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Complete basis for power suppressed collinear-ultrasoft operators

Dan PirjoF
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218

lain W. Stewart
Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195
(Received 21 December 2002; published 13 May 2003

We construct operators that describe power corrections in mixed collinear-ultrasoft processes in QCD. We
treat the ultrasoft-collinear Lagrangian @(\?) and heavy-to-light currents involving collinear quarks to
O(N\), including new three body currents. A complete gauge invariant basis is derived which has a full
reduction in Dirac structures and is valid for matching at any orderjnThe full set of reparametrization
invariance(RPI) constraints is included, and is found to restrict the number of parameters appearing in Wilson
coefficients and to rule out some classes of operators. The QCD ultrasoft-collinear Lagrangian &¥a tyvo
operators in its gauge invariant form. For t%\) heavy-to-light currents there are (4,4,14,14,21) subleading
(scalar, pseudoscalar, vector, axial-vector, tensarrents, where (1,1,4,4,7) have coefficients that are not
determined by RPI. In a frame whesg =0 andn-v =1 the total number of currents reduces to (2,2,8,8,13),
but the number of undetermined coefficients is the same. The role of these operators and universality of jet
functions in the factorization theorem for heavy-to-light form factors is discussed.
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. INTRODUCTION gluon Lagrangiang (2 and£ {) can be found in Ref§2,4],
and a description of the gauge symmetries of SCET can be
The soft-collinear effective theoSCET) constructed in  found in Refs[3,4]. For details on power counting we refer
[1-4] offers a systematic description of processes involvingg Ref.[12]. The heavy-to-light currents at large enerdy,,
energetic particles. It has an expansion in a small paramet§fere derived to leading order in R¢], including one-loop
A~p, /Q, wherep, is a typical transverse momentum and matching for all the Wilson coefficients. The running of these
Q the large energy scale. Hard exclusive and inclusive proywyiison coefficients was considered in Reff$,2].
cesses in QCD are usually described using the powerful tech- |n the context of the SCET, power suppressed corrections
nigues of QCD factorization and light-cone expansi@§]. were first considered in Ref10], and theO(\) suppressed
SCET encompasses and extends these frameworks, and dfirrentsJ,, and collinear quark Lagrangians were derived.
particular allows a model independent description of effectsrhe authors showed that a reparametrization invariance
caused by the interplay between energetic collinear particlegp)) uniquely fixes the Wilson coefficients of their sublead-
and soft particles beyond leading order in the power expanng currents and Lagrangian in terms of the leading order
sion. These effects can be described in a rigorous way base@efficients In Ref.[11] the RPI of SCET was extended to
solely on QCD, but are not included in purely collinear ex-the most general three class@dllll ), and the multipole
pansions. The study of operators that describe these mixaskpansion of the collinear quark Lagrangian was treated to
collinear-ultrasoft(collinear-usoft effects is the purpose of higher orders in and were shown not to receive anomalous
this paper. For recent applications of SCET in hard scatterindimensions. In Ref[12] the presence of additionaD(\)

processes anB decays see Ref§7-13,15. heavy-to-light currents was pointed out that were missing in
Since our focus is on mixed collinear-usoft interactions,Ref.[10].
we consider collinear quark fields, ;, collinear gluon fields The study of power corrections in SCET was continued in

Ak, usoft heavy quark fields, , usoft light quark fields Ref. [13] and several important results were obtained for

Qus, and usoft gluongX. . (We follow the notation in Refs. mixed usoft-collinear operators. In particular the mixed

[2,3], but for simplicity will often suppress the momentum USoft-collinear quark Lazgrang@ﬂ‘,gq was first considered
labelp on the collinear fields These degrees of freedom can and was derived t@(x,1%) working at tree level, but to all
interact in a local manner in Lagrangians and currents. Thi@rders in attachments of- A,~\° gluon fields. In a similar

is in contrast with collinear-soft couplings whose interactionsfashion heavy-to-light currents were derived@g\?), and

are mediated by off-shell fluctuatiofi4], and appear in ex- linear combinations of currents that are invariant under the
ternal operators. We comment on collinear-soft interactions

at the end of the paper.

The derivation of the leading order collinear quark and *A similar application of Lorentz invariance was used to derive
constraints on the form of higher-twist contributions to structure
functions in deep inelastic scattering [ib6]. For this case, invari-

*Electronic address: dpirjol@pha.jhu.edu ance under changes in the light-cone vea:_tprwas used to derive
TElectronic address: iain@phys.washington.edu constraints on matrix elemen([p\TE(O)F z,//()\ﬁu)\p).
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three types of RPI were identified. It was also shown that theyppear in the usoft-collinear Lagrangidg, at higher orders
operators inC,q are not renormalized based on an analysis ofn perturbation theory; however, using constraints from sym-
arbitrary N-loop diagrams in the hard region of QCD. The metries of SCET we prove that this does not occur.

mixed usoft-collinear quark Lagrangialy, was extended to Our results are relevant to the study of decay channels for
a gauge invariant form with covariant derivatives in Ref.B mesons which involve energetic hadrons in the final state.
[14]. For instance, the results derived in this paper are necessary

The purpose of the present paper is to answer some opénngredients in the factorization formula for heavy-to-light
questions regarding our knowledge of the power suppressd@rm factors proven in Ref.15] (for earlier work on factor-
usoft-collinear Lagrangian and heavy-to-light currents. Thigzation in heavy-to-light form factors see Ref48,19, and
includes the number afy, currents atO(\), since even at for results from QCD sum rules see Ref20]). The factor-
tree level the full reduction of Dirac structures has not yetization theorem is valid to all orders s and leading order
been implemented. For both, and L, we also construct a in 1/Q, Q={mg,E}, and separates contributions from the
complete basis which is valid for matching at any order inscalesp®~Q?, p*~QA, and p>~A?, whereA is a had-
ag, and therefore includes all operators that can be inducetPnic scale. It states that a generic form factor can be split
by radiative corrections or operator mixing. We work in theinto two types of contributions =f7(Q) + fNF(Q), where
most general possible frame throughdatg., allowingv | [15]

#0, v-n#1), and consider all the restrictions from RPI,

including the transformation of Wilson coefficients. Finally, - 1 1 o

we include the mixed usoft-collinear pure glue Lagrangian f (Q)ZNof dzf dxf dry T(z,Q,0)

beyond leading ordgit.O) (which follows from an extension 0 0 0

of wqu i.n Refs.[4,1;]). The 'above results are_obtained by XI(Z,X,T 4, Q, g, ) (X, 2) dp(r o, m), (1)
considering the full implications of RPI, and including all

possible operators allowed from collinear gauge invariance,

power counting, and the reduction of Dirac structures from fM(Q)=Cu(Qun) &'(QA, ), 2
the effective theory field$.

For the heavy-to-light currents &@(\) an important re- No=fgfumg/(4E?), and the two terms both scale as
sult we find is a new type of “three-body” currents, which 1/Q*2 This scaling is model independent and is in agree-
have not been previously considered in the literafuhe. ment with that derived from QCD sum rulg2l]. In Eq. (1)
Refs.[10,12,13 the attention was restricted to SCET opera- ¢y, and ¢g=¢5 are standard nonperturbative light-cone

tors of two-body typeJ:(E_ ..W)(h,), where the two distribution amplitudes, cf.19,22. The hard coefficient€,
products in parentheses are collinear gauge invariant, and tid T can be calculated in an expansiondg(Q) and are
ellipses denote combinations of collinear derivatives. Besimply related to the Wilson coefficients of th@(\° ")
yond tree level but at the same order Np we find that current operatorsly, . The jet functionJ is dominated by
three-body structures can appear for some of the currentgyomentap?=QA. If we then wish to expand ims(VQA)
having the formJ=(&...W)(W'...W)(h,) with three Using the techniques developed in R@f5], J is calculable
collinear gauge invariant factors. We show the RPI can bé" terms of time-ordered products of the SGBperators]y,
used to determine for which currents this happens. We als8d Lg that we study here. At tree-levelfi.e.
show that RPI greatly restricts the form of the three-bodyO(as(vQA)* s(Q)°)] one finds thatd contains ad(z
operators, so that they always involve a collinear gluon field-x), and in ratios of form factors the results f6F then
strength. The two-body operators have hard Wilson coeffiagree with terms computed in R¢fL9]. The z dependence
cients which are functions of a single parame®w;), first shows up at)(«?) as does a possible dependence on
while the new three-body operators have two parameter cag, . However, as we show in Sec. VI it is possible to absorb
efficientsC(w,,w,). Analogous three-body structures could the ¢ terms into a redefinition of thé}' to all orders in
perturbation theory.

) The factorization formula provides a clean separation of
Note that in deriving the complete basis f&y; we restrict our-  the “soft” non-factorizable(NF) contributions and “hard”
selves taO(\), which is one order less than the order to which the factorizable(F) terms without double counting. It also gives
tree-level matching results are known from Rf3]. We treatl, s a procedure to systematically improve the predictions to

to O(A?), and give a detailed account of how the gauge invarianiyny order in perturbation theory at leading order i 1The
form in Ref. [15]_Was derived. In cases where our re;ults are rey,alye of T and C, can depend on which heavy-to-light pro-
stricted to thse in Ref$10,13 we find agreement, as Q|scussed N Less we consider, whereas, and ¢§ are universal func-
more detail in the body of the paper. The results derived here arﬁons Thez,’s are also universal since onl A (E) appears
sufficient for the proof of a factorization theorem for heavy-to-light ) k M v ( ,2,, PP

form factors to all orders i and leading order in @ [15]. for d(-?‘cayls to pseudoscalavs and_ acy (E)_ and éVH (E) ap-

3 the final stages of this paper, RéL7] appeared where soft- Pear ifM is a vector meson. The jet functiodsare common
collinear light-to-light currents are considered. Although different@mong certain classes of form factors and also do not depend
from the usoft-collinear heavy-to-light case studied here, we noté®n the precise stat@.g. = or 7). The fNF terms satisfy the
that three-body currents were also found. Further remarks are left t80-called large energy form factor relatidi], as expected
a note added at the end. from the prior loose definitions of these terms as “soft” con-
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tributions[2,19,23.4 Note that we have not bothered to Sepa-erators under a simultaneous Change 'm'nd/orﬁand com-
rate p’~QA and p®~A? fluctuations in theZy' functions, pensating changes in the effective theory fields. This rep-
since it is not clearly beneficial phenomenologically. Thearametrization invariancéRPI) symmetry of SCET was first
factorization theorem does tell us thef ~(A/Q)¥2 how-  considered in Ref{10], and was then extended to the most
ever, it does not distinguish between factorsgfandE in  general three classékll, Il ) of allowed transformations in
this Q%% It also does not numerically favor tHé or fF  Ref [11]° The three types are defined by the infinitesimal
term; for instance, it is possible that the leading VQA) i change they induce on the light-cone unit vectors: type-I (

Jis compen§ated for by an Qnalpgous facto{[fh. _—n+A)), type-ll (F—>F+ ), and type-lll [n—(1
We start in Sec. Il by reviewing the general constraints 1 i 0 while A Iti

imposed on SCET operators following from collinear gauge™ @)™ N—(1—a)n]. Herea~e, ~\", while A, ~\. Itis

invariance, spin structure reduction, and reparametrizatiof’® analog of the reparametrization invariance of heavy

invariance. In Sec. Il we study the implications of theseduark effective theoryHQET) under changes in the heavy
predictions for the subleading usoft-collinear Lagrangianduark velocity [28], wherev?=1. We will use HQET for

L. In Sec. IV we present detailed results for SCET cur-heavy quark field$29].

rents. Using the example of the scalar current as the peda- The restrictions we consider for finding the most general
gogical example, we demonstrate the construction of th&et of power suppressed gauge invariant operators are as fol-
complete basis 0O(\) operators contributing to the weak lows:

currents, which closes under RPI transformations. Explicit (i) Power counting and gauge invariance which determine
results are then also derived for the pseudo-scalar, vectowhat basic building blocks are allowed at the order we are
axial-vector, and tensor heavy-to-light currents@p\). In  considering.

Sec. V we summarize the one-loop matching results for the (ii) Which auxiliary vectors are availablsuch as, n, v,

currents, give explicit results foC,, Feynman rules, and . ..) that can be used to construct the most general set of
discuss the basis of currents in the particular frame=0, allowed scalars, tensors, and Dirac structures.
n-v=1. (iii) Eliminate operators which are redundant by integra-
tion by parts, or equations of motion.
Il. OPERATOR CONSTRAINTS IN SCET (iv) Impose type-lll reparametrization invariance. If a

non-trivial invariant can be formed with the label operators,

such as f-v 77) then include Wilson coefficients that de-
pend on these quantities.

In this section we briefly review the symmetries and
structure of SCET which will be important for our construc-

tion of operators. We refer to Reffl-4,10,11 for more (v) Impose all constraints from type-l and type-Il rep-

details. _ ) . arametrization invariance.
SCET includes infrared degrees of freedom corresponding To impose the five constraints we start by writing minimal

to the relevant low energy scales in the problem. These argys of independent operators compatible with the general
typically those with momentum that are collineqy  principles in (i), (ii), and (iii). We then require RPI invari-
~Q(N\?,1)), soft p£~Q(\,\,\), or ultrasoft (usofy Pls  ance order by order in the power counting. To do this we
~Q(N\?\?\?), where the components here are in a light-found it useful to split the RPI transformations into two cat-
cone basis £,—,1). Each type of mode has effective egories, those that act within the order we are considering
theory quark and gluon fields, which are then organized |nto5§x°) , with j=1,11,11I, and those which connect operators to

opelrators W'th a well-defmed powgr countingnltis (.:on- one higher ordeﬁf") . At leading order the type-Il and type-
venient to introduce light-cone unit vectons,(,n,) satisfy- \0) . . -
o 1l 5} transformations already provide non-trivial con-

ingn?=n?=0, n-n=2, interms of Wh'_Ch a vector has COM" straints on the allowed form of operators. In contrast
ponentsp*=(n-p,n-p,p). The couplings of the fields are yansformations allow us to derive relations valid to all or-
described by an effective Lagrangian, while the couplings tQjers in o between the Wilson coefficients of operators at
external sources appear as additional operators or currenigiferent orders in\. These relations are similar to the case
Both the Lagrangian and currents are constructed such thgt rRp| in HQET [28,30], where we note in particular the
they include constraints from power counting, spin symmejmportant relations derived for coefficients of subleading
tries, and collinear andl)soft gauge invariance. __heavy-to-heavy currents in RéB1]. We start by summariz-
The soft-collinear effective theory also contains a kine-jng restrictions that follow from collinear gauge invariance
matical reparametrization invariance symmetry. Lorentz inang power counting in Sec. Il A, spin structure reductions in
variance is broken by introducing the vectorandn, butis  Sec. Il B, and RPI in Sec. Il C.
restored order by order in, by requiring invariance of op-

5The nature of Lorentz symmetries on the light-cone are well
“These relations were first derived in REZ3] using low energy  known[27]. The new point in SCET10,11] is that for any collinear
effective theory(LEET) [24]. However, for studying energetic had- process these symmetries are realized in a way that leads to non-
rons with QCD the LEET framework is known to be inconsistent trivial restrictions both on operators at a given order in the power
[1,25]; for instance, it does not bind an energetic quark-antiquarkcounting and between operators at different orders in the power
pair into a meson in heavy-to-light decay&b. counting.
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To separate the momentum scales we follow R&fand  where the label operators only act on fields inside the square
use collinear quark field§, ,(x) [and gluon fieldsAf ,(x)] brackets. Up to the important fact thathas been multipole
which have momentum labetsfor the large Components of expanded, it is the Fourier transform of a standard position
the collinear momenta, and residual coordinatés-1/A\2  space Wilson lineW(—=,x). Factors ofW~\° can be in-
[2]. Thus, all derivatives on collinear fields are the same size€luded in operators without changing the order in the power
as derivatives on usoft fieldg“~ \2. This setup implements counting. However, their location is restricted by collinear
the multipole expansion in momentum sp&8&]. Note that gauge transformationsl)., under which W—UW [3].
our analysis of power corrections differs from REE3] in SinceP~\? in the power counting the hard Wilson coeffi-
two ways, the first being that in Ref13] the momentum cients can be arbitrary functions of the momentum or mo-
scales were separated by performing the multipole expansiomenta,w;, picked out by the label operatd,(w;,u) [3].
in position space, which, however, leads to an equivalenthese coefficients can be computed by matching with QCD
formulation. We do find that concise results for the powerat the hard scalg=Q and running with the renormalization
suppressed corrections are obtained with the momentuggroup.
space version. Secondly, we derive our basis of operators and If we consider a general Wilson coefficient and operator
implement all symmetry constraints working order by orderCg @, then the covariant derivative
in the power counting, rather than constructing invariants
and then expanding ih. This made it simpler to derive a in- D.=W W', (7)
complete gauge invariant basis at the desired order while
working in a general frame. so it is always possible to put all the Wilson lines@hand

the dependence on the momenta picked ou?b’yto C. We
A. Power counting and gauge invariance will find it convenient to use the notation

The SCET is derived from QCD by integrating out fluc-
tuations with p>>Q?\2, where in typical processea
= (Aqcp/ Q)X with k=1 ork=1/2. Infrared fluctuations are
then described by effective theory fields. A gauge invariant  (W'Dg “W),, =[W'Dg “W S(wy—n-vPhH], (8)
power counting for fields can be fixed by demanding that the
kinetic terms in the action are ordaP. For the collinear where again the label operators do not act outside the square
fields this gives &,~\" for the quarks, and n-A,,  prackets. The factor ai-v is included next tdP to make it
n-A,, AL ) ~(\3\%\) for the collinear gluons,h,~q  a type-lll RPI invariant. Thus, the momentum labelsdo
~\3 for usoft quarks, and\*.~\? for usoft gluons[1,2]. not transform under RPI. The products of fields in E8).
Derivatives on these fields count #~\2. The larger col- are color singlets under the collinear gauge symmetry,
linear momenta are picked out by introducing label operatorso the momentum labets; are gauge invariant. These prod-

(£€W) o, =[EWS(w3—1-vP")],

P~\° and P“~\ [3]. For exampleP &, o= —(n-p) Enp ucts still transform under an usoft gauge trans-
For notatlonal convenience we define collinear covariant deformation Uys as EW)— (W)U and W'Dg*w)
rivatives —>UUS(WTD“‘V\0U . We will elaborate on how RPI af-
o o fects Wilson coefficients in SCET in Sec. Il C below.
in-D,=P+gn-A,, iDg*=Pl+gAs*, 3 For Lagrangians and currents where the varialflés not
available we cannot make use of the definitions in Eg)s.It
and ultrasoft covariant derivatives is still convenient to make use of a similar notation:
in-Dys=in-a+gn-A,, IiDif=iot+gAlL. (4 (£aW),, =[£,W8(z,~P)],
u . o
For then®* components, it is only the combination (WTDé_MW)ZZZ[WTDé—MW 5(22_731‘)]' (9)
in-D=in-g+gn-A,+gn-Ags, (5)

where we use the variablesrather thanwi Under a type-

that ever appears. In general a derivative without a subscrip}! tranﬁformatlon thez, (;ransform I|ke3 fso Lhe delta func-
involves the sum of the collinear and usoft pied@¢=D# 1o iS homogeneougand compensated for by an integration

L L L L . . measuralz).
+Ds, and it is this combination which is RP! invarigil] Using the scalings for fields and derivatives the power

(implying that the anomalous dimensions of terms that ap,, counting for an arbitrary diagram,, can be determined

pear in the multipole expansion are relgted . : .
Integrating out the off-shell fluctuations builds up a col- entirely from its operators usiril2]

linear Wilson line, W, built out of collinear gluon fields

which are not suppressed in the power counfiBy 5=4+ 2, (k—=4)[VS+VP+VEC+(k—8)VY. (10
k
w=| > exp(—g_RAn (x) ) , 6 Here V>SS count the number of ordex* operators
perms P i which have collinear fields, soft fields, both, or neither, re-
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spectively. For any operator the power lofis derived by . _75
adding up the powers of in its components so, for instance, &nh,, F1={ o y’f] ,
&mhin-D&,~\* counts asV§=l. Since the operators are
gauge invariant so is their value &fand also the power
counting of any diagram using the result ®m Eq. (10). In

this paper we focus on operators wiff=V=0.

We have also found it convenient to define additional pure
gluon operators. In particular we will use the purely collinearAny general Dirac structure can be projected onto a linear
field strength combination of terms in this basis with the help of the fol-

lowing formulas:

N S|

no_hyS hyt
Yo 7J_] (16)

Enrz%s, Fzz[li,?’g’,?,h [

igBL#=[in-DC,iD"]. (12)

&Th,=&T,h,,
We will also make use of the mixed tensors énl'h, =&l4h,

ign-M=ign-B,=[in-DSin-D], r,= Ao rp |- M7, ﬂ,ysp—[*p
2 2 n v 2 2 n v
igM, =[in-D®iD"]. (12) + vt yL PRl P, ] (17)

In fact the operatorél, andn-M, together withig n-Mm

=[in-D%in-D"] can be combined into a single object
closed under usoft Lorentz transformations, which trans-—rq —ET,q
forms in the desired way under the collinear and usoft gauggn us™ en 2Hus

and

symmetries _ _ _

hn ho|h N ys
. W F2=1tr[§F +§trL—1F + ystr 8 r
igM = in~D°,iD”S+§gn~An : (13
Finally the following results for manipulating covariant de- Ttr 4 MR 8
rivatives on Wilson lines also prove to be useful: _
ot [ 18

2 "2 (18

(WHD W) =[WIiDiw]-P! = %wTingw -P,
) ’ The number of independent structures is quite logical, for
. N (1 ] &.I'h, each field is determined by two-component spinors
(WD W) =[WiD W]+ P, = %WT'QBéW +P.. and there are 2=4 terms in the basis. Faf,I'q,s only
) (14) the collinear spinor has two components and there are 2
X 4=8 terms in our basis. Our choice of basis in Eds)
differs from Ref.[2] where the choicd™;={1,ys, v/} was
used, and calculations were given in a frame where
Collinear quarks and heavy usoft quarks have spinors=1 andv, =0. Whenv* is kept arbitrary we have found the
with only two non-zero components. In four component no-basis in Eqs(16) is more convenient since it retains its or-
tation this is encoded in projection formulas for the fields, thonormality in an arbitrary frame.
The projection formulas in Eq$17) can be used to re-
Pnén=¢6n, P,h,=h,, (19 duce the possible Dirac structures in constructing a complete
basis of operators. It is convenient to define’

=ie"*P M ng, and vt =v#—n-v n*/2—n-vn*/2, since
thenv/', ri", n#, n* form a complete vector basis. To reduce
the Dirac structures we can use relations such as

B. Reduction in spin structures

where Pn=(hW)/4 andP,=(1+4¥)/2. We also define the

orthogonal projectoP,= (hnh)/4 whereP,+ P,=1. A quark
bilinear with a heavy ultrasoft quark and light collinear
quark, therefore, only has four possible non-trivial Dirac
structures. On the other hand, if the heavy ultrasoft quark is

replaced by a massless ultrasoft quark which has a four com- b, =1—
ponent spinor then there are eight possible Dirac structures. 2
When generating operators we should be careful not to in-

clude redundant Dirac structures. Therefore, it is convenient (x,,_—- _ o &« B b
to have a canonical basis which we can project results onto f17s 2vi+2yf+hyin-o,

to check their interdependence. For this purpose we choose- - — —
the basis Arfys=2hvf—4n-vyl'—2hyt, (19

no— — — n-v—
—h B =he2ny, sy,
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Ays within the same order in denoted bys”, 6{*”, and
2

iEMVaBnaUﬂ ZIUMV_(U;L')/V—UV’YM)

,,?O) , and those which cause ordersuppressed transforma-
L — tions denoted bys™ and s . All type-IIl transformations
- =(n,n,—n,n,)— n-_v(n y,—N,y,) act within the same order in and it is easy to construct
2 /A% A% 2 nlv viw . . .
invariants under type Ill. We simply need to have the same
number ofn’s (n’s) in the numerator and denominator, or

v o— _

+ T(HM%—nym), cees have products oh timesn. The transformations of type |
and type Il are more involved. From Réfl1] the transfor-

where the= indicates that these are only true between themations that have terms of the same ordex iare foréfxo)

fields in Egs.(17). (The complete set of relations is rather

lengthy and is not shownThe relations in Eqs(19) allow N u u Al

the structures on the left to be traded for those on the right ~ N"P—n-D+A=-D,, Df—Di{——-n-D, (213

(with more than one iteration in some casdssing the pro-

jection formulas it is straightforward to show that the mostgng for 5I(|x°)

general Dirac structure possible for the LO scalar currents

are{1,}, while the vector and axial-vector currents have the n*

n“—n*+et, Di{—D}— e D,

basis shown in Eq(74), and the tensor currents depend on 2
the basis in Eq(92).
“ u n* el
C. Reparametrization invariance YizmrT 7éi N 7#1, (21b

. The d.econ?posmon into collinear fields requires mtroduc-and the transformations that start one power down im-
ing two light-like vectorsn andn, such than®=n®=0 and  ¢jyde for 5

n-n=2. These vectors break five of the six Lorentz genera-

tors. This part of the Lorentz symmetry is restored order by A u u n“
order in the power counting by requiring invariance under n*—n#+Af, DI—Di{-- A"-D,,
reparametrization transformations orandn [11]:

— [ na
type | En—bn 1+f),
n#—>n#+At, _
© “ Al n*
n,—n,, (208 vimvim e A &
type ||, and for 5|(|)\)
n,—n,, . o Slj
BoH n-D—n-D+e -D,, D{—Df-— n-D,
FMHH#-I-st, (20b) L
- = < 1
and type lll, En—én 1+DLR5?),
n,—(1+a)n,,
1
_ _ _ 1. plL
n(1-a) 1, (200 Wﬁ[(l =5 e D Wl (23

where A*~\, while et ~a~\° In general one has two HereW is the RPI completedV, and involves the Fourier
options for constructing RPI invariant§) construct opera- transform with respect tg of a position space Wilson line
tors out of completely RPI invariant quantities and then eX4nyolving (n-A,+n-A,J(sn+x) taken froms=—= to 0

pand these in powers of, (ii) construct operators order by [13]. When expanded i, W=W-+O(\?), where W in-

order in\ and transform them to see what linear Comb'na'volves only then. A, field as in Eq.(6).

tions are invariant, and which operators are ruled out. In this If we start by considering LO operators then they must be
paper we will adopt approactii), since starting with the

. . 00 . .

most general gauge invariant sets and then reducing thefflvarnant under tfgg transformations in Eq421) all by

allows us to be confident that we do not miss operators thaf'€Mselves. Th&'™ transformations of the LO terms con-

could arise at any order in perturbation theory. nect them to NLO operator's®") transformations. Since in
For our purposes it is convenient to divide the RPI transthe collinear sector onIyS“O’Al) terms exist this pattern re-

formations into two subsets, those which include termgeats at all higher orders in the power counting. Note that
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here we will not need to consider HQET RPI under the ve-extend the derivation to the mixed usoft-collinear pure gluon
locity v#. Since the transformation*—v*+A{", where sector.

A5~AQCD/Q~)\2, this type of RPI only needs to be taken

into account at one-higher order than the order we are work- A. Matching for L, at tree level, but all orders

ing. The combined SCET and HQET RPI transformations in n-A, gluons

. 2 . .
were used in the(\") analysis ofly in Ref. [13]. In this section we discuss in detail the matching calcula-

Finally we consider a new feature of RPI in SCET, .. for the mixed ft-coll KL Sl Th
namely how Wilson coefficients are affected by reparametri:[Ion orthe mixed usoft-collinear quar agrangidib]. The

L . DO e g part of our discussion from Eq$26) to (30) follows Ref.
zation invariance. Our analysis is similar in spirit to Ref.

[31], where heavy-to-heavy HQET currents with coefficients[ls]’ bL_Jt W'thﬁ,“r momentum space r?ota.tlon. Wwe sFart with

depending on the change in veloci®(v-v’), were ana- the actionL= i ¢ and decompose it with SCET fields

lyzed. If we adopt the view of building invariants at all or- W

ders in\ then the coefficients in SCET must also be func- _F Fimle— £ o
L=&n=in-DE+EDE+ +

tions of invariants, such as operators like &3 Ent &l Ent £n0Aust AustActn

_ o _ _ _ _h
YaC(=ID-VIH, , (24) +QusQAckn+ Aud D usllust| £nD ént Enzin- Dy

whereV,, H, are invariants including the quark fields,
h,, andV* is the RPI version of the velocity” [28]. When +EF9AchS
expanded in the leading term involving the covariant de-

rivatiye in C can be trade_dT fOﬁN and P “Si”Q EA-(7),  \where theD is usoft plus collinearD, is purely collinear,
C(—in-v n-Dc)=WC(n-vP' )W'. Here we will use the and collinear momentum conservation has been enforced.
opposite but equivalent arrangement of starting with a C“rVarying with respect toE; gives an equation of motion to

: (26)

rent that is leading order in, eliminate this field from the term in square brackets
£WC(n-vPHh,, (25) 1 %
L . én = _.—_EDDLgn'I'gAnqus]a
and then determining how both the operatans! coefficient in-D
transform under RPI. We then determine which structures are o
required at one higher order into cancel this change, and - - — . h 1
which allowed higher order structures are left unconstrained. & = [QdA =&, J5 == (27)
ll. COLLINEAR-ULTRASOFT LAGRANGIAN Plugging this into Eq(26) and expanding we find that the

. . . . . two collinear quark terms exactly reproduce terms in the
In this section we discuss the mixed ultrasoft-collinear q y Tep

; . auge invariant multipole expanded action in H&i].° Us-
Lagrangians ta?(\?). These actions are power suppresse :
[7], and start atO(\) [13]. In Sec. lll A we consider the cﬁ]g Eq. (10) the terms with two ultrasoft quarks a2

T . . collinear gluons first show up at=3, i.e. O(\%) [13], and
Qerlvatlo_n from Integrating out components of the fuI_I theoryare therefore neglected. The mixed usoft-collinear quark
field, which gives a tree level derivation of the acti@or terms are
further explanation of this approach see R¢f4,13). In
Ref. [13] this procedure was used to derive a form for the
mixed ultrasoft-collinear quark Lagrangian, but a manifestly Leq=
gauge invariant form was not determined. In Rdf4] the
analysis was extended to give manifestly gauge invariant op-
erators in terms of covariant derivatives. In Sec. lll A we
review the details of how a derivation of a gauge invariant
form of the action was carried out in R€fl5] where the
result is purely in terms of field strengths. (28)

However, since the analysis in Sec. Ill A is only valid at
tree level, it missesi) non-trivial Wilson coefficients in the
tree level operators, andi) new operators whose coeffi-
cients can have zero tree-level matching. In R&8] point L‘(gﬁ):gn( gAS—iD°
(i) was addressed and it was shown diagrammatically that no
non-trivial Wilson coefficients are generated. However, point
(i) has not yet been addressed, so additional operators coutd——
still be induced by matching at some higher order in pertur- éNote that in QED the)(\) pure collinear quark Lagrangian can
bation theory. In Sec. 1ll B we show that both poiritsand  be written in terms of ,, [13]. With the momentum space multi-
(i) can be simultaneously solved by using the full set ofpole expansion this manipulation is not necessary to achieve a
symmetries of SCET when constructing operators. We alsgauge invariant resufB3,34.

_ _h 1
gngAnqus"_ gnzlmj_ .—_gAnqus]
in-D

+

_ _ 1 h
Qus gAn fn"’qus gAn.—_|DJ_§ fn
in-D

Taking Eq.(28) and expanding to second orderNngives

gﬁ- A. |qustH.c.,

C
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W _
Lgl)zfnz gn-A°+iD °

gA " |qus

c

_ 1 _
—§niDl“Sin_ 5 gn-A° gustH.c., (29

c

where the superscripts denote the power suppression in
and \2. In each of the last terms iff {z? we use -W
=1/(in-Dg)gn-A;, and in the first term ofC(gé) we write

gAl =ib{ —P" and thenq,s=[W+ (1—W)]q,s. Thus,

LO=¢£,(DSW-P,)qsH+H.c.,

iy
LE=tp| on-a+in (in—E))

c

X[W+(1—W)]qust &iD "S(W—1)qs+H.C.

—" 1

—¢ _ CACLimy C iy C

—§n2 gn-A“+iD in_-Dc |I2)L)uns
—n c . - us_ imyus
_§n§|mj_ in_-DC P, qustén E'n'D +ild}

X(W—1)q,s+H.c. (30

In manipulating£ ) we used the fact that integration by

parts is allowed on the (2W)q,s term and we can then use

PHYSICAL REVIEW D67, 094005 (2003

igBLW=in D (iD;W—P,)—{iDtW—P} P
+{gn-A%}P,,

ign-MW=in-Dgn-DW-Pin-D —{in-DW

—in-DygP, (31)

igM, W=in-DiD"W—PiD 'S+ {iD "D "W} P,

Now we take purely usoft fields on the right, and divide on

the left byin-D.. In Eq. (31) the terms in curly brackets
start at one-collinear gluon, so even in the presence of

1/(in_~ D.) these terms are non-singular and can safely be
dropped using the fact that the label operators give zero on
the usoft field. This gives

— igBquus:(iDéW_PL)quSv

in-D,

ign-MWq,s=(in-DW—=in-D,¢)qys

in-Dg

_(W_ 1)in'Dusqus= (32)

igM | Was=i DT_S(W_ 1)qys

in-Dg

- (W_ 1)iDF_Squs-

the equation of motion for the collinear quark to give a termThese expressions allow us to write covariant derivatives act-

(—in-D,g(1—W) which we collected with théD® “S(W
—1) term. The result in Eq€30) agrees with Ref[13], up

ing on Wilson lines in terms of field strengths.
Using Egs.(32) for £{}) in Egs.(30), we arrive at the

to the fact that we performed the multipole expansion infinal result

momentum space.
In Eq. (30) we did not drop theP, g=0 terms since we

want to make explicit the fact that it is the combination

(iDSW—P,)=[iDSW] which starts with at least one-
collinear gluon. Written this way it appears that ofify) is

not collinear gauge invariant. In the transformed result th

non-invariant term cancels if we u$g q,s=0, but then itis

not explicit that the operator starts with one-collinear gluon

so L) has either one or the other explicit. F61Z2) Egs.
(30) still involve the gluon fieldA% so the gauge invariance

of this expression is not at all clear. However, the aboveN"D

e

— 1
[,(1)=§ _
o in-Dg

igB;Waq,s+H.c. (33

This form is particularly nice since it is explicitly collinear
and usoft gauge invariant and, furthermore, explicitly starts
at one-collinear gluon due to tH&, . To see the gauge in-

'variance note that under a collinear gauge transformation

we have é,—U.&,, W—UW, B, —U,B, U, and
o) 1=U(n-Dy?t UZ so all factors ofU. cancel.

considerations indicate that it should be possible to write alPnder an ultrasoft gauge transformatia, we_have ¢,

the terms in Eqs(30) in terms of gluon field strengths, and

thereby achieve a manifestly gauge invariant action thabuu(ﬁ. Do)t uf

B, ~U,B, U}, (n-Dy)*!
and q,s—U,q,s so all factors ofU,

—Uyér, W—UWU!,

u:’

starts with one-collinear gluon. This derivation was carriedalso cancel. In Fig. 3 in Sec. V C we show the one and two

out in Ref.[15], but no details of the calculation were de-
scribed there. These details are described below in B45.
through(35).

To proceed we note that using Eqll), igB; W
=[in-D¢,iDg"]W=in-D D¢ "W—iD¢"WP. Making
similar manipulations fon-M andM , we can write

gluon Feynman rules that follow froms (Y in Eq. (33). A
non-trivial check on our manipulations is that the same Feyn-
man rules can be obtained from E¢30) by using the free
equations of motion.

We now proceed to further simplifyl(gé) in Egs. (30).
Using Eqgs.(32) leaves
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L= —— igMWo et E gD, ———
in-D, 27 (in-Dy)?

1 where the coefficienp is dimensionless andd acts to the
left or right. However, by type-lll RPI invariance the coeffi-
cientp(P, ) cannot be a function oP, leaving onlyp(w).
XigB, "Wyt £n(W—1)iD,0us+H.c., (34  Nowpis a dimensionless function of the dimension-full pa-
rameteru and can only be equal to a constéaassuming no
where in the first and last terms we used the fact tht  new dynamical scales lik& ocp are generated by renormal-
=0 to write a full y* in M andD . For the last term in Eq. izing £{Y). Now P, q=0 sinceq carries no perpendicular
(34) we can now use the equation of motion for the usoftmomenta of ordern, so using Eq.(14) we see that
quark field to give our final result (W'D W) can be traded for 8. operator. Forid: we

1 obtain the sam@; operator, plusa\N)PIq=0, which fol-

— 1 —h
Lg)z =" igMWaq,s+ anIDfm I(ﬂvs from the fact thay, s, and by momentum conservation
¢ ¢ (£,W), carries zero collineat momentum. Fixing the con-
XigB,‘Waq,st+H.c. (350  stantp=1 by tree level matching then leaves

Again in this form the action is collinear and usoft gauge
invariant and, furthermore, explicitly starts at one-collinear 1
gluon due to the field strengtB’s andM’s. In the way we E(gé):?nW:W*igBéun#H-c-
have written the result it is invariant under usoft Lorentz P
transformations ox* which separately rotatg, andD/.

Finally we note that the mixed usoft-collinear quark ac- iy
tions in Egs.(33) and (35 proved to be important for the "
proof of a factorization formula for heavy-to-light decays in

Ref. [15]. In the next section we analyze the most general

H H 1,2 H . L. . .
possible basis forC {;* beyond tree level, which follow | this form it is clear that the operator is collinear and usoft

purely from symmetry considerations and also discuss powgjauge invariant and generates terms with collinear gluon

1
in-D,

igB; Wqust+H.c. (38)

suppressed terms in the collinear gluon action. as required by momentum conservation. Finally, it is easy to
. show that its orden® type-l and type-Il variations vanish,
B. Most general basis forL,. since from Eqs(21) only the transformation ob: must be

The ultrasoft-collinear quark Lagrangian can be expande@onsidered and 590) Béoc[in_. D. in- D.]=0, while
in a power series in the parameter It is not possible to S
construct an invariant operator that is dimension-4 and order!
\C. Therefore, we have the series

MBLoch which gives zero sincég,=0.

The above line of reasoning can be repeate@(@t?). By
power counting and gauge invariance we can now have one

Log=LR+LD+ ... (36)  (W'in-DW) or two (W'D£#W) factors with derivatives to

the left or right. Again we can use E@l4) to simplify the

Since this is a Lagrangian, insertions of these operators dgovariant derivative terms. We must have an operator starting

not inject momentum, and we are free to integrate by parts agith a one-collinear gluon, and again th&/{DW) factor

long as we are careful not to generate singular terms. next toq,s must be in square brackets and can be turned into

To construct the most general quark actiof) we can  a gluon field strength. Also by type-Ill RPI the Wilson coef-

use a single collinear quark fielgh~\, an ultrasoft quark ficients must again be numbers, except for operators with

field gus—~\3, and aD¢#~\. These factors give a dimen- three or more invariant collinear productsﬂlﬁ) where they

sion 4 operator, and from the power counting formula in Eq.can be functions of the ratip, of minus momenta. Taking

(10) they give =1 which is the correct order fof (5%1) To into account these constraints leaves three possible

satisfy collinear gauge invariance without changing the ordeoperator$

in the power counting we make use of the Wilson livgo

write (¢£,W) and QNTiDé"W). Since the Lagrangian is a

scalar we must dot the index into another vector. The @ — . 1

possible Dirac structures are restricted by the fact it Li7=p1 (EW)| W' = 5 igM W |qystH.c.,

=0. They are also restricted by type-Ill RPI, for instance n-Be

Ay, is not invariant and therefore is ruled dir the case of

the heavy-to-light currents we can make use of the product,_, . . .
- ] ] ) This assumes we have eliminated a possible four quark operator
n-v, son-v # is allowed. Taking t_hg'se constraints into ac- ysing the collinear gluon equations of motior15],
count Ieg\)/es*y# as the only possibility. Thus, we have re- gz(éwﬁﬁwfin)1/792(§nWTAﬁqus)=§nh/(2in~Dc)ign'Muns
duced. ¢ to the form +2£,h{2(in-D;)?} [iDg ,.igB;“]Wds. This conclusion is not
— — R changed if we consider the most general possible four-quark opera-
(EaW)p(P, ) (W'D W)qystH.c., (37)  tors allowed by all the symmetry constraints.
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hnoo 1 4,
z:“)—szldzz Pz( ) (£W), 5 (WIBZW),, N P=p, gn{m Sign-M
C
i T i Bi 1 ()\0).
X=| W ——igB W |qystH.C. (39 + —— (8" )igM ) } Wauet+H.c.,
P n-bD¢ ||’1.DC

(\0) p(2)— _ 22\ —
£(2)_fdzld22 Ps( ) (gn )z o LY = fdzldzz Pz(zl)(fnw)zlg(zz)

igB;W )qUS+H.c.,

C

_ ha, 1
m , 1 x—= 2
—(wTD“W>ZZ W' ——igBL,W 4 P\ inD
n.
¢ (41)
X gyustH.c.,

0
_ L=~ f dzdz, Pz( )(gnw>z WHB W),
where (...),=[. ..8(z—P"], and we have used our
freedom to integrate by parts to make the perp covariant 4, 1(

derivatives act to the right. Note that the ovenallp mo- 2 p
mentum is zero, so ng label is used on th@&; bracketed
term (following the convention in Ref3]). Again the pres-
ence or absence of factorsibfare completely fixed by type-
[l RPI. Now consider the type-I and type-Il RPI transforma-
tions. Computing the ordem variations of £{! and 1 (WT 1

Pl in.D,

Wi Wq
in-D, = )"

+ [ dzaz, p2< )(an)z WHBLW),,

H €
simplifying the resulting expressions gives P g & -BW

JustH.c.,

hno1
5()\)»6(1)_ §n2 |gB uns

igAt-BiW |qyustH.c.,

— 1
—fnﬁ(éf"o)igML)un@H.c., 4p in- D,
in-

C

0 Z
S )5(32):f dz,dz, p3(z_1)

¢
(N) p (1) = L= +
o g”['m oy 9% 2 x(?nWhl% (WD L W),
1 4
+ —ign-M 1 1
in-D, 2 ><7—) WhHh—— |gB W | Qys.
in-D

nD. (o )IQML)}WQUJH c. (40  Comparing Eqs(40) and(41) we see that it is not possible to

form an invariant involvingZ &) so p;=0, while an invari-
ant can be formed front P+ £+ £ by taking p,=1
andp,(z,/z;)=1. Sincep, is independent of, /z, the in-
tegrals overz, , can be performed. Therefore, we can write
our final result for the first two orders in the usoft-collinear
quark Lagrangian as

The 6}?‘,(,)) igM | terms appear since in the RPI transforma-
tions in Egs.(22) it is the full D4 which transforms. For the
order\° variations of£ (%) we find

— igB; WqustH.c.,

c

— 1 h (1)_§
5()\0)1:(2): —  __A, -B "
| i=p1 &n in-DCZ 1By

+ =

1

0y, .

(6 )lng)}unswLH.c., cgf‘)—gnm_D igM Wqust+H.c., (42)
. .

C
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—h 1 — 1
Eéﬁb)=fn§ifbf(m_—D)2 igB, “Wye+H.c. Log=21tHc, [iD,, [iD*,coll+ —tr {[iD,, . Af]
Ye
X[iD,,Asl}, (45)
These terms agreexactly with the result from tree level ) ] ] ]
matching in Eqs(33) and(35). The analysis here shows that @nd the subleading terms in their expansion are
no other terms are induced by matching at any ordergJn (1) — . us rimlp
Next we proceed to analyze power suppressed terms inLcg=2t{cy [IDL, .[iDL*,cqll}

the collinear gluon action. Starting with the LO collinear - 2
gluon action[4], ,;gcg and making it RPI invariant with +2tr{cn[iDi#,[iDﬁé‘,cn]]}—F;tr {[iD}%, . AL]
iD#=IiDE+iD/, gives

X[iD,,Asl}, (46)

o us

1 —_
Feo™ o2 " {[iD*,iD"]2. 43 c@=2tfc,[iD}3, [IDLL call}

+tr{c,[in-DYS[in-D,c, T
It is straightforward to see that no other gauge invariant pure . . 1
glue dimension-4 operators are possible. We could build a +tr{c,[in-D,[in-Dys,Cco] I} + —tr {[iDﬁ,Aﬁ“]
more general gauge invariant operator out of a stringnof @
terms[ WID#W'], , with m—4 factors of 1P to make up
the mass dimensions. However, type-lll RPI then demands
m—4 factors ofn, in the numerators which, using- DW 47

=0, collapses the operator to the case 4. Finally, since
W transforms under type-Il RPI, as in Eq22), butiD#
does not, we find that these operators must have Wilson co-
efficientsC(z) that are independent of ttw parameters. In
this case all factors ofV cancel out and we are left with Eq. In this section we give our derivation of the most general
(43) (after performing thez; integrals and fixing the coeffi- basis of heavy-to-light currents &(\). The scalar current
cient at tree level Expanding Eq(43) we see that the order is given in great detail, and forms the basis of the analysis for
\ and\? suppressed terms are the other Dirac structures. Expanding the heavy-to-light cur-
rents in powers ok we write

1 _
X[iDﬂSV,A#V]}Jthr {[in-D"$,n-A,][iD,,A]}.

IV. MOST GENERAL BASIS FOR HEAVY-TO-LIGHT
CURRENTS

— 1(d d
LW 2 w{[iDAiDLMID, iDL 1), =IO+ 48
g for the LO currents J¥), and NLO currents K¥). The
superscript denotes whether the current is scatbr ),
) 1 _ N . pseudo-scalard=p), vector d=v), axial-vector ((=a),
Lig= —2tr{[|D“,|DUSV][|DM ,iDys L1} or tensor (I=t). For the preliminary basis where only con-
9 straints from gauge invariance, power counting, and type-II|
1 RPI invariance are imposed we use a calligraphic notation
+ (iDL iDLM[IDL, iDL ] J@W+K@+ ..., andthen switch to Roman for the final
2 ” basis that is invariant under all the type-lI and type-Il con-
straints. We will also make use of a convolution notation

\](d):f de Cc@ £ &
mb'mb

+ iztr{[ipﬂ,in -D][iD,,in-D e}
¢ I (w), (49

1
+—tr{[iDy4,iD"][iDg,, .iD s, 1}, (44 whered(w) contains fields and operators with the notation
g in Egs. (8) and the Wilson coefficient€®(w,u/my) are
_ numerical functions of the convolution parame@wherea)
whereD#=D#+n*n-D42. = w/my).
In Ref.[4] the gauge fixing terms in the LO gluon action
were given in a general covariant gauge. We do not bother to
consider the possibility of other leading order gauge fixing ) _ )
terms since we have some residual freedom to choose these From gauge invariance and power counting the most gen-
terms however we like. In an RPI invariant form the terms€ral leading order heavy-to-light current has the form
from Ref.[4] are &.WI'h, [2]. Forv, #0 the most general allowed scalar spin

A. Scalar currents
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structures from Sec. Il B are thdﬁ:{l,ﬁ_}_ Type-lll RPI  To form the most general collinear gauge invariant we take

demands that thé is accompanied by either amv or a  (W'Dg “W), which we then insert between thé,V) and

1n-v. Thus after imposing constraintd—(iv) of Sec. Il we h,, to satisfy the u.soft gauge invariance. Since the two col-
are left with the possible leading order currents linear factors are invariant by themselves they can have ar-

bitrary labelsw, ,. Thus we have operators with the struc-
- B n ture
JP=c® gWh,, J8=cf gwWn-vsh,,

N

_ 1
— (£W),,I' (W'DHW),, = M- (54

— h
T =c gnwz = h (50)
U

The factor of 17" is included to make the Wilson coeffi-
wherec; are dimensionless Wilson coefficients. With type-Ill cients dimensionless. To make a scalar currentpthmper—
RPI invariance thec; can only depend on the combination script in Eq.(54) can be dotted into &, 0rv, in I
(n v ’P) the b- quark massm,, and the renormalization either case the most general remalnlng DlraC StrUCtUre in-
scale. Now consider the ordex® type-I and Il RPI trans-  volves either 1 om as follows from Sec. Il B. Thus, com-
formations in Eqs(21). Since none of the operators in Egs. bining the constraints from gauge invariance, spin reduction,

. L 0 . :
(50) involve quantities that havé(" ) transformations they and type-Ill RPI leaves eigh®(\) suppressed currents
are invariant under type-I at this order. However, under the

analogous type-Il transformations ,ngs):J' dwldebJ(S)(&)l;a)Z)ICJ(S)(wlva)v (55)

0 0 - éJ_
sMHTP=0, sMTP=cp gnw(n.v7>hv,

wherej=1, ...,8, and thd, coefficients are dimensionless
. functions Ofc:)112= w; /My, and u/my. The eight operators
¢ ) are

5()\0).7(5)_0(5) — €& -v)hv.
S 2(n-v)2 *

51 [

BY k(01,00 = (EW) . (WD W)wz—[z —}hu.
Thus, it is not possible to form an invariant involving the
currentsj‘f%, and only the curren7{® is allowed. There-

fore, we can rewrite our final result for the most general bl 1
leading order scalar current as {34}(“’1""2) (£W), (Wiv-DeW),, w2 5t
—nvP u| — no1
J(S)ZC(S)(—,— Wh, . 52 —
0 0 my ' mg &nWh, (52 X150 h,, (56)

Since the Wilson coefficient is dimensionless it can only be a e
function of the dimensionless ratios of parameters as shown. /C(S)e}(wl,wz) (EW),, (W’WD w),, {E’ _] h,,

The minus sign in the first variable is included so tfat
gives the total outgoing momentum QWV. Switching to the o
convolution notation in Eq(49) and definingm = w/m;, we /Cgi)yg}(wl,wz)=(§nW)w1(WTiv .DiW),,

can write Eq.(52) as ?

A1
“ X= -y hv'
JgS>:fdwcgs>(w,#/mb)ags>(w), PT{Z MJ

JBS)(w)Z(aW)whv- (53 Note that the depenc.ience' of the W|I§on coefﬁqents on the
labelsw; account for insertions of B in all possible loca-

Thus our notation is thal® contains the Wilson coefficient, tions. Just as for the leading currents we cannotrugeto

while 3§ () is purely the field operator. With the convolu- form a type-lil invariant in Eqs(56) as it leads to currents

tion notation in Egs.53) the Wilson coefficients are just Which cannot be made invariant under type-Il transforma-

numerical functions which do not transform under RPI. Wetions [the transformed currents would depend en-v/

will often suppress the dependence of Wilson coefficients orin-v)? in a way that could not be canceled

ulmy in what follows. Next consider the type-I transformations for the currents
Next consider currents that are suppressed by a power i Egs.(56). For these subleading currents only tfetrans-

\. At this order the only additional structure we can use is dormations are necessary since we are only working to order

D: “~\, where the derivative acts to the left or to the right. \. Under type-I onlyD; transforms and we have

094005-12
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0 o A . =0. However, in Eq(60) the first term can only be canceled
s )(WT'DtMW)wZZ_T (W'in-DW),,, by a K{ with b{®(w,0)=C(w). To cancel the second
N term we integrate by parts to givesed/dw= wd/de acting
=4+ = 731‘5(0,2_,1.1)731‘), on ch>. This term can then be canceled bff)(&)l,O)=
2 —20 d/dew C§(w). Thus, the summary of type- invariants
i AR B is  JotKP+KY, KRs7g. Ky, with any
s (WD W), =~ TL (W'in-DW),, bl ; {w1,w,) and coefficients
AR b{¥(0,0=Cf(w), bfYw,0=

=— —P&(wz n-vPhH. (57
b{(@,00= -2 d/doCP(w). (61)
SincePh,=0 it is easy to see that each Iéf; 6,70are type-|

invariant all by themselves. The other currents do transform, NOW consider the type-Il transformations. The analogue

and using Eqs(57) gives of Eq. (59) is
o B T4, SMNo(w—n-vPH=-n-ve, - Pl & (w—n-vP)
SMIK P (w1, 0) = 8(w2) (£:W),, | —5— | Dy g B
=—n~vsl-PI—6(w—n~vPT).
dw
(A0 () = A,
o K (wlrw2):5(w2)(§nw)w2 on-ov h,, (62)
A For the ordem variation of the LO currem‘]gs)(w) we have
(A% - (5) _ = LY terms from the transformation of the delta function, the col-
o K (@1,00) 5(0)2)(5"\/\/)“’1( 4 )h”’ linear quark field, and the Wilson ling/
(58)
U A, v 3 Jg(w)=n-ve. - Pld (£W),, h,
NI (@1, 02) = 8w) (£W), | 5— I,
_ P l éL
0 +| &b —=——=W]| h,
8" IKEh 74 w1,05)=0. o “in-D, 2 )w
The delta functionsé(w,) cause only the coefficients 1 .
&n——1ie, -D;W]| h,. (63)
1234w1,0) to appear in the transformation &f; 1234 We i c
C

w

also need the ordex variation of the LO current in Egs.
(53). In this computation we must be careful to note that the ) © -, N 0
S(w—n-vP) in (£W), depends om-v, and therefore In the sublgadlng .curlrentKi both n gnd D¢ havgx
also transforms transformation§. A iD; transforms to give a\, so since
né,=0 it is easy to see tha‘f {2 are invariant under type-I|
0 —_— [— — .
M) S(w—n-vPH=—v-A, P §(w—n-vP) transformations at this order. The transformations for the re-
maining currents are more involved,
_ [ AL d 5 a_ o
" hoo do® (0=n-vP?). & )Kiife}(wl.wz)=0,

(59

_ 1
£9) g (s) — tig L
Using Eqgs.(22) we find a term from transforming the delta o K1 (w1,02)=(£,W),, (W iD W)wz 2 Dt =y
function and a term from transforming the collinear quark
field ‘
0 — ) <
A s >fc§?><w1,w2>=<§nvv>wlf§(w*w -DgW),,

Ld
n-uv %w(gnw)whv'
(60) _

_ nA
NI (@)= (&W),, (T) h,—
n-v A N < 1
(W ISL'DCW)wZ %hvl

Demanding invariance under the transformations in Ezf3.
and (60) gives non-trivial constraints on the Wilson coeffi-

i in3(s (s) (s) —
cients inJy” andkC;™ . From Eqs(58) the Currentgc{}&&‘} 8Since 6,P=O(\) the transformation of the delta functions in
are invariant by themselves provided thalf),;,(w;,0) K only appears at one higher order.

094005-13



D. PIRJOL AND I. W. STEWART

=

0 — ) -
5|(|x )’Cfts)(wbwz) =- §nW)w1(WTI g, - DéW)w2

> (

=

X ﬁhv ’ (64)

0 > e éL 1
S )ICg-,s)(wl,wz):('an)wl(W‘tlDéW)w27 ﬁh

v

0 — ¢ L
KD (w1,0)= (§nW)wl[ %(WTI v-DgW),,

n-v h " - 1
(Wlie, -DcW),, ﬁhv,

1%
4

1

o] — . - l
NIKE (01,09)= =5 (£W),,, (Wiie, - D W), =

It is straightforward to see that it is not possible to form a
type-Il invariant using only the currents{y; ;5 4. How-
ever, it is possible to form an invariant taking a combination
of k{7, with 3§ . To facilitate this we rewrite E¢(63) as

d —
n-v %(gnw)wl

5|(|}‘1)JBS)(0))=J’ dw;

x{(W'ig, -D{W)

w—wl
+(Wlie, -DgW),—,, }h,

= (&) (WD W)y 5 e

h

—(&,W) ;(W*i .Diw)
n wlwl_w Al c 0w,

(65)

To derive Eq. (65 we used g, -P, EnWhU
=&nie, -DiWh, + &g, -DEWh,, and the fact that the);
integration can be carried out with the delta function in
(EnW) o, 10 get back a product of operators with momentum

label w where the intermediat&/W' cancel out. Now for the
d/do terms in Eg. (65 we can integrate by parts in

[Co(@) 838 (w)] so that the derivative acts on the Wil-
son coefficienC{(w). It is then evident that the third term
in Eq. (65 can be canceled by with b (&,

— &1)=C{)(&), the second term is canceled B K¢
with b{(@;,0— ;)= —2wd/do C(w), and the first
and fourth terms are canceled B K § with b (a4,
—w1)=—20 d/do C () —20/(0,— ©)CP(w). There-
fore, type-Il RPI rules out the operatofs,, and leaves
only the invariants

PHYSICAL REVIEW D67, 094005 (2003

IW+EP+P+cP, kP, k9. (66

For type-ll invariance their coefficients can have any
bg)A}((:’l,L:)z), but require

b{¥(wy,0—wy)=C§(w),

n o~ .~ d -
bgs)(w,a)— w1)=—2w —ACgs)(a)),
dw

A . . d .
b (w1, 0~ w1)=—20 —C(w)
dw

20 -
A
1

(67)

The restrictions on the Wilson coefficients are summa-
rized in Table I. Comparing the invariants in E¢61) and
(67), we see that the combinations in H§6) are the most
general combinations invariant under type | and type Il with
the restrictions in Eqs(67) plus b$(,0)=0. However,
with this constraint ob$® the operatokC ¥ is actually iden-
tical to £ with an unconstrained coefficietf® . To see

this note that within square bracket@W’filjéW]w2
=[W'iB W], = ~[W'igB; W], /w,, so the difference
comes fromiB: acting also on £,W) in £ . However,

since the factorEW) on the left is a collinear color singlet
we can write

(WD W),, =W W], = PL(W'W),,

=[WHiB W],,~P! &(w,), (68
and the last term vanishes sinbg(w,0)=0. Given this
result and the constraints in Eq&7) it is convenient to
define

K&Skw):f dooy KO(01,0—w1),

K(zs)(w)ZCAUJ‘ do; (K (01,0-0;)

+E (01,0 wy)}, (69)

Kgs)(w)=wj dw; (w;— )t Kgs)(wl,w—wl),

K (01,05)=(01F w5) K (w;,0,).

From RPI it is only these operators that can ever appear. RPI
has ruled out some currents and restrid@@s to only de-
pend on one parameter. Once we know this, we can simply
forgetabout thek ( and work directly with thek(® . Using
capital B’s for their Wilson coefficients, our final basis of
subleading scalar operatat$® , is
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TABLE I. Summary of RPI constraints on the coefficients of the scalar currents itbBg.The first column shows the constraints from
type-1 RPI onb{®(w;,0), the second column shows the constraintbdf(w;,w,) from type-Il RPI, and the third column gives the

combined constraint. A generic entry, sucrb@([ol ,&)2) in the second row of the RPI-Il column, indicates no constraint. The final currents
are displayed in Eq(71), and are defined so that they automatically satisfy these constraints.

RPI-I RPI-1I
b®(w,.0)= b (s w-) = Combined constraints
(w10 w1, 0) bined '
b{? (o) CE oy + ) b (&1, @2) = CE @1+ 2)
bt 0 bY@y, 5) b$ (@1, 0)=0
b(3S) 0 0 bfﬁ(&)l,&)z):o
b - 2;01085)!(201) —2(w;+ CAUZ)CE)S),(&M"‘ ;) b{ (w1, w,) = —2(w1+ Q)Z)Cgs)’(fol—k ;)
b¢? b (&1,0) 0 b (@1, 02) =0
b b (@1,0) b (&y,,) b&(&1,@,) unconstrained
bf? b (@1,0) 0 b (@1, @2) =0
b b (1,0) —2(y+ @) CY (014 0,) b (&1.,2) = — 201+ 02)CY (@1+ ;)
+2<1+(f)—l CY(w1+wy) +2(1+(f)—l CO(w1+wy)
Wy w7
© © el with taking their matching calculation in E¢L20 and mul-
K1—3:f dwBi” 3(w)Ki” 5(w), tiplying by a common Wilson coefficient. The operat¢§®
does not appear in Refl3] because the derivative on its
© @ © coefficient causes it to vanish at tree level. Our three-body
Ka :j do1dw,By (w1, w)Ky (w1, w)), (70) operatorK ¥ is also new. In the limit thaB,(w;,,) de-
N pendsonly on the sumw , = w;+ w, we can switch variables
where to », ,w; and reduceK’d to a two-body operator. At tree
Y 1 level this is always possible since the Wilson coefficient is
K (w)=— ( gnimﬁéw) =h,, independent of they; . To see how the reduction works we
oP write
U PL —
KE (@)= == (6W)., hy, (7D

1 ; SL
———iv-D; W| h,,
n-vin-D¢

K (w)= (E

w

1
%WTigBéW) h,,

@32

(s) s
K4 (wlva):m_b (é‘:nW)wl

(9) L s wiwhigs:
do;K; (wlrw+_w1):m_ EW=W'igB;W| h,
b P

@y

_ 1+ il
= &lB WD, by, (73)

where in the last line we used Ed.4). The derivative struc-
ture of this two-body operator is similar to that of operators

and the RPI type-I and type-Il constraints on the Wilsonin Refs.[12,13; however, the specific spin structure appear-

coefficients become
B (@)=CH(w), BY(w)=-2CH (w),
BY(w)=—-2CH(w). (72)

The prime here denotes a derivative with respech tdhus,

we conclude that there are 4 subleadif)\) scalar heavy-
to-light currents. The coefficierB{”(w;,®,) is completely

ing in EqQ. (73) does not appear from matching the QCD
scalar current at tree level. Beyond tree leBglcan depend
separately ormw; andw, and the reduction in Eq73) is not
valid.

B. Vector currents

The steps for deriving the general set of vector currents
are very similar to the steps for the scalar currents in the

unconstrained, while the other coefficients are fixed fromprevious section, so our presentation will be more concise.

RPI invariance.
In Ref. [13] it was noted thatl® , K(®, andK{ are

At LO gauge invariance plus power counting allows currents
of the form £,WZ, h, . Imposing type-lll RPI invariance

connected by RPI, and for these operators our results agredlows the Dirac structures
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— Y —n, —
Z#Z{y#,y#ﬁn'v,_—,n# = N,Nv0,,0,
n-v v
oA
Xnn-v,=—,n,n-v,=—,n, A(N-v)%,
n-v U
ngin-v n,h
— = (74
n-v (n-v)

However, it is easy to show that all structures involvﬁgre

ruled out by theﬁf,"o) transformations. Thus, at leading order

there are only three allowed vector currents

I, = f doC® ()38 (o), (75

where the coefficients are functions o ol/my and u/my,
and

©) (V= (E N
J1—3(w) (gnw)w YM,UM,n'U hv' (76)

The choiced[1,2,3} correspond to the three different Dirac
structures, and our basis in EF6) agrees with Refl10].
At NLO the power counting only allows a sing@, to

PHYSICAL REVIEW D67, 094005 (2003

Ko 01, @5) = (£€,W),, (WTiDL#W) L
21,22 W1, W2 nWe, c wo T
h o1 ]
12|

_ o 1
K83 o @1, 02) = (£W),, (WTiv- DéW)wzﬁI"ffehv ;

where the siX™#* matrices are

e - W’y" ho*  hn# yH 29
LT 2 2 2o o o) P

vk n*

Working out the transformations of the leading and sub-
leading currents in a similar way as was done for the scalar
currents we find that the type-l invariants a#§’+ k()
+K1, I+ + 1 IP P+ K
K&, where j={4,5,6,7,9,10,11 and k={15,...,28.
Type-l invariance allows any coeﬁicientﬁ”)(&)l,@), but
restrictsb{") (@, ,@,) as shown in the second column of
Table II.

Looking at the transformations under type-Il we find that
the invariants are independent of the, ,v,,n,} choice.
Our results for the type-ll invariants ar]éfﬁlC‘fMlC‘fQ

appear. For the possible spin structures it is easy to see that s, 35+ L8 +KE+K%, 39+ + K+

type-Il RPI invariance does not allow the vector index to bet (K5 +KS), (K& -KS),

in an n* or any factors ofn-v to appear just as for the

while K for ¢
={4,5,6,18,19,2p are invariant by themselves. For these

leading currents. Imposing the constraints from gauge invaricombinations type-Il invariance allows ab{’(w;,®,), but

ance, spin reduction, and type-lll RPI then leaves(Z8.)
suppressed currenf$=1, . ..,2§

K= [ dosda b o102 Kfwr,00, (77

with operators
KK o ( )= (W), (WD Lw) ir# h
1-6lW1, W72 n 0 c “’ZET 1-6"'v

KPY (01, 02) = (£W),, (WD W),
Xl n o1 A
2o

_ o 1
K 14 @1, 0) = (EW) , (Wiv- DeWa 5Tt o
(79)

1 u
:Jrrlfﬁhv )

K192 @1,02) = (EW)o, (WD W) o

restrictsb{"3 7 9 1721 25 @S shown in the third column of
Table Il. Furthermore, currents £ with m
={7,9,10,11,15,16,17,21,23,24}2%re ruled out(i.e. b{")
=0).

It is easy to see that the type-l and type-Il conditions in
Table Il are compatible. The combined set of constraints are
given by those in the fourth column. Using E8) we can
show that the constrained{;;;q are redundant with
Icgéylgyz(), respectively, just as was done for the scalar cur-
rent with £ §Y andKC§ . We can also use E¢68) to convert
K (@, 0,)— K (@1,0,) into a term proportional to
8(w,) and a term that is redundant witkY(wy,w,)

— K8 (01,0,).

From the combined constraints we can then define a new
complete set of allowed vector operatokd” ,,. Therefore
after imposing type-l1 and type-ll RPI plus all other con-
straints we are left with our final set of allowed vector cur-
rent operators,

Kg.vzlozf do B (@) K (),

K(lvl)flzlzf dw,dw, B(101)714(w1vw2) K(1v1)714(w1,w2),

(80)
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TABLE Il. Summary of RPI constraints on the coefficients of the vector currents ii7By.The first column shows the constraints from
type-1 RPI onbi(s)(w,O), the second column shows the constrainbﬁ?(wl,wz) from type-Il RPI, and the third column gives the combined
constraint. The final currents are displayed in ER{), and are defined so that they automatically satisfy these constraints.

RPI-I RPI-1I
b{*)(&,,0)= b (wy,w,)= Combined constraints
b:"i C5(wy) CPy(w1+ wy) bi)3(w1,@z) = C{ 501+ wy)
ba” ; 0 4—6(w1vw2) bgtv—)e(wlv 0)=0
b%“ 0 0 b (@1,0,)=0
(v) v)r vl - v)r 7 v)r 7
b —2 CY(wy) b{ (w1, w2) b{?(@1,0= —2 C{ (1)
b§? 1, 0 0 b, (@q,@,)=0
( ) - v e - - v ren - v - - ~ - v e -
bi213 —2 Cg_% (wq) —2(wq+ wZ)Cg_,% (w1t w)) bg.z),lé(wlva): —2(w1+ wz)C(l,% (w1+ wp)
b —2 @ CY (@) —2(011 @) CY (01 + @) b (w1, @2) = = 2(w1+ @2) Y (01 + w2)
+2 C{(wy) —bf (w1, 02) —b{ (w1, @,)
biY 17 b{? ;{w4,0) 0 b2 1wy, w)=0
by 2 b{%) ,o(®1,0) bl (@1 ,w5) by ,i(®1,w,) unconstrained
bg; b (&1,0) 0 b (&1, @) =0
b b2 (&4,0) b (@1,w,) b (@, ,w,) unconstrained
©) 0 RR
b(2U3)*25 b(23)_25(w1,0) 0 b(23)_25(w1,w2):0
bag.27 b$?oA 1,0) —2(w1+ w2)CY (01 + w)) b @1, 0,) = —2(w1+ ) CY) (01 + ws)
—2 C¥ w1+ wy) —2 CP(wy+ )
(v) v)( " - - v) - v) 7 - - - v) (2 -
b b(ZB)(wllo) _2(w1+‘1)2)c(3 Y (01+ @) b(zs)(wbwz): —2(wy+ wz)cg (@1+ wy)
o, .. *
+2| 1+ — |C¥ @+ wy) +2(1+ CY(wy+wy)
w7 w7
— by @1, ,) — b @1,@2)
where ) 1 n,
v _ —_—
B Kit 13 w1, 02) = e (W), Yulur gy
—h - 1
K (a))=—< —imiw) = 1
o 2, P x| =W'igB;W| h,,
P
n, “2
X 1 !_ h 1
YurUurg [ M © 1 n#p“
K& (01,0p)=— (£.W),, | g**—
14 (w1,@7) e (én )wl(g n-v)
n“p®
K‘”><w>=(g“— - ) 1
v —wWhigBL ,W| h,.
P
LS 1 @2
X(ntDC W) — n hv’

The coefficientsB{3) 1, 13 1 in Egs.(80) depend on two pa-
rametersw; , and are unconstrained. The remaining coeffi-

) n, cients depend on only one parameter and are fixed by re-
K 77(0))— W)o) ViV oMo parametrization invariance
8D W _(a W (&
— 1 - - - A R
K o(w)=| & ——=—iv-Dy W B 1o(@)=—2C15(w), BY(w)=-2C(w).
n-vin-Dg Y (82

The form of the current& ") agree with Ref[10], and if

n
X K
:7”’vﬂ'n~v]h”' we take a frame whera-v=1 andv, =0 thenK{) also
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agree. Referendd 0] looked at type-I RPI of the vector cur- . 1

rents and our constraints @1}, agree with the ones found KP ()= ( & ———iv-Di W
there. (We note that the authors of Rdfl0] also checked n-vin-Dg¢

these results with explicit one-loop computatignst tree-

level one matches onto the currerhtg’8 and the two-body ) 1 — N

limit of K{y [using the analog of Eq73)], and we agree K (01,0p)= my (W) o, 75 7_3W igB;W | hy,
with Ref. [13] on the form of these currents and the RPI L)
constraint betweeK (") andK{"). The structures in Eq81)
which are new and which only appear beyond tree level ar
K)o 1514and the three-body form d€{ .

')/Shv ’

w

gnd the RPI type-l and type-Il constraints on the Wilson
coefficients are

BP(a)=CP (o), BP(@)=—-2CP (&),
C. Pseudoscalar and axial-vector currents (@) 0 (@) 2 (@) 0" (@)
The results for the pseudoscalar and axial-vector heavy- BP(w)=—2CP (). (87)

to-light currents can be directly obtained from the analysis
for the scalar and vector currents, respectively. The analysiBor the final axial-vector NLO currents we find
is identical except for the extrgs in the Dirac structure. For
the_ pseudoscalar currents we have the bghig,1h-v}ys, K(ﬁ)m:f do B® (@) K@ (),
while for the axial-vector currents we havey; g s,
whereI'{" is defined in Eq.(79). At LO the most general

allowed pseudoscalar current are thus K11 = fdwlde Bn 14((01’“)2)
3= J doC (@, 1/my) I (w), XK 1y 01,0,), (88)
®) — where
IF (@)= (EW),,, ¥sh, , (83 B
. . (a) s ﬁ- XL 1
while the axial-vector currents are KiZs(w)=—| &n3IDW) =
304~ [ dC()94(w), « yu,_vﬂ,_#] Ve,
IO ()= EW) o] 70— 0,0~ — ! yeh @ - [ qua_ M
-3 n Yur TV T g [ Y5 Ki’(w)=—|gt— —
(84)
. 11
At NLO we again have eight possible pseudo-scalar cur- X (&niDce W), > no ¥shy

rentsKC (P and 28 possible axial-vector currert§® before
imposing all type-I and type-Il constraints. After imposing
the RPI constraints we find results very similar to those in K® (w)= v-Py
Egs. (71) and (81). Thus for the final NLO pseudoscalar
currents we have

(Enw)w[ Yus " Uus

A n- 5y s ( )

-

(a) 1 i 1
n-vin-D¢

w

KiP= f dwidw; BP(01,0)KP (01,05, (85

I‘l,M h
where YT Uuw T Y8 e
—h 1 1 — n
K&"><w>=—( ngnméW) = Vst K 1o @1,02)= o (gnwul[m—vw——n,’;]
— inigBlw h
KP(w)= W), ¥sh,, (86) 5\ p c v

@2
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1 — Hy® 1
(a)— - a__ P SN v
K=~ <€nW>w1(9“ n.v) K- 36= (6aW)o, (WD W) o, UL 6
(99
X ¥s EWTigBL w) h
— C a v — i i
P v, K§)-14= (&W),, (W'iv-DgW),,
The coefficientsBﬁ"mnw in Eq_s.(80) depend on two pa- - y Elwv 2w (2
rametersw; , and are unconstrained. The remaining coeffi- 2 14y At e
cients depend on only one parameter and are fixed by rep-
arametrization invariance The Dirac matrix with one indeX';" 4 is defined as in Eq.
. - . ;o (79
B®,(w)=CP3(w), B (w)=—2CH; (w), B
A A . . e - h n, 1 n,
B (@) =—2CP (), BP(a)=-2CP(a). 1-6= |2\ Yulu g np | e tegin] [ (99

(90)
) The constraints from type-l and type-ll RPI are derived as
The form of the pseudo-scalar and axial-vector currents argefore. The final constraints on the Wilson coefficiants .4
very analogous to the scalar and vector currents, so rathgfe shown in Table Il
than comparing with the literature we simply refer to the  After imposing the constraints from the table one finds the

comparisons in the proceeding sections for which part of oufina| minimal set of tensor heavy-light currents in the effec-
results were previously known. tive theory atO(\)

D. T t
ensor currents K(lt)714: f de(flu(w)K’ffu(w),
At leading order in\, there are four tensor currents, de-
fined as
= K(ltglezf dwldsz(ltgle(wlvwz)K/f&';:zl(wlawz)-
Il 4(0)=(£&W),, T1 40, (91
(96)
where the most general allowed Dirac structures are There are 14 independe®()) two-body operators given
e 1 e 1 ] explicitly by
2 e R 1 Y7 7] I I VRS 7] N I Ve 4
ree, [IO’ Ao n ’n~vn v,

N S|

. 1
(92) KO ,(w)= —(gn imgw) Ermhv,
wherey;, v, =v,0,~ v,0,, etc. As before, nchM can ap-
pear at leading order from type-Il RPI. . — 1
At O(\), 44 currents can be written down before impos- Ksg)=(&iD ¢ W), ﬁ{ga[,u,’yvl

ing the RPI constraints. They can be chosen as

W 1 1 T0,I5", Qopuvy—vel4"h,, (97)
icg‘)8:(EnW)wl(wTiD?gW)wZ[Erfu,nrm]ﬁ h,, 1 B
K 1d(@) = (0 PO (W) TH

B B 1
]Cg)_ 1= (gnw)wl(WTID Eﬁ'W)wZFI]—Bﬁ hv , (93) . |5J'W
lv-Dg

n-iD,

(1) 3 1 My
Kii-140)=| &n ﬁrlwhu-

KR 20= (£aW),, (W'iv - DgW),,, o _ o
Their coefficients are fixed by reparametrization invariance
" 1 1 in terms of the®(\°) Wilson coefficientsC{" ,(w) as
XV =4, —T1 = h
2 174y A pt T (t) (t) (1) (1)
Bili(w)=Ci’y(w), By'(w)=2Ci(w),

and ,
B{)(0)=—-2C(w), BY fw)=—2C1(w),

K8 ao= (£aW),, (WD W),

B{) , (w)=—2CY ,(w). (98)
« ﬂr,w 1 ey i h In addition, there are 7 three-body collinear operators
2 174'n_v 1-4 ,PT v . b
given by
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TABLE Ill. Summary of RPI constraints on the coefficients of the tensor currents in(Bgs.The first column shows the constraints
from type-lI RPI onb;(w,0), the second column shows the constraintbgfw,,w,) from type-ll RPI, and the third column gives the

PHYSICAL REVIEW D67, 094005 (2003

combined constraint. Each refers to the first and second terms in their row, respectively. The final currents are displayed(8VE¢39),

and are defined so that they automatically satisfy these constraints.

RPI-| RPI-II
b{(@,,0)= b (@, ,w,) = Combined constraints

b, Y 4(o1) C 41+ o) b y(@1,@2) = C y(@os+ )

b§) & 0 b o(1,@5) b® o(&1, 0)=0

b§? 1y 0 0 b{" 1,(@1,@,) =0

b} 2 C{(@y) b1, 2) b{3(@1,0)=2 C{ (1)

b3 —2 C{(y) b (1, 02) b{3(1,0)=—2 C{ (1)

b3 0 b} (@1 2) b{)(@1,0)=0

b2 1 0 0 bi2 j(@q,@,)=0

b{3 20 ~2 w1 C{% (@) —2(@1+ @) CY% (@1 + @) b{ od @1,@2) = —2(@1+ @) CT (w1 + @)

b3 22 ~2 &y CY (o) = 2(@1+ @) C) (1+ 2) b0 o @1 ,02) = = 2(@og + @) CEY (01 + ;)

+2 CYw,) b {1, 0,) +b{) {1, 0,)

b%d 26 bSd ,e(®1.,0) 0 bS) (@1, @5) =0

b%) 30 b, @1,0) b @1,w5) b ,i(@;,w,) unconstrained

b§) s b} 5(@4,0) 0 bY) so(w1,w,)=0

b6 b{) .s(@1,0) bY) se(@1,w5) b{) s¢(@1,w,) unconstrained

bg;*‘lo b(3t7)—40(‘:’1:0) 0 b(3[7)—4o(‘:’1,a’2) =0

bif a2 b 44 1,0) ~2(by+ @) CYY (01+ @) bR d1,@3) = = 2(@1+ 05) CL (o1 + vp)
+2 1+(f)—l)c<lf>z(&)l+&)2) +2 <1+ ﬂ) CY w1+ w,)

wy w2

b{d 44 b3 44 1,0) = 2o+ ) CY) (@1 + ) bR 4 @1, 02) = — 2(@1+ ) CF); (@1+ ;)

+2(1+(f)—1 CO @y + @) +2(1+$ COY( o1+ y)
Wy w3

* b34,35(‘:’11£02) * b34,35((:’1,‘:’2)

K (01,02)= (W), Gufp M
21\W1, W2 M, n w0 Jalu, V]n_U

1 .
;WIQBC,LW h,,

@2

1
K g(w1,00)=—(E;W),, T4,
my 1

1 .
L X %WTlnglW) h, .
thg)(wllw2): m_b(gnw)wl (ga[u,?’v] +Uarl3“}) “2

><( iWTing"LW) h, , (990  Their coefficientsB{2_,,(w;,®,) are not constrained by any
P oy symmetry of the effective theory and have to be determined
by an explicit matching calculation.

At tree level one matches onto the currel(l‘lé,)11 and the
two-body limit of K{) [using the analog of E473)], and we
agree with Ref[13] on the form of these currents and the
1 RPI constraint betweel (" andK{?. The remaining opera-
:Wting,LW) h,, tors in Egs.(97) and (99) are new and only appear beyond
P 0y tree level(including the three-body structure Bf").

1 —
K(Zto)(wlawZ):m_b(gnW)wl (ga[,u,vv]_varffy)

X
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V. SUMMARY FOR COEFFICIENTS, OPERATORS, AND FEYNMAN RULES

In this section we summarize results that should be useful for future phenomelogical applications. In Sec. V A we summa-
rize the full set of known matching results and compare with the literature, in Sec. V B we give simplified expressions for our
basis of currents in the framg =0, n-v=1, and in Sec. V C we give Feynman rules for the subleading currentg gﬁéi

A. Matching results for the currents

In this section we summarize the one-loop matching results for the LO and next-to-leading(td®x J;,; Wilson

coefficients. Witha; = w/mj, these coefficients are defined in previous sectior3&%w, u/my) andB(¥(w; ,u/my), respec-
tively, where(d) denotes whether the current is a scalar, pseudoscalar, vector, axial-vector, or a tensor.

For the LO currents the basis we use is differéhbugh equivalentto the basis used in Ref2]. Since the one-loop
matching for the LO coefficients can be found in REf] it is useful to have the explicit relation between our basis of
coefficientsC{?) and the coefficient€; (j=1-12) that can be found there. We find

cP=c,,  Cc{)=cs, CP=Cs, c{’=Cy,
C=C,,  CY=C;, C{=Cs, C{=—Cyy,
cy)=c,—C;, CP=C,-Cq,  CP=Cyo—Cy,
CP=Cy,+Cyp—Cyy. (100
|

At tree level the matching between QCD and SCET is A ay(My)Cr 2 20 In(®)
g:heme independent. Matching with the full QCD currents C(Zv’a)(a),l)= 7 —+ ~~ ("
UL, 75,7, 15,0, we find T (1re) (1w

(102

cP=cP=c=cP=c{=1, cP(@,1)=0,

cP=cP=cP=cP=cP=cP=cP=o. (101 )
CY I (w,1)=

A 0

as(My) Cr (1—2&))&)In(&))_ ®
(1-)? 1-w|’

At one loop we use the modified minimal subtractiovS)
scheme with naive dimensional regularizatiCdDR) and - -
match atu=m, to determine th&€(¥ (o, u/m,). Using Egs. CO(a.1)= [ —20 In(w)]
(100 and results in Ref.2] one finds ' ’

. ag(mp)C . . C¥(w,1)=0,
CHP(w,1)=1- 5(4:’7) : [ 2 In%(w)+2 Lix(1- ) )
where C=4/3 for color SU(3). To determine the coeffi-
2In(w) 2 cients for scalesn,A gcp< u?< m3 we require their anoma-
——+ =, lous dimensiong.The LO and NLO anomalous dimensions
1— o 12 . . - o .
are universal and the running of these coefficients is given in
Ref.[2] (or for the casan=1 in Ref.[1]). -
. ag(m,)Ce ) - ' . At NLO in \ tree level matching of the QCD curremt' b
Cl (0, 1)=1- ———1 2In%(@) +2 Lix(1-w) onto SCET give§10,12,13
. (30-2) a5 hoo o1
+|n(w)(m +E+6}, 'Jtree_ gn,p’ZIDcWﬁFhva

_ no . 1
. ag(my)C . . JI = e T — DLW h, , 103
c(f>(w,1)=1——5(4:’7) F[2|n2(w)+2 Li(1— ) tree= " &nprl 5 10¢ n-om, (103
~ [do— 2 9 : . .
+In(w)| ——|+-=+6}, The full NLO result requires a two-loop anomalous dimension
1-w 12 which uses information from Ref35].
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of the three-body currents for cases where the corresponding
(1c)— 2 — 1. L .. AT A ~ ~
Jiree= 7 Sl —3 iv-DzWh,. coefficients B;(w,,w,) depend only on the sum;+ .
¢ This is certainly the case at tree level since the coefficients

The normalization in Eqg103) was first derived fod'® in are w; independent. The three-body structure of the currents
Ref.[10], and forJ(*P:1) in Ref.[13]. Comparing Eqs(103  can only show up at the level of one-loop matching.

with our basis of currents we see that for any choic€ difie Using Egs.(103) to determine the tree-level value of the
J{ta1°) match onto a subset of our two-body currents. On theNLO Wilson coefficients of the operators in Eq31), (81),

other handJ{}*) does not appear in the basis of two-body (86), (89), (97), (99), we find
currents. Instead it is obtained from the projection of a subset

BEP-1,  BPU-1  BE@-0,  BU-1, B -0,

BP-0,  BEY-0,  BED-0,  BY0 B0,

BSP=-2, BUA=0, B%Y=-1, BY, =0, BY=1,

B{P =0, BYy®d=-2, BY?=0, BY=-2, B ,=0. (104

These results are in agreement with the RPI constraints in(E8s.(82), (87), (90), (98). Coefficients in Eqs(104) that are
zero indicate that the corresponding currents vanish at tree level since they are first matched onto at(on&éyopd. The

full one-loop matching for all th€(\) currents is not currently known from direct computations. However, many of the NLO
coefficients are fixed in terms of the LO coefficients by RPI, narB§i) (), By ®), andB{" , (»). Summarizing Egs.
(72, (82), (87), (90), (98) we have

B(ls‘p)= CSSVP) ' B(ZS,P)z _ ZCngP) ! , Bgs‘p)= _ ch&p) '
BUg=cly,  BUY=-2cPW,  BEY-—ac(g’, Byl 2009,
B{ ,=c{’,, BV =2cy, BY=—2c®, BY ,=—2c{V’,,
B(1t1)714: _ZC(ltZ4- (105

where to save space theand u dependence of the expres- B Summary of O(X) currents in the frame v, =0, n-v=1
sions on both sides of these equalities is suppressed. Theseln Secs. IV A through IV D we have derived the most
results can be used to determine the matching for these cgeneral basis of heavy-to-light current ¢(\) in an arbi-
efficients atu=m, using Eqs.(102. They also imply that trary frame. However, for applications it is often most con-
the anomalous dimensions of these coefficients are detevenient to pick a frame where, =0 andv-n=1. In this
mined by the anomalous dimension of the leading order coframe the current& &, K&, andK{ ., drop out. Thus
efficients[2], so their values for scalembAQCD<,u2<m§ there are only(2,2,8,8,13 order O(\) heavy-to-light cur-
are known. rents which are(scalar, pseudo-scalar, vector, axial-vector,
For the coefficients of the 3-body operators,tensoj. In this section we summarize our results with this

~n ~on ~An . choice of basis vectors.
Bgs’p)(wlawz)a B(lvl'—a)u(wlywz)y and B(ltg—n(wlawz)v nel-

ther the one-loop matching results, nor even the LO anoma- . In this frame our leading order results for thg currents
. . with a complete set of Dirac structures can be summarized as
lous dimensions, are currently known.

Finally, we note that it is possible to relate the pseudo- o (@7~ A(0)
scalar and axial-vector coefficients from the scalar and vector J ):f do Ci7(w)Jdi™(w),
coefficients. For massless quarks the QCD diagrams and
SCET diagrams change in a trivial way under the chiral IO(w)=(&W), T@ h,, (106)

transformationg— ysq, and ¢,— ys&,, provided we work

in a scheme such as NDR. Therefore in this scheme thehere inT'(? the (d) specifies the type of curreriscalar,
Wilson coefficients of operators with and withoys are re-  vector . . .), thei specifies the member of the complete set
lated(see, for example, Reff2] for the relations between LO Of possible structures of that type, and the Wilson coeffi-
coefficient$. In other renormalization schemes these coeffi-cients areC(%(w). For the minimum basis of Dirac struc-
cients may differ. tures we found
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J(la)
d Pt
_)—®--)(;-k; = —iB( )(ﬁ PPt
g -p
J(la) D
en _ @ @w P P5T ]
- = B (n-(p+ T
@ @ q))n(p+¢1) g
p,a

FIG. 1. Feynman rules for th@(\) currentsJ*® in Egs.(108)

PHYSICAL REVIEWSD 094005 (2003

At order\ our corresponding results fdy, in this frame can
be summarized as

J<1a>=f do B?()J¥(w),

309~ [ do, d, B9y, z) I(wr,0),

with zero and one gluofthe fermion spinors are suppresseor (108
the collinear particles we show theffabel, residual momenta,
where label momenta an,q~ X% and residual momenta aket 1
~\2. Momenta with a hat are normalized tta,, p=p/m,, etc. I (w)=(&,iDL:, W), = Y@« h,
PT
FBS):]" ng):75=
(v 3 g 00)= (W), 00"
2g={vu, vur Nub (107 PO m, e e
F 1 L n b 1 .
123} {7,0’5 UVuYs ,ﬁ’s} > 7—;WTIgBé aW) h, ,
F?l),z,s,z}:{i(’#w Viplol s YieMls Nwluhs @2
which is simply a linear combination of the basis in H&fl. =~ where
J
(s)a _ aW (a— ,a (P e HW (p)e
Yri=yls, O0%=vy0, YPU=vigys, 0477 =ysyl,
W)a_ ozW o ozW s C(W I ap )« s o
Yi7= Yo ¥ Yipuh Yipht 9, O = {y*y", vyl ntyl, i
(a) W W i (a)a
Y3 n27 : nzv , nzn C O s O =y syl v ysyDL syl 9% ysh (109
(e i " my aW [pq,7] HW [1.nv] [, v] alp,  v]qv] qalm.,v]
Yi%6= '7&5‘7 ) 7&57 v, 7L§7 Ny e, gty N gt
0N, ={ioctry®, ylrplye  yleprlya plegrlye - galmvigrl - galeg vl galinily,

Note that due to Eq(14) the form of J*P) in Egs.(108) is

pend only on the totah® collinear momentum, while for

identical to the form of the currents that was used in RefJ(® the coefficients depend on how the momentum is di-

[15] since[W'iD{, W]=[1/P W'igB_ ,W].

C. Feynman rules for Jy,; and L,

In this section Feynman rules are given for t6¥\)
heavy-to-light currentd*® and J*?) in Egs. (108 which
are valid in a frame where, =0 andv-n=1. We also give
the Feynman rules that follow from the final form of the
£5%®) Lagrangians in Eqg42).

vided between the quark and gluons. TH&Y current has
non-vanishing Feynman rules with zero or dkgegluon and
any number oh- A, gluons. The possible gluons that appear
in the J® currents are similar, but the current vanishes
unless it has one or more collinear gluons present.

For the mixed usoft-collinear Lagrangians from E@),

(1)_ fn

+H.c.,

For the subleading currents the zero and one gluon Feyn-

man rules forJ®® and J*P are shown in Figs. 1 and 2,

respectively(From the results in the preceding sections the

Feynman rules for the currents with #0 andv-n#1 can
also be easily derivedFor J'® the Wilson coefficients de-

LE=¢, +H.c.,

(110
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Jw n,a

— e B(, _Punqy _fubs
——@>-5 = 0 @9 = ng“[E(n#— %-q )- 7':'4
Jav 1 e __)(P_Jﬁ).
L i BY (-p, 7-9) b PC T 1 A v.b
: , — N Aiq —g? fabepe
@ A f i (—n +’YJ')
n.a @9 - n-q M2 ™ Y

______

FIG. 2. Feynman rules for th@(\) currents)® in Egs.(108 wa b _, T°T i ~ ('tl+/t2)]
2. -
n-p

with zero and one gluon. For the collinear particles we show their ? g 9 Fw [—""""'2' + Mty
(label, residugl momenta, where label momenta grgy,g;~\%* . t) @t =

and residual momenta aket~\2. Momenta with a hat are normal- - +ig? g‘_bg[ ... (hth)
ized tom,, p=p/my, etc. ’ n-p

s - n,,ﬁ,,-2— + nyfty
_ FIG. 4. Feynman rules for th®@(\?) usoft-collinear Lagrangian
L@ _F ﬁiD c £ £ with one and two gluons. The spring without a line through it
£q no L is an usoft gluon. For the collinear particles we show tlikibel,
residua) momenta, where label momenta arg,g;~\%* and re-
all Feynman rules involve at least one collinear gluon. Fronfidual momenta ark,t,t;~\?. Note that with the field redefinition

£ we obtain Feynman rules with zero or oAé, gluons made in Ref[36] the only change to these Feynman rules is that the
& v+ in the second line should be dropped.

W igB,‘Wq,s+H.c.,
Cc

and any number of-A, gluons. The one- and two-gluon
results are shown in Fig. 3.

For £&Y we have Feynman rules with zero or one
{n-A,,A,J gluon and any number af- A, gluons. The one-
and two-gluon results are shown in Fig. 4. Finally, foF”
one finds Feynman rules with zero, one, or tAp gluons

B— P whereP is a pseudoscalar mesgecalculations using
the factorization theorem in E¢l) for the vector meson are
just as straightforwand For pseudoscalars there are three
form factors in QCD, which are conventionally defined by

and any number oh-A, gluons. In this case the one- and - m3—m3
two-gluon Feynman rules are shown in Fig. 5. Note thatitis  (P(P)[qy*b|B(py))=f(q*)| pf+p*— ——— g*
important to treat the contributions from 2% and £ £ d
separately since they show up in different parts of the heavy- m2 — m2

to-light factorization formulas derived in Refl5] and +f0(q2)¥ aq*,

shown in Eq.(1).

For L&Y+ the Feynman rules are different than ,
one would derive using the intermediate form E¢30), — o m @),
since in transforming to the final form the equations of mo—<P(p)|q'Uﬂ a,b[B(py)) = Mg+ mp[q (Pb+p*)
tion were applied. However, observable predictions that are

. . . . 2 2
consistently made with either set of Feynman rules will —(mg—mp) g“], (111
agree.
whereq=py—p.
VI. LEADING POWER PREDICTIONS FOR B For the region wher®={E,my}>Aqcp (i-€. smallg?)
TO PSEUDOSCALAR MESONS one can use large energy factorization to study the form fac-

) ] tors. For pions our expansion paramete‘rQCD/Rp
As a phenomenological example, we consider the form_q 5 Gev/(Z) becomes 1/4 foE=1 GeV. This makes
factors forB— (v, or more generally the form factors for {he region ofg? where the expansion is valid roughly 0

=q°<10 Ge\2. In SCET the form factors ., , fo, f1 split

,a . g . '
g . dL themselves up into contributions associated with three mo-
@ = igT* [n -y —_— ]
n-q a
(P k) o Te 7% 2
----- = ig——[fén*—ﬁ q—l]
brpa [ - ol @v meg 2B T Ry
n.a v.b 7:g2TT [n#n,,ﬁ ’7J_ﬁ] @k
—_-— |\ = - wl 0 T
@ t) @ty T ha b “r L ! S ToT® § # Vi A for
led A . ;02 Plor+_PL. 1o L=y _ fu ™
R g +ig27_1—T[m — At n,j] (q,.m% f«zz.rz) _ e 2[”’”" rep Pt ) = S50
(p, k) 7i-go fi-p H __)_(;_ks - pi b
. +n,‘n.,((1_1_p)2 + ﬁ~pﬁ~q2)] + [ @1, 1) < (5,1, 02, t)]
FIG. 3. Feynman rules for the subleading usoft-collinear La-
grangianl (5%4) with one and two collinear gluonsprings with lines FIG. 5. Feynman rules for th®@(\?) usoft-collinear Lagrangian
through them The solid lines are usoft quarks while dashed Iinesﬁgﬁb) with one and two gluons. For the collinear particles we show
are collinear quarks. For the collinear particles we show iffegel, their (label, residual momenta, where label momenta greq,q;
residual momenta(The fermion spinors are suppresged. ~\%! and residual momenta aket,t;~\?.
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mentum regions: Wilson coefficients f@°~Q?, two jet A few general properties of the factorizable teffi(Q)
functions J, ,, for p2~QAQCD, universal light-cone wave can be given without an explicit computation. First, the ma-
functions forp2~AéCD, and a single non-factorizable form trix elements oﬂ'i2 can only depend o (r.). This fol-
factor {p (containing botl’p2~QAQCD and p2~AéCD). The lows from the expli_cit form of the subleading Lagrangian
leading contributions therefore split into factorizathg and £ &), where &,= (#ih/4)&,, so the usoft fieldy,s appears

non-factorizable(NF) contributions® This decomposition only in the combination,(##/4). Using Eq.(114) this im-

was defined by the proof of a factorization formula for these, lies th v thed : ishi )
form factors in Ref[15] plies that only thegg (r.) term gives a nonvanishing con

tribution. On the other hand, the factorizable operaf§r

fQCP(g2) =R Q)+ fNF(Q)+ . .., depends on the combinatiap(#/2), so its matrix element
can only containgg (r.). At tree level the jet functiord
1 1 o . F .
Fray — from the matrix element of 5 vanishes, but a nonzero result
Q) Nofo dZJO dxfo dr, T(z,Q. o) could appear at one-loop order. However, the matrix element

of T contains the leading order curreiff), so it obeys the
XIzXr Qoo i) Pp(X,u) hgl(r,p), same symmetry relations as those derived for the nonfactor-
(112  izable partfNF(Q) [15]. Therefore, although this matrix el-
ement is factorizable it does not increase the number of un-
fN(Q)=Cu(Q.u) ZF(QA,p), known  non-perturbative  functions  since  for
. phenomenological analyseg, can be absorbed lﬁf' . With
wheref (Q)~f"(Q)~Q™*?and the ellipses denote terms this choice, all remaining factorizable contributions are ex-
that+are suppressed by more powers oQ.1/Here ¢g  pressible in terms of juspg (r.).
=¢g . Using the approach explained 5] we can obtain the
To separate the scal€’ andQA we match QCD onto a results for the form factors. After factorization of usoft and
SCET. The scaleQA andA? are then separated by match- collinear fields the T-products of collinear fields coming

ing SCET, onto a SCEF [15]. Operators in SCETare di-  from T, are given by[using Eqs(108) and (110)]
vided into F and NF categories depending on the form of the '

result of factoring usoft gluons from collinear fields. In TR(x)=T[£,iD L, W]A(0)
SCET, the F contributions are from the time-ordered prod- ¢ o .
ucts !

X

(),

0

_ 1
W*uglafwﬁwT &

Ti= f d'xT{I12(0),i £ F(x)},

1b —
jwl,wz(x)_T

B 1 iA
n w :WT. BCaW O
5= [ daxTia®0)ic B}, o 1{7’ o H v
iB
(0, (119

0

. 1
TE= f d*xT{I®(0),i £ & (%)}, (113 X WTu;JBfWﬁWT én
where the currents are taken from E@E08) and the usoft-
collinear Lagrangians from Eq&L10). After factorization of the fundamental representation. The functighs y, are col-

: . F
usoft and collinear fields, th@;’s are matched onto Soft- |inaar gauge invariant and satisfy the spin structure con-
collinear SCET, operators. The collinear matrix elements Straintsf 7y, 1p=J1a 150 =0, and tf 7, 15]=0

a, a, ) a, .

are given in terms of jet functionfz,x,r . ,Q), and the soft Taking into account constraints from the Dirac structure

operators are given in terms Bflight-cone wave functions ot the effective theory fields one can easily find the most
¢-(r) defined ag19,22 general form of the operators appearing in the matching of
J*1 onto operators in SCET The jet functions], , are

wherei,]j are Dirac indices and heg, B are color indices in

(0la(x")Sy(x™,00 T'h,(0)[B(v)) defined by the terms which contribute on a pseudoscalar state
i e |18 [ A
- _ +a—(i12)r T x I R ] " . 1
szme are M2 | 2% TR0 =180x,) 8 x [ v hys) 0" =
+_M1 s(ry) r (1149 " E =%y (ot

— — — _#
(EW) 8(n=P.) 5ys(Wign) | +---,
Il

X

Oere the phrase non-factorizable simply refers to the fact that
the matrix elements cannot be expressed in terms of convolutions
with the standard light-cone wave functions. (116
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B
(1)l+ wo

—(dr” =@t xTy e+
X | dn Ze Jp(w,m,r™)

— — — A
(EW) 3P )5 ys(WEn) |+,
1l

T 0,0 =180x) 8(x )y hys]' &

X

(117

where w = w1— w,. We have suppressed the dependence of

Jia1p ON theu's and onw, w;+ w, (the latter combinations

would be simply set to- p in the pseudoscalar matrix ele-
ment by momentum conservatid8]). The ellipsis in Eq.

(116 denotes color octet terms and other operators which d#/

not contribute for a pseudoscalar megan

Using Eqg.(116) the operators i{P,(p)|T} JB,) factor
into a product of matrix elements that can be evaluated wit
Eqg. (114 and Eqgs(12), (13) of Ref.[7]. Switching variables
to X,z by usingw=(2x—1)n-p and »=(2z—1)n-p we
find the following factorization theorems which are valid at
leading ordet! in 1/Q and all orders ing:

2E—
m

Mg
5 TU(E, 1o)

1 o0
f+(q2):N0f dXJ dr,
0 0

2E (1
X Ja(X, 11, Q, po, p) + m—bfo dzTHH(E.z, o)
XJb(Z!X1r+ reru'Owu’) }¢P(X1M)¢g(r+ 'lb(’)
n E n
+[C§”><2E,uo>+m—Bc<2"><2E,Mo>
+C§”)(2E,Mo)]§P(QA.Mo),

2E(mg—2E)

1 o
fo(@?) =No o[ “ar | == 10 g
0 0 mB
E2
XJa(X!r+ !QaMO!M)+ mme

1
XJO dZTE)O)(Eazal'LO)‘Jb(ZIerJr ,Q,,LLO,,LL)

N 2E .
X o, 1) ¢B<r+,m+m—{c<f>(2E,uo>
B

J

Mwe kept a kinematic factor afp in the prefactor off; even
though it is formally power suppressed.

mg—E . .
~—CY(2E o) + C§(2E o)
B

+

Xgp(QA!MO)v (118)
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+mp (1 »

B P

j dxf dr,
Mg 0 0

2E (1 T
xJa(X1r+ ,Q,MO,M)_m_bfo dZTé (E,Z,MO)

m

f1(9%)=No —T(E, 1o)

X Ip(ZX,1+,Q, o 1) | hp(X, 1) g (M4 1)

Mg+ Mp . .
————{C{)(2E, po) ~ CY(2E, o)

—CP(2E, o)} P(QA, o),

hereE=E/m,, Q={E,m,}, and the normalization coeffi-
cient is given byNy=fgzfpmg/(4E2). The matrix element
involving non-factorizable operators givéS(QA , 1) which
Hs the reduced form factor describing decays to a pseudo-
scalar mesorP. The quantities in square brackets and curly
brackets are calculable, that is tAg ,'s and J,,'s have
expansions inrg(Q) and ag(VQA), respectively. Note that
the J, , are universal, meaning that at any orderaigit is
these same jet functions which appear for any pseudoscalar
meson and independent of which form factar,+ we con-
sider. Therefore, the factorization theorem still gives infor-
mation even in the case where we assume &hat/QA) is
non-perturbative.

Working at O(ag(ug)) (i.e. tree level for the jet func-
tions gives

L mCr as(o)
Jia(X,r )= NI (119
oy 7Ce aslpo)
Jip(Z,X,r")= N, o 8(z—X).
(120

At this level thez integrals in Eqs(118 disappear because
the tree level jet gives &(z—x), and this causes thevari-
able in theT,’s to be replaced by. The TY) are combina-
tions of Wilson coefficients appearing in td€®® currents
given in EQs.(108) and should be evaluated at a scalé
~QA. Expressed in terms of the Wilson coefficients defined
in Sec. |V, they are given by

EBY)(2E,u) + mgBY) (2E, 1)
2E_ mB

TEUE, ) =B (2E, ) +

TO(E, u) =B (2E, )

(mg—E)BY)(2E, 1) +mgBY(2E, )
_|._
mB_ 2E

(121
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TO(E, u)=BY(2E, u) —BP(2E, u) — 2BY(2E, 1) current at a given order in but to all orders inxs. This was
done by including constraints from collinear gauge invari-
+BY(2E, ), ance, the Dirac structure of the effective theory fields and

reparametrization invariance. These conditions prove to be
. ~ surprisingly predictive, and constrain not only the number of
where the dependence orF 2E is shown, and allowed operators, but also their functional dependence on
label momenta.
E For the case of the heavy-light currents, the constraints
Tg”(E,z,,u):B(l’j)(ZE,z,M)— —B(l"z)(ZlAE,X,M) from the Dirac structure of the effective theory fields have
Mg been included at leading order|i], and allow only 3 struc-
tures in thev | =0 frame. Here we consider the more general
case of an arbitrary heavy quark velocity which is neces-
sary in order to have a set of operators which closes under

_Bg.lé)(ZErZ!M)!

o R (mg—E) reparametrization transformations.
TO(E,z,u) =B (2E,2,u) — T At subleading orde©(\) the Dirac constraints alone al-
B low many more operators. In particular, in addition to two-
X BY(2E,z,u) —BY(2E,z,u), body operatorsg,W),,- - -h,, one has to include also three-

(122  body currents of the formgWw),, - - - (W'iDW),,,- - -h,,.

RPI constraints on a subset of the two body-operators were
N . previously considered ifiL0,13, and it was shown their co-
TOV(E,z,u) =B{(2E,2,1) + BY(2E,Z, 1) efficients are fixed in terms of the coefficients of leading
order currents. Here we extended the constraints to the full
set of allowed two-body and three-body operators, and
showed that typéll) RPI imposed severe constraints on the
(w1,w,) dependence of the latter. For example, the scalar

currentgb is matched aD(\) onto 8 general operators in
If we work at tree level ind, , using Eq.(119) and also in the effective theory. After imposing all constraints, only one

T, 5 then these coefficients are scale independent and satisRf Nese has a free Wilson coefficient, which has to be deter-
Tg+,O,T):TE’+,O):1 andTE)T)=O. In this case if we take the mined from a matching calculation. A similar reduction is

ratios fo/f. and f/f, and expand assuming that thiE obtained for the more complicated case of the vector/axial

terms are smaller than tH&'F terms then our results agree 2nd tensor currents, for which one can wi@g), (44) struc-
with Ref. [19]. We note, using just the information in our tures but.only(4), (7) Wllspn coefficients are not fixed by the
factorization theorem, that it is not clear whether one wantSymmetries of the effective theory. _ _
to expand in this way since the F and NF terms could actu- !N this paper we have focused on mixed usoft-collinear
ally be similar in size as discussed in the Introduction. Thenteractions, however for many exclusive heavy-to-light pro-
expectation from QCD sum rules is that the “soft” NF part C€SSes the final operators that are ljeeded are of soft-collinear
of the form factors is larger than the “hard” F p420]. type_as was the case for heavy'—to-llght' form factqrs. In prac-
tice it appears simplest to derive collinear-soft interactions
from the collinear-usoft ones using the two-stage matching
technique, QCB-»SCET,— SCET,, discussed in the proof
VIl. CONCLUSION of factorization for heavy-to-light decays R¢15]. The op-
. . ) erators in this paper describe interactions in the intermediate
The soft-collinear effective theo_rgzsCET) aIIov_vs a rich SCET, theory. For exclusive processes suchBas D [7]
structure of allowed operators at hlgher orders_ in the expanyhere the intermediatp?~QA fluctuations in SCETare
sion parametek. In contrast with simpler eff(i:tlve theories, responsible for inducing simple operators in SGEfe pro-
the presence of fieldsn( A,) and derivativest{-iD.) scal- cedure used in Ref15] reduces to the one discussed in
ing like A% allows a continuum set of operators at any givenRef. [4].
order in\. A similar situation is encountered in deep inelas- Note added In the final stages of this work, Refl7]
tic scattering, where an infinite number of operators of in-appeared where a direct study of light-light soft-collinear op-
creasing dimension can contribute to the same orderGn 1/ erators was performed. The Wilson coefficients of these op-
In a generic process with energetic hadrons it is thereforerators were determined by matching from QCD up to one-
important to have a well-defined procedure for organizingloop order, and both two-body and three-body operators were
the structure of the soft-collinear operators at a given order ifiound to contribute. An intermediate theory with modes of
\. This organization is provided by SCET. momentump*~Q(\’,1\") as dynamical degrees of free-
In this paper we formulated a general prescription fordom was also considered. This appears similar in spirit to the
constructing the most general ultrasoft-collinear operatorQCD— SCET— SCET, construction used in Ref[15];
appearing in the Lagrangian or in the matching of an externahowever, in the intermediate SCEReory we found that the

—B{R(2E,z,u),

where o+ w,=2E and the dependence anis induced
from the w, — w, dependence of the coefficients.
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