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Possible evidence of extended objects inside the proton
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Recent experimental determinations of the Nachtmann moments of the inelastic structure function of the
proton,FS(x,Q?), obtained at Jefferson Lab, are analyzed for values of the squared four-momentum transfer
Q? ranging from~0.1 to ~2 (GeV/c)?. It is shown that such inelastic proton data exhibit a new type of
scaling behavior and that the resulting scaling function can be interpreted as a constituent form factor consis-
tent with the elastic nucleon data. These findings suggest that at low momentum transfer the inclusive proton
structure function originates mainly from the elastic coupling with extended objects inside the proton. We
obtain a constituent size ¢£0.2-0.3 fm.
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[. INTRODUCTION convolution of the structure function of the constituents,
FL(x/z,Q?), with the light-front (LF) momentum distribu-

For a long time hadronic spectroscopy and deep inelastition f]-H(z) of the jth constituent inside the hadradt, viz.,
scattering(DIS) data have been the two main sources of
information on hadron structure. The investigation of hadron 1 [x
mass spectra has led to the introduction of the concept of FA(x,Q)=2> f dzfjH(z)FJZ(—,Q2
quarks[1], leading to the very fruitful idea that meson and I z
baryons are bound states of two and three quarks. Such
quarks are commonly referred to as constituent quarksvherezis the LF momentum fraction carried by the constitu-
(CQ9. The DIS data(starting from the pioneering experi- ent in the hadron. A convolution analogous to EL. holds
ments at SLAC in the 1960F2]) have been successfully as well for each partonic density in the hadron in terms of the
interpreted in terms of a short-distance partonic structure oforresponding partonic density inside the constituents. The
the hadrons, i.e., the presence of pointlike constituents insidiatter can be obtained by a deconvolution of available data
the hadrong3]. on a hadronH, provided a reasonable model for the wave

With the advent of quantum chromodynami€CD) par-  function describing the motion of the constituents in the had-
tons have been identified with current quarks and gluons, i.erpnH is considered. Then the structure function of a different
with the fundamental degrees of freedom of the QCD La-hadronH’ can be predicted once its wave function is given.
grangian. On the other hand, a rigorous derivation of theSuch a procedure has been applied in [Refto predict the
CQs from QCD is lacking, but CQs are commonly believedstructure function of the pion from the known nucleon struc-
to be quasiparticles emerging from the dressing of valenceure function, and the final result was that the two-stage
quarks with gluons and quark-antiquark pairs. If CQs aremodel based on Eq1l) is supported by data, at least as a first
confined objects, they should be connected to each other lyood approximation.
color strings, which may have their own partonic content. In  The following question naturally arises: is the two-stage
the resolution range in which the sea-quark and gluon conmodel a good approximation also far from the deep inelastic
tent of the strings is not probed, one is naturally lead to try taegime? In particular, can the model be generalized in such a
explain the DIS data only in terms of CQs having a structureway to predict hadron structure functions for valuesQof

The idea to use CQs as an intermediate step between thelow and around the scale of chiral symmetry breaking,
current quarks and the hadrons is not new at all and indeed it, ~1 GeV? The aim of this paper is to answer such a ques-
dates back to the 19704]. At that time a two-stage model tion by extending the two-stage model in order to include the
for the parton distributions was proposed, in which any hadtow-Q? regime and to test it against recent proton structure
ron contains a finite number of CQs having a partonic strucfunction data obtained in Hall B at Jefferson Lab with the
ture. The latter depends only on short-distartbggh-Q?) CLAS spectrometdr6]. It will be shown that the data exhibit
physics, which is independent of the particular hadron, whilea new type of scaling behavior, expected within the general-
the motion of the CQs inside the hadron reflects the nonpeiized two-stage model, and that the resulting scaling function
turbative (low-Q?) physics, which depends on the particular can be interpreted as a CQ form factor consistent with the
hadron. Therefore, within such a picture the DIS structureelastic protor{and neutropdata. These findings suggest that
function ofahadroan(x,Qz), can be simply written as the at low momentum transfer the inclusive proton structure
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function originates mainly from the elastic coupling wék-  where, as previously anticipated, we have kept the simplified

tended objects inside the protoklVe obtain a CQ size of convolution form in order to avoid up-to-now inessential

~0.2-0.3 fm. complications due to finit&?. The elastic part of the CQ
The plan of the paper is as follows. The generalization ofstructure function reads explicitly as

the original two-stage model to low values@f is presented ,

in Sec. Il and a new type of scaling behavior, which should FX(x',Q3)=G2(Q%) 8(x' —1), 3

hold for the moments of the structure function, is proposed.

In Sec. lll the basic thsoretical input quantity, i.e., the LFWhere

momentum distributiorfi'(z) of a CQ inside the hadron, is :

discussed and estimated in case of the proton. In Sec. IV we [G_(Qz)]zz[GJE(QZ)]ZJr 1GL(QH)]?

investigate the possible occurrence of the new scaling prop- J 1+-7

erty in the receniLabdata[6], as well as the possible inter- .

pretation of the resulting scaling function as the first experi- =[FLUQ) P+ Q)T )

mental evidence of the CQ form factor. Our conclusions are . . .
summarized in Sec. V. with F12)(Q?) and Ggwy(Q?) representing the Dirac

(Pauli and electriclmagneti¢ Sachs form factors of thgh
CQ, respectively. Finally, in Eqi), 7-EQ2/4mj2 with m;

Il. EXTENSION OF THE TWO-STAGE MODEL TO LOW being thejth CQ mass. Thus, the inelastic structure function
MOMENTUM TRANSFER of the hadrorH becomes

In this section the original two-stage model of R¢#5] N
will be generalized in order to include the 10@2 regime. As FHx,09)=> f dsz(Z)Fi(inel)(f QZ)
a first step, let us develop such a generalization in a simpli- 2 T Jx ! 2 z'
fied form, which avoids many complications in the final for-
mulas arising from a complete treatment of fir@é-gffects, ' +> [G;(Q?)]%- fJH(X)_ (5)
but at the same time illustrates the essential physical motiva- j
tions. The proper treatment of kinematical fin@&- effects
will be recovered later on in Sec. IV. In the DIS regime the elastic CQ contribution is suppressed
In a DIS experiment at high values 6§ the internal by the CQ form factors and one gets
structure of2 a CQ is probed, whereas for sufficiently low . «
values ofQ“ such a structure cannot be resolved anymore. H 2 H j(ine| ~ ~2
Generally speaking, we expect that the turning point between Fa(x.Q )D_|>S§j: Jx dzfi(2)F> (z’Q ) ©
the highQ? and lowQ? regimes is around the scale of chiral
symmetry breakingA ,~1 GeV. As Q? decreases below On the contrary, for low values @? the inelastic CQ con-
~A)2(, we have two expectationsi) the inelastic coupling  tribution is expected to become negligible and one could
of the incoming virtual boson with the CQ becomes less andave
less important, at least because final states are limited by
phase space effect§i) the elasticcoupling of the incoming
virtual boson with the CQ becomes more and more impor- FS(X’QZ) ) - zzj: [Gi(Qz)]ZX'fjH(X)' @
tant. \ZNe point out that at very low values @f of the order AQep=Q*=Ay
of Adcp[~0.1-0.2 (GeV¢)?] the reinteractions among . . . .
CQs Qin the final state, which are not considered in our However, it should be immediately reallzzed that Eq)
present analysis, cannot be neglected any rfeee later on, cannot hold at. eacizi valuze. .Indeed, at I.OVQ the hadron
Sec. Il). Therefore, theQ? range where we want to extend structure functionF3 (x,Q%) is characterized by resonance

the two-stage model is qualitatively given by 0_1_0_2bumps emerging over a smooth background, whereas the
=Q? (GeVic)2=1-2 elastic CQ contribution is expected to have a smoathape

only, governed by the LF momentum distributioﬁ}'s‘(x).
Therefore, we assume that E@) holds in a dual sense: the

X averages OF; over each of the resonance bumps are rep-
resentative of the elastic CQ contributipsee the right-hand

Let us start by writing the CQ structure functicﬁi ap-
pearing in the convolution formulél) as the sum of two
terms FL=FL("e) 1 Fi(¢) " corresponding, respectively, to

the inelastic and elastic virtual boson coupling with the CQ. * . .
Then, the inelastic structure function of a hadrBﬁ(x,Qz), side(RHS) side of Eq.(7)] at th_e corresponding mean values
of x. Such a C(Qhadron duality can be conveniently ex-

can be written as the sum of two terms, representing theressed in terms of moments of the hadron structure func-
inelastic and elastic CQ contributions, respectively. One ha on. defined as

1 o X 1
F;'(x,Q2)=Ej fx dzf}*(z)FJZ('"e')<E,Q2) ME(QZ)EI dxxX'2F4(x,Q2). )
0
+> flefH(Z)F£(9|)(§’Q2>’ (2) In a similar way we can define théual moments as the
T x ) z moments of the elastic CQ contribution, given by
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1 T T T T T T NEREE
MguaI(Qz):J dxx”‘zz [Gj(Qz)]ZX'fJH(X)- (9) 107 _ djﬂmmm [osssccsse (XJO()(_?
0 ! E O 3

.2 FO
The occurrence of a CQ-hadron duality f@?sAi can be 10 3 ijjﬂjj .
now translated into the dominance of the dual momentsNA 10° _ W
M3“2(Q?) for low values ofn, viz., <] = OOQW
2 4 O 4
MR(QD) =M. w0 = S

o

F N
105 [V &

The limitation to low values oh arises from the fact that as
nincreases the momeMy(Q?) is more and more sensitive 10° L 1
to the rapidly varying bumps of the resonances. Therefore E A
Eqg. (10) cannot hold at very large values of (see Refs. A N N R T
[7-9] for the case of the parton-hadron Bloom-Gilman dual- 0.0 0.5 1.0 1.5 2.0
ity [10]). At the same time it should be pointed out that the 5

dual relation(10) is expected to hold only fan>2, because @ (GeVrc)

2y _ (lqvpEH N e ciqnifi
the second momenM,(Q%)=JqdxF;(x,Q%) is signifi- FIG. 1. Experimentalinelasti Nachtmann moments!?(Q?)
cantly affected by the low-region where the concept of of the proton versug? from Ref.[6]. The dots, squares, diamonds,
valence dominance may become unreliable. and triangles correspond t@=2, 4, 6, and 8, respectively. The

Let us introduce the squared form fac{d®(Q?)]? de-  statistical errors are reported, but they are not visible.
fined as

form factor is extracted from known hadron data, the mo-
> [G(QY)]? > [FL(Q?)12+ 7 FL(Q?)]? ments of the structure function of another hadron can in prin-
2z ] g ciple be predicted.
[F(ROI"= - ' Let us now introduce the recent results obtainedlath
E ejz 2 ejz [6], where the inclusive electron-proton cross section has
! ! 11 been measured in the nucleon resonance regions for values
D o Q? below 4.5 (GeVt)? using the CLAS detector. One of
which is normalized to 1 at the photon point. Assumingthe relevant feature of such measurements is that the CLAS
SU(2)-symmetric CQ form factors, Eq9) becomes large acceptance has allowed to determine the cross section
in a wide two-dimensional range of values @f andx and
Mgua'(Q2):[|:(Q2)]2. ME , (12 has made it possible to directly integrate all the existing data
at fixed Q2 over the whole significant range for the deter-
with mination of the proton momentsl?(Q?) with ordern=2.
More precisely, the Nachtmann proton moments, defined as

W:fldxxHE e2H(x). (13 [
0 ]

1 1 343(n+1)r+n(n+2)r?
Jo o e ez AR
(16

If one possesses a reasonable model for the CQ momentumP(Q?)=

distributionsf}'(x), the momentav! can be estimated and
therefore the ratio

H/ N2y nrHy~2 i H wherer=\1+4M?x?/Q? and¢=2x/(1+r), have been di-
R (Q%)=M,(Q%)/My (14 rectly extracted from the data for=2,4,6,8[6]. As is well
known, the main advantage of the Nachtmann momgr@s
over the Cornwall-Norton moment8) is that only with the
former is it possible to cancel out all the fini@? kinemati-
cal corrections due to the nonvanishing mass of the target.
Thus, in what follows Eq(16) replaces Eq(8) for H=p.

In Fig. 1 theexperimentaNachtmann momentsi 2(Q?),

determined in Ref{6], are shown in th&? range of interest
for this work, namely, 0.£Q?<2 (GeV/c)2. The contribu-

can be constructed starting from the full momemg(Qz)
[Eq. (8)]. The ratioR(Q?) should generally depend on both
n and Q? as well as on the hadroH. However, when the
underlying CQ picture holds, the CQ-hadron duality) is
expected to hold as well and, consequently, the rla'ﬂ(JQZ)
depends only o®?; i.e., it becomes independent of both the
ordern and the hadron, viz.,

RH(Q)=[F(Q))]2. (15) tion arising from the elastic proton peak=1) is not in-
" cluded and therefore, from now on, the momekt§(Q?)
The scaling function, given by the RHS of E@.5), is di- represent the inelastic part of the proton Nachtmann mo-

rectly the square of the CQ form factor, i.e., the form factorments.

of a confined object. The important point is that within our ~ The Q? behavior of the moment# 2(Q?) shown in Fig. 1
generalized two-stage model the new scaling propdyis is characterized by a sharp rise at |@¢, followed by a
expected to occur at lo®@?. We point out that, once the CQ smoother behavior foQ?=1 (GeV/c)2. However, the de-
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proton with the aim of approaching better the scaling prop-
erty (15) as well as of interpreting the scaling function as a
(squared form factor.

lll. CQ LIGHT-FRONT MOMENTUM DISTRIBUTIONS
IN THE PROTON

Within the two-stage model the basic theoretical input

102 _ _ guantity, appearing in Eq13), is the LF momentum distri-
§E<>A 3 bution
10° £ 4 =3 efl(2). (19
i TR TR TN T T ST RN TN T T ST TN TR SN N TR T SR S J
0.0 0.5 1.0 1.5 2.0
Q? (GeV/c)2 Such a distribution results from the motion of the CQs inside

the particular hadroid and in what follows we will explic-
FIG. 2. RatioR(Q?) [Eq. (14) for H=p] calculated using the itly limit ourselves to the case of the proton, which is of
experimental Nachtmann moment°(Q?) [Eq. (16)], shown in  interest in this work.

Fig. 1, and assuming &-like shape for the CQ momentum distri- In order to evaluate the constituddtandD quark distri-
bution in the proton, namerSjejszP(x)= S8(x—1/3) [see Eq(17)]. butions in the proton it is natural to adopt the Hamiltonian
The meaning of the markers is the same as in Fig. 1. LF formalism[12]. In terms of the intrinsic LF variable&

andk;, (see the Appendix for their definitiorthe CQ mo-
pendence upon the ordelis much more interesting. Indeed, mentum distribution in the proton is given by

the momentMP(Q?) appear to differ by approximately an

order of magnitude moving fronm to n+2. As a result, 3 .

though the range of values consideredridas quite restricted fg(z) =3 E [déidki, ] Z o(z— §1)5TQ o
(2=n=8), the values of the corresponding moments are P i

spread over several order of magnitudes. Such a behavior can SHIER v W 7P)[2

be qualitatively explained within our generalized two-stage Kigikis s T'}WP i (20

model in the following way. Let us assume a very simplified .
and quite rough model for the CQ momentum distributionwhereQ=U,D, 7y=1/2, 7p=—1/2, and[d&dk;, ] stands

fP(2) in the proton, in which the constituents share exactlyfor ~ dky, dk,, dks, (K1, +Kp, +Kg )dé1dE,dE38( €1+ &
just a fraction 1/3 of the proton momentum, viz., +&;—1). In Eq.(20), W ? is the proton LF wave function,
whose general structure is briefly illustrated in the Appendix,

26D (v) s (% — where also all the other relevant quantities are defined. Note
Ej: e () —a(x=1/3). 17) that the CQ distribution$§20) are normalized as
H 1 1
The momentg13) simply become f dzf(2)=2, j dz(2)=1, (21)
0 0
. 1 n—-1
[T .

M (3) ' (18) and satisfy the momentum sum rule

implying a factor of~1/9 between the ordersandn+2. 1 ..

Thus, in Fig. 2 we have reported the ratial) obtained using fo dz4fj(2)+fo(2)]=1; (22
the experimental Nachtmann momentg(Q?) [Eq. (16)],
shown in Fig. 1, and assuming E(L8). It can clearly be
seen that with respect to the experimental mom&tieQ?)

. p 2 .
the spread of the rati&,(Q") as a function ofn has been o, yjicity written in terms of various S(6) components

Iargely_ reduced. This _is an important resu!t obtained with acharacterizing the nucleon wave functitsee Eq(A13)]. If
very simple hypothesis about the CQ motion in the proton completely SB)-symmetric nucleon wave function is

Figure 2 shows that there is a cle@mndency of the data considered, one has alwa§(z) = 2fB(z) and therefore the

toward ascaling propertylike Eq. (15). e .
Anyway, we have to consider that Eq4.7)—(18) imply LF momentum distributiotiP(z) becomegcf. the Appendix

that the relative motion of the CQs inside the proton is ne- EEE

glected, which is not a reliable assumption in case of light— . _ s ’ B 1E2E3 - -
constituents. Therefore, in the next section we perform moref (z)= | dk.dp, | [dé&i]oz gl)Moglfzgg [ws(k,p)I"
realistic estimates of the CQ momentum distribution in the (23

thus, one ha$P(z) =[4ff(z) +B(2)1/9.
In the Appendix the CQ momentum distributiof®0) are
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FIG. 3. Light-front momentum distributioff(z) [Eq. (23], cal- FIG. 4. Light-front momentum distributiof®(z) [Eq. (19) for
culated assuming the $6)-symmetric Gaussian ansd@4) forthe | _ 1 calculated using the full proton wave function correspond-
proton wave func_tlon witiB=0.3 GeV. The solid, dashed, dotted, ing to the one-gluon-exchange model of RéB] (solid circles and
and dot-dashed lines correspond to a CQ mass equak0.22, {4 the chiral model of Ref15] (open circles The solid and dashed
0.33, 0.44, and 0.55 GeV, respectively. lines correspond to the case of the (B dsymmetric Gaussian an-

) ) ) ] satz(24) with g/m=1.8 and 1.2, respectively.
In order to improve the simplé-like model given by Eq.

(17) we have calculated E¢23) adopting a Gaussian ansatz and the chiral model of Ref15], based on Goldstone-boson

for the proton wave functiowS(E,ﬁ), namely, exchange arising from the spontaneous breaking of chiral
S o2, 302002 symmetry. The results obtained fb}(z) are shown in Fig. 4
ws(k,p)oce” (€ 3PTDIZET, 24 and compared with those corresponding to the Gaussian an-

. . satz(24) for different values of the parameter raggm. It
where B8 is a parameter. The results of our calculations are — i
learly be seen that, as far #z) is concerned, the

reported in Fig. 3 for various values of the CQ masg ¢@" € _ that,
—mp=m, keeping the parametes fixed at the values SU(6) breaking contained in the CQ models of Réfk3,15

=0.3 GeV, which represents the typical CQ momentum in°@n P& approximated to a very good extent by using a Gauss-
the proton due to the confinement scale. It can be seen thin @nsatz with appropriate values of the parameter ratio

the calculated distributiofi’(z) is peak shaped with a loca-

tion of the peak and a width which sharply dependnofor

values ofm pertaining to the so-called light-CQ sector. The V. SCALING ANALYSIS OF THE EXPERIMENTAL

5-like model (17), characterized by a zero-width peak lo- MOMENTS

cated atx=1/3, can berecovered only in the heavy-quark | this section we apply our generalized two-stage model

limit m—c. As the CQ mass decreases, the width of theg the analysis of the data shown in Fig. 1, taking into ac-

peak increases and the location of the peak moves to valuggynt(i) the motion of the CQs adopting the Gaussian ansatz

of x less thanl/3. Note tha(i) the widths are asymmetric (24) for the proton wave function, as described in the previ-

around the peaks in order to keep the average fraction of thgs section, andii) the effects of finiteQ?, which are ex-

momentum carried by each CQ equal to 1/3 at any value Ofected to be relevant due to ti@? range of our analysis

m, and(ii) the distributionfP(z) depends only on the param- [0.1-0.2<Q? (GeV/c)?’<1-2).

eter ratiog/m. Thus, the effects of the CQ motion on the  Let us start by considering the first of the two quoted

shape offP(z) are very important and should be taken into effects. In Fig. 5 we have reported the results obtained for

account, particularly for light CQ masses. the ratio RP(Q?) calculated using the experimental Nacht-
Itis well known (see Ref[13] and references thergithat ~ mann moment#1°(Q?) [Eq. (16)] and assuming the Gauss-

a good description of hadronic mass spectra requires spitian ansatz (24) for the proton wave function withg

dependent components in the effective interaction among-0.3 GeV and m=0.25 GeV (corresponding to 8/m

CQs. Such components generate(@Wreakings in the pro-  =1.2). The spread of the values of the ra®fQ?) is dras-

ton wave function(see, e.g., Ref.14]). On the contrary the tjcally reduced with respect to the case of thdike model

Gaussian ansat24) is a pure SWU6)-symmetric wave func-  (17) (cf. Fig. 2. Note that, as already pointed oisee Sec.

tion and therefore we should investigate (B)Joreaking ef-  |1) the results ah=2 appear to deviate significantly from

fects in the calculation of the CQ light-front momentum dis- those corresponding to larger orders. We have checked that

tribution fP(z). To this end we have considered two of the the general qualitative shape of the results shown in Fig. 5

most sophisticated CQ potential models available in the litdoes not change significantly when the value of the param-

erature, namely, the one-gluon-exchange model of B&].  eter ratiod/m is varied.
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0 CO00000m0 G000 o T BMEXE (e TR
:OW frm(£,Q%) 3 _52 + Q2 r‘J» dé —§'§

3

1 12M4 x* e fP(¢)
1o +—4—5f dé'——(&'—§), (26
G Q" r7Jg &'e
e where ¢ is the Nachtmann variables= &/(1—M?£2/Q?),
and £&*=min(1Q/M) is the maximum allowed value of
102 (cf. Ref. [9]). It should be reminded that the valég is

larger than the inelastic pion threshofd . Therefore, the

] support in which the functiof®,,(¢,Q?) is defined contains
P TP B SR an unphysical region extending frogj, to &*.
0.0 0.5 1.0 1.5 2.0 We point out t@t Eq(26) expresses the fact that the

Q& (GeVic) asymptotic functiorfP receives a series of power corrections
having a scale of order of the proton mags When the
FIG. 5. RatioRP(Q?) [Eq. (14) for H=p] calculated using the threshold factoF, (W) is neglectedi.e., F, (W) =1], the
experimental Nachtmann momenP(Q?) [Eq. (16)] shown in  use of the Nachtmann moments cancels out exactly all the
Fig. 1 and assuming the Gaussian angat for the proton wave power corrections contained on the RHS of E2f5). On the
function with 8=0.3 GeV andn=0.25 GeV. The meaning of the contrary, when the threshold factor is considerge.,
markers is the same as in Fig. 1. Finr (W) # 1], only part of the target-mass corrections can be
reabsorbed by the use of the Nachtmann moments. As a mat-
Though the results shown in Fig. 5 exhibit a drastic im-ter of fact, for consistency with the experimental data shown
provement toward a significant reduction in the dependencin Fig. 1, the Cornwall-Norton momeni3) has to be re-

of the ratioR}(Q?) upon the ordem, the scaling property placed by a Nachtmann one. In doing that the quanifyis
(15) is still far from being reached. Moreover, tm’.g behav- no |onger independent C@Z, and therefore EqilZ),(ls)
ior of RE(QZ) is completely at variance with what is natu- are now replaced by

rally expected for a squared form factor. The main drawback

is clearly the use of Eq(13), which is meaningful only at Maual(Q2)=[F(Q?)]1?- MP(Q?), (27)
large Q2. In our opinion, in order to restore a proper behav-

ior of RP(Q?), we have to account for “higher-twist” effects, Wwith
which can be divided into the three following class@ésthe
inelastic pion threshold, which sets@?-dependent maxi-

e &1 3+3(n+1)r+n(n+2)r?

mum value for thex ran i =x,=Q%[Q? MR(Q?%)= | " d¢

ge, given byXpya=X,=Q/[Q 0 X3 (n+2)(n+3)
+(M+m_)2—M?] (note thatx, largely differs from 1 at
low Q?); (ii) kinematical power corrections in the physical r(l+r) - )
regionx<x,,; and(iii) dynamical power corrections due to X &6, Q) F (W), (28)
final-state interactions responsible for the resonance bumps
in x space. wherer (1+r)/2=dx/d¢ arises from the change of variables

In what follows we will consider the first two effects only. from x to . In Eq.(28) we have put* as the upper limit of
The pion threshold can be simply taken into account by mulintegration; however, as a result of the threshold fat25,
tiplying the distributionfP(x) by a threshold factoF,, (W), the integration extends only up %, and therefore part of
where W is the produced invariant massW the target-mass corrections survives after integration. We
=M?+Q?(1—x)/x, having the propertyF, (W<M stress again that this is an important point, becausgZ8).
+m_)=0 andFy,(W—»)=1. A simple and parameter- reduces exactly to Eq(13) when the threshold factor

free choice dictated by pure phase space effects is Finr(W) is disregarded,in agreement with the properties of
the Nachtmann moments.
/ M+m_\?2 We have calculated Eq(28) using the target-mass-
Fr(W) =\ 1= wW ' (29 corrected momentum distributidif(£,Q?) starting from the

Gaussian ansat24) for the proton wave function and adopt-
We stress that by means Bf,,(W) we account for that part ing the threshold factof25). The results for the moment
of higher twists which are related to the final-state phaseratio R?(Q?) obtained aj3=0.3 GeV andn=0.25 GeV are
space constraint. reported in Fig. 6. It can clearly be seen thhe scaling

The kinematical corrections to E(L3) originate from the

nonvanishing value of the target mass, i.e., the proton mass———
M. The way to construct such corrections is well known in More precisely, when the threshold factér, (W) is disre-
DIS [16] and therefore, by analogy, we replace the distribu-garged, Eq(28) reduces at any value @2 to [ dxx"~5P(x),
tion fP(x) by the quantityf®,,(£,Q?), given explicitly by wherex* =min(1,Q/M), as can be easily checked numerically.
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20 71— 7 71— factor in some effective walOur model does not include

[ O ] power corrections arising from correlations among different
[ ] CQs in the final state. Such “long-range” higher twists have
a low scale of the order ohocp, and therefore we expect
that they should play an important role mainly f6)?
<A%cp~0.1+0.2 (GeVk)?, i.e., in the Q*-range where
the scaling shown in Fig. 6 is only approximate. The estimate
of the effects of such “long-range” higher twists is not an
easy task, and it is well beyond the aim of the present paper.
Note that the role of the “long-range” higher twists is even
more evident inx space, because these higher twists are re-
sponsible for the huge resonance bumps which are known to

oo Ly v characterize the structure functi&f(x,Q?) at low values of
0.0 0.5 1.0 1.5 2.0 Q2.

RP(Q%

o (GeVic) We should now investigate the impact of different choices
of the functional form of the threshold factét,, (W) as
FIG. 6. RatioRP(Q?) [Eq. (14) for H=p] calculated using the well as of different values of the parameter raiom. We
experimental Nachtmann momen®5(Q?) [Eqg. (16)] shown in  have found that the scaling propetp), clearly exhibited in
Fig. 1 and the theoretical momeri£(Q?) given by Eq.(28). The  Fig. 6, is not very sensitive to the specific choiceFgf, (W)
momentum distributiorfP(£) corresponds to the Gaussian ansatzand of the parameter ratj¢/m. On the contrary the shape of
(24) for the proton wave function with8=0.3 GeV andm the scaling function is affected both by the choice of
=0.25 GeV. The dotted line represents the squared monopole forfih (W) and by the value of the parameter ragsm. It
factor [F(Q?)]?=1/(1+r3Q%6)* corresponding to a CQ size turns out thati) the use of the specific forif25) minimizes
equal tor ,=0.21 fm. The meaning of the markers is the same as irthe scaling violation at the lowesd?; (i) when the ratio
Fig. 1. B/m changes from the value 1.2, considered in Fig. 6, to the
value 1.8, the CQ size, changes correspondingly from

property(15) holds at r>2 even in a linear scale. Moreover, 0-21 to 0.27 fm. _ _ _

the scaling function closely resembles a squared monopole We point out that an important consistency requirement
form factor[F(Q?)]2=1/(1+r2Q?6)? corresponding to a &N be formulated: the CQ form factor extracted from the
CQ size equal to=0.21 fm. Q scaling function and the model used for the wave function

The quality of the scaling exhibited in Fig. 6 is extremely S,hOUId b,e consistent with elgstic nucleon datg. ThEBds,u'
good for Q?=0.3 (GeVk)?, while it deteriorates at very cial requiremennecessary to interpret the scaling functlpn as
low values ofQ? [but still the scaling is approximately sat- a (squared form factor and consequently to get an estimate
isfied within ~30% even aD?~0.1 (GeVk)?]. This find- of the CQ size. To check this point we have calculated the
ing is not surprising at all, and it can be understood as foI—'unleon elastic form factors adopting the cova_riant. LF ap-
lows. Let us consider the operator product expan$@RE proach of Ref[14]. There the one-body approximation for

of the moments of the proton structure function in terms ofiNe €lectromagneti¢e.m) current operatod” is adopted,
local operators acting on elementapointlike) fields. The V1%

so-called higher twists are known to describe correlations

among partons. Their contribution to the OPE is given by g

matrix elements of a series of several operafgsproduc- B T — IOyt Fl2) 2 v

ing power-suppressed terms of the form?(Q?)(m~2)2, = 2,: FUQIYTFRAQ) =] (29
wherer, is the twist andA , is the scale associated with the

operatorD, . The scale\ , is expected to be proportional to

1/R,, whereR, is the typical average distance of the par-whereQ?=—q-q. The approach of Ref14] is character-
tonic correlations generated by the operat@s. Which  ized by the choice of a frame whetg” =0, which allows
kind of higher twists are accounted for by the spatial extenone to eliminate the contribution of the so-call&dgraph
sion of the CQs? It is clear that we can distinguish two basidi.e., the pair creation from the vacudm?7]). The important
types of partonic correlations: those among partons insideonnection with the Feynmann triangle diagram is fully dis-
the CQ and those between partons belonging to differentussed in Ref[18], and the superiority of the choiog”
CQs, which means correlations between Q@sthe final =0 for the one-body approximatiq@9) is clearly illustrated
statg. The former are characterized by a valueRpfclose to  in Ref.[19].

the CQ size, while the latter correspond to a larger value of The matrix elements of th@n-shel) nucleon e.m. current
R, of the order of the confinemerihadronig size. Corre- read as

spondingly, the scalé\, is larger for partonic correlations

inside the CQ and smaller for partonic correlations among—

different CQs. In our model only the first type of higher 2indeed, there is no rigorous derivation of the CQ picture from
twists can be thought to be accounted for by the CQ formQCD.
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PR y V. CONCLUSIONS
I vl v, :<\PNN|‘]‘M|\PNN>
NN In this work we have first generalized the two-stage
_ N N io*'q, model of Refs[4,5], originally developed in the DIS regime,
=u(P’,v){ F1(Q?)y*+F3(Q? v [ U(Pvn), to values ofQ? below the scale of chiral symmetry breaking
and above the QCD confinement scale, i.e., 0.1-0.2
(30 =Q? (GeVlc)?’<=1-2. The essential ingredient is the inclu-
sion of the contribution to the inelastic hadronic structure
whereu(P,vy) is a Dirac spinorg=P’'—P and\p;N is the functions arising from thelasticcouplir)g at the constituent
LF wave function of the nucleon described in the Appendix,quark level. We have shown that within such a model a new
i.e., the same wave function used to calculate the momentu§faling propertysee Eq.(15)] is expected to occur in the
distribution fN(z). In what follows we adopt a Breit frame inelastic hadronic structure functions, provided a reasonable

0>\ i model for the wave function describing the motion of the
where the four-momentum transfee=(q",q) is given by  cqnstituents inside the hadron is considered. Moreover, the

q°=0 andq=(dy,qy,d,) =(Q,0,0). resulting scaling function can be interpreted as(#wuared
The nucleon Sachs form factors are then given explicitlyform factor of the constituent quark, i.e., the form factor of a
by [14] confined object.
Then we have analyzed the recent experimental determi-

Ny o Ny o 2 o 1 .\ Q . nations of the Nachtmann moments of the inelastic structure

Ge(Q)=F1(Q)— 7y F2(Q)=5Tn 17 11=5iay| (. function of the protorF5(x,Q?), obtained atlLab [6], for
(31)  values ofQ? ranging from~0.1 to~2 (GeV/c)?. The im-
portant results we have obtained are the scaling progp&gy
" is well satisfied by the data, the CQ form factor extracted
GN(QY)=FY0Q?)+FNQ?)=— %Tr{lyi o}, (32)  from theinelastic proton data is overall consistent with the
one required to explain theasticnucleon data, and the con-
stituent quark size turns out to be0.2—0.3 fm.
whereg, and o, are ordinary % 2 Pauli matrices. Our findings clearly suggest that at low momentum trans-

We have then calculated Eq81),(32) using the Gaussian fer the inclusive proton structure functid®(x,Q?) origi-
ansatz(24) for the nucleon wave function and adopting the nates mainly from the elastic coupling wigxtended objects
one-body approximatiof29) with both Dirac and Pauli CQ inside the proton
form factors having the following simple behavidt, (Q?) A crucial, mandatory check of the extracted constituent
=e;/(1+ réQZ/B) and |:1'2(Q2) =k /(14 réQzllz)z. The form factor is provided by the analysis of the moments of the
values of the CQ anomalous magnetic momenjsandx, ~ Polarized proton structure functiog?(x,Q?). Indeed for
are fixed by the requirement of reproducing the experimenta®.1-0.2<Q? (GeV/c)?<1-2 a scaling property analogous
values of proton and neutron magnetic moments. The result® Eq. (15) is expected to hold also for the Nachtmann mo-
of the calculations performed with the same parametersients ofgf(x,Q?). The crucial point is that the two scaling
adopted in case of the ratRﬁ(Qz) shown in Fig. 6, namely, functions, corresponding to the nonpolarized and polarized
B=0.3 GeV,m=0.25 GeV, and ,=0.21 fm, are reported Cases, should coincide and provide the same constituent
in Fig. 7 as the dashed lines. Note that the combinatiouark form factor.

[F(Q?)]2 given by Eq.(11), which is the one relevant forthe ~ Measurements off(x,Q?) at low values ofQ? are still
scaling function(15), turns out to be almost totally domi- undergoing atiLab.

nated by the contribution of the Dirac form factd®$(Q?)

and it is basically insensitive to the presence of the Pauli
form factorsF5(Q?).

It can be seen that the calculated form factors slightly
overestimate the data, so that we can conclude that as a first In this appendix we briefly recall the basic notations and
approximation the scaling function of Fig. 6 may be inter-the relevant structure of the nucleon wave function in the
preted as a squared CQ form factor. A better consistency withlamiltonian LF formalism(see[12]). The nucleon LF wave
the data can be reached through slight variations of the p&unction is eigenstate of the noninteracting LF angular mo-
rameters of our model, namelyy and8/m. For instance, 8 mentum operator§? and j,, where the unit vectorz
nice agreement with the elastic data can be simply recovereg(oyo,l) defines the spin quantization axis. The squared

by increasing the CQ size up t@=0.33 fm, as shown by  free-mass operator is given by
the solid lines in Fig. 7. However, we can also ascribe the

origin of the small discrepancies with the elastic data to the R

fact that the effects of the dynamical correlations among the ) 3 ki, |2+ m?

CQs in the final state are so far missing in our Q- Mo:izl — (A1)
model. As already pointed out, the inclusion of such effects '

is not an easy task and it is well beyond the aim of the

present paper. wherem is the mass of the constituebtandD quarks and

APPENDIX: THE NUCLEON LIGHT-FRONT
WAVE FUNCTION
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FIG. 7. Elastic Sachs form factors of the nucle@E(Q?) (a), G}(Q?) (b), GE(Q?) (o), and — G(Q?) (d), calculated using the
covariant LF approach of Refl4]. The Gaussian ansat24) is adopted for the proton wave function wifg=0.3 GeV andm
=0.25 GeV. In the one-body curref29) both Dirac and Pauli CQ form factors are included, namek(Q?) = eJ/(l+rQQ2/6) and
F'Z(QZ) K l(1+ rQQ2/12)2 The dashed and solid lines correspondde-0.21 and 0.33 fm, respective(gee text The values of the CQ
anomalous magnetic momenig;= —0.064 andkp=0.017, have been fixed by the requirement of reproducing the experimental values of
proton and neutron magnetic moments.(&h and (b) solid and open circles, open and solid squares are the experimental data from Refs.
[20(a)—(d)], respectively. In(c) open squares, solid squares, open diamonds, open triangles, solid circles, solid diamonds, and triangles are
the data from Refd.21(a)—(g)], respectively. In(d) solid circles, open circles, solid and open squares are the data from[ BR&&—(d)],
respectively.

P 1 K| |2+ m?
&= 57 kiz:(fiMo_|Il| ; (A3)

P &My

the free-mass operator acquires a familiar form, viz.,

3 3
MO:Zl Eizzl Vm?+|ki|?, (A4)
i= i=
are the intrinsic LF variables. The subscriptindicates the

projection perpendicular to the spin quant|zat|on axis and th?\nth the three- vectork defined as
plus component of a four-vectgp= (p° p) is given byp*

le:r‘;iL_éiﬁL (A2)

=p%+2z-p; finally P=(P*,P)=p;+p,+ps is the Ki=(KiL kiz). (A5)
nucleon LF momentum anp; the CQ one. Note thak, &
=1. Note thatk; are internal variables satisfying;+K,+Ks

In terms of the longitudinal momentuky, , related to the =0. Disregarding the color variables, the nucleon LF wave
variable&; by function reads as
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Moty (IR (K g

(AB)

where vy is the third component of the nucleon spin, the
curly braces{} mean a list of indexes corresponding ito
=1,2,3, andy;(7;) is the third component of the CQ spin
(isospin. The rotationR ', appearing in Eq(A6), is the
product of individual(generalizeg Melosh rotations, viz.,

3
RI=11 R, .&.m). (A7)

where[23]
m+&Mo—ic?- (nxk;,)

V(m+£Mg)2+ K, |2

with & being the ordinary Pauli spin matrices.
Neglecting the very smalP andD waves in the nucleon
(cf. [14]) we can limit ourselves to canonicar equal-time

wave function corresponding to a total orbital angular mo-

mentum equal ta.=0; one has

. , o1
({ki;vititxy")y = ws(k,p) \/—[q’gzm )
+w /(IZ ") 1 [q)OO 11 ]
Ss !p \/— UNTN VNTN
+wg (K,p) —= ! [+ ]
Sa 1p \/— VNTN VNTN
+WA(|Z!5) \/_[(I)I/NTN iZTN]!
(A9)

wherew(K,5), we;(K.B), we,(K,), andw(K.p) are the
completely symmetric%), the two mixed-symmetryS, and
S!), and the completely antisymmetrig) wave functions,

respectively. In Eq(A9) the variablek andp are the Jaco-
bian internal coordinates, defined as

1

~

k2
2 )

k

2ks— (K1 +Kj)
3 H

(A10)

O

with k given by Eq.(A5). Finally, the spin-isospin function

PHYSICAL REVIEW D67, 094004 (2003

PS12M2= 1V 11/ S;oMg
NN Mg \ 2 1p 72|12
><<S M > <1 T.,-M >
val=wn) D (=m=T
1M s5 V3 5PN & \2 15 72| 1M+
><< T12MT 573 TN> ) (A11)

where S;(T;,) is the total spin(isospin of the quark pair
(1,2). The normalization of the various partial waves in Eq.
(A9) is

| akdplwk 2P,
f dl?d|5|wsé(l2,5)|2=fdIde)|wsé(IZ,5)|2=PS,/2,

f dkdplwa(k,p)|2=Pa, (A12)

W|th Ps+ Psr + PA: 1
Disregarding the completely antisymmetric component

wa(K,p), which is usually quite negligible in the nucleon
(cf. [14]), the constituent) andD momentum distributions,
defined in Eq(20), read explicitly as

123

Moé1&2é3
+|wg: (K,p)|*+ ws; (K, p)| >+ ws(K, p)ws; (K,p)],

18(2-2 | dk,dp, [ Tda o ey sl welK Bl

l 2E3

Moé1é2é3
+|ws: (K,p)|*+ ws; (K, p)| >~ 2ws(K, p)ws (K,p) .

1B(2)= | dk.db, [ Tdg oo ey e {woK DI

(A13)

It can be seen that the relativistic composition of the CQ
spins (i.e., the Melosh rotationsdoes not affect at all the
(unpolarized LF momentum distributiorf o(2). Moreover,
any flavor dependence ég(z) turns out to be driven by the
interference between the completely symmet(® and
mixed-symmetry §,) wave functions, the latter being gen-
erated mainly by the spin-spin component of the interaction
among CQs which are present both in the one-gluon-
exchange model of Ref13] and in the chiral model of Ref.

(IJS;ZTH’ corresponding to a total spin (1/2) and total isospin[15]. In the limit of exact SW6) symmetry one hasvsr

(1/2), is defined as

—wsé—o and Eq.(23) is recovered.
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