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Partial-wave analysis of two-hadron fragmentation functions
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We reconsider the option of extracting the transversity distribution by using interference fragmentation
functions into two leading hadrons inside the same current jet. To this end, we perform a new study of
two-hadron fragmentation functions. We derive new positivity bounds on them. We expand the hadron pair
system in relative partial waves, so that we can naturally incorporate in a unified formalism specific cases
already studied in the literature, such as the fragmentation functions arising from the interference between the
s- and p-wave production of two mesons, as well as the production of a spin-one hadron. In particular, our
analysis clearly distinguishes two different ways to access the transversity distribution in two-hadron semi-
inclusive leptoproduction.
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I. INTRODUCTION duction of spin-1 hadronge.g., p, K*, ¢) has also been
studied and proposed as a method to measure the transversity
Two-hadron fragmentation functions have been proposedistribution[10—13. To measure the polarization of the out-
for the first time in Refs[1,2] and then systematically ana- going vector mesofe.g.,p°) it is necessary to measure the
lyzed at leading twist in Ref3]. The interest in these func- 4-momenta of the decay produdes.g., 7" 7). Thus, the
tions is mainly justified by the search for a mechanism toreactionep—e’p°X(p°— 7+ ™) is just a part of the more
single out the chiral-odd transversity distributidn an alter-  general reactioep—e’ 7+ 7~ X (namely the part where the
native and technically simpler way than the Collins effecttotal invariant mass of the pion pair is equal to fhenass.
[5]. In fact, in semi-inclusive deep inelastic scatterif®- However, up to now the relation between spin-1 fragmenta-
DIS) where two unpolarized hadrons are produced in theion functions and two-hadron fragmentation functions has
current fragmentation region, i.e., for the reacti@p never been thoroughly examined, nor has it ever been speci-
—e'hh,X, it is indeed possible to build a leading-twist fied clearly how to access the transversity distribution in the
single-spin asymmetrgSSA) containing the factorized prod- case of spin-1 fragmentation. The present work is motivated
uct of the transversity and a chiral-odd two-hadron fragmenby the need to fill this gap.
tation function[2,6]. In this process, the asymmetry occurs  Although in our work we focus mainly on SIDIS, two-
in the azimuthal angle between the two-hadron plane and thieadron fragmentation functions can be measured also in
laboratory plane; the total momentum of the hadronic systene*e™ annihilation, if hadron pairs belonging to the same jet
does not need to have a transverse component, i.e., out afe identified 14,15. Some data are already available con-
collinearity with respect to the virtual photon axis. Therefore,cerning two hadrons being produced via a spin-1 resonance
the intrinsic transverse momentum of the quark can be inte-16—-20.
grated away and no transverse momentum dependent func- The work is organized as follows. In Sec. Il we will re-
tions are required, thus introducing simplifications both onview the systematic analysis of semi-inclusive production of
the experimental and theoretical sidg as compared to the two unpolarized hadrons at leading twist. We will recover the
Collins effect. Model calculations of such objects are fearesults originally presented in Rg3]. We will devote par-
sible [8,6], but a more realistic approach is needed to estiticular attention to the connection with the helicity basis for-
mate their size and measurability. Some of the two-hadromalism(see, e.g., Ref$21,12) and for the first time we will
fragmentation functions are also naive time-reversal @dd deduce positivity bounds on IFF.
odd and originate from the interference between two pro- In Sec. Ill the whole problem is reconsidered by expand-
duction amplitudes with two different phasgs3,9. There- ing in partial waves the two-hadron system in its center-of-
fore, in the literature these functions are usually referred tanass frame. If we consider only low invariant masses, the
as interference fragmentation functioigF). expansion can be truncated to include the first two terms
In an apparently independent context, semi-inclusive proenly, as hadron pairs are produced mainly in theave
channel or in thep-wave channelvia a spin-1 resonante
We can thus deduce a general unifying formalism that natu-

*Electronic address: rally incorporates the specific case of Regf] in the subsec-
alessandro.bacchetta@physik.uni-regensburg.de tor describing the interference between relatveand p

"Electronic address: radici@pv.infn.it waves, as well as the case of spin-1 hadron fragmentation

1See Ref[4] for a review on the topic. [13] in the subsector of the relatiygwave. In particular, we
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will identify a SSA where the transversity distribution ap- M, polarizationS, and momentunP via the exchange of a
pears in connection with a-p IFF, and a SSA where the virtual hard photon with momentug=1—1" (gq?= —Q?).
transversity is connected to a puypevave IFF. These two Inside the target, the photon hits a quark with momenpim
asymmetries are completely distinct; they could have differchanging its momentum tk=p+q. The quark then frag-
ent physical origins and different magnitudes. _ ments into a residual jet and two leading unpolarized hadrons
~ In Sec. IV-.we complete our analysis by including the with massesvi;,M,, and momentzP; and P,. We intro-
intrinsic partonic transverse momentum dadunintegrated  duce the vector®,=P;+ P, and R=(P;—P,)/2. We de-
fragmetmathp f;‘ngt'onzl‘ Alscc)j m}lhls case, t'rt‘hsec' \t/_Vl"e Will seripe a 4-vectoa as[a”,a",aq], i.e., in terms of its light-
present positivity bounds and will carry out the partia Waveﬁone componenta™ = (a°+a?%/\2 and the bidimensional
expansion. The results for the complete cross section for al N i ) ~ )
combinations of beam and target polarizations are listed iYéctorar . Itis convenient to chpose treaxis afccordmg to
Appendixes A and C. Finally, some conclusions are drawn irthe conditionPr=P,=0. In this case, the virtual photon

Sec. VI. has a nonvanishing transverse momenﬁ;lrm However, it is
also customary to align theaxis opposite to the direction of
[l. TWO-PARTICLE INCLUSIVE DEEP INELASTIC the virtual photon, in which case the outgoing hadron has a
SCATTERING

nonvanishing transverse momentll;'f’qmi = —zaT. These two
In the following we will describe the kinematics and the diréctions overlap up to corrections of ordeQl/which we

details of the semi-inclusive production of two unpolarizedWill systematically neglect in the following. Thg axis is

hadrons in the context of the SIDIS process. However, wehosen to point in the direction of the vector produetq

point out that the involved fragmentation functions can bex[") [22] (see Fig. 2

used also in the case of reactions with a hadronic probe orin We define the variables=p*/P™", which represents the

e*e” annihilation[14,15|. light-cone fraction of target momentum carried by the initial
quark, andz= P, /k™, the light-cone fraction of fragmenting
A. Kinematics and hadronic tensor quark momentum carried by the final hadron pair. Analo-

gously, we define the light-cone fractigs- 2R~ /P, , which
describes how the total momentum of the hadron pair is split

into the two single hadrorfsThe relevant momenta can be
parametrized as

The process is schematically depicted in Fig. 1. An elec
tron with momentunt scatters off a target nucleon with mass

2
pr= P*.0],
|2P7
[h24 32
p+p >
plu: —TyXP+1pT 3
| 2xP*
Py 2(k2+K2)
le: _h!—ileT [} (1)
| 2 2Py,
FIG. 2. Kinematics for the SIDIS of the leptdnon a trans-
versely polarized target leading to two hadrons inside the same
current jet. ’Note that—1<¢<1, and{=2¢— 1, with £ defined in Ref[3].
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M2 L 2MW4 =322 TI{®4(X,S) y*Ax(Z.L,MF dR) Y]
Pﬁz Ph ,__,O f
2P, g« —q
+ )
- MV
: <M5—Mg>—§mﬁ
Re=| 2P; R . where
_2 h ZPE T
Not all components of the 4-vectors are independent. In par- (I)a(x,S):f dp.d P~ D(p;P.S)|p+ —xp+, (6)
ticular, here we observe that
M2+M3 M2 z( .
RZ: T_ T, Aa(zvgaMﬁ7¢R): 3_2j ddek+Aa(k1Ph vR)|k7=Pg/Z'
)
2 (1-)(1+9)

— 2 2
T2 2 (1=HOMI= 1+ Mz, The quark-quark correlatob describes the nonpertubative
processes determining the distribution of partoimside the
Mf— M2 spin+ target(represented by the lower shaded area in Fig. 1
(2 and, similarly, the correlatak symbolizes the fragmentation
of quark a producing two tagged leading hadrons in a re-
sidual jet(upper shaded area in Fig).1
Mﬁ k2+||ZT|2 We are going to focus only on the leading twist contribu-
Ph- k:E+ZT’ tions to the hadronic tensor of E¢p). A method to extract
these contributions consists of projecting the so-called good
light-cone components out of the quark fietd As is evident
(M2—M2)— £ 2 . from the kinematics in the infinite momentum frame, the
2 h K2+ k> . . and the— light-cone components are the dominant ones for
R-k= 27 +z{ 4 ST RT the parton entering and exiting the hard vertex, respectively.
They can be projected out by means of the operafors
=1y"y*. Any other component ofy is automatically of
higher twist. Therefore, the hadronic tend®) at leading

The positivity requiremenR3=0 imposes the further con-

straint twist looks like
M2= 2 M2t 22 3) P.
h= +§ 1 1_§ 2 ZMW’L“/ 322Tr[P+ a(X:S)P+ ,y,u.'P_
2 Y v
We shall first consider the case when the cross section is XRa(2,LMpy, dR)P-7']

|ntegfated over t_he transverse_ momentum of the wrtuz_;ll pho =32 P, d,(x,9) 'y+]ij[%7’7 YP,
ton, g7, postponing the analysis of the complete case in Sec.

IV. Until then, no transverse-momentum-dependent distribu- X[y Y P Il P-AZ,L M2 6R) Y Tim,
tion and fragmentation functions will appear. The sevenfold

differential cross section for two-particle-inclusive deep in- (8
elastic scatteringDIS) is

. where?giE yOPLyO. In the last step the Dirac indices have
d'o _ a’ye a been explicitly indicated. In the following, we will analyze

= v
dzd Mﬁd¢Rdzdxdydﬁs > 322Q4L#"2MW 4) each contribution to Eq8) separately.

whereL ,,, is the lepton tensoy = (E— E’")/E is the fraction B. The quark-quark correlator &
of beam energy transferred to the hadronic system and it is . . .
9y 4 The leading-twist projection of the quark-quark correlator

related to the lepton scattering angle in the center- of—masa) ) . L
; q h hal | q can be parametrized in terms of the well known distribu-
(c.m) frame; ¢g and ¢ are the azimuthal angles Eﬁr an tion functions[23,24°

S; with respect to the lepton scattering plafsee Fig. 2,

where S;=(S,,S,) indicates the transverse components of
the target spinS At tree level, the hadronic tensor for a 30Other common  notations are fi(x)=a(x), g3(x)
flavor a is given by =Aa(x), hi(x)=asa(x),Ara(x) [4].
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P+ @a(x,S)y" =[11(x)+Ng1(X) ys+2h3(X) ys5r] P+

f24rg 0 0 (S—iSy)h?
0 0 0 0
N 0 0 0 0 ’
(Sc+iS)hi 0 0 fi-)g}

©)

whereA\=MS"/P* is the light-cone helicity P, ® corre-

sponds to th@-integrated parametrization of E@) in Ref.
[6]). It is possible to rewrite Eq9) in a more compact no-

PHYSICAL REVIEW D 67, 094002 (2003

In Eq. (13) the pair of indices A,A’) identifies each com-
ponent of the X2 submatrices and indicates the spin state
of the target; they are attached to each corresponding
nucleon leg in the diagram of Fig(k). The pair (y1,x1)
identifies each submatrix and indicates the parton chirality;
they are attached to the emerging quark legs in Fig).1
Equation(13) satisfies general requirements, such as the an-
gular momentum conservationy{+ A= y;+A’), Hermi-
ticity, and parity invariance. The chiral transposed matrix is
also positive semidefinite, from which the well known Soffer
bound[25], among others, is obtained:

tation, namely in the chiral basis of the good quark fields

¥+ riL="P=PryLth, With Pgy = (1% y5)/2 [24],

[P+(Da(xvs) 7+]X£X1

fI(x)+Xgi(x)  (S=iSy)hi(x)

— . 10
(SHISME0 1300 —Agi(x) (19

Finally, it is useful to project out also the target helicity

density matrixp, o+ by

fi(x)=0, fi(x)=|gi(x)|,

M0 [<3[F1(x) +g1(x)]. (14)

C. The quark-quark correlator A and positivity bounds

The most general parametrization of the quark-quark cor-
relatorA(k,Py,R) entering Eq(7), compatible with Hermi-
ticity and parity invariance, i§3]

A'A
[,P+q)a'y+])(i)(1:pAA’[P+®a7+]Xina (11)
. Cs
with A(k,Pr R)=MnCil +CoPyt CoR+ Cak+ 0, PRK”
. C C
= E LA SX_ISY (12) + M—BO'#,,RMkV'F M_7U;LVP#RV
PAVT 2l sris, 1-n ) h "
8 vpo
+M—ﬁy58“ L7y Pr R Ky (15
fi+g2 0 0 0
, 0 fi-g2 2n? 0
Py o= o e e o
1 1~ % where the amplitude€;(k? k- Py, k- R,R?) are dimension-
0 0 0 fi+9df less real scalar functions. By using E¢55),(7) the leading-
(13)  twist projection becomes
|
0 0 0 0
0 D% i id’Ru fa 0
2 - a 2y, iy <a 2 Ry 1 ' © Mp i
Pan(Zré‘/aMmd’R)')’ _g D1(21§1Mh)+lHl (Z1§1Mh)M_h P7:§ |§| y
0 —je '%r—H;? ok 0
h
0 0 0 0
(16)
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where Mﬁ, and ¢r. In Eq. (16), P_A corresponds to the param-
, zm . etrization of Eq.(3) in Ref.[6].
Dl(Z,ﬁ,Mh)=Tf d?krdk?d(2k- Py) The fragmentation functioii; is chiral odd and repre-
sents a possible partner to isolate the transversity distribution

M2 2k.P inside the cross section at leading twi6]. Moreover, it is
) |2$+ k2 + Zh h) also odd with respect to naive time-reversal transformations
72 z (for brevity, T-odd [3]. Noteworthy, it is the only example of

1 leading-twist T-odd function surviving the integration upon
C,+ gc3+ —C4}, (17) the quark transverse momentlﬁvﬁ. It would be interesting
z to investigate it in order to understand what is the relevance
of the transverse-momentum dependence in generating T-odd
effects [26,27]. As a consequence, thET—integratedHf
could have simpler evolution equations than the ones of the
Mi  2k-P, Collins function. SinceH;" has the same operator structure
?_ z as the transversity, it has been suggested that it could have
the same evolution equatiof28—-30. However, the situa-
tion is complicated by the presence of two hadr§8s],*
. (18) except for the component &f;" describing the production of
a spin-1 resonancesee Sec. Il B.
The prefactors have been chosen to have a better connection Again, in the chiral basis for the good light-cone compo-
with the one-hadron results, i.e., after integrating ofer nents Eq(16) is simplified to

X

z N
Hf(z,é,l\/lﬁ)=%f d?krdk?d(2k- Py)

><5( k2+k2+

1

X EC6_C7

|Ry|

) D3(z,¢,Mp) jeltrmHI (2 ¢ M7)
3 h
[P-Aa(z.LMR ¢R)Y T, = 5 & : (19
—ie R TH (2,0, M) D3(z.{.M})
h

where (y,,x5) are the quark chiralities to be attached to thewhere
parton legs entering th& area in Fig. 1b).
The matrix in Eq.(19) is positive semi-definite, from

which the following bounds can be derived: dor®%) X¥axiixax;
Rl v
Ry
Di(z.{,Mp)=0.  Di(z.LMp=—IHIYZ L M), 20y [yt Ny tyr X
(20) Tt el ) T
: , (y)
D. Cross section and transverse spin asymmetry A(Y)+ Ao 5 0 0 —B(y)
Using the previous results, we can now rewrite the
leading-twist cross section for unpolarized two-hadron SlI- 2€§a2 0 0 0 0
DIS in t_he helicity basis. In fact, e}fter.inserting E@sl) and = Q%y 0 0 0 0
(19) inside Eq.(8), the cross section in E¢4) becomes ciy)
y
i —B(y) 0 0 Aly)—Ne—5—
dZdM2dprdzdxdydbs (22)

d O.eqa) X1X1iX2X5 represents the elementary electron-quark scattering. Strictly

=2 PAr (S)[PLP,(X) 7+]§’,>/(\1( dy speaking, this is not a scattering matrix, but a scattering am-
a 1

2 —
X[P-Aa(z.{.Mh. dr) Y ]XéXz @D “We thank D. Boer for pointing out this detail.
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c.m.

plitude times the conjugate of a different scattering ampli-
tude[12]. However, for conciseness we follow the notation
of Ref.[2]. The polarization of the incident beam is indicated

with A, and
2

y
AY)=1-y+7,

B(y)=1-y, C(y)=y(2-y).

(23

- , L FIG. 3. The hadron pair in the c.m. frame;is the c.m. polar
In Eq. (22), the indices §1,x1) refer to the chiralities of the angle of the pair with respect to the directionRyf in the target rest

entering quarks and identify each submatrix, white (x5)  frame.

refer to the exiting quarks and point to the elements inside

each submatrix. By expanding the sum over repeated indic&§hen an unpolarized lepton beam scatters off a transversely
in Eq. (21), we get the expression polarized target. No assumptions are made on the behavior of
the fragmentation functions. However, as we shall see in the

d’o next section, it is useful and desirable to understand how
dZdM2dgrdzdxdydbg different partial waves contribute to the above fragmentation
functions.
_E 2 2a2 A fa Da M2
< ea4Wsz (Y)f1(x)D1(z,£,Mp) lll. PARTIAL-WAVE EXPANSION FOR THE
TWO-HADRON SYSTEM
C(y)

If the invariant masdv, of the two hadrons is not very
large, the pair can be assumed to be produced mainly in the
relative swave channel, with a typical smooth distribution,
or in the p-wave channel with a Breit-Wigner profile2].
Therefore, it is useful to expand E¢L6)—or equivalently
Eq. (19—in relative partial waves keeping only the first two
harmonics. To this purpose, in the following we reformulate

+ N\ Tgi‘(x)Di‘(z,g,M 2)

SIIR
|ST|\|/||hT| sin( g+ SO0 HT (2L MP)

(29)

+B(y)

For an unpolarized beam\ (=0, indicated withO) and a
transversely polarized targek €0, indicated withT), Eq.

(24) corresponds to Eq10) of Ref.[6] after integrating over
all transverse momenta. The following SSA can be built:

the kinematics in the c.m. frame of the two-hadron system.
Then, the leading-twist projection for the quark-quark cor-
relatorA is conveniently expanded deducing a more detailed
structure than Eq(19). A set of new bounds is derived and

the corresponding expression for the cross section is dis-
cussed.

In the c.m. frame the emission of the two hadrons occurs
back to back. The direction identified by this emission forms
an angled with the direction ofP,, in the target rest frame
(see Fig. 3. In this frame, the relevant variables become

Agt® 9y x,2, M)

f dopsdprd{ sin(pr+ ¢s)d oot

| docdardzamons

5 P“—-Mh Moo 0
R h— | = = ) l
S elioo [ @z T M 2
1§12 = My N J
= 2, 1B|2 2, 1R|2 S
A(y) 5 f : M4+ |R|?°—\VM3+|R|*—2|R|cosf
e2f3(x) | d¢D¥(z,¢,ME R#= ,
; a 1( ) g 1( é’ h) 2\/5
(25 - _ .
VMZ+|R|2— MZ+|R|2+ 2|R|cosd
which allows us to isolate the transverdity at leading twist. 22 ,

Apart from the usual variables y, z, the only other vari-

able to be measured is the anglg+ ¢5. Instead of using

the scattering plane as a reference to measure azimuthal

angles, it is sometimes convenient to use the directions of the

beam and of the transverse component of the target spin. The

new plane is rotated by the angfg;=— ¢>,S with respect to 2R™ 1

the scattering plane; therefore, we hagg= $3— ¢ and {= o

brt bs=da— 247 [6]. "
The asymmetry described in E@5) is the most general

one at leading twist for the case of two-hadron productionwhere

|R|sin 6 coser,|R|sin 6 singg|,

- (VM3 |R2— M3+ |RI2-2|R|cos),
h
(26)
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.1 1 2|R
IR|= Z—M\/Mﬁ—Z(Mi+ M) +(MI-M5Z (27 Hin(z,M3)= J,ld cos¢9Pn(co:~:¢9)|\|/|—h|

_ _ o _ XH7 (z,¢(cosh),MD). (31)
The crucial remark is that in this frandedepends linearly on
cosd, i.e., {=a+bcosé, with a,b, functions only of the
invariant mass. This suggests that any functior? @an be
conveniently expanded in the basis of Legendre polynomial

) . . i Ve can truncate the expansion to the first three terms only
in cosé, as discussed in the following.

(n=2), which are the minimal set required to describe all
the “polarization” states of the system in the c.m. frame for
relative partial waves with.=0,1. In fact, forn=0 (P,
=1) the correponding term in the correlator does not depend
on 6, it is “unpolarized.” For n=1, a term linear in
We first express the leading-twist quark-quark correlatorcosg (P,=cos#) describes the interference between an “un-
(16) in terms of the c.m. variables. The connection betweerpolarized” hadron pair ins wave, for example on the left-
the two representations is defined as hand side of Fig. (b), and a “longitudinally polarized” pair
in p wave on the right-hand side. Whenever in the correlator
we encounter a term linear in séhwe will interpret it as the
) 2||§| ) interference between an “unpolarized” pair §wave and a
A(z,cos60, My, dp)= 11— A(Z,{,Mp,#r),  (28)  *“transversely polarized” pair inp wave. Similarly, a term
h proportional to sirdcosé indicates the interference between
“longitudinally” and “transversely polarized” pairs always
to take into account the Jacobian of the transformatith, in a relativep wave. The last case correspondsmne 2,
=2|R|/Md cosé. Therefore which is interpreted as a “tensor polarization” still related to
the intereference between pairs in a relatvevave. With
notations that are consistent with previous arguments, the
correlator(29) is expanded as

A. Partial-wave expansion of the quark-quark correlator A
and positivity bounds

P_Ay(2,c080,M7, )y~

= —2|§| D3(z,£(cosh),M?)
8’7TMh 1 ’ h
e 2Rl P_A(2,£(c0S8),MZ )y~
+iH; (Z’g(cos’a)’Mh)M—hS'”MbR P, 1
(29 - 8 Dl,O(ZvMﬁ)‘l'Dl,l(Z,Mﬁ)COSH

wherem,R:[0,0,cos¢>R,sin¢R].
The fragmentation functions can be expanded in Legendre
polynomials as

-

2R
—JA 10,(2,0(c080) ME)= S D1,(2.M)P(cos0).
h n

2|R|

v H1 @ 4(cos0), M) =2 Hi (2 M7)Py(coso),
h n
(30)

with

1 2|R
Dlyn(z,Mﬁ)=J_1d cosHPn(cose)l\Ll—JDl(z,g(cosa),Mﬁ),

094002-7

+ Dl,z(z,Mﬁ)%(3 co$6—1)+i[H{{z,M})

R

£ 2 ;
+H7(z,M{)cosé]sin 0M—hﬁ¢R} P_

1
=gn| D100zM ) +D1o(z,MP)cose

1 .
+D1,1(zM{)7(3 c0$0—1) +i[H{or(z.M})

5 ) _|R]
+HT| 1(z,Mp)cosb]sin 6=,

M, P_. (32

Consequently, the same correlator in the chiral basis be-
comes
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>

2 2 jel® Rl
D100(z,Mp) +D1o1(2,Mf)cosd e, e
h
+D11(2M7)7 (3 cod6—1) X[Hior(z,Mp) +HT (2, M})cos6]
1 , ,
[P-AZLME DR Y Iy, ~ 5
iR h "
—le TRy osing D100(z,Mf) +D101(2,Mf)cos0

h

X[HioH(z,MR) +H{ (z,M})cosd]  +Dyy,(z,MP)7 (3 cogd—1)
(33)

It is useful to project out of Eq.33) the information about the orbital angular momentum of the system, which is encoded in
the angular distribution of the hadron pair. In fact, fo1 the decay matrix for the hadron pair is given by the following
bilinear combination of spherical harmonics:

Dy (0,00) =Y 1Y 5,y

3 ) 3 )
1 — \/;sin Hel PR V3 cos 6 \/;sin e 1Pk
3 . 3 3 ) 3 )
— \/:sin fe ¥R Esinzﬁ — —cos fsin fe ¥R —Esinzﬁefz"z’R
1 2 V2
T 4n 3 . 3 | G
\/gcos 6 — —cos §sin fe’?r 3 cos* —cos # sin fe -
V2 V2
3 . 3 . 3 . 3
\/:sin e PR — —sin?feir —cos sin e’ #r —sin’6
2 2 \/E 2

with L,L'<1 and| M(')|sL('). The upper left block correspondslte=L’ =0, i.e., to the system being in relatigevave. The

lower right block instead correspondslie=L’'=1, i.e., to the system being in relatipevave, including all the contributions
corresponding to differeri,M’ projections and their interferences. The off-diagonal blocks indicate, obviously, the interfer-
ence between theandp waves. Using the decay matrix, it is possible to represent the fragmentation in the basis of the quark
chirality and of the pair orbital angular momentum. In fact, BB) can be written as

_ _L'L !
[P-AZLME6R)Y Tu, = [P-AZMDY Ty, D (8 6R), (35
where
L'L L'L
' 1/ Aum  Bum
[P_A(ZM)y Io o == , (36)
MM x,x2 8 (BkA,LM)T AkA'LM
and

2
D3 0 —D 0
1,00 \/E 1,0L
» 1
0 Dl,OO_ §D1,LL 0 0
ALl = , 3
MM ) ) ) (37)
EDLOL 0 D1,00+ §D1,LL 0
1
0 0 0 Dl{,oo_ §D1,LL
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242 |R|
0 0 0 i—=Hpr
Ve
242 IR o 2ZIR o
L'L _Z_M 1,0T _l__Hl,LT
Byy= V3 M, 3 M, . (38)
SRR
0 0 0 0
|
. . 2y —-L'L - 3
The fragmentation matrix?_A(z,M7)y ]M'MXéXz fulfills EH:?.:LT< 3
all the fundamental properties, namely Hermiticity, parity in- Mp & 22
variance [33], and angular momentum conservatiog, ( 5 T
+M=yx,+M'). The imaginary entries in its off-diagonal « \/ DP . +5p )(Dp D )
submatrix are T-odd fragmentation functions. It is worth no- 1007 g FLLL 1 100 3 =Ll

ticing that with the projectiort35) we gained a further infor-
mation on the “unpolarized” state of the hadron pair. In fact, = gD (40)
we see from the diagonal of Eq37) that the spherically g~ oo
symmetric state in the c.m. frame receives contributions
from both the relatives and p waves, such that when per- B. Cross section and fransverse spin asvmmetries
forming the matrix multiplication of Eq(35) we get ' P y
Using Eq.(35) inside Eq.(21), we can take advantage of
the full power of the analysis in the helicity formalism. In
fact, the cross section can be expanded in the density matri-
ces for the target helicity, for the chirality of the initial and
fragmenting quark, and for the relative orbital angular mo-
mentum of the leading hadron pdR]. Inserting the corre-
However, in an actual cross section the two contributions argponding expressiord2),(13),(22),(36),(34), we get
merged together and are kinematically indistinguishable, un-
less a specific hypothesis on the dependence upon the invari- d’o
ant masdVl,, is assumed for the two different partial waves, 2
e.g., a resonant contribution for tpevave and a continuum d¢dMd¢rdzdxdydbs
background for thes wave. ,
Finally, from the matrix(36) being positive semidefinite = pan (D[P Da(X) y+]A,A(
the following bounds are derived: a a

21 2 3o 2
Dioo(z,Mp)= 2 100(Z,Mp) + 4D1,oo(ZaMh)- (39

do€% XlX;’L;XZXé
dy )

_qL'L '
X[P_A(z,M2)y ]M,MXéXZDkALM,(o,qu)

DlOO 0 I:)lOO O
2

_2 e2 yHA(y)fl(x)+)\ A (2y) (x)}

- EDlOO D1LL 3DlOO1

S oo+3DY
—100 “~100 2 1'OOJrDLOLcosH
3 3 1 SR
s —_ S p p— S— — —
DioL \/4 1,00(D1,oo+ 3D1,LL) 2D1,00a +D1,LL4(3 cogo—1) y M
X sin( pr+ ¢ps)hi(x)
BH{ \/ DS DP —ED <§D
M, 101= VgP1oo| Proo™ 3 1 [S5P1o0: X sinf[Hior+H +cos6](, (41)
h 1oTT AT

SNote that the bounds involving the pupewave functions corre- Where all the fragmentation functions depend just on
spond to those obtained in R¢84]. (Z,Mﬁ).
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Rep|acing)\:)\e:|§.r|:o in the previous equation, we As TOI’ the functi_on HfLT, it naturall_y links with the
get the unpolarized cross sectidfroo. However, it is par- ~ analysis developed in the case of a spin-1 hadron fragmen-
ticularly interesting to consider the case for an unpolarizedation[13], because the two spinless hadrons, e.g., two pions,

beam and a transversely polarized target, i.e., can be considered as the decay product of a spin-1 reso-
nance, e.g., a particle. The T-odd IFF arise from the inter-
d’oor ference between two different channels in the relate
> wave. To the purpose of isolating an asymmetry containing
d{dMjd¢prdzdxdydbs the functionH? | 1, we show that integrating E¢42) upon ¢
o? |§T||§| in a different range, namely in the intervht 7/2,7/2],
2 H i
= e B Si + YIe|dS
2 oy BV T, SNéRt b9
2 d70'
X hi(x)sin6[H{or+H7 1 cosd], (42) f désin 6 5 of
—ml2 d cosddM;dprdzdxdydbg

because we can see that the transvetsjtgan be matched ;

by two different chiral-odd, T-odd IFF: onéH(’o) pertain- _ f”m d6sine d'oor

ing to the interference between and p-wave states of the — w2 Udgd MZdprdzdxdydbs
hadron pair, the otherl-(f,_T) pertaining to thep wave only. , | _ i %|

The partial-wave analysis allows us for the first time to com- a SHIR| .

prehend different theoretical analyses in a unifying frame- :é e§4Q2y B(y) My, Sin( ¢+ ¢s)3(x)
work. In fact, Hfm corresponds to the hypothesis first for-
mulated in Ref[2], and later reconsidered in R¢6], where

the necessary spin asymmetry is generated by the interfer-
ence between two channels describing two leading pions in
the relatives and p waves, respectively. As a simple cross- where both kinds of IFF appear at leading twist and can
check, taking Eq.(42) and integrating thed dependence contribute to a SSA isolating the transversity. Although

4
X| Hior(zM{)+3—H{i+(z.Mp) |, (44)

away yields spin-1 fragmentation functions have already been proposed
in the past as possible chiral-odd partners for the transversity
Jl d d’oor [10-13, to our knowledge this is the first time that the
cosé i ity i ifi
4 dcosBdMﬁdqud(;bsdzdxdy asymmetry vyhere they oceur is exphcn!y identified and a
clear distinction from thes-p interference is made.
1 d’oor There are not yet quantitative model predictions for
= f dcosé > H\ 1; on the other hand, since tipewave production of two
-1 d¢dM;d¢rdpsdzdxdy ;

hadrons becomes significant only when it proceeds via a
2 | > “§| spin-1 resonance, we can expect that the shape of this func-
:2 2 @ S ; tion in the invariant mass corresponds to a Breit-Wigner
ez — B(Yy) sin(pr+ ¢s) .

a 4Q°y My curve peaked at the resonance mass. Moreover, it has the
same features as a single-particle fragmentation function, un-
like HfOT: its evolution equations can be expected to be
analogous to that of the transversit28—3(Q; it does not

;R;lsojszrﬂ?e:% tcorerleseprmgg\?etr(;lth:sgg; Sttil(;?]lsedV\llgr(;mlfﬁa d require a rescattering of the hadrons after they are produced
g pap P Gnd its physical origin could have something in common

Firstly, the IFF was factoriz?d Ina part dependent only O"yith the one of the Collins function. However, it should be

the variablez, designated agq(z), and in a part containing poticed that in the case of the Collins function an essential
the M-dependentr-m phase shiftsJ/6 singsin&;sin(®  role is played by the partonic transverse momentum, which
—&y). Secondly, the azimuthal angle of the target spin wasp the case ofH;, ; is replaced by the relative transverse

takengs=0, due to neglecting the scattering an@lee Fig.  momentum of the hadron pair. It would be interesting to
2). The azimuthal angle of the hadron pair defined in R2f.  ejaporate on these topics since data for the electromagnetic
is p=m/2— ¢r. Itis worth noting that the peculiar behavior production and decay are already available in the diffractive

in the invariant mass discussed in REd] relies on the as-  yegime[35-37, and they could be available in the DIS re-
sumption that only ther- rescattering can generate the gime as well in the near future.

T-odd character of the IFF. It has been already shown, how-
ever, that a different model with more general assumptions
leads to an unfactorize(t,(Mﬁ) dependence of the fragmen-
tation function and to a completely different behavior of the
SSA[6]. Therefore, it is of great interest to experimentally  For the sake of completeness, in this section we extend
explore the production of two unpolarized hadrons, e.g., twdhe previous results to the case where the transverse mo-
pions, in the relevant kinematic range, namely, with an in-menta are not integrated away. In this case, the cross section
variant mass around the resonance. is ninefold and reads

Xh3(x)Hior(z,M}). (43

IV. EXPLICIT DEPENDENCE ON THE TRANSVERSE
MOMENTA
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d% o ye The leading-twist projection dV*” proceeds in an analo-

S2dVPdaazdR dxdy e => 322Q4LM2MW/” gous way to Eq(8); we usually havd22]
hdPRrUZA M, AXAYOps 2

(45) Tp(rsély'pT

- +_1{ fa ~2
The hadronic tensor takes the form Pa(x,pr.S)y ‘fl(x’pT)+ M x,p7)

Pr

2MWHY = 32ZZ[ Tr[ D 4(X, Pt ,S) i, ph

X yrAq(z, Kk, (M2, ¢R) 7" 1], (46)

where we introduced the shorthand notation

- -

S, -
+ gt (xph+ 2 T 9EuPR) |7

S

76)= [ dbrdkea(pr—Pry 12—K[1], @7 +Ango ) + T T i)

and where the transverse-momentum-dependent correlation

) pr -
functions are X yspp +hiz(X, P2) ¥sBr i, (50)

<I>a(x,pT,S)=f dp” @a(piP.S)ps—xp (“48) whereel’= e~ "#”. Equation(50) corresponds to Eq2) of

L Ref.[6]. Again, similarly to Eq(11) and the following equa-
> 2 _ + . - tions, we project out the density matrix of the target helicity
(zkr,EMi . dr) 322[ dk™Aa(ki P R) i -y 12 so that Eq.(50) in the basis of quark chirality and target
(49 helicity becomes

ATA
[P+q)ay+]XiX1
o1l ol Brl?
1oL “,z,,—ﬂe_'%(giﬁifi?) “:A—Tle_'¢p(hif+ihia) Tz &t
_|5T| idp(d _ifla fa_ g 2ha Pl Cig mla ila
e*r(grr—ifiT) 1701 1 — o € e (hif—ihg?)
- N , (5D
|pT| el bp(pta la 2h2 fa_qga Iprl iy ma _ifla
Y e'®p(hy2—ih7?) 1 17910 VR p(gir—if17)
el 9
e’ hid —“:A—T|e'¢p(h 2+ihi?) _lpd e #p( gl +if 12 fatgl

where ¢, is the azimuthal angle qf,T The matrix is Her- Wherel, denotes the units of angular momentum introduced

mitian, respects parity invariance and conservation of totahy p... The chiral transposed matrix is still positive definite,
angular momentum. Introducing the dependence upon the that the bounds on the various distribution functions can
quark transverse momentum modifies the conditions for be obtained24].

angular momentum and parity conservation, which now read, The leading-twist projection of the fragmenting quark cor-

respectively, relator is
’ ! P—A Z,E 1 !MZ! -
A1+X1+|pT:A1+X1, a(Zkr, M dr) Y
1 o o
=5 | DXz L ME KL K Ry)

[Pe®y Ty =(~1)'s[P.®y* ]} , "

gy, +iHF(2,¢, M2 K2 Ky Ry)

(52) M
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_ I responds to Eq:3) of Ref.[6]. New functions appeay is
+iH13(2,¢, M KF Ky RT)M_h chiral even but T-oddH? is chiral odd and T-odd and rep-
resents the analogue of the Collins effect for a two-hadron
emission[3]. Upon integration ovedk;, Gj vanishes and
the surviving parts oﬁf and H; merge into the function

1 2772 0 A e'lI'LVRT;LkTV
+G1a(za§thva-kT'RT)T"}’5 P_, (53
h
where the actual dependence of the fragmentation functiorfdf of Eq. (16) keeping the sam&q /M, structure. In the
is the most general one possifB. In Eq. (53) P_A, cor-  chiral basis of the fragmenting quark, E§3) becomes

"Ry k v ) ﬁ . |Z
Dil-i- T ey T; il Gjia i(el(/)Rqua-i-eWkuHia
K 2 - 1 h Mh Mh
[P-Ralzkr & Mi PRV T, ™ g7 KR Kk
P L |H<a+ gkl |H“‘) Dj- Ty
h Mh

(54)

V. PARTIAL-WAVE EXPANSION WITH TRANSVERSE

The following bounds are derived:
MOMENTA

It is again useful to expand all the fragmentation functions

|7 Ry Kt GLa)< of Eq. (53 in the relative partial waves of the hadron pair.
M2 The dependence ok;-R; makes the expansion more in-
volved:
|Ry|® |k ? Kr-Rr— _ L
(H{a)Z (Hla)2 5 Hi(aHJJ:a D= Dl,OO+ Dl,OL cosf+ DleLz(3 cogo— 1)
h h h
v ) + cog p— pr)SINO(D 1 o1+ Dy 1 COSH)
a\2 |€T RTMkTV| la|2 .
=(D)?—— 77— G (55) +C0g 2~ 2pR)SIPOD 11,

M

G1=G1 o7+ Gy 1€0SO+COS ¢y — dgr)SiNOGT 11,
Expanding the cross section of E@5) along the same

lines leading to Eq(21), we have ﬁf:ﬁfOTJr ﬁfLT coso
+2 co§2¢py—2r)sin OH 11,
d° ’
dZdM2d¢rd Py, dzdxdydbg
Hy=Hioo+ Hio COSO+ H1LL4 (3cog6—1)
= (S (X .
= e )[{[P* PO L T2 0% gy~ pR)sin O(HyortHyy 1C0S0)

) 2 ) +2 cog$2¢—2¢r)SIPOH 11
[P_Au(z,kt, ¢, M, dR) Y ]xéXz ' |F-é|
—sirf e | HfTT! 57

(56) ]

X

’. ’
dUEqa) X1X1:X2X2

dy

where[P,.®,y"] and[P_A,y ] are given by Egs(51)  where all the functions depend om,E%,Mﬁ). Then, simi-
and (54), respectively. The complete formula for the crosslarly to Eg. (35), Eq. (54) can be further expanded in the
section is given in Appendix A. basis of the pair orbital angular momentum as
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" 2 -1, ity formalism by further expanding the IFF in the basis of the
[P-Alzkr EMi PRy Ly, relative orbital angular momentum in the c.m. frame of the
hadron pair. New positivity bounds have been derived. If the
invariant mass of the pair is not large, the expansion can be
(58) limited to the first two modes, namely the relatiseand p
waves.
The full expression of P_A(z,k2 M)y~ is shown in Ap- Off-diagonal elements in the chirality and in the orbital
pendix B. The fully expanded differential cross section in theBgular momenturh represent the IFF of Reff2] and[6],
helicity basis of target, initial and final quark, as well as in Where the interference arises from the hadron pair being in a

the basis of orbital angular momentum of the hadron pair i$tate with eithers or p relative wave. Elements in the
then =L'=1 sector correspond to the analysis of spin-1 hadron

fragmentation 13]. Therefore, the present formalism repre-
sents a unifying framework for the problem of fragmentation
into two unpolarized hadrons and can be used to correctly

=[7?,A(Z,I22,Mﬁ)y_]kA,LMXéXZDI,(ALMr(9,¢>k,¢R)-

d®c and exhaustively discuss the extraction of transversity from
dZdM2dgrd Py, dzdxdydbg two-hadron leptoproduction.
In fact, after calculating the complete leading-twist cross
:z par(S) section, we have identified a single spin asymmetry contain-
a ing two distinct chiral-odd partners of the transversity. By

. integrating the asymmetry over different ranges of the c.m.
W T [P o(x.Pr) +]A'A(dae%)“xl'm2 polar angle of the hadron pair, the transversity can be
+PaXPTY | Tay extracted through the chiral-odd, T-odd fragmentatitfy
(corresponding to the-p interference of Ref.2]) or through
the chiral-odd, T-odd fragmentatidﬁfLT (corresponding to
the p-p interferencg This second option has been often ne-
LY glected in the literature, despite the fact that the two func-
XDy (0, br). (59 tions have, in principle, a different dependence on the invari-
ant mass and a different physical origin.
In conclusion, we believe that the fragmentation into two
Its explicit expression is presented in Appendix C. The purdeading unpolarized hadrons can be a promising tool to mea-
p-wave sector corresponds to the cross section for the prasure the transversity distribution, as well as to achieve further
duction of a polarized spin-1 hadron and has already beegomprehension of the hadronization mechanism.
fully studied in Refs[13,38. For the sake of completeness,
we show it in Appendix C together with the formulas for the
pures ands-p interference sectors.

X[P-Aa(zKr EMR AR Y Ty,
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the analyzing power of the interference fragmentation func-
tions (IFF) into two leading unpolarized hadrons inside the
same current jet. As already shown in Réfl for the process APPENDIX A
ep' —e’h,h,X (and similarly, but not fully exploited, for the
fragmentation into spin-1 hadrofi$0—13), the transversity
distribution enters a single-spin asymmetry in the azimuthal In this appendix we write explicitly the cross section for

angle ¢ of the hadron pair plane. The effect survives aftertwo-hadron leptoproduction at leading order iQ1#nd with
the integration upon the transverse componenPgiP,  the inclusion of partonic transverse momenta. Moreover, we

+ P2a therefore’ no transverse_mOmentum_dependent fundﬂClUde also T-odd distribution fUnCtionS, since recently there
tion is required. In principle, this is a clear advantage withhave been some indications that they are not forbidden by
respect to the Collins effect. However, more sophisticatedime invariance[26,39,217. To simplify the notation, we in-
calculations than the ones in R¢b] are needed to get a troduce the projectioaT/\bT=aie¥bj. Inserting in Eq(45)
realistic estimate of the size of this asymmetry at the experithe formulas for the target helicity density matrix, Eg?2),
mental scale. At present, it is not yet possible to judge whicHor the distribution correlation matrix, Eq51), for the el-
one between the IFF and the Collins function is better suite@mentary scattering matrix, Eq422), and the two-hadron

to extracth;. fragmentation matrix, Eq(54), we obtain the following re-

Here, we have reanalyzed the whole problem in the helicsult:
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262 .- P
P°o00=2 ZiQy (Y)[f:D4]- B(y)ucowhwR)f[pT “hy
LA 5r- By ) (Ke- Py ) — preK
+B<y>|—|sm<¢h+¢R>I{ Pri B(y)cos(zqsh)/{ a ”)(MTMh“) P b
o1 Pr ) (P A : A
+B(y)sin(2¢h)z{<m Pr) (P, km;:T Pnu) (P, pﬂhﬁ } A
azez | T| lz A n n
d°o0=-2 Py g NICH) | sin = d0) = £,GY | +cos by~ dR)T| —— 1161
(A2)
9 2 2 | T| ﬁ) n | T|
d®ooL=2, . QZ oo S|~ AW T sin(én— ) ———"=0,. G} —AW)  ~cos én— )
B /K R 5Py R
xz['”M—thnGi +B(y>%sin(¢h+¢R)f[pTM i HY +B(y>%coa{¢h+¢R>
E /\_) _ 7. E . P —n-.k
XZ[PMM pThiLHf +B(y)sin(2q§h)7{2(pT Pm)(l\';TMPm) pPr kThiLHi
h
N T I U
+B(y)coiz¢hﬂ[<m Pr)(Py kmtq Pr)(Py pT)hiLHiH 3
a262
o =2 ﬁhe“sdc()’ﬂ[guDl]v (A4)
9 ’e 2 | T| pT T
d UOT:Ea o QZ |StlA(y) _S|n(¢R ¢s) 2MM,, PV LG
5r- By ) (Pr ARr) — (Kr- B ) (Pr, AP
_uCOwR ¢S)7{<pT n)(Phy ;:\M;hT GO P _usnwh o b0
2(p7- P ) (kr- Py ) — pr-k R
xr[ Pr-Ph T Tgnei}—%coqwh—%—qbs)

X (5T ﬁ’hL)(IE)hl/\IZT)—l—(IZT' IE)hl)(lshi/\F;T)
2MM,,

. p
01761 "'Sm(d’h_(ﬁs)T{ L f1rDy

/\ 2 2
+ 008 dy— %)7{—‘”

hHi}

3 o

R _
+ 'M—T|sin(¢R+ ¢9) T hsH7]

firD1 i B(Y)l Sin( ¢+ d)s)l'[

P /AR
+cos<¢h+¢s>7{ i N

4(pr-Phy)A(ky-Pry) —2(pr- Pry ) (pr-kp) — p2(Kr- Py )
2M2M,

hitH1

+sin(3¢n— ¢s)7_[

2(pr Pi)2(Po AKp) +2(Ky Po ) (Pr- P ) (PruAPr)  PRHPR Ak
+cos36y— ¢ oA ~ome
M Mh 2M Mh

hirHy
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|Ry| 2(pr-Pri)?=p% | — | IRy (pr- P ) (P /A7)
+ 4, SIN20n+ dr— %)f[TZ:AZThiTHf OS2t e g7 ]|
(A5)
2 2 D Ah . IshL/\ﬁT
d%o 7= ; 5 Q2 ——-ISIC(y)] cos ¢p— ¢g)Z| ——— 017Dy |~ Sin( b — s) —w 9iD1
R p 2(pr- Py (ky- Ppy)—pr-k
—|MTh|cos(¢R—¢s>T[2,\T,,MT firG1 +|,V,—|cos<2¢h ¢R—¢s>f{ o, TfiTGi}
Rr (Pr-Pr.)(Phy/AKp) = (Ky- Pry) (Ph. Apy)
—7S|n(¢R QSS)T[ T Thi hl ;MMhT hl hl T fJiTGJi
+usm(2¢h ¢Rd)s)Z[(prPm><PmAk;>M+h;kT-Phg(PmApT) fiTGi”- 6)
h

In the case ofi’oq1, i.e., for an unpolarized beam and a transversely polarized target,

the full expression of the cross section

corresponds to the one in E.0) of Ref.[6], apart for a different overall factor, due to slightly different definitions of the
hadron tensor and of the fragmentation functions, and the udé,oinstead ofM; (M) in the denominators, due to a

different definition of the expansiofi5).

APPENDIX B
. - _oL'L . .
The full expression of P_A(z,k2,M2)y Turviysy, N Q- (58) i
L'L L'L
A B
— o LL 1 M'M M'M
P_A(z,k:,M =— , B1
[ ( T h)y ]M’MXéXz 8 (B )T CL’L ( )
M'M MM
where
2, |kz| R 2 \/E ; |kz| R
DS — \/_ i L —_ — o —id| L
1,00 d Dyor+i z Gior \EDLOL 3¢ Dor—i w2 Gior
N T o L R T T T
. 3 1,01~ M Tor 100~ 3P10L 3 LT M Tir 3 LIT 7 LIT
MM~ > IR
2, IR or 2 ooy R
5 L0L 3 LLT M LLT 1007 3010L 3 LLT M LLT
2, | THE\ ; |kz| R V2, |kz| R 1
\/;6’ Y Diorti z Gior -5 2Dy prti 7 Girr 3 ¢ DI,LT+'M_hGJ1_LT Dloo= 3D
(B2)
22 . 22 [ |R| _
e PHLS _ 2yl Zitpt Ll SRy 2 28
1,00 € 1,0T € 1,0L 10T 10T
V3 V3 \/_ |k
2\/5< IR| 2\2( |R| IR|
> B HEOT"'HiOT H#oo HiLL T HlLT+H1LT -zt HfTT"'HfTT
BL’L .|kT| ‘/§ |&7] 3 3 |k 3¢ |T|
L —j— »
MMM idrrl 2‘/— Iy e i¢| yip 2 1 \/_ |R| 7 L (BS)
ﬁ‘f Hiop - \/— Hyrr € H1,00+§H1,LL . |kT|H1LT+H1LT
2V2 8 2\/_ s _ 1
\/— I¢HT0T _5531¢HiTT I¢HTTT Zl(b(Higo 3HiLL)
and ¢= ¢, — dr. The matrix(B1) respects Hermiticity, angular momentum conservation, and parity invariance. Due to the
k R

explicit dependence upon the transverse momerﬁﬂmhe conditions for angular momentum and parity conservation read

M +Xé:M’+X2+IkT7
M-x5=xp’

[P-AY Ty, = (- DWIP-Ay 1oy
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wherel ke denotes the units of angular momentum introduced APPENDIX C:

by kr. From the last constraint it is possible to derive the In this appendix we explicitly present the complete cross
. : L'L _ 4yl al'L section for the production of two unpolarized hadrons in

Iow:r r_|ght bI_oc!:h € CM’N% E( 91) kTAh M relative s and p waves, at leading order in Q/ including

gain, as in the case of E€39), we have transverse momenta and T-odd distribution and fragmenta-
tion functions.
1 3 The cross section is obtained by replacing
Hioo(z,k2 ,M2)= —H So(z z,k2 M)+ —Hﬂ’)o(Z,lzz M?2) Egs.(12),(51),(22),(B1),(34) in Eq. (59). It is convenient

' to introduce the following combination of fragmentation
(B5)  functions:

Hior= H10T+| T|HlOT! (C1)
and the functiondH;g,H1Ro are kinematically indistin- IR|
guishable unless some hypothesis is made on Mtﬁwde- | T|
pendence. Thé=L"=1 sector of Eqs(B2),(B3) has been Hy LT= HlLT+ Hir, (C2
studied in the case of spin-1 fragmentatid8]. The inter- IR|
ference {=0L’=1) sector has never been analyzed in this

. . o N X Ed | T|

form, namely, including the explicit dependence lon Fi- Hirr=Hirr+ —=- B
nally, from[P,Ay‘]k,,,LM oo being positive semidefinite, it

2 . .

is possible to derive bounds on each of the displayed frag- 1. Unpolarized lepton beam and unpolarized target

Hirr. (C3

mentation functions. We have
d° > o’e; )7{ (1DS +3Dp +cos#I[f,D +1 3 co2d 1)7’[f(3D ”
= — — cos —(3 cogH— -
J00 = msxy? Ay 271007 7P100 71 f1D100] 3( 1| z Q1L
. krPh. Mp .
+sindcod dn—dr)Z| — 1| = = Dior||~Sin20cos ¢, — ¢r)
h |kT|
Kt Phy My, 2(kr-Ppy)2—K2 M#
X fil ———D —sirfdcog2¢n—2 fil ——=—=D
Ti: Mh 1( 2|kT| 1LT i d)h d’R) Mﬁ 1 |k-|-|2 1TT

o2e?
2(pT Pm)(kT Phl) pT kT n Is 3
+§a: — fB(Y)[_COSZQShT{ MM, hy HlOO+4H100

1
- §(3 cogh—1)

2(pr- Pn.) (K- Pry)—preKr . pr- Py IR|
><c052¢h2'{ S MMhl hy Hi,_,_ +5sin6 cog ¢p+ PR N “hi| - H1OT
. Pr-Phu ( R| . pr-Kr R|
+ sin 26 coq ¢y, + hi| — Hy 1| |+sirfécos hi| — =—HJ
s dn ¢R)7[ M 1| T oM, ALt 2bRZ) M |le LTT

4(Ky-Pp)2(pr- Pry) —2(Kr- Ppy) (pr-Kp) —K3(pr- Pry) hel — 2M
ZMMﬁ ! ||ZT|

+sinecos(3¢h—¢R)/{ HlOT)

4(Ky- Py )2(Pr Pry) — 2(Ky- Pr ) (P k) —K2(pr- Pru) ( My | )]
l

T

[k§—4(kr Py )% pr IZT_4(ET' Ph)(PrPhi)] 3 8(Kr- Pn)3(pr- Pry)
2MME 2MME

2M2
K |H)H (©9
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2. Polarized lepton beam and unpolarized target

We have
+sin 20 sin( ¢ — ¢dr)

a’e? k Ph IR|
A0 0=~ 2 NeC(y){ sindsin( ¢ — pR) 7| — ifl W, Gior
a  2mwsxy

IZT'lshL |R| i
XT[ Mh f 2M GlLT

2Ky P, )2 - K2 -

+sirf o sin(2¢h—2¢R)/{ 5
Mk

( R

1 - 1TT
2k

3. Unpolarized lepton beam and longitudinally polarized target

We have
a’e; kT Ph IR
Poo==3 o g ISAW)| sindsin gy~ o) ~9u| 7 Gior| | +5in20sin( =)
Ky Py ( R | o 2(Kg- Py, )2~ K2 IR
X G +sirfdsin(2¢,—2 =
Z[ M, g1 oM, 1Lt N2¢n—2¢r) M2 L 2Ik] 17T
2 I . .
Po)(Kr-Pp)—prKr | (1 1
-2 S _Slsiey) ssz[ (Pr-Pru)kr- Py ) P Thi( HiSo+ 7 Hloo) — Z(3cog0-1)
Z yz MM, 3
. 2(pr- Pry ) (Kr- Pry) —pr-ky L pr- Py IR
><sm2¢hz[ MM, h 4H{LL +sin g sin( ¢+ dr)Z| — i —M—thOT
07 P R k R
+sin203in(¢h+¢R)I[—mhi( | |H +sir?0'sin 2 pT Thi t—'mw
v 2, Kl
4(Ky-Pr)2(pr- Pry) —2(Kr Ppy ) (pr-Kr) — K3 (pr- Phy) 2M),
+sin @ sin(3¢p— - —=
n(3n ¢R),{ 2MM2 1L | 107
A(kr-Pn)2(pr-Pry) —2(Ke- Py ) (pr-kr) — K3(pr- Py ) M
+5in 20 Sin(3by— i) (kt-Pr)“(pr- Py (kr 2hJ_ (pr-kt H(pr-Phy hi hHi—LT
2MM§ |kl
R2— a(Ky- By )21[ By Ko 4(Kr- B ) (Br-Br)]  8(Ko- Py )3(pr-P
+SiROSinAdy—245) [kT—4(kr Pr)?llpr-kt 3( 7 Pn)(Pr m)]_ (kr-Phy) (ZT hi)
2MM3 2MM?
M2
Xhi(‘ = 2 fTT)H (C6)
kel
4. Polarized lepton beam and longitudinally polarized target
We have
0 a2e2 3
0 =D ———=N\|SLIC(Y)] 7] 91 D100+4D100 +c0s07[g1 Do)+ 5 (3CO§9 D791 DlLL
a  27SXY
. kr- Py My, . T Ph My
_Smacoid’h_(ﬁR)T{M—LglL( DlLT) —sin 260 cog ¢n— ¢R)I[ l91L Dagr
h [K+| Mp 2|Kq|
, 2Ky Py )2 K M3
—S|n20cos<2¢h—2¢R>£{ —— g | = (C7)
M |kl

094002-17



A. BACCHETTA AND M. RADICI PHYSICAL REVIEW D 67, 094002 (2003

5. Unpolarized lepton beam and transversely polarized target

We have

dQUOTZEa: 2a2 ;|ST|A(Y) sinfsin(¢r— ¢s) (;,\T/”\lle)g (|R|GloT> —sindsin(2¢p— ¢r— ds)
x{z(ﬁrﬁm;ﬁ;hm)—ﬁra H( L;el Gl +Sm205m(¢R_¢S)Z[<$5Th>ng(zlsthhT
—sinzasin(2¢h—¢R—¢s>7[2('5rﬁ“”;ﬂj:” ok n(z'S'hGiu) = SiP O Sin ¢~ 26+ do)
XI’Z(ET-%)(imﬁ—l?%(ﬁrﬁm) T(2||F§|T|Giw OSN3y 2 b
XI-(4(|ZT-|5M)2(5T'ﬁ;;ﬂ)l\_/lg(ﬁrlsm)(ﬁrﬁﬂ_E%;F;I\;';gi) (zllklﬂeiTT +Sin( dn— bo)

[p;-P 1 3 1
X7 —pTM n ffT(ZDi,ooJr ZDFl),oo) +cosOI] f11D1o 1+ §(3 cog 09— 1)sin( ¢ — ¢s)

_51" Ishi 3 . . (pT T) Mh . .
XI_Tle_T(ZDl,LL —sin@ sin( ¢g— ¢s)7[ MM, |kT| = Dior||—siNGsiN(2¢p— pr— ps)

X T

2(pr-Pr) (Kr-Pr) —proke , [ My
2MM, i |

o o7 Kr) M
DlOT) —sin 20 sin( ¢r— ¢s)7[(;|\;|—M:]fiT( - _»th,LTH

kr|

+sirf 0 sin( ¢n— 2pr+ ds)

2(pr- Py ) (Kr- Pry) — prKy L( LU
1LT

—sin 26 sin(2¢pp— pr— ¢s)7[ MM, fir

2|kd]

Dirr

7 20k Pr) (Pr-kn) —Ki(pr-Pr) ([ M
2MM; T k2

gl [ 4Ke P )2(Pr-Pr) —2(Ke Pr ) (Brokp)  Ki(Pr-Pn)
2MM3 2MM?3

1 —Sirf6sin(3dn—2¢r— ¢g)

azeaz1
] ] ! Ea: 2msXy By

2
lT( - WDLTT

1 .
+33 cog0—1)sin( ¢y + ¢ps)

2(pr-Pnu)(ky- P ) —prkr (1 3
x[cos%hf[ S MMhL h; Hféo‘l' Hloo

" ET.ﬁmh 3H —sinfsin( g+ ¢s) h(—EW —sin 20 sin( ¢g+ ps) h( | |H )
M 1 1LL RT @s 1 M. 1 r+ Ps 1 o, HiLr
2(kg- Py )?— k2
+ SIS by~ 2bre— 4@7{ Py - R Hm) —Sinesin(2¢h—¢R+¢s)7{—( el E
My [kel 2M?

X hy

2(ky Py, )2~ K2 ( My | ”
2krPu) ke [

—sin20sin(2¢,— ¢+ d)s)"{ M2
h

2M,

- _,_Hl

el 1’°T)

4(kr- Py, )3 = 3K (Kr-Phy)
2M3

—sirfgsin(3¢n— 2¢dr+ ¢S)7{

+cos2¢hf[2(pT P ) (k- Pr)—pr-Kr +%(3 00— 1)sin(3cby— )

MM, hiT(4Hﬁ>o+4Hloo
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X7’{4(pT PhJ_) (kT Pm) 2(pT PhJ_)(pT kT) pT(kT Pm)

2M2My, hTT<4HiLL) l —sin@sin(2¢y,+ dr— ds)

2(pr-Ppy)?—p? R| ) ) 2(pr-Ppy )?—p2 IR
X/{Thﬁ _M—thOT —sin 20 sin(2¢p+ dpr— ds) — w2 i _Z_Mth'-T
2 0 IZ 5 |5 _ |z |'f) ~2 ﬁ
—sirf6 sin( ¢+ 2pr— dbs) (pr-ko)(pr hzi) (kt m)pThiT —quTT +sin0sin(4¢p— dpr— ds)
2M"My, |kl
RI2(5r-Po)?=p3] . 4(Br o) (R Po) = 2By Po) (BrKn) = B(Kr Pry)
% 2012 —2(kr-Pny) —
AM2M2 AM2M?2
Ki2(pr-Pn)?-pF . .
Xhir| — —=—Higr||+sin20sin(4¢,— dr— T (R
T T ) e N(4én— dr ¢s)7[( PIVEVE (Kr-Ppy)
4(pr P )?(Re P ) = 2(Br P ) (Pr-K) = B(Kr-Pr) M
% (Pr-Pn) (kg Ppy ;;TZMZL (Pr-kr) = pr(kr- Phy T —l h|Hi,_T +sirf 0 sin(5¢p— 2dr— ds)
h T

2Ki (ke Py )(2Pr P )PP o
XT[( ik Pr)L2Pr Po)72PIpe 4By )2

aAM2M3

4Py P )2(Rr- By ) — 2(P1- P ) (Br-Kr) — p(Kp- P 2M}
y (Pr-Phy)“(kr-Phy) = 2(p7: Ph) (Preke) — pr(ke hl)) iT(__h )“ (Cy

aAM2M3

6. Polarized lepton beam and transversely polarized target

We have
. a?e? pr-Pp. 1 3 1
da =2 ———N\e/Si|C(y){ cog dn— bs) v 9T DlOO+4D100 +§(3CO§9_1)003¢h_¢s)
a  27SXY
prPn (3 . (pr-kr) M .
XI-%ng(ZDl,LL) —Sin 260 cog pr— 9753)[{ ZI\TAMT 2|kT|D1LT —sin 260 cog2¢,— pr— Ps)

X7

[2(Br- o) (Kr- Po) — Br-k M
(Pr-Phu)(Kr-Pr)—pr-ke 1T( h _sirP0 cod by — 2dnt )

2MM, 2k

DlLT)

-Z(ET'ﬁ)hL)(ﬁT'IZT)_E%(ﬁT'I’:\)hL) M#
Ny -—D —sirf0 cog3¢,— 2¢dr—
ZMMﬁ Oar TAE 7T I3Ph—2¢r— bs)
[ 4(Ky-Pr)2(pr- P —2(Ke-Pry ) (pr-Kp) - K3(Pr-Pr) M7 )]
7 - 11| — =—>5DirT sin 26 cog ¢pr— ¢s)
( 2MM? 2MM; [ke?
(pT kT) 1 | | 1 . 2(5T'ﬁ)hi)(|zT'ﬁ)hL)_5T'ET 1 |FE| 1L
><I_ 2N, fio 2Mh61” +5in 20 co9 2y — pr— ) MM, fir ZMhGLLT
j 2(Ky-Poy) (Pr-Kr) —K&(pr-Pr1) , [ IR| -
—sm20005(¢h—2¢R+¢s)7[ M M?2 u 2|k |GiTT TSmO cos 3~ 2k b
h T
A(Ky- Pry)2(pr- Pr) —2(Kr Py ) (pr-ky)  KF(Pr-Pho) Rl .,
« > - > — = CurT (C9
2MM? 2mmp | 2kl

The purep-wave sector of the previous cross sections corresponds to the results of spin-1 production presented in Refs.
[13,38, once we apply the following identifications:
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2
h

_Dgoolea _Dl,LLleLLa - _—>D1,LT=D1LT1 - »_Dl,TTleTTa
4" 4 2|ky] |ke|?
IR| IR| 3
— Gt =Gy 1, ——Gi1=Gyrr, HIR =HY, —Hi,  =H%,, (C10
2M,, LT LT 2IKs| 1TT 17T 100 4 '1LL 1LL
IR| Mp, IR| 2Mm;;
— oo Higr=Hur,  — = Hir=Hyr, = Hirr=Hirr, ——=—SHirr=Hpr
2Mp kel ™ kel ™ k|2

Note, however, that while the functions on the left-hand side contain a dependenes ovell as on the invariant maMsﬁ,

the functions on the right-hand side depend onlyzoit is required to assume that the spin-1 functions behave as resonances

(Breit-Wigner shapesin the invariant mass.
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