†jn!G

II

1•••,

~117!

wherev̄5v12v2. We have suppressed the dependence
J1a,1b on them ’s and onv, v11v2 ~the latter combinations
would be simply set ton̄•p in the pseudoscalar matrix ele
ment by momentum conservation@3#!. The ellipsis in Eq.
~116! denotes color octet terms and other operators which
not contribute for a pseudoscalar mesonP.

Using Eq. ~116! the operators in̂ Pn(p)uT1,2
F uB̄v& factor

into a product of matrix elements that can be evaluated w
Eq. ~114! and Eqs.~12!, ~13! of Ref. @7#. Switching variables
to x,z by using v̄5(2x21)n̄•p and h̄5(2z21)n̄•p we
find the following factorization theorems which are valid
leading order11 in 1/Q and all orders inas :

f 1~q2!5N0E
0

1

dxE
0

`

dr 1F2E2mB

mB
Ta

(1)~E,m0!

3Ja~x,r 1 ,Q,m0 ,m!1
2E
mb

E
0

1

dzTb
(1)~E,z,m0!

3Jb~z,x,r 1 ,Q,m0 ,m! GfP~x,m!fB
1~r 1 ,m!

1 HC1
(v)~2Ê,m0!1

E
mB

C2
(v)~2Ê,m0!

1C3
(v)~2Ê,m0!J zP~QL,m0!,

f 0~q2!5N0E
0

1

dxE
0

`

dr 1F2E~mB22E!

mB
2

Ta
(0)~E,m0!

3Ja~x,r 1 ,Q,m0 ,m!1
4E2

mbmB

3E
0

1

dzTb
(0)~E,z,m0!Jb~z,x,r 1 ,Q,m0 ,m!G

3fP~x,m! fB
1~r 1 ,m!1

2E

mB
H C1

(v)~2Ê,m0!

1
mB2E

mB
C2

(v)~2Ê,m0!1C3
(v)~2Ê,m0!J

3zP~QL,m0!, ~118!

11We kept a kinematic factor ofmP in the prefactor off T even
though it is formally power suppressed.
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f T~q2!5N0

mB1mP

mB
E

0

1

dxE
0

`

dr 1F2Ta
(T)~E,m0!

3Ja~x,r 1 ,Q,m0 ,m!2
2E

mb
E

0

1

dzTb
(T)~E,z,m0!

3Jb~z,x,r 1 ,Q,m0 ,m!GfP~x,m! fB
1~r 1 ,m!

1
mB1mP

mB
$C1

(t)~2Ê,m0!2C2
(t)~2Ê,m0!

2C4
(t)~2Ê,m0!%zP~QL,m0!,

whereÊ5E/mb , Q5$E,mb%, and the normalization coeffi
cient is given byN05 f Bf PmB /(4E2). The matrix element
involving non-factorizable operators giveszP(QL,m) which
is the reduced form factor describing decays to a pseu
scalar mesonP. The quantities in square brackets and cu
brackets are calculable, that is theTa,b’s and Ja,b’s have
expansions inas(Q) andas(AQL), respectively. Note tha
the Ja,b are universal, meaning that at any order inas it is
these same jet functions which appear for any pseudosc
meson and independent of which form factorf 1,0,T we con-
sider. Therefore, the factorization theorem still gives info
mation even in the case where we assume thatas(AQL) is
non-perturbative.

Working at O„as(m0)… ~i.e. tree level! for the jet func-
tions gives

J1a~x,r 1!5
pCF

Nc

as~m0!

xr1
, ~119!

J1b~z,x,r 1!5
pCF

Nc

as~m0!

xr1
d~z2x!.

~120!

At this level thez integrals in Eqs.~118! disappear becaus
the tree level jet gives ad(z2x), and this causes thez vari-
able in theTb’s to be replaced byx. The Ta,b

( j ) are combina-
tions of Wilson coefficients appearing in theJ(1a,1b) currents
given in Eqs.~108! and should be evaluated at a scalem0

2

;QL. Expressed in terms of the Wilson coefficients defin
in Sec. IV, they are given by

Ta
(1)~E,m!5B1

(v)~2Ê,m!1
EB2

(v)~2Ê,m!1mBB3
(v)~2Ê,m!

2E2mB
,

Ta
(0)~E,m!5B1

(v)~2Ê,m!

1
~mB2E!B2

(v)~2Ê,m!1mBB3
(v)~2Ê,m!

mB22E
,

~121!
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Ta
(T)~E,m!5B1

(t)~2Ê,m!2B2
(t)~2Ê,m!22B3

(t)~2Ê,m!

1B4
(t)~2Ê,m!,

where the dependence onv̂52Ê is shown, and

Tb
(1)~E,z,m!5B11

(v)~2Ê,z,m!2
E

mB
B12

(v)~2Ê,x,m!

2B13
(v)~2Ê,z,m!,

Tb
(0)~E,z,m!5B11

(v)~2Ê,z,m!2
~mB2E!

mB

3B12
(v)~2Ê,z,m!2B13

(v)~2Ê,z,m!,

~122!

Tb
(T)~E,z,m!5B15

(t)~2Ê,z,m!1B16
(t)~2Ê,z,m!

2B18
(t)~2Ê,z,m!,

where v̂11v̂252Ê and the dependence onz is induced
from the v̂12v̂2 dependence of the coefficients.

If we work at tree level inJa,b using Eq.~119! and also in
Ta,b then these coefficients are scale independent and sa
Ta

(1,0,T)5Tb
(1,0)51 andTb

(T)50. In this case if we take the
ratios f 0 / f 1 and f T / f 1 and expand assuming that thef F

terms are smaller than thef NF terms then our results agre
with Ref. @19#. We note, using just the information in ou
factorization theorem, that it is not clear whether one wa
to expand in this way since the F and NF terms could ac
ally be similar in size as discussed in the Introduction. T
expectation from QCD sum rules is that the ‘‘soft’’ NF pa
of the form factors is larger than the ‘‘hard’’ F part@20#.

VII. CONCLUSION

The soft-collinear effective theory~SCET! allows a rich
structure of allowed operators at higher orders in the exp
sion parameterl. In contrast with simpler effective theorie
the presence of fields (n̄•An) and derivatives (n̄• iD c) scal-
ing like l0 allows a continuum set of operators at any giv
order inl. A similar situation is encountered in deep inela
tic scattering, where an infinite number of operators of
creasing dimension can contribute to the same order in 1Q.
In a generic process with energetic hadrons it is there
important to have a well-defined procedure for organiz
the structure of the soft-collinear operators at a given orde
l. This organization is provided by SCET.

In this paper we formulated a general prescription
constructing the most general ultrasoft-collinear opera
appearing in the Lagrangian or in the matching of an exte
09400
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current at a given order inl but to all orders inas . This was
done by including constraints from collinear gauge inva
ance, the Dirac structure of the effective theory fields a
reparametrization invariance. These conditions prove to
surprisingly predictive, and constrain not only the number
allowed operators, but also their functional dependence
label momenta.

For the case of the heavy-light currents, the constra
from the Dirac structure of the effective theory fields ha
been included at leading order in@2#, and allow only 3 struc-
tures in thev'50 frame. Here we consider the more gene
case of an arbitrary heavy quark velocityv, which is neces-
sary in order to have a set of operators which closes un
reparametrization transformations.

At subleading orderO(l) the Dirac constraints alone a
low many more operators. In particular, in addition to tw

body operators (j̄nW)v•••hv , one has to include also three

body currents of the form (j̄nW)v1
•••(W†iDW)v2

•••hv .

RPI constraints on a subset of the two body-operators w
previously considered in@10,13#, and it was shown their co
efficients are fixed in terms of the coefficients of leadi
order currents. Here we extended the constraints to the
set of allowed two-body and three-body operators, a
showed that type~II ! RPI imposed severe constraints on t
(v1 ,v2) dependence of the latter. For example, the sca

current q̄b is matched atO(l) onto 8 general operators i
the effective theory. After imposing all constraints, only o
of these has a free Wilson coefficient, which has to be de
mined from a matching calculation. A similar reduction
obtained for the more complicated case of the vector/a
and tensor currents, for which one can write~28!, ~44! struc-
tures but only~4!, ~7! Wilson coefficients are not fixed by th
symmetries of the effective theory.

In this paper we have focused on mixed usoft-colline
interactions, however for many exclusive heavy-to-light p
cesses the final operators that are needed are of soft-coll
type as was the case for heavy-to-light form factors. In pr
tice it appears simplest to derive collinear-soft interactio
from the collinear-usoft ones using the two-stage match
technique, QCD→SCETI→SCETII , discussed in the proo
of factorization for heavy-to-light decays Ref.@15#. The op-
erators in this paper describe interactions in the intermed
SCETI theory. For exclusive processes such asB→Dp @7#
where the intermediatep2;QL fluctuations in SCETI are
responsible for inducing simple operators in SCETII the pro-
cedure used in Ref.@15# reduces to the one discussed
Ref. @4#.

Note added. In the final stages of this work, Ref.@17#
appeared where a direct study of light-light soft-collinear o
erators was performed. The Wilson coefficients of these
erators were determined by matching from QCD up to o
loop order, and both two-body and three-body operators w
found to contribute. An intermediate theory with modes
momentumpm;Q(l8,1,l8) as dynamical degrees of free
dom was also considered. This appears similar in spirit to
QCD→SCETI→SCETII construction used in Ref.@15#;
however, in the intermediate SCETI theory we found that the
5-27
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dynamical collinear modes should have momentum sca
as pm;Q(l8,1,Al8). Finally, reparametrization invarianc
constraints on soft-collinear operators were also discusse
Ref. @17#, and were shown to constrain the form of certa
Wilson coefficients.
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