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Interference fragmentation functions in electron-positron annihilation
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We study the process of electron-positron annihilation into back-to-back jets, where in each jet a pair of
hadrons is detected. The orientation of these two pairs with respect to each other can be used to extract the
interference fragmentation functions in a clean way: for instance, from BELLE or BABAR experiment data.
This is of relevance for studies of the transversity distribution function. In particular, we focus on two azi-
muthal asymmetries. The first one has already been studied by Artru and Collins, but is now expressed in terms
of interference fragmentation functions. The second asymmetry is new and involves a function that is related
to longitudinal jet handedness. This asymmetry offers a different way of studying handedness correlations.
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I. INTRODUCTION

Interference fragmentation functions~IFFs! have been
suggested as a means to access transversity@1# via single
spin asymmetries inep↑ and pp↑ processes, in which the
proton is transversely polarized. Transversity is a measur
how much of the transverse polarization of a proton is tra
ferred to its quarks. It is a helicity-flip~or chiral-odd! distri-
bution function that is very hard to measure and thus far
extraction from data is available. To become sensitive to
transverse spin of quarks inside a transversely polarized
ton one can follow two main routes. The first one is to u
another transversely polarized hadron~in initial or final

state!, like in the Drell-Yan processp↑p↑→,,̄X or in polar-
ized L hyperon production. The second route is to expl
the possibility that the direction of the transverse polarizat
of a fragmenting quark may somehow be encoded in
distribution of hadrons inside the resulting jet. For instan
the Collins effect@2# describes the case where the distrib
tion of a hadron inside the jet follows akT3sT behavior,
wherekT is the transverse momentum of the quark compa
to the hadron andsT is the transverse polarization of th
fragmenting quark. Here, transverse means orthogonal to
quark ~or, equivalently, jet! direction. Because of the trans
verse momentum dependence, the Collins effect is a v
challenging observable both theoretically and experim
tally, and an alternative is formed by the IFFs which descr
the distribution of two hadrons inside the jet. The idea is t
the orientation of two hadrons with respect to each other
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to the jet direction is an indicator of the transverse spin
rection of the quark. Such a correlation is expected to oc
due to the strong final state interactions between the
hadrons: different partial waves can interfere and this is
pected to give rise to nonvanishing, nontrivial fragmentat
functions, the two-hadron IFFs.

As with all proposals to measure transversity, a seco
unknown quantity is introduced, which needs to be measu
separately. For the nontrivial fragmentation functions, su
as the Collins function and the two-hadron IFFs, the clean
extraction is from two-jet events in the electron-positron a
nihilation process. Here, we will present the leading twi
fully differential cross section for the processe1e2

→(h1h2)(h̄1h̄2)X in terms of products of two-hadron frag
mentation functions.

In Ref. @3#, the leading twist, transverse momentum d
pendent two-hadron IFFs have been listed. There are
chiral-odd and one chiral-even IFF, but upon integration o
thequark transverse momentum dependence only one ch
odd IFF survives~calledH1

\), discussed at several places
the literature @4–7#. The relation among the various ap
proaches and to ther fragmentation functions~for the two
hadrons being two pions! is extensively discussed in Ref.@8#,
where the two-hadron final system is expanded in rela
partial waves and a new contribution involving the transv
sity at leading twist is identified.

Here, we will discuss the consequences of all th
leading twist IFFs occurring in the processe1e2

→(h1h2)(h̄1h̄2)X; we find that upon integrating the differ
ential cross section over theobservedtransverse momentum
one is actually left not only with the transverse momentu
integrated chiral-odd IFFH1

\, but there is also an asymmetr
that is governed by the chiral-even IFF, integrated,
weighted, over the transverse momentum:
©2003 The American Physical Society03-1
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G1
'~z,Mh

2![E djE dfRE dkTkT•RT

3G1
'~z,j,kT

2 ,RT
2 ,kT•RT!, ~1!

where RT is the transverse part of the relative momentu
between the two hadrons andkT is the quark transverse mo
mentum ~see Sec. II for explicit definitions of the abov
quantities!. This function is related~but not identical! to lon-
gitudinal jet handedness and its resulting asymmetry will
discussed in detail below~see Sec. V!.

The asymmetry involving the transverse momentum in
grated chiral-odd IFFH1

\ has already been studied in a d
ferent ~less common! notation in a paper by Artru and Co
lins @9#. It is the asymmetry of present-day experimen
interest regarding transversity. The extraction ofH1

\ from the

processe1e2→(h1h2)(h̄1h̄2)X is the goal of a group@10#
that will analyze the off-resonance data from the BELL
experiment at KEK. In the present article, we provide fo
procedure of integrating and properly weighting the fu
differential cross section to single out the relevant asymm
try. The extracted IFF will be of use to several ongoing
starting experiments aiming to measure transversity in
processesep↑→(h1h2)X ~HERMES, COMPASS! and pp↑

→(h1h2)X ~RHIC @10#!.
However, the asymmetry involvingG1

' also seems of ex
perimental interest. It can be viewed as the chiral-even co
terpart of the Artru-Collins asymmetry. An analogous asy
metry involving chiral-even fragmentation functions do
not emerge when only one hadron is detected in each jet;
asymmetry is thus particular to the multi-hadron fragmen
tion case. But it can also be viewed as an asymmetry ari
from a correlation between longitudinal jet handedness fu
tions. As such it is relevant for single spin asymmetries w
longitudinally polarized protons,epW→(h1h2)X and ppW
→(h1h2)X, which are proportional to the well-known quar
helicity distribution functiong1 @cf., e.g., Eq.~31! of Ref.
@3##. Sinceg1 is known to considerable accuracy, one c
extractG1

' from epW→(h1h2)X and actually predict our lon
gitudinal jet handedness correlation in e1e2

→(h1h2)(h̄1h̄2)X, i.e. the expression given below in E
~38!. Any experimental deviation may be related to aCP-
violating effect of the QCD vacuum@11#.

The functionG1
' is also relevant for the studies of IFFs

the processesep↑→(h1h2)X and pp↑→(h1h2)X. There,
next to the asymmetry proportional to the transversity fu
tion, anotherG1

' dependent asymmetry@7# occurs, which is
proportional to the transverse momentum dependent distr
tion functiong1T @12#. This function~extrapolated tox50)
gives information on violations of the Burkhardt-Cottingha
sum rule. Apart from the intrinsic interest in such an asy
metry, it also shows the need for appropriate weight fu
tions to separate the asymmetry proportional tog1TG1

' from
the asymmetries proportional toh1H1

\ andh1H1
' ~whereh1

denotes the transversity function!.
The other results presented below, i.e. the other te

arising in the fully differentiale1e2 cross section, may als
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be of interest in the future and the notation used here ho
fully will facilitate communication between different exper
mental groups planning or performing two-hadron IF
related studies for different processes.

The paper is organized as follows. In Sec. II we first d
cuss the kinematics of the processe1e2→(h1h2)(h̄1h̄2)X.
In Sec. III we present the cross section in terms of the in
ference fragmentation functions. Next, we investigate ext
sively the Artru-Collins azimuthal asymmetry~Sec. IV! and
the newly found longitudinal jet handedness asymme
~Sec. V!. During the discussion of these two asymmetries
e1e2→(h1h2)(h̄1h̄2)X we also remark on correspondin
asymmetries in two-hadron inclusive deep inelastic scat
ing ~DIS! involving the same IFFs to facilitate compariso
We end with conclusions~Sec. VI!.

II. KINEMATICS

We will consider the processe1e2→(h1h2)(h̄1h̄2)X,
schematically depicted in Fig. 1. An electron and a posit
with momental andl 8, respectively, annihilate into a photo
with timelike momentumq5 l 1 l 8 andq25Q2. A quark and
an antiquark are then emitted and fragment each one in
residual jet and a pair of leading unpolarized hadro
(h1 ,h2) with momentaP1 ,P2, and massesM1 ,M2 @for the
antiquark we have the corresponding notation (h̄1 ,h̄2) with
momentaP̄1 ,P̄2 and massesM̄1 ,M̄2]. We introduce the vec-
tors Ph5P11P2 , R5(P12P2)/2, and P̄h5 P̄11 P̄2 , R̄

5( P̄12 P̄2)/2. The two jets are emitted in opposite dire
tions; therefore,Ph• P̄h;Q2. We can parametrize the mo
menta as@13#

Ph
m5

zhQ

A2
n2

m 1
Mh

2

zhQA2
n1

m ;
zhQ

A2
n2

m ,

P̄h
m5

z̄hQ

A2
n1

m 1
M̄h

2

z̄hQA2
n2

m ;
z̄hQ

A2
n1

m ,

qm5
Q

A2
n2

m 1
Q

A2
n1

m 1qT
m , ~2!

where2qT
2[QT

2!Q2, andn1 ,n2 are light-like vectors sat-
isfying n1

2 5n2
2 50 andn1•n251. The approximations in

Eq. ~2! of neglecting hadron masses with respect toQ2 does

FIG. 1. Kinematics for thee1e2→(h1h2)(h̄1h̄2)X process.
3-2
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INTERFERENCE FRAGMENTATION FUNCTIONS IN . . . PHYSICAL REVIEW D67, 094003 ~2003!
not imply that we simply take hadron masses to be z
everywhere. In particular, they cannot be neglected with
spect to the size of the intrinsic transverse momenta. We
the notation a65a•n7 for a generic 4-vectora with
light-cone componentsa5@a2,a1,aT#. We define also
z5Ph

2/q2;2Ph•q/Q25zh , z̄5 P̄h
1/q1;2P̄h•q/Q25 z̄h ,

representing the light-cone momentum fractions of the fr
menting~anti-!quark carried by each hadron system. Ana
gously, we define the fractions

j5
1

2
1

R2

Ph
2

5
P1

2

P1
21P2

2
,

j̄5
1

2
1

R̄2

P̄h
2

5
P̄1

2

P̄1
21 P̄2

2
, ~3!

which describe how the momentum of the~anti-!quark is
split into each component of the hadron pair. Theẑ axis is
defined usingPh ; in particular, from Fig. 1 it isPhi ẑ. It is
useful to define the so-called' plane@14# perpendicular toẑ,
where Ph'5q'50. Up to corrections inQT

2/Q2!1, we

have P̄h'
m 52 z̄qT

m and, consequently,P̄h'52 z̄qT . The '

plane is spanned by the two unit vectors

ĥ5
P̄h'

uP̄h'u
52

qT

uqTu
5~cosf1 ,sinf1!,

ĝi5eT
i j ĥ j[e21 i j ĥ j5e0i j 3ĥ j5~sinf1 ,2cosf1!,

~4!

with f1 defined in Fig. 1. Therefore, we haveĝ•a5(a
3ĥ)z for a generic 3-vectora. As in DIS, the' and trans-
verse~T! components of a 4-vector can be obtained by
tensors

gT
mn5gmn2n1

m n2
n 2n2

m n1
n ,

g'
mn5gT

mn2
A2~n1

m qT
n1n1

n qT
m!

Q
. ~5!

In the following, we will consistently neglect theO(1/Q)
difference, thus not distinguishing between' andT compo-
nents of 4-vectors. From previous definitions we have al

uRTu25j~12j!Mh
22~12j!M1

22jM2
2 ,

uR̄Tu25 j̄~12 j̄ !M̄h
22~12 j̄ !M̄1

22 j̄M̄2
2 , ~6!

wherePh
25Mh

2 and P̄h
25M̄h

2 are the invariant masses of th
two final hadronic systems. The azimuthal anglesfR ,f R̄ ,
parametrizing the transverse components ofR,R̄, are de-
picted in Fig. 1. There, a further azimuthal anglef l should
be considered which identifies the position of the lep
frame with respect to the laboratory frame. In Fig. 1 it
taken asf l50 for convenience, but in the following~see
Secs. IV and V! we will have to retain its dependence e
09400
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plicitly such that the position of the hadron pairs with resp
to the lepton frame isfR2f l andf R̄2f l , respectively.

The cross section for the 4-unpolarized-particle inclus
e1e2 annihilation is

2P1
02P2

02P̄1
02P̄2

0ds

dP1dP2dP̄1dP̄2

5
a2

Q6
LmnW(4h)

mn , ~7!

where

Lmn5Q2F22A~y!g'
mn14B~y!ẑmẑn24B~y!S l̂'

m l̂'
n 1

1

2
g'

mnD
22C~y!B1/2~y!~ ẑm l̂'

n 1 ẑn l̂'
m!G , ~8!

A~y!5S 1

2
2y1y2D 5

c.m.~11cos2u2!

4
,

B~y!5y~12y! 5
c.m.sin2u2

4
,

C~y!5122y 5
c.m.

2cosu2 , ~9!

is the lepton tensor. In fact, only theL'
mn part contributes at

leading twist. The invarianty5Ph• l /Ph•q; l 2/q2 be-
comes, in the lepton center-of-mass~c.m.! frame, y5(1
1cosu2)/2, whereu2 is defined in Fig. 1. The unit vector
are defined as

l̂'
m5 l'

m/u l'u,

ẑm5
2

zQ
Ph2

qm

Q
. ~10!

FIG. 2. Leading-twist contribution to 4p-inclusivee1e2 annihi-
lation.
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The hadronic tensor is

W(4h)
mn ~q;P1 ,P2 ,P̄1 ,P̄2!

5
1

~2p!10XX

dPX

~2p!32PX
0

3~2p!4d~q2PX2P12P22 P̄12 P̄2!
iv

th

09400
3^0uJm~0!uPX ;P1 ,P2 ,P̄1 ,P̄2&

3^PX ;P1 ,P2 ,P̄1 ,P̄2uJn~0!u0&. ~11!

Such a definition allows for recovering the correspond
formulas in the case of 2-particle, 1-particle and totally
clusive e1e2 annihilation. For example, after integratin
over one of the two hadrons in each pair,
X h2

dP2

2P2
0 X h̄2

dP̄2

2P̄2
0

2P1
02P2

02P̄1
02P̄2

0ds

dP1dP2dP̄1dP̄2

[
2P1

02P̄1
0ds

dP1dP̄1

5
a2

Q6
Lmn X h2

dP2

2P2
0 X h̄2

dP̄2

2P̄2
0

W(4h)
mn

5
a2

Q6
Lmn

1

~2p!4 XX

dPX

~2p!32PX
0 ~2p!4d~q2PX2P12P22 P̄12 P̄2!

3X h2

dP2

~2p!32P2
0 X h̄2

dP̄2

~2p!32P̄2
0 ^0uJmuX,P1 ,P2 ,P̄1 ,P̄2&

3^X,P1 ,P2 ,P̄1 ,P̄2uJnu0&

5
a2

Q6
Lmn

1

~2p!4 XX8

dPX8

~2p!32PX8
0 ~2p!4d~q2PX82P12 P̄1!

3X h2

dP2

~2p!32P2
0 X h̄2

dP̄2

~2p!32P̄2
0 ^0uJmuX82P22 P̄2 ,P1 ,P2 ,P̄1 ,P̄2&

3^X82P22 P̄2 ,P1 ,P2 ,P̄1 ,P̄2uJnu0&

5
a2

Q6
Lmn

1

~2p!4 XX8

dPX8

~2p!32PX8
0 ~2p!4d~q2PX82P12 P̄1!^0uJmuX8,P1 ,P̄1&

3^X8,P1 ,P̄1uJnu0&[
a2

Q6
LmnW(2h)

mn , ~12!
we recover the cross section for the 2-particle inclus
e1e2 annihilation@14# after the replacementP̄1↔P2. Fur-
ther integrations over the detected hadrons lead to
1-particle inclusive and totally inclusive cross sections~cf.
@14#!.

Consistently with Eq.~2!, we have

Ph
1!Ph

2→Ph
0;

1

A2
Ph

2 ,

R1!R2→R0;
1

A2
R2,
e

e

R2

Ph
2

5j2
1

2
;

R0

Ph
0
[

ER

Eh
,

P̄h
2! P̄h

1→ P̄h
0;

1

A2
P̄h

1 ,

R̄2!R̄1→R̄0;
1

A2
R̄1,

R̄1

P̄h
1

[j̄2
1

2
;

R̄0

P̄h
0
[

ĒR

Ēh

. ~13!
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The elementary phase space can then be transformed a
lows:

dP1dP2dP̄1dP̄2

2P1
02P2

02P̄1
02P̄2

0

5
dPhdRdP̄hdR̄

~Eh
224ER

2 !~Ēh
224ĒR

2 !

;
uPhu2duPhudVhdRTdR2dP̄h'dP̄h

1dR̄TdR̄1

8A2~Ph
2!2j~12j!~ P̄h

1!2j̄~12 j̄ !

;
zQ2

16j~12j!
dzdVhdRTdj

3
1

4z̄j̄~12 j̄ !
dP̄h'dz̄dR̄Tdj̄, ~14!

wheredVh52dydf l , sincePh'50 and its azimuthal angle
actually defines the position of the lepton plane with resp
to the laboratory frame. Using Eq.~6! and

dRT5JdfRdMh
2 with

J5U ]RTx

]Mh
2

5
j~12j!

2uRTu
cosfR

]RTx

]fR
52uRTusinfR

]RTy

]Mh
2

5
j~12j!

2uRTu
sinfR

]RTy

]fR
5uRTucosfR

U
5

j~12j!

2
,

dR̄T5
j̄~12 j̄ !

2
df R̄dM̄h

2 , ~15!

the cross section can be rewritten as

ds

dqTdzdjdfRdMh
2dz̄dj̄df R̄dM̄h

2dydf l

5
a2

128Q4
zz̄LmnW(4h)

mn . ~16!

III. CROSS SECTION

A. Hadronic tensor

To leading order the expression for the hadron tensor
09400
fol-

ct

W(4h)
mn ;3~32!2zz̄(

a,ā

ea
2E dkTdk̄Td2~kT1 k̄T2qT!

3TrF S 1

32z̄
E dk̄2D̄ D

k̄15 P̄
h
1/ z̄

3gmS 1

32zE dk1D D
k25P

h
2/z

gnG . ~17!

The~partly integrated! correlation functionD is parametrized
in terms of fragmentation functions as@7#

1

32zE dk1D~k;Ph ,R!U
k25P

h
2/z,kT

5
1

4p

1

4 H D1
a~z,j,kT

2 ,RT
2 ,kT•RT!n”2

2G1
'a~z,j,kT

2 ,RT
2 ,kT•RT!

emnrsgmn2
n kT

rRT
s

M1M2
g5

1H1
\a~z,j,kT

2 ,RT
2 ,kT•RT!

smnRT
mn2

n

M11M2

1H1
'a~z,j,kT

2 ,RT
2 ,kT•RT!

smnkT
mn2

n

M11M2
J . ~18!

The hadron masses appearing in Eq.~18! provide for the
dimensionful scale needed to balance the ones introduce
kT and RT . This is purely a matter of definition; one coul
have chosen any nonperturbative scale, which would o
alter the normalization of the IFFs slightly. We parametri
the antiquark correlation functionD̄ in the same way by
employing overlined quantities, but in this case the su
pressedk̄2 component is integrated over.

At leading twist, we have the usual nice probabilistic i
terpretation of the fragmentation functions in Eq.~18!: D1

a is
the probability for an unpolarized quark with flavora to
fragment into the unpolarized hadron pair (h1 ,h2), G1

'a is
the probability difference for a longitudinally polarize
quark with flavora and opposite chiralities to fragment int
(h1 ,h2), and bothH1

\a,H1
'a give the same probability dif-

ference but for a transversely polarized fragmenting qua
G1

'a ,H1
\a,H1

'a are allnaive T-odd andH1
\a,H1

'a are further-
more chiral odd. The functionH1

'a represents a generaliza
tion of the Collins effect, namely for two hadrons instead
one. However,H1

\a originates from a genuinely new effec
because it relates the transverse polarization of the fragm
ing quark to the angular distribution of the hadron pair in t
' plane~defined in Sec. II@7#!.
3-5
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B. Fully differential cross section

For the case of thee1e2 annihilation into four unpolar-
ized ~or spinless! hadrons with two leading hadrons in ea
09400
current jet~see Fig. 2 for a diagrammatic representation
leading order!, the differential cross section at leading ord
in 1/Q andas is ~including now summation over flavor in
dices with quark chargesea in units of e)
ution of

to the
e lepton
nsic
a crucial
e

-hadron

m

ds~e1e2→~h1h2!~ h̄1h̄2!X!

dqTdzdjdMh
2dfRdz̄dj̄dM̄h

2df R̄dydf l

5(
a,ā

ea
2 6a2

Q2
z2z̄ 2H A~y!F@D1

aD̄1
a#1cos~2f1!B~y!F F ~2ĥ•kTĥ• k̄T2kT• k̄T!

H1
'aH̄1

'a

~M11M2!~M̄11M̄2!
G

2sin~2f1!B~y!F F ~ ĥ•kTĝ• k̄T1ĥ• k̄Tĝ•kT!
H1

'aH̄1
'a

~M11M2!~M̄11M̄2!
G1cos~fR1f R̄22f l !

3B~y!uRTuuR̄TuF F H1
\aH̄1

\a

~M11M2!~M̄11M̄2!
G1cos~f11fR2f l !B~y!uRTuF F ĥ• k̄T

H1
\aH̄1

'a

~M11M2!~M̄11M̄2!
G

2sin~f11fR2f l !B~y!uRTuFF ĝ• k̄T

H1
\aH̄1

'a

~M11M2!~M̄11M̄2!
G1cos~f11f R̄2f l !B~y!uR̄Tu

3FF ĥ•kT

H1
'aH̄1

\a

~M11M2!~M̄11M̄2!
G2sin~f11f R̄2f l !B~y!uR̄TuFF ĝ•kT

H1
'aH̄1

\a

~M11M2!~M̄11M̄2!
G1A~y!uRTuuR̄Tu

3S sin~f12fR1f l !sin~f12f R̄1f l !F F ĥ•kTĥ• k̄T

G1
'aḠ1

'a

M1M2M̄1M̄2
G1sin~f12fR1f l !cos~f12f R̄1f l !

3F F ĥ•kTĝ• k̄T

G1
'aḠ1

'a

M1M2M̄1M̄2
G1cos~f12fR1f l !sin~f12f R̄1f l !F F ĝ•kTĥ• k̄T

G1
'aḠ1

'a

M1M2M̄1M̄2
G1cos~f12fR1f l !

3cos~f12f R̄1f l !F F ĝ•kTĝ• k̄T

G1
'aḠ1

'a

M1M2M̄1M̄2
G D J , ~19!

where the convolutionF is defined as

F @w~kT ,k̄T!DaD̄a#[E dkTdk̄Td2~ k̄T1kT2qT!w~kT ,k̄T!Da~z,j,kT
2 ,RT

2 ,kT•RT!D̄a~ z̄,j̄,k̄ T
2 ,R̄T

2 ,k̄T•R̄T!. ~20!

The azimuthal dependence is dictated by the fact that any information about the azimuthal asymmetry of the distrib
the four hadrons must be encoded by the relative position ofRT and R̄T with respect to the lepton frame, i.e. by thefR
2f l andf R̄2f l angles, respectively, and by the azimuthal position of the lepton frame itself.

IV. ARTRU-COLLINS AZIMUTHAL ASYMMETRY

In this section, we will obtain an azimuthal asymmetry in the distribution of the four hadrons that arises only due
transverse relative momenta of each pair, i.e. only due to the relative position of each pair plane with respect to th
plane~see Fig. 1!. For this purpose, the cross section of Eq.~19! must be properly weighted and its dependence on the intri
transverse momenta of the quarks integrated out. We present the procedure in considerable detail, since this will form
aspect of a practical analysis of experimental data. We will show that onlyH1

\ survives the integration, which is the sam
fragmentation function appearing in the single-spin asymmetry that can be built at leading twist in the case of two
inclusive DIS @5–7#. Therefore, under the hypothesis of factorization~collinear factorization in this particular case!, the
combined analysis of the two semi-inclusive processes allows us in principle to deduce the fragmentation function froe1e2

and then disentangle the transversity distribution in the corresponding DIS cross section at leading twist.
We define the asymmetry
3-6
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A~y,z,z̄,Mh
2 ,M̄h

2!5
^cos~fR1f R̄22f l !&

^1&

[F E djE dj̄E
0

2pdf l

2p E
0

2p

dfRE
0

2p

df R̄cos~fR1f R̄22f l !

3E dqT

ds„e1e2→~h1h2!~ h̄1h̄2!X…

dydf ldzdz̄djdj̄dqTdMh
2dfRdM̄h

2df R̄
G

3F E djE dj̄E
0

2pdf l

2p E
0

2p

dfRE
0

2p

df R̄E dqT

ds„e1e2→~h1h2!~ h̄1h̄2!X…

dydf ldzdz̄djdj̄dqTdMh
2dfRdM̄h

2df R̄
G21

. ~21!

Let us consider first the term in the numerator, involving the trigonometric weight. If we insert the cross section of E~19!
into it and consider just the average over the azimuthal positionsf l of the lepton plane, we can see that the first three te
give a vanishing contribution because they involve the integral

E
0

2pdf l

2p
cos~fR1f R̄22f l !50. ~22!

The fourth term gives

(
a,ā

ea
26a2

Q2
z2z̄ 2B~y!E djE dj̄E

0

2p

dfRE
0

2p

df R̄E
0

2pdf l

2p
uRTuuR̄Tucos2~fR1f R̄22f l !E dqTFF H1

\aH̄1
\a

~M11M2!~M̄11M̄2!
G

5(
a,ā

ea
2 6a2

Q2
z2z̄ 2B~y!E djE dj̄E

0

2p

dfRE
0

2p

df R̄

uRTuuR̄Tu

2~M11M2!~M̄11M̄2!
E dqT

3E dkTdk̄Td2~ k̄T1kT2qT!H1
\a~z,j,kT

2 ,RT
2 ,kT•RT!H̄1

\a~ z̄,j̄,k̄T
2 ,R̄T

2 ,k̄T•R̄T!

5(
a,ā

ea
2 3a2

Q2
z2z̄ 2

B~y!

~M11M2!~M̄11M̄2!
H1(R)

\a ~z,Mh
2!H̄1(R)

\a ~ z̄,M̄h
2!, ~23!

where

H1(R)
\a ~z,Mh

2!5E djuRTu E
0

2p

dfRE dkTH1
\a~z,j,kT

2 ,RT
2 ,kT•RT!,

H̄1(R)
\a ~ z̄,M̄h

2!5E dj̄uR̄Tu E
0

2p

df R̄E dk̄TH̄1
\a~ z̄,j̄,k̄T

2 ,R̄T
2 ,k̄T•R̄T! ~24!

are the same moments of fragmentation functions that appear in the following leading twist single-spin asymmetry a
two-hadron semi-inclusive DIS off a transversely polarized target@see Eq.~17! of Ref. @7##:

^sin~fR22f l !&}B~y!uS'u(
a

ea
2xh1

a~x!H1(R)
\a ~z,Mh

2!, ~25!

whereS' is the transverse polarization of the target andx is the light-cone momentum fraction of the quark.
The fifth through eighth terms give again a vanishing contribution, because they involve integrals of the kind

E
0

2pdf l

2p H cos 2f l

sin 2f l J ^ H cosf l

sinf l J 50. ~26!

Finally, it is instructive to check that the last four terms in Eq.~19! vanish only after the combined effect of the average o
df l and the integral upondqT . In fact,
094003-7
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(
a,ā

ea
2 6a2

Q2
z2z̄2A~y!E djE dj̄E

0

2p

dfRE
0

2p

df̄RE
0

2pdf l

2p

uRTuuR̄Tu

M1M2M̄1M̄2

cos~fR1f R̄22f l !E dqT$sin~f12fR1f l !

3sin~f12f R̄1f l !F@ ĥ•kTĥ• k̄TG1
'aḠ1

'a#1sin~f12fR1f l !cos~f12f R̄1f l !F @ ĥ•kTĝ• k̄TG1
'aḠ1

'a#

1cos~f12fR1f l !sin~f12f R̄1f l !F @ ĝ•kTĥ• k̄TG1
'aḠ1

'a#1cos~f12fR1f l !cos~f12f R̄1f l !

3F @ ĝ•kTĝ• k̄TG1
'aḠ1

'a#%

5(
a,ā

ea
2 6a2

Q2
z2z̄ 2A~y!E djE dj̄E

0

2p

dfRE
0

2p

df R̄

uRTuuR̄Tu

M1M2M̄1M̄2
E dqTE dkTdk̄Td2~ k̄T1kT2qT!

3H 1

4
~cos2f12sin2f1!~ ĝ•kTĝ• k̄T2ĥ•kTĥ• k̄T!1

1

4
sinf1cosf1~ ĥ•kTĝ• k̄T1ĝ•kTĥ• k̄T!J G1

'aḠ1
'a

5(
a,ā

ea
2 3a2

2Q2
z2z̄ 2A~y!E djE dj̄E

0

2p

dfRE
0

2p

df R̄

uRTuuR̄Tu

M1M2M̄1M̄2
E dkTdk̄TH ~kT1 k̄T!y

22~kT1 k̄T!x
2

ukT1 k̄Tu4

3@~kT3 k̄T!z
21kT•~kT1 k̄T!k̄T•~kT1 k̄T!#12

~kT1 k̄T!x~kT1 k̄T!y

ukT1 k̄Tu4
~kT3 k̄T!z~ k̄ T

2 2kT
2!J

3G1
'a~z,j,kT

2 ,RT
2 ,kT•RT!Ḡ1

'a~ z̄,j̄,k̄T
2 ,R̄T

2 ,k̄T•R̄T!50, ~27!

because the last two integrands are odd under the transformations

kTx↔kTy , k̄Tx↔ k̄Ty ,

RTx↔RTy , R̄Tx↔R̄Ty . ~28!

Hence, we have

^cos~fR1f R̄22f l !&5E djE dj̄E
0

2pdf l

2p E
0

2p

dfRE
0

2p

df R̄cos~fR1f R̄22f l !

3E dqT

ds„e1e2→~h1h2!~ h̄1h̄2!X…

dydf ldzdz̄djdj̄dqTdMh
2dfRdM̄h

2df R̄

5(
a,ā

ea
2 3a2

Q2

z2z̄ 2B~y!

~M11M2!~M̄11M̄2!
H1(R)

\a ~z,Mh
2!H̄1(R)

\a ~ z̄,M̄h
2!. ~29!

In a similar way, it is straightforward to prove that the unweighted cross section receives a contribution only from t
term of Eq.~19!, i.e.

^1&5E djE dj̄E
0

2pdf l

2p E
0

2p

dfRE
0

2p

df R̄E dqT

ds„e1e2→~h1h2!~ h̄1h̄2!X…

dydf ldzdz̄djdj̄dqTdMh
2dfRdM̄h

2df R̄

5(
a,ā

ea
2 6a2

Q2
A~y!z2z̄ 2D1

a~z,Mh
2!D̄1

a~ z̄,M̄h
2!, ~30!

where

D1
a~z,Mh

2!5E djE
0

2p

dfRE dkTD1
a~z,j,kT

2 ,RT
2 ,kT•RT!,

D̄1
a~ z̄,M̄h

2!5E dj̄E
0

2p

df R̄E dk̄TD̄1
a~ z̄,j̄,k̄ T

2 ,R̄T
2 ,k̄T•R̄T! ~31!
094003-8
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are the same fragmentation functions as arising in the unweighted cross section at leading twist for the two-hadr
inclusive DIS process@see Eq.~18! of Ref. @7##.

The final expression for the azimuthal asymmetry is, from Eq.~21!,

A~y,z,z̄,Mh
2 ,M̄h

2!5
1

2 F(
a,ā

ea
2 z2z̄ 2B~y!

~M11M2!~M̄11M̄2!
H1(R)

\a ~z,Mh
2!H̄1(R)

\a ~ z̄,M̄h
2!G F(

a,ā

ea
2z2z̄ 2A~y!D1

a~z,Mh
2!D̄1

a~ z̄,M̄h
2!G21

.

~32!

This azimuthal asymmetry is our version of the Artru-Collins asymmetry@9#.

V. LONGITUDINAL JET HANDEDNESS AZIMUTHAL ASYMMETRY

The other azimuthal asymmetry we will explicitly derive is defined as

A~y,z,z̄,Mh
2 ,M̄h

2!

5
^cos@2~fR2f R̄!#&

^1&

[F E djE dj̄E
0

2pdf l

2p E
0

2p

dfRE
0

2p

df R̄cos@2~fR2f R̄!#E dqT

ds„e1e2→~h1h2!~ h̄1h̄2!X…

dydf ldzdz̄djdj̄dqTdMh
2dfRdM̄h

2df R̄
G

3F E djE dj̄E
0

2pdf l

2p E
0

2p

dfRE
0

2p

df R̄E dqT

ds„e1e2→~h1h2!~ h̄1h̄2!X…

dydf ldzdz̄djdj̄dqTdMh
2dfRdM̄h

2df R̄
G21

. ~33!

Note that this asymmetry is independent of the orientation of the lepton scattering plane, contrary to the asymmetr
previous section.

By performing the integrations in the same order as in Eqs.~22!–~27!, the surviving terms are

(
a,ā

ea
2 6a2

Q2
z2z̄ 2A~y!E djE dj̄E

0

2p

dfRE
0

2p

df R̄E
0

2p df l

2p

uRTuuR̄Tu

M1M2M̄1M̄2

cos@2~fR2f R̄!#E dqT$sin~f12fR1f l !

3sin~f12f R̄1f l !F @ ĥ•kTĥ• k̄TG1
'aḠ1

'a#1sin~f12fR1f l !cos~f12f R̄1f l !F @ ĥ•kTĝ• k̄TG1
'aḠ1

'a#

1cos~f12fR1f l !sin~f12f R̄1f l !F @ ĝ•kTĥ• k̄TG1
'aḠ1

'a#1cos~f12fR1f l !cos~f12f R̄1f l !

3F @ ĝ•kTĝ• k̄TG1
'aḠ1

'a#%

5(
a,ā

ea
2 6a2

Q2
z2z̄ 2A~y!E djE dj̄E

0

2p

dfRE
0

2p

df R̄

1

2M1M2M̄1M̄2

cos@2~fR2f R̄!#

3 H cos~fR2f R̄!R̂T• R̂̄TE dkTkT•RTG1
'a~z,j,kT

2 ,RT
2 ,kT•RT!E dk̄Tk̄T•R̄TḠ1

'a~ z̄,j̄,k̄T
2 ,R̄T

2 ,k̄T•R̄T!

1sin~fR2f R̄!R̂T3 R̂̄TE dkTkT•RTG1
'a~z,j,kT

2 ,RT
2 ,kT•RT!E dk̄Tk̄T•R̄TḠ1

'a~ z̄,j̄,k̄ T
2 ,R̄T

2 ,k̄T•R̄T!J
5(

a,ā

ea
2 3a2

2Q2
z2z̄ 2A~y!

1

M1M2M̄1M̄2

G1
'a~z,Mh

2!Ḡ1
'a~ z̄,M̄h

2!, ~34!

where

G1
'a~z,Mh

2![E djE
0

2p

dfRE dkTkT•RTG1
'a~z,j,kT

2 ,RT
2 ,kT•RT!,

Ḡ1
'a~ z̄,M̄h

2![E dj̄E
0

2p

df R̄E dk̄Tk̄T•R̄TḠ1
'a~ z̄,j̄,k̄ T

2 ,R̄T
2 ,k̄T•R̄T! ~35!
094003-9
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are weighted moments of the same IFF that appears in the cross section at leading twist for two-hadron semi-inclusiv
a transversely polarized target@see Eq.~10! of Ref. @7##. For simplicity of notation, these moments carry no further subscri
as opposed to Eq.~24!.

In Eq. ~34!, the first step follows from first integrating overdf l , which implies the disappearance of the explicitf1
dependence, and by performing thedqT integration using identities like

E dqTF @ ĥ•kTĥ• k̄T1ĝ•kTĝ• k̄T#G1
'aḠ1

'a5E dkTkT
i G1

'a~z,j,kT
2 ,RT

2 ,kT•RT!E dk̄Tk̄T
i Ḡ1

'a~ z̄,j̄,k̄ T
2 ,R̄T

2 ,k̄T•R̄T!

E dqTF @ ĝ•kTĥ• k̄T2ĥ•kTĝ• k̄T#G1
'aḠ1

'a5e3i j E dkTkT
i G1

'a~z,j,kT
2 ,RT

2 ,kT•RT!E dk̄Tk̄T
j Ḡ1

'a~ z̄,j̄,k̄ T
2 ,R̄T

2 ,k̄T•R̄T!.

~36!

The latter integrations can only result in a function of (z,z̄,j,j̄,RT
2 ,R̄T

2) multiplying the productsR̂T• R̂̄T and R̂T3 R̂̄T of unit
vectors, respectively, since there are no other available vectors.

From Eq.~34! it is also easy to check thatG1
' does not enter in the integrated, unweighted, cross section. The res

expression for the numerator in Eq.~33! becomes

^cos@2~fR2f R̄!#&5E djE dj̄E
0

2pdf l

2p E
0

2p

dfRE
0

2p

df R̄cos~fR2f R̄!E dqT

ds„e1e2→~h1h2!~ h̄1h̄2!X…

dydf ldzdz̄djdj̄dqTdMh
2dfRdM̄h

2df R̄

5(
a,ā

ea
2 3a2

2Q2
z2z̄ 2A~y!

1

M1M2M̄1M̄2

G1
'a~z,Mh

2!Ḡ1
'a~ z̄,M̄h

2!. ~37!

The final expression for Eq.~33! is

A~y,z,z̄,Mh
2 ,M̄h

2!5
1

4 F(
a,ā

ea
2 z2z̄ 2

M1M2M̄1M̄2

G1
'a~z,Mh

2!Ḡ1
'a~ z̄,M̄h

2!G F(
a,ā

ea
2z2z̄ 2D1

a~z,Mh
2!D̄1

a~ z̄,M̄h
2!G21

. ~38!

It is possible to consider theqT
2 weighting and getkT

2 moments, but we will not do so here. Rather, it is important to rem
that the weighting factorkT•RT in Eq. ~35! is crucial, since the function

E djE
0

2p

dfRE dkTG1
'a~z,j,kT

2 ,RT
2 ,kT•RT! ~39!

does not occur due to parity invariance@3,4,15#. Nevertheless, the chiral-even IFFG1
' can provide a probe ofg1 as it emerges

from the expression of the cross section at leading twist for the two-hadron semi-inclusive DIS off a longitudinally po
target@see Eq.~31! of Ref. @3##:

ds~epW →e8h1h2X!OL

dVdxdzdjdPh'dRT
}H •••2luRTuA~y!sin~fh2fR!F F ĥ•kT

g1G1
'

M1M2
G1•••J , ~40!

wherefh is the azimuthal angle ofPh' ~analogously tof1 in Fig. 1!, andl is the target helicity.
This is a good point to make the connection to handedness studies. Handedness has been studied for quite s

@16–18# as a means to probe the helicity of fragmenting quarks. Clearly,G1
' is a similar analyzer of this helicity due to

(kT3RT) correlation present in the fragmentation process and a direct link with the concept of longitudinal jet handedn@17#
can be made. One can show that the functions appearing in Eq.~11! of Ref. @17# are related to the IFFs discussed here. F
instance, the longitudinal jet handedness is a linear combination of functions calledD1

A andD2
A and is directly proportional to

(kT3RT)G1
'(z,j,kT

2 ,RT
2 ,kT•RT). Similarly, the transversal jet handedness~given by a function calledD1

T) is proportional to
(kT3RT)H1

\(z,j,kT
2 ,RT

2 ,kT•RT). Although the unintegrated functionsG1
' andH1

\ are directly related to the jet handedne
functions of Ref.@17#, the asymmetries we have presented here are not easily translated to the handedness co
observables discussed in Ref.@11# ~different methods of weighting are employed!. Nevertheless, they should encode simi
information and as such our asymmetry of Eq.~38! could perhaps also serve as a measure of aCP-violating effect of the QCD
vacuum discussed in Ref.@11#. This interesting topic deserves further study.
094003-10
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The functionG1
'(z,Mh

2) of Eq. ~35! also provides a probe of the transverse momentum dependent distribution functiog1T

through asymmetries in the processesep↑→(h1h2)X or pp↑→(h1h2)X. However, these are precisely the processes wh
also the transversity asymmetries~proportional toH1

\ and H1
') occur. In fact, the cross section at leading twist for t

two-hadron semi-inclusive DIS on a transversely polarized target contains the following terms@see Eq.~10! of Ref. @7##:

ds

dVdxdzdjdPh'dMh
2dfR

}uS'u H •••1uRTuB~y!sin~fR1fS'
!F F h1H1

\

M11M2
G1B~y!sin~fh1fS'

!F F ĥ•kT

h1H1
'

M11M2
G

1B~y!cos~fh1fS'
!F F ĝ•kT

h1H1
'

M11M2
G2uRTuA~y!cos~fh2fS'

!sin~fh2fR!

3F F ĥ•kTĥ•pT

g1TG1
'

MM1M2
G1uRTuA~y!sin~fh2fS'

!sin~fh2fR!F F ĥ•kTĝ•pT

g1TG1
'

MM1M2
G

2uRTuA~y!cos~fh2fS'
!cos~fh2fR!F F ĝ•kTĥ•pT

g1TG1
'

MM1M2
G1uRTuA~y!sin~fh2fS'

!

3cos~fh2fR!F F ĝ•kTĝ•pT

g1TG1
'

MM1M2
G•••J , ~41!
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where M is the target mass with momentumP15xp1.
Hence, one should carefully project out the azimuthal asy
metry of interest in order to avoid contributions from diffe
ent mechanisms.

VI. CONCLUSIONS

We have studied azimuthal asymmetries in the proc
e1e2→(h1h2)(h̄1h̄2)X, which function as probes for inter
ference fragmentation functions. The asymmetries arise
the orientation of the two hadron pairs with respect to e
other. We have presented two asymmetries that are
present-day experimental relevance. Although the asym
tries probe the correlation of longitudinal and transve
quark and antiquark spin, respectively, they are to be
tracted from the same experimental data by applying dif
ent weights in the form of trigonometric functions of az
muthal angles. The first asymmetry has already been stu
by Artru and Collins, but had not yet been expressed in te
of the IFF language of Refs.@3,7,8#. We have also indicated
a relation between the functionH1

\, that occurs in this asym
metry, and transversal jet handedness.

The second azimuthal asymmetry that we focused on
cifically has not been pointed out before and involves
D

ys

09400
-

ss

in
h
of
e-
e
x-
r-

ed
s

e-
e

longitudinally polarized quark IFFG1
' , which is related to

longitudinal jet handedness. The asymmetry offers a dif
ent way of studying handedness correlations and, as s
can perhaps be used as a measure of a specificCP-violating
effect of the QCD vacuum. We pointed out that knowled
of the helicity distribution functiong1 is of help in this re-
spect.

Extracting IFFs frome1e2 annihilation will provide for
the as-yet-unknown information needed to disentangle
tranversity distribution from processes likeep↑→(h1h2)X or
pp↑→(h1h2)X. However, we stress that azimuthal asymm
tries in these processes with transversely polarized tar
involve combinations likeg1TG1

' , h1H1
\ andh1H1

' ; hence,
a careful separation of each contribution requires weight
of the cross section with the appropriate trigonometric fu
tions.
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