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Possible evidence of extended objects inside the proton
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Recent experimental determinations of the Nachtmann moments of the inelastic structure function of the
proton,F2

p(x,Q2), obtained at Jefferson Lab, are analyzed for values of the squared four-momentum transfer
Q2 ranging from'0.1 to '2 (GeV/c)2. It is shown that such inelastic proton data exhibit a new type of
scaling behavior and that the resulting scaling function can be interpreted as a constituent form factor consis-
tent with the elastic nucleon data. These findings suggest that at low momentum transfer the inclusive proton
structure function originates mainly from the elastic coupling with extended objects inside the proton. We
obtain a constituent size of'0.2–0.3 fm.
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I. INTRODUCTION

For a long time hadronic spectroscopy and deep inela
scattering~DIS! data have been the two main sources
information on hadron structure. The investigation of had
mass spectra has led to the introduction of the concep
quarks@1#, leading to the very fruitful idea that meson an
baryons are bound states of two and three quarks. S
quarks are commonly referred to as constituent qua
~CQs!. The DIS data~starting from the pioneering exper
ments at SLAC in the 1960s@2#! have been successfull
interpreted in terms of a short-distance partonic structure
the hadrons, i.e., the presence of pointlike constituents in
the hadrons@3#.

With the advent of quantum chromodynamics~QCD! par-
tons have been identified with current quarks and gluons,
with the fundamental degrees of freedom of the QCD L
grangian. On the other hand, a rigorous derivation of
CQs from QCD is lacking, but CQs are commonly believ
to be quasiparticles emerging from the dressing of vale
quarks with gluons and quark-antiquark pairs. If CQs
confined objects, they should be connected to each othe
color strings, which may have their own partonic content.
the resolution range in which the sea-quark and gluon c
tent of the strings is not probed, one is naturally lead to try
explain the DIS data only in terms of CQs having a structu

The idea to use CQs as an intermediate step between
current quarks and the hadrons is not new at all and inde
dates back to the 1970s@4#. At that time a two-stage mode
for the parton distributions was proposed, in which any h
ron contains a finite number of CQs having a partonic str
ture. The latter depends only on short-distance~high-Q2)
physics, which is independent of the particular hadron, wh
the motion of the CQs inside the hadron reflects the non
turbative~low-Q2) physics, which depends on the particul
hadron. Therefore, within such a picture the DIS struct
function of a hadron,F2

H(x,Q2), can be simply written as the
0556-2821/2003/67~9!/094004~11!/$20.00 67 0940
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convolution of the structure function of the constituen
F2

j (x/z,Q2), with the light-front ~LF! momentum distribu-
tion f j

H(z) of the j th constituent inside the hadronH, viz.,

F2
H~x,Q2!5(

j
E

x

1

dz fj
H~z!F2

j S x

z
,Q2D , ~1!

wherez is the LF momentum fraction carried by the constit
ent in the hadron. A convolution analogous to Eq.~1! holds
as well for each partonic density in the hadron in terms of
corresponding partonic density inside the constituents.
latter can be obtained by a deconvolution of available d
on a hadronH, provided a reasonable model for the wa
function describing the motion of the constituents in the h
ronH is considered. Then the structure function of a differe
hadronH8 can be predicted once its wave function is give
Such a procedure has been applied in Ref.@5# to predict the
structure function of the pion from the known nucleon stru
ture function, and the final result was that the two-sta
model based on Eq.~1! is supported by data, at least as a fi
good approximation.

The following question naturally arises: is the two-sta
model a good approximation also far from the deep inela
regime? In particular, can the model be generalized in suc
way to predict hadron structure functions for values ofQ2

below and around the scale of chiral symmetry breaki
Lx'1 GeV? The aim of this paper is to answer such a qu
tion by extending the two-stage model in order to include
low-Q2 regime and to test it against recent proton struct
function data obtained in Hall B at Jefferson Lab with t
CLAS spectrometer@6#. It will be shown that the data exhibi
a new type of scaling behavior, expected within the gene
ized two-stage model, and that the resulting scaling funct
can be interpreted as a CQ form factor consistent with
elastic proton~and neutron! data. These findings suggest th
at low momentum transfer the inclusive proton structu
©2003 The American Physical Society04-1



f

o

ul
ed
F

s
w

ro
r-
r

ar

p
r-

iv

w
re
ee
al

n

o

u

d
.2

o
Q

th
ha

fied
ial

on

sed

uld

e
the

e
ep-

s
-
nc-
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function originates mainly from the elastic coupling withex-
tended objects inside the proton. We obtain a CQ size o
'0.2–0.3 fm.

The plan of the paper is as follows. The generalization
the original two-stage model to low values ofQ2 is presented
in Sec. II and a new type of scaling behavior, which sho
hold for the moments of the structure function, is propos
In Sec. III the basic theoretical input quantity, i.e., the L
momentum distributionf j

H(z) of a CQ inside the hadron, i
discussed and estimated in case of the proton. In Sec. IV
investigate the possible occurrence of the new scaling p
erty in the recentJLabdata@6#, as well as the possible inte
pretation of the resulting scaling function as the first expe
mental evidence of the CQ form factor. Our conclusions
summarized in Sec. V.

II. EXTENSION OF THE TWO-STAGE MODEL TO LOW
MOMENTUM TRANSFER

In this section the original two-stage model of Refs.@4,5#
will be generalized in order to include the low-Q2 regime. As
a first step, let us develop such a generalization in a sim
fied form, which avoids many complications in the final fo
mulas arising from a complete treatment of finite-Q2 effects,
but at the same time illustrates the essential physical mot
tions. The proper treatment of kinematical finite-Q2 effects
will be recovered later on in Sec. IV.

In a DIS experiment at high values ofQ2 the internal
structure of a CQ is probed, whereas for sufficiently lo
values ofQ2 such a structure cannot be resolved anymo
Generally speaking, we expect that the turning point betw
the high-Q2 and low-Q2 regimes is around the scale of chir
symmetry breaking,Lx'1 GeV. As Q2 decreases below
'Lx

2 , we have two expectations:~i! the inelastic coupling
of the incoming virtual boson with the CQ becomes less a
less important, at least because final states are limited
phase space effects;~ii ! the elasticcoupling of the incoming
virtual boson with the CQ becomes more and more imp
tant. We point out that at very low values ofQ2 of the order
of LQCD

2 @'0.1–0.2 (GeV/c)2] the reinteractions among
CQs in the final state, which are not considered in o
present analysis, cannot be neglected any more~see later on,
Sec. III!. Therefore, theQ2 range where we want to exten
the two-stage model is qualitatively given by 0.1–0
&Q2 (GeV/c)2&1 –2.

Let us start by writing the CQ structure functionF2
j ap-

pearing in the convolution formula~1! as the sum of two
terms F2

j 5F2
j ( inel)1F2

j (el) , corresponding, respectively, t
the inelastic and elastic virtual boson coupling with the C
Then, the inelastic structure function of a hadron,F2

H(x,Q2),
can be written as the sum of two terms, representing
inelastic and elastic CQ contributions, respectively. One

F2
H~x,Q2!5(

j
E

x

1

dz fj
H~z!F2

j ( inel)S x

z
,Q2D

1(
j
E

x

1

dz fj
H~z!F2

j (el)S x

z
,Q2D , ~2!
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where, as previously anticipated, we have kept the simpli
convolution form in order to avoid up-to-now inessent
complications due to finiteQ2. The elastic part of the CQ
structure function reads explicitly as

F2
j (el)~x8,Q2!5Gj

2~Q2!d~x821!, ~3!

where

@Gj~Q2!#25
@GE

j ~Q2!#21t@GM
j ~Q2!#2

11t

5@F1
j ~Q2!#21t@F2

j ~Q2!#2, ~4!

with F1(2)(Q
2) and GE(M )(Q

2) representing the Dirac
~Pauli! and electric~magnetic! Sachs form factors of thej th
CQ, respectively. Finally, in Eq.~4!, t[Q2/4mj

2 with mj

being thej th CQ mass. Thus, the inelastic structure functi
of the hadronH becomes

F2
H~x,Q2!5(

j
E

x

1

dz fj
H~z!F2

j ( inel)S x

z
,Q2D

1(
j

@Gj~Q2!#2x• f j
H~x!. ~5!

In the DIS regime the elastic CQ contribution is suppres
by the CQ form factors and one gets

F2
H~x,Q2!→

DIS
(

j
E

x

1

dz fj
H~z!F2

j ( inel)S x

z
,Q2D . ~6!

On the contrary, for low values ofQ2 the inelastic CQ con-
tribution is expected to become negligible and one co
have

F2
H~x,Q2! →

LQCD
2

&Q2&Lx
2
(

j
@Gj~Q2!#2x• f j

H~x!. ~7!

However, it should be immediately realized that Eq.~7!
cannot hold at eachx value. Indeed, at lowQ2 the hadron
structure functionF2

H(x,Q2) is characterized by resonanc
bumps emerging over a smooth background, whereas
elastic CQ contribution is expected to have a smoothx shape
only, governed by the LF momentum distributionsf j

H(x).
Therefore, we assume that Eq.~7! holds in a dual sense: th
x averages ofF2

H over each of the resonance bumps are r
resentative of the elastic CQ contribution@see the right-hand
side~RHS! side of Eq.~7!# at the corresponding mean value
of x. Such a CQ-hadron duality can be conveniently ex
pressed in terms of moments of the hadron structure fu
tion, defined as

Mn
H~Q2![E

0

1

dxxn22F2
H~x,Q2!. ~8!

In a similar way we can define thedual moments as the
moments of the elastic CQ contribution, given by
4-2
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Mn
dual~Q2!5E

0

1

dxxn22(
j

@Gj~Q2!#2x• f j
H~x!. ~9!

The occurrence of a CQ-hadron duality forQ2&Lx
2 can be

now translated into the dominance of the dual mome
Mn

dual(Q2) for low values ofn, viz.,

Mn
H~Q2!.Mn

dual~Q2!. ~10!

The limitation to low values ofn arises from the fact that a
n increases the momentMn

H(Q2) is more and more sensitiv
to the rapidly varying bumps of the resonances. Theref
Eq. ~10! cannot hold at very large values ofn ~see Refs.
@7–9# for the case of the parton-hadron Bloom-Gilman du
ity @10#!. At the same time it should be pointed out that t
dual relation~10! is expected to hold only forn.2, because
the second momentM2(Q2)5*0

1dxF2
H(x,Q2) is signifi-

cantly affected by the low-x region where the concept o
valence dominance may become unreliable.

Let us introduce the squared form factor@F(Q2)#2 de-
fined as

@F~Q2!#2[

(
j

@Gj~Q2!#2

(
j

ej
2

5

(
j

@F1
j ~Q2!#21t@F2

j ~Q2!#2

(
j

ej
2

,

~11!

which is normalized to 1 at the photon point. Assumi
SU~2!-symmetric CQ form factors, Eq.~9! becomes

Mn
dual~Q2!5@F~Q2!#2

•M̄n
H , ~12!

with

M̄n
H5E

0

1

dxxn21(
j

ej
2f j

H~x!. ~13!

If one possesses a reasonable model for the CQ mome
distributionsf j

H(x), the momentsM̄n
H can be estimated an

therefore the ratio

Rn
H~Q2![Mn

H~Q2!/M̄n
H ~14!

can be constructed starting from the full momentsMn
H(Q2)

@Eq. ~8!#. The ratioRn
H(Q2) should generally depend on bo

n and Q2 as well as on the hadronH. However, when the
underlying CQ picture holds, the CQ-hadron duality~10! is
expected to hold as well and, consequently, the ratioRn

H(Q2)
depends only onQ2; i.e., it becomes independent of both th
ordern and the hadron, viz.,

Rn
H~Q2!.@F~Q2!#2. ~15!

The scaling function, given by the RHS of Eq.~15!, is di-
rectly the square of the CQ form factor, i.e., the form fac
of a confined object. The important point is that within o
generalized two-stage model the new scaling property~15! is
expected to occur at lowQ2. We point out that, once the CQ
09400
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re

-

um

r

form factor is extracted from known hadron data, the m
ments of the structure function of another hadron can in p
ciple be predicted.

Let us now introduce the recent results obtained atJLab
@6#, where the inclusive electron-proton cross section
been measured in the nucleon resonance regions for va
of Q2 below 4.5 (GeV/c)2 using the CLAS detector. One o
the relevant feature of such measurements is that the C
large acceptance has allowed to determine the cross se
in a wide two-dimensional range of values ofQ2 andx and
has made it possible to directly integrate all the existing d
at fixedQ2 over the whole significantx range for the deter-
mination of the proton momentsMn

p(Q2) with order n>2.
More precisely, the Nachtmann proton moments, defined
@11#

Mn
p~Q2![E

0

1

dx
jn11

x3

313~n11!r 1n~n12!r 2

~n12!~n13!
F2

p~x,Q2!,

~16!

wherer[A114M2x2/Q2 andj[2x/(11r ), have been di-
rectly extracted from the data forn52,4,6,8 @6#. As is well
known, the main advantage of the Nachtmann moments~16!
over the Cornwall-Norton moments~8! is that only with the
former is it possible to cancel out all the finite-Q2 kinemati-
cal corrections due to the nonvanishing mass of the tar
Thus, in what follows Eq.~16! replaces Eq.~8! for H5p.

In Fig. 1 theexperimentalNachtmann momentsMn
p(Q2),

determined in Ref.@6#, are shown in theQ2 range of interest
for this work, namely, 0.1&Q2&2 (GeV/c)2. The contribu-
tion arising from the elastic proton peak (x51) is not in-
cluded and therefore, from now on, the momentsMn

p(Q2)
represent the inelastic part of the proton Nachtmann m
ments.

TheQ2 behavior of the momentsMn
p(Q2) shown in Fig. 1

is characterized by a sharp rise at lowQ2, followed by a
smoother behavior forQ2*1 (GeV/c)2. However, the de-

FIG. 1. Experimental~inelastic! Nachtmann momentsMn
p(Q2)

of the proton versusQ2 from Ref.@6#. The dots, squares, diamond
and triangles correspond ton52, 4, 6, and 8, respectively. Th
statistical errors are reported, but they are not visible.
4-3
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PETRONZIO, SIMULA, AND RICCO PHYSICAL REVIEW D67, 094004 ~2003!
pendence upon the ordern is much more interesting. Indeed
the momentsMn

p(Q2) appear to differ by approximately a
order of magnitude moving fromn to n12. As a result,
though the range of values considered forn is quite restricted
(2<n<8), the values of the corresponding moments
spread over several order of magnitudes. Such a behavio
be qualitatively explained within our generalized two-sta
model in the following way. Let us assume a very simplifi
and quite rough model for the CQ momentum distributi
f j

p(z) in the proton, in which the constituents share exac
just a fraction 1/3 of the proton momentum, viz.,

(
j

ej
2f j

p~x!→d~x21/3!. ~17!

The moments~13! simply become

M̄n
p→S 1

3D n21

, ~18!

implying a factor of'1/9 between the ordersn andn12.
Thus, in Fig. 2 we have reported the ratio~14! obtained using
the experimental Nachtmann momentsMn

p(Q2) @Eq. ~16!#,
shown in Fig. 1, and assuming Eq.~18!. It can clearly be
seen that with respect to the experimental momentsMn

p(Q2)
the spread of the ratioRn

p(Q2) as a function ofn has been
largely reduced. This is an important result obtained wit
very simple hypothesis about the CQ motion in the prot
Figure 2 shows that there is a cleartendency of the data
toward ascaling propertylike Eq. ~15!.

Anyway, we have to consider that Eqs.~17!–~18! imply
that the relative motion of the CQs inside the proton is
glected, which is not a reliable assumption in case of li
constituents. Therefore, in the next section we perform m
realistic estimates of the CQ momentum distribution in

FIG. 2. RatioRn
p(Q2) @Eq. ~14! for H5p] calculated using the

experimental Nachtmann momentsMn
p(Q2) @Eq. ~16!#, shown in

Fig. 1, and assuming ad-like shape for the CQ momentum distr
bution in the proton, namely,( jej

2f j
p(x)5d(x21/3) @see Eq.~17!#.

The meaning of the markers is the same as in Fig. 1.
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proton with the aim of approaching better the scaling pro
erty ~15! as well as of interpreting the scaling function as
~squared! form factor.

III. CQ LIGHT-FRONT MOMENTUM DISTRIBUTIONS
IN THE PROTON

Within the two-stage model the basic theoretical inp
quantity, appearing in Eq.~13!, is the LF momentum distri-
bution

f̄ H~z![(
j

ej
2f j

H~z!. ~19!

Such a distribution results from the motion of the CQs ins
the particular hadronH and in what follows we will explic-
itly limit ourselves to the case of the proton, which is
interest in this work.

In order to evaluate the constituentU andD quark distri-
butions in the proton it is natural to adopt the Hamiltoni
LF formalism @12#. In terms of the intrinsic LF variablesj i

and kW i' ~see the Appendix for their definition! the CQ mo-
mentum distribution in the proton is given by

f Q
p ~z!5

3

2 (
np

E @dj idkW i'# (
$n it i %

d~z2j1!dtQ ,t1

3 z^$j ikW i' ;n it i%uCp
np& z2, ~20!

whereQ5U,D, tU51/2, tD521/2, and@dj idkW i'# stands
for dkW1'dkW2'dkW3'd(kW1'1kW2'1kW3')dj1dj2dj3d(j11j2

1j321). In Eq. ~20!, Cp
np is the proton LF wave function

whose general structure is briefly illustrated in the Append
where also all the other relevant quantities are defined. N
that the CQ distributions~20! are normalized as

E
0

1

dz fU
p ~z!52, E

0

1

dz fD
p ~z!51, ~21!

and satisfy the momentum sum rule

E
0

1

dzz@ f U
p ~z!1 f D~z!#51; ~22!

thus, one hasf̄ p(z)5@4 f U
p (z)1 f D

p (z)#/9.
In the Appendix the CQ momentum distributions~20! are

explicitly written in terms of various SU~6! components
characterizing the nucleon wave function@see Eq.~A13!#. If
a completely SU~6!-symmetric nucleon wave function i
considered, one has alwaysf U

p (z)52 f D
p (z) and therefore the

LF momentum distributionf̄ p(z) becomes~cf. the Appendix!

f̄ p~z!5E dkW'dpW'E @dj i #d~z2j1!
E1E2E3

M0j1j2j3
uwS~kW ,pW !u2.

~23!
4-4
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In order to improve the simpled-like model given by Eq.
~17! we have calculated Eq.~23! adopting a Gaussian ansa
for the proton wave functionwS(kW ,pW ), namely,

wS~kW ,pW !}e2(k213p2/4)/2b2
, ~24!

whereb is a parameter. The results of our calculations
reported in Fig. 3 for various values of the CQ massmU
5mD5m, keeping the parameterb fixed at the valueb
50.3 GeV, which represents the typical CQ momentum
the proton due to the confinement scale. It can be seen
the calculated distributionf̄ p(z) is peak shaped with a loca
tion of the peak and a width which sharply depend onm for
values ofm pertaining to the so-called light-CQ sector. Th
d-like model ~17!, characterized by a zero-width peak l
cated atx51/3, can berecovered only in the heavy-quar
limit m→`. As the CQ mass decreases, the width of
peak increases and the location of the peak moves to va
of x less than1/3. Note that~i! the widths are asymmetri
around the peaks in order to keep the average fraction o
momentum carried by each CQ equal to 1/3 at any value
m, and~ii ! the distributionf̄ p(z) depends only on the param
eter ratiob/m. Thus, the effects of the CQ motion on th
shape off̄ p(z) are very important and should be taken in
account, particularly for light CQ masses.

It is well known~see Ref.@13# and references therein! that
a good description of hadronic mass spectra requires s
dependent components in the effective interaction am
CQs. Such components generate SU~6! breakings in the pro-
ton wave function~see, e.g., Ref.@14#!. On the contrary the
Gaussian ansatz~24! is a pure SU~6!-symmetric wave func-
tion and therefore we should investigate SU~6!-breaking ef-
fects in the calculation of the CQ light-front momentum d
tribution f̄ p(z). To this end we have considered two of th
most sophisticated CQ potential models available in the
erature, namely, the one-gluon-exchange model of Ref.@13#

FIG. 3. Light-front momentum distributionf̄ p(z) @Eq. ~23!#, cal-
culated assuming the SU~6!-symmetric Gaussian ansatz~24! for the
proton wave function withb50.3 GeV. The solid, dashed, dotte
and dot-dashed lines correspond to a CQ mass equal tom50.22,
0.33, 0.44, and 0.55 GeV, respectively.
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and the chiral model of Ref.@15#, based on Goldstone-boso
exchange arising from the spontaneous breaking of ch
symmetry. The results obtained forf̄ p(z) are shown in Fig. 4
and compared with those corresponding to the Gaussian
satz~24! for different values of the parameter ratiob/m. It
can clearly be seen that, as far asf̄ p(z) is concerned, the
SU~6! breaking contained in the CQ models of Refs.@13,15#
can be approximated to a very good extent by using a Ga
ian ansatz with appropriate values of the parameter r
b/m.

IV. SCALING ANALYSIS OF THE EXPERIMENTAL
MOMENTS

In this section we apply our generalized two-stage mo
to the analysis of the data shown in Fig. 1, taking into a
count~i! the motion of the CQs adopting the Gaussian ans
~24! for the proton wave function, as described in the pre
ous section, and~ii ! the effects of finiteQ2, which are ex-
pected to be relevant due to theQ2 range of our analysis
@0.1–0.2&Q2 (GeV/c)2&1 –2#.

Let us start by considering the first of the two quot
effects. In Fig. 5 we have reported the results obtained
the ratio Rn

p(Q2) calculated using the experimental Nach
mann momentsMn

p(Q2) @Eq. ~16!# and assuming the Gauss
ian ansatz ~24! for the proton wave function withb
50.3 GeV and m50.25 GeV ~corresponding to b/m
51.2). The spread of the values of the ratioRn

p(Q2) is dras-
tically reduced with respect to the case of thed-like model
~17! ~cf. Fig. 2!. Note that, as already pointed out~see Sec.
II !, the results atn52 appear to deviate significantly from
those corresponding to larger orders. We have checked
the general qualitative shape of the results shown in Fig
does not change significantly when the value of the para
eter ratiob/m is varied.

FIG. 4. Light-front momentum distributionf̄ p(z) @Eq. ~19! for
H5p], calculated using the full proton wave function correspon
ing to the one-gluon-exchange model of Ref.@13# ~solid circles! and
to the chiral model of Ref.@15# ~open circles!. The solid and dashed
lines correspond to the case of the SU~6!-symmetric Gaussian an
satz~24! with b/m51.8 and 1.2, respectively.
4-5
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Though the results shown in Fig. 5 exhibit a drastic i
provement toward a significant reduction in the depende
of the ratioRn

p(Q2) upon the ordern, the scaling property
~15! is still far from being reached. Moreover, theQ2 behav-
ior of Rn

p(Q2) is completely at variance with what is natu
rally expected for a squared form factor. The main drawb
is clearly the use of Eq.~13!, which is meaningful only at
largeQ2. In our opinion, in order to restore a proper beha
ior of Rn

p(Q2), we have to account for ‘‘higher-twist’’ effects
which can be divided into the three following classes:~i! the
inelastic pion threshold, which sets aQ2-dependent maxi-
mum value for thex range, given byxmax5xp5Q2/@Q2

1(M1mp)22M2# ~note thatxp largely differs from 1 at
low Q2); ~ii ! kinematical power corrections in the physic
regionx<xp ; and ~iii ! dynamical power corrections due t
final-state interactions responsible for the resonance bu
in x space.

In what follows we will consider the first two effects only
The pion threshold can be simply taken into account by m
tiplying the distributionf̄ p(x) by a threshold factorFthr(W),
where W is the produced invariant massW
5AM21Q2(12x)/x, having the propertyFthr(W<M
1mp)50 and Fthr(W→`)51. A simple and parameter
free choice dictated by pure phase space effects is

Fthr~W!5A12S M1mp

W D 2

. ~25!

We stress that by means ofFthr(W) we account for that par
of higher twists which are related to the final-state pha
space constraint.

The kinematical corrections to Eq.~13! originate from the
nonvanishing value of the target mass, i.e., the proton m
M. The way to construct such corrections is well known
DIS @16# and therefore, by analogy, we replace the distrib
tion f̄ p(x) by the quantityf̄ TM

p (j,Q2), given explicitly by

FIG. 5. RatioRn
p(Q2) @Eq. ~14! for H5p] calculated using the

experimental Nachtmann momentsMn
p(Q2) @Eq. ~16!# shown in

Fig. 1 and assuming the Gaussian ansatz~24! for the proton wave
function with b50.3 GeV andm50.25 GeV. The meaning of the
markers is the same as in Fig. 1.
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f̄ TM
p ~j,Q2!5

x2

r 3

f̄ p~j!

j2
1

6M2

Q2

x3

r 4E
j

j*
dj8

f̄ p~j8!

j8j

1
12M4

Q4

x4

r 5E
j

j*
dj8

f̄ p~j8!

j8j
~j82j!, ~26!

where j is the Nachtmann variable,x5j/(12M2j2/Q2),
and j* [min(1,Q/M ) is the maximum allowed value ofj
~cf. Ref. @9#!. It should be reminded that the valuej* is
larger than the inelastic pion thresholdjp . Therefore, the
support in which the functionf̄ TM

p (j,Q2) is defined contains
an unphysical region extending fromjp to j* .

We point out that Eq.~26! expresses the fact that th
asymptotic functionf̄ p receives a series of power correctio
having a scale of order of the proton massM. When the
threshold factorFthr(W) is neglected@i.e., Fthr(W)51], the
use of the Nachtmann moments cancels out exactly all
power corrections contained on the RHS of Eq.~26!. On the
contrary, when the threshold factor is considered@i.e.,
Fthr(W)5” 1], only part of the target-mass corrections can
reabsorbed by the use of the Nachtmann moments. As a
ter of fact, for consistency with the experimental data sho
in Fig. 1, the Cornwall-Norton moment~13! has to be re-
placed by a Nachtmann one. In doing that the quantityM̄n

p is
no longer independent ofQ2, and therefore Eqs.~12!,~13!
are now replaced by

Mn
dual~Q2!5@F~Q2!#2

•M̄n
p~Q2!, ~27!

with

M̄n
p~Q2![E

0

j*
dj

jn11

x3

313~n11!r 1n~n12!r 2

~n12!~n13!

3
r ~11r !

2
j f̄ TM

p ~j,Q2!Fthr~W!, ~28!

wherer (11r )/25dx/dj arises from the change of variable
from x to j. In Eq. ~28! we have putj* as the upper limit of
integration; however, as a result of the threshold factor~25!,
the integration extends only up tojp and therefore part of
the target-mass corrections survives after integration.
stress again that this is an important point, because Eq.~28!
reduces exactly to Eq.~13! when the threshold facto
Fthr(W) is disregarded,1 in agreement with the properties o
the Nachtmann moments.

We have calculated Eq.~28! using the target-mass
corrected momentum distributionf̄ p(j,Q2) starting from the
Gaussian ansatz~24! for the proton wave function and adop
ing the threshold factor~25!. The results for the momen
ratio Rn

p(Q2) obtained atb50.3 GeV andm50.25 GeV are
reported in Fig. 6. It can clearly be seen thatthe scaling

1More precisely, when the threshold factorFthr(W) is disre-

garded, Eq.~28! reduces at any value ofQ2 to *0
x* dxxn21 f̄ p(x),

wherex* 5min(1,Q/M ), as can be easily checked numerically.
4-6
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property~15! holds at n.2 even in a linear scale. Moreove
the scaling function closely resembles a squared mono
form factor @F(Q2)#251/(11r Q

2 Q2/6)2 corresponding to a
CQ size equal tor Q50.21 fm.

The quality of the scaling exhibited in Fig. 6 is extreme
good for Q2*0.3 (GeV/c)2, while it deteriorates at very
low values ofQ2 @but still the scaling is approximately sa
isfied within '30% even atQ2'0.1 (GeV/c)2]. This find-
ing is not surprising at all, and it can be understood as
lows. Let us consider the operator product expansion~OPE!
of the moments of the proton structure function in terms
local operators acting on elementary~pointlike! fields. The
so-called higher twists are known to describe correlati
among partons. Their contribution to the OPE is given
matrix elements of a series of several operatorsOn produc-
ing power-suppressed terms of the form (Ln

2/Q2)(tn22)/2,
wheretn is the twist andLn is the scale associated with th
operatorsOn . The scaleLn is expected to be proportional t
1/Rn , whereRn is the typical average distance of the pa
tonic correlations generated by the operatorsOn . Which
kind of higher twists are accounted for by the spatial ext
sion of the CQs? It is clear that we can distinguish two ba
types of partonic correlations: those among partons ins
the CQ and those between partons belonging to diffe
CQs, which means correlations between CQs~in the final
state!. The former are characterized by a value ofRn close to
the CQ size, while the latter correspond to a larger value
Rn of the order of the confinement~hadronic! size. Corre-
spondingly, the scaleLn is larger for partonic correlation
inside the CQ and smaller for partonic correlations amo
different CQs. In our model only the first type of high
twists can be thought to be accounted for by the CQ fo

FIG. 6. RatioRn
p(Q2) @Eq. ~14! for H5p] calculated using the

experimental Nachtmann momentsMn
p(Q2) @Eq. ~16!# shown in

Fig. 1 and the theoretical momentsM̄n
p(Q2) given by Eq.~28!. The

momentum distributionf̄ p(j) corresponds to the Gaussian ans
~24! for the proton wave function withb50.3 GeV and m
50.25 GeV. The dotted line represents the squared monopole
factor @F(Q2)#251/(11r Q

2 Q2/6)2 corresponding to a CQ siz
equal tor Q50.21 fm. The meaning of the markers is the same a
Fig. 1.
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factor in some effective way.2 Our model does not include
power corrections arising from correlations among differe
CQs in the final state. Such ‘‘long-range’’ higher twists ha
a low scale of the order ofLQCD , and therefore we expec
that they should play an important role mainly forQ2

&LQCD
2 '0.140.2 (GeV/c)2, i.e., in the Q2-range where

the scaling shown in Fig. 6 is only approximate. The estim
of the effects of such ‘‘long-range’’ higher twists is not a
easy task, and it is well beyond the aim of the present pa
Note that the role of the ‘‘long-range’’ higher twists is eve
more evident inx space, because these higher twists are
sponsible for the huge resonance bumps which are know
characterize the structure functionF2

p(x,Q2) at low values of
Q2.

We should now investigate the impact of different choic
of the functional form of the threshold factorFthr(W) as
well as of different values of the parameter ratiob/m. We
have found that the scaling property~15!, clearly exhibited in
Fig. 6, is not very sensitive to the specific choice ofFthr(W)
and of the parameter ratiob/m. On the contrary the shape o
the scaling function is affected both by the choice
Fthr(W) and by the value of the parameter ratiob/m. It
turns out that~i! the use of the specific form~25! minimizes
the scaling violation at the lowestQ2; ~ii ! when the ratio
b/m changes from the value 1.2, considered in Fig. 6, to
value 1.8, the CQ sizer Q changes correspondingly from
0.21 to 0.27 fm.

We point out that an important consistency requirem
can be formulated: the CQ form factor extracted from t
scaling function and the model used for the wave funct
should be consistent with elastic nucleon data. This isa cru-
cial requirementnecessary to interpret the scaling function
a ~squared! form factor and consequently to get an estima
of the CQ size. To check this point we have calculated
nucleon elastic form factors adopting the covariant LF a
proach of Ref.@14#. There the one-body approximation fo
the electromagnetic~e.m.! current operatorJm is adopted,
viz.,

Jm.J1
m5(

j
FF1

j ~Q2!gm1F2
j ~Q2!

ismnqn

2m G , ~29!

whereQ252q•q. The approach of Ref.@14# is character-
ized by the choice of a frame whereq150, which allows
one to eliminate the contribution of the so-calledZ graph
~i.e., the pair creation from the vacuum@17#!. The important
connection with the Feynmann triangle diagram is fully d
cussed in Ref.@18#, and the superiority of the choiceq1

50 for the one-body approximation~29! is clearly illustrated
in Ref. @19#.

The matrix elements of the~on-shell! nucleon e.m. curren
read as

2Indeed, there is no rigorous derivation of the CQ picture fro
QCD.

rm

n
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I n
N8 nN

m
[^CN

nN8 uJmuCN
nN&

5ū~P8,nN8 !H F1
N~Q2!gm1F2

N~Q2!
ismnqn

2M J u~P,nN!,

~30!

whereu(P,nN) is a Dirac spinor,q5P82P andCN
nN is the

LF wave function of the nucleon described in the Append
i.e., the same wave function used to calculate the momen
distribution f̄ N(z). In what follows we adopt a Breit frame
where the four-momentum transferq[(q0,qW ) is given by
q050 andqW 5(qx ,qy ,qz)5(Q,0,0).

The nucleon Sachs form factors are then given explic
by @14#

GE
N~Q2!5F1

N~Q2!2
Q2

4M
F2

N~Q2!5
1

2
TrH I 1F12

Q

2M
isyG J ,

~31!

GM
N ~Q2!5F1

N~Q2!1F2
N~Q2!52

P1

Q
Tr$I yisz%, ~32!

wheresy andsz are ordinary 232 Pauli matrices.
We have then calculated Eqs.~31!,~32! using the Gaussian

ansatz~24! for the nucleon wave function and adopting t
one-body approximation~29! with both Dirac and Pauli CQ
form factors having the following simple behavior:F1

j (Q2)
5ej /(11r Q

2 Q2/6) and F2
j (Q2)5k j /(11r Q

2 Q2/12)2. The
values of the CQ anomalous magnetic momentskU andkD
are fixed by the requirement of reproducing the experime
values of proton and neutron magnetic moments. The res
of the calculations performed with the same parame
adopted in case of the ratioRn

p(Q2) shown in Fig. 6, namely,
b50.3 GeV, m50.25 GeV, andr Q50.21 fm, are reported
in Fig. 7 as the dashed lines. Note that the combina
@F(Q2)#2 given by Eq.~11!, which is the one relevant for th
scaling function~15!, turns out to be almost totally domi
nated by the contribution of the Dirac form factorsF1

j (Q2)
and it is basically insensitive to the presence of the P
form factorsF2

j (Q2).
It can be seen that the calculated form factors sligh

overestimate the data, so that we can conclude that as a
approximation the scaling function of Fig. 6 may be inte
preted as a squared CQ form factor. A better consistency
the data can be reached through slight variations of the
rameters of our model, namely,r Q andb/m. For instance, a
nice agreement with the elastic data can be simply recov
by increasing the CQ size up tor Q50.33 fm, as shown by
the solid lines in Fig. 7. However, we can also ascribe
origin of the small discrepancies with the elastic data to
fact that the effects of the dynamical correlations among
CQs in the final state are so far missing in our low-Q2

model. As already pointed out, the inclusion of such effe
is not an easy task and it is well beyond the aim of
present paper.
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V. CONCLUSIONS

In this work we have first generalized the two-sta
model of Refs.@4,5#, originally developed in the DIS regime
to values ofQ2 below the scale of chiral symmetry breakin
and above the QCD confinement scale, i.e., 0.1–
&Q2 (GeV/c)2&1 –2. The essential ingredient is the incl
sion of the contribution to the inelastic hadronic structu
functions arising from theelasticcoupling at the constituen
quark level. We have shown that within such a model a n
scaling property@see Eq.~15!# is expected to occur in the
inelastic hadronic structure functions, provided a reasona
model for the wave function describing the motion of t
constituents inside the hadron is considered. Moreover,
resulting scaling function can be interpreted as the~squared!
form factor of the constituent quark, i.e., the form factor o
confined object.

Then we have analyzed the recent experimental dete
nations of the Nachtmann moments of the inelastic struc
function of the protonF2

p(x,Q2), obtained atJLab @6#, for
values ofQ2 ranging from'0.1 to'2 (GeV/c)2. The im-
portant results we have obtained are the scaling property~15!
is well satisfied by the data, the CQ form factor extract
from the inelastic proton data is overall consistent with th
one required to explain theelasticnucleon data, and the con
stituent quark size turns out to be'0.2–0.3 fm.

Our findings clearly suggest that at low momentum tra
fer the inclusive proton structure functionF2

p(x,Q2) origi-
nates mainly from the elastic coupling withextended objects
inside the proton.

A crucial, mandatory check of the extracted constitue
form factor is provided by the analysis of the moments of
polarized proton structure functiong1

p(x,Q2). Indeed for
0.1–0.2&Q2 (GeV/c)2&1 –2 a scaling property analogou
to Eq. ~15! is expected to hold also for the Nachtmann m
ments ofg1

p(x,Q2). The crucial point is that the two scalin
functions, corresponding to the nonpolarized and polari
cases, should coincide and provide the same constit
quark form factor.

Measurements ofg1
p(x,Q2) at low values ofQ2 are still

undergoing atJLab.

APPENDIX: THE NUCLEON LIGHT-FRONT
WAVE FUNCTION

In this appendix we briefly recall the basic notations a
the relevant structure of the nucleon wave function in
Hamiltonian LF formalism~see@12#!. The nucleon LF wave
function is eigenstate of the noninteracting LF angular m
mentum operatorsj 2 and j z , where the unit vectorẑ
5(0,0,1) defines the spin quantization axis. The squa
free-mass operator is given by

M0
25(

i 51

3 ukW i'u21m2

j i
, ~A1!

wherem is the mass of the constituentU andD quarks and
4-8
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FIG. 7. Elastic Sachs form factors of the nucleon,GE
p(Q2) ~a!, GM

p (Q2) ~b!, GE
n(Q2) ~c!, and 2GM

n (Q2) ~d!, calculated using the
covariant LF approach of Ref.@14#. The Gaussian ansatz~24! is adopted for the proton wave function withb50.3 GeV andm
50.25 GeV. In the one-body current~29! both Dirac and Pauli CQ form factors are included, namely,F1

j (Q2)5ej /(11r Q
2 Q2/6) and

F2
j (Q2)5k j /(11r Q

2 Q2/12)2. The dashed and solid lines correspond tor Q50.21 and 0.33 fm, respectively~see text!. The values of the CQ
anomalous magnetic moments,kU520.064 andkD50.017, have been fixed by the requirement of reproducing the experimental valu
proton and neutron magnetic moments. In~a! and ~b! solid and open circles, open and solid squares are the experimental data from
@20~a!–~d!#, respectively. In~c! open squares, solid squares, open diamonds, open triangles, solid circles, solid diamonds, and trian
the data from Refs.@21~a!–~g!#, respectively. In~d! solid circles, open circles, solid and open squares are the data from Refs.@22~a!–~d!#,
respectively.
1

th

2 2

ve
j i5
pi

P1 ,

kW i'5pW i'2j i PW' ~A2!

are the intrinsic LF variables. The subscript' indicates the
projection perpendicular to the spin quantization axis and
plus component of a four-vectorp[(p0,pW ) is given byp1

5p01 ẑ•pW ; finally P̃[(P1,PW')5 p̃11 p̃21 p̃3 is the
nucleon LF momentum andp̃i the CQ one. Note that( ij i
51.

In terms of the longitudinal momentumkiz , related to the
variablej i by
09400
e

kiz[
1

2
S j iM02

ukW i'u 1m

j iM0
D , ~A3!

the free-mass operator acquires a familiar form, viz.,

M05(
i 51

3

Ei5(
i 51

3

Am21ukW i u2, ~A4!

with the three-vectorskW i defined as

kW i[~kW i' ,kiz!. ~A5!

Note that kW i are internal variables satisfyingkW11kW21kW3
50. Disregarding the color variables, the nucleon LF wa
function reads as
4-9
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^$j ikW i' ;n i8t i%uCN
nN&

5A E1E2E3

M0j1j2j3
(
$n i %

^$n i8%uR †u$n i%&•^$kW i ;n it i%uxN
nN&,

~A6!

where nN is the third component of the nucleon spin, t
curly braces$% mean a list of indexes corresponding toi
51,2,3, andn i(t i) is the third component of the CQ spi
~isospin!. The rotationR †, appearing in Eq.~A6!, is the
product of individual~generalized! Melosh rotations, viz.,

R †5)
j 51

3

Rj
†~kW j' ,j j ,m!, ~A7!

where@23#

Rj~kW j' ,j j ,m![
m1j jM02 isW ( j )

•~ n̂3kW j'!

A~m1j jM0!21ukW j'u2
, ~A8!

with sW being the ordinary Pauli spin matrices.
Neglecting the very smallP andD waves in the nucleon

~cf. @14#! we can limit ourselves to canonical~or equal-time!
wave function corresponding to a total orbital angular m
mentum equal toL50; one has

^$kW i ;n it i%uxN
nN&5wS~kW ,pW !

1

A2
@FnNtN

00 1FnNtN

11 #

1wS
s8
~kW ,pW !

1

A2
@FnNtN

00 2FnNtN

11 #

1wS
a8
~kW ,pW !

1

A2
@FnNtN

01 1FnNtN

10 #

1wA~kW ,pW !
1

A2
@FnNtN

01 2FnNtN

10 #,

~A9!

wherewS(kW ,pW ), wS
s8
(kW ,pW ), wS

a8
(kW ,pW ), and wA(kW ,pW ) are the

completely symmetric (S), the two mixed-symmetry (Ss8 and
Sa8), and the completely antisymmetric~A! wave functions,

respectively. In Eq.~A9! the variableskW andpW are the Jaco-
bian internal coordinates, defined as

kW5
kW12kW2

2
,

pW 5
2kW32~kW11kW2!

3
, ~A10!

with kW i given by Eq.~A5!. Finally, the spin-isospin function
FnNtN

S12T12, corresponding to a total spin (1/2) and total isosp

(1/2), is defined as
09400
-

FnNtN

S12T125(
MS

K 1

2
n1

1

2
n2US12MSL

3K S12MS

1

2
n3U12 nNL(

MT
K 1

2
t1

1

2
t2UT12MTL

3K T12MT

1

2
t3U12tNL , ~A11!

whereS12(T12) is the total spin~isospin! of the quark pair
(1,2). The normalization of the various partial waves in E
~A9! is

E dkWdpW uwS~kW ,pW !u25PS ,

E dkWdpW uwS
s8
~kW ,pW !u25E dkWdpW uwS

a8
~kW ,pW !u25PS8 /2,

E dkWdpW uwA~kW ,pW !u25PA , ~A12!

with PS1PS81PA51.
Disregarding the completely antisymmetric compone

wA(kW ,pW ), which is usually quite negligible in the nucleo
~cf. @14#!, the constituentU andD momentum distributions,
defined in Eq.~20!, read explicitly as

f U
p ~z!52E dkW'dpW'E @dj i #d~z2j1!

E1E2E3

M0j1j2j3
@ uwS~kW ,pW !u2

1uwS
s8
~kW ,pW !u21uwS

a8
~kW ,pW !u21wS~kW ,pW !wS

s8
~kW ,pW !#,

f D
p ~z!5E dkW'dpW'E @dj i #d~z2j1!

E1E2E3

M0j1j2j3
@ uwS~kW ,pW !u2

1uwS
s8
~kW ,pW !u21uwS

a8
~kW ,pW !u222wS~kW ,pW !wS

s8
~kW ,pW !#.

~A13!

It can be seen that the relativistic composition of the C
spins ~i.e., the Melosh rotations! does not affect at all the
~unpolarized! LF momentum distributionf Q

p (z). Moreover,
any flavor dependence off Q

p (z) turns out to be driven by the
interference between the completely symmetric~S! and
mixed-symmetry (Ss8) wave functions, the latter being gen
erated mainly by the spin-spin component of the interact
among CQs which are present both in the one-glu
exchange model of Ref.@13# and in the chiral model of Ref
@15#. In the limit of exact SU~6! symmetry one haswS

s8

5wS
a8
50 and Eq.~23! is recovered.
4-10
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