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Harmonic oscillator with minimal length uncertainty relations and ladder operators

Ivan Dadić,* Larisa Jonke,† and Stjepan Meljanac‡
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We construct creation and annihilation operators for deformed harmonic oscillators with minimal length
uncertainty relations. We discuss a possible generalization to a large class of deformations of canonical com-
mutation relations. We also discuss the dynamical symmetry of a noncommutative harmonic oscillator.
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I. INTRODUCTION

The existence of a minimal length, at least at the Pla
scale, seems to be a general feature of any quantum theo
gravity. Test particles of sufficiently high energy for probin
small scales curve gravitationally, and thereby disturb
very space-time they are probing. Both perturbative str
theory considerations@1# and black hole physics@2# give rise
to modified space-momentum uncertainty relations1 that im-
ply the existence of a minimal length. The investigation
the cosmological consequences of these modified sp
momentum uncertainty relations has been intensified lat
It appears that minimal length uncertainty relations~MLUR!
can offer some answers to the problem of black hole re
nants@4#, the trans-Planckian problem of inflation@5#, and
the cosmological constant problem@6#. On the other hand
one can discuss MLUR in the context of the deformation
quantum mechanics, since the uncertainty relations and
underlying canonical commutation relations are at the h
of quantum mechanics. The generalized quantum theore
framework which implements the appearance of MLUR w
discussed in Ref.@7#, and the formalism obtained was a
plied to the harmonic oscillator case. Recently, the exact
lution for the harmonic oscillator in arbitrary dimension
with MLUR has been found@8#.

In one spatial dimension, the generalized commutat
relation can be written as@x,p#5 i f (x,p), with x andp Her-
mitian operators and@ f (x,p)#†5 f (x,p). Then, in any physi-

cal state one findsDxDp> 1
2 u f (x,p)u, where we define for

any operator O, Ō5^CuOuC&,DO5A^Cu(O2Ō)2uC&.
The operator functionf (x,p) can be treated as a smoo
deformation of ordinary quantum mechanics withf 0(x,p)
5\. Note that the limit to classical mechanics,f (x,p)→0,
is not smooth. In this paper we restrict ourselves to smo
deformations of quantum mechanics only.

A number of physical problems can be expressed a
deformed harmonic oscillator with generalized commutat
relations, such as the singular Calogero potential in one
mension @9#, the Landau problem in two dimensions, th
harmonic oscillator in a noncommutative plane~see Ref.@10#

*Electronic address: dadic@thphys.irb.hr
†Electronic address: larisa@irb.hr
‡Electronic address: meljanac@irb.hr
1See Ref.@3# for space-time uncertainty relations originating fro

nonperturbative string theory.
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and references therein!. Therefore, it is interesting to analyz
the harmonic oscillator case with a general deformat
f (x,p). For a large class of smooth deformationsf (x,p),
one expects a smooth deformation of the ground s
~Gaussian function! and a smooth deformation of excite
states~Hermite polynomials!.

For smooth deformations, one also expects that the co
sponding Fock space and the creation and annihilation
erators can be smoothly deformed. Of course, an impor
question is to find a general method for constructing lad
operators for any smooth deformationf (x,p). Even when
such deformed oscillators can be solved exactly, there is
well-defined method for constructing creation and annih
tion operators for the corresponding Fock space. The ‘‘s
ond quantization’’ is crucial in the analysis of many-bod
problems and in discussing the dynamical symmetry alge
of the underlying problem.

In this Brief Report we concentrate on the special class
deformationsf (x,p)511bp2,b>0, and construct ladde
operators for the corresponding harmonic oscillator proble
We also consider theD-dimensional case with SO(D) rota-
tional invariance. These deformations are physically mo
vated by generalized uncertainty relations implying the mi
mal length Dx> l min and possess an interesting UV-I
connection. This is a simple quantum mechanical exam
inspired by string theory and cosmology.

II. HARMONIC OSCILLATOR IN ONE DIMENSION

The position and momentum operators obeying (\51)

@X,P#5 i ~11bP2!, ~1!

are represented in momentum space byX5 i @(1
1bp2)]/]p1bp# and P5p. The Schro¨dinger equation in
momentum space corresponding to the harmonic oscilla2

with the Hamiltonian (v5m51)

H5 1
2 ~P21X2!5 1

2 [ 2„~11bp2!]/]p…2

22bp„~11bp2!]/]p…22b2p22b1p2] ~2!

2It is not quite appropriate to call Hamiltonian~2! a harmonic
oscillator, since its equations of motion, with the commutation
lation ~1!, are not harmonic. It would be more fitting to call it
quadratic oscillator. However, in this paper we use the same te
nology as in Refs.@7,8#, i.e., ~deformed! harmonic oscillator.
©2003 The American Physical Society01-1
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leads to the eigenvalue problemHCn5EnCn . The exact
solutions@8# are

En5~n1 1
2 !A11 1

4 b21~n21n1 1
2 !b/2,

Cn52lG~l!An! ~n1l!Ab

2pG~n12l!
cl11Cn

l~s!, ~3!

where n50,1,2, . . . , and 2l511A114/b2, c
51/A11bp2, s5Abp/A11bp2, andCn

l(s) is the Gegen-
bauer polynomial:

Cn
l~s!5

~2 !n

2nn!

G~2l1n!G„~2l11!/2…

G~2l!G„~2l11!/21n…
~12s2!1/22l

3~dn/dsn!~12s2!l1n21/2, ~4!

satisfying the recursive relations@11# (n11)Cn11
l (s)

5@(2l1n)s2c2d/ds#Cn
l(s). For the normalized functions

Cn(s), the recursive relations are

~n11!Cn11
l ~s!5~n1l21!~Nn11/Nn!sCn

l~s!

2~Nn11/N n !c2~d/ds!Cn
l~s!, ~5!

whereNn52lG(l)An!(n1l)Ab/@2pG(n12l)#.
Let us define Cn(s)5(b†n/An!) u0&, n50,1,2, . . . ,

whereb† and b are bosonic operators,@b,b†#51, with the
number operatorN5b†b and @N,b†#5b†, @N,b#52b.
Now we easily find b†Cn(s)5An11Cn11(s), bCn(s)
5AnCn21(s), NCn(s)5nCn(s). Using the recursive rela
tions ~5! we obtain

b†5Fs~N1l21!2c2
d

dsGA N1l11

~N1l!~N12l!
,

b5A N1l11

~N1l!~N12l!F ~N1l!s1c2
d

dsG . ~6!

From the HamiltonianH5bl(N1 1
2 )1 1

2 bN2 we can ex-
press the number operatorN5b21$2bl1@b2l21b(2H
2bl)#1/2%. In the limit b→0, bl→1, the Hamiltonian be-
comesH5N11/2 and the wave functions and the ladd
operators smoothly go to the ordinary harmonic oscilla
case:

lim
b→0

cl115exp~2p2/2!,

lim
b→0

Cn~s!5Nn~0!exp~2p2/2!Hn~p!,

lim
b→0

b†5
1

A2
S p2

d

dpD , lim
b→0

b5
1

A2
S p1

d

dpD .

We can obtain an interesting result if we define the ope
tors A,A†:

A†5b†AS 11
N

2l Dbl, A5AS 11
N

2l Dbl b, ~7!
08770
r
r

-

with the commutator@A,A†#5bl1bN. Then we can write
the Hamiltonian asH5bl(N1 1

2 )1 1
2 bN25 1

2 $A,A†%. The
deformed oscillators~7! are examples of a general deforme
oscillator mapping~see Ref.@12#!. Furthermore, we redefine
the operators A,A† for b.0: J25A(2/b)A, J1

5A(2/b)A†, J05N1l. In this way they become genera
tors of SU~1,1! algebra:@J2 , J1] 52J0 , @J0 , J6] 56J6 .
The deformed harmonic oscillator in one dimension, Eqs.~1!
and~2!, possesses a hidden SU~1,1! symmetry forb.0. The
same hidden symmetry was found in the quantum sys
with an infinitely deep square-well potential@13#. For b
,0, the algebra of the operatorsA,A† has a finite dimen-
sional representation if 2l is an integer. In this case, there
no minimal length and the system becomes parafermioni
corresponds to a hidden SU~2! symmetry.

The benefit of our construction of ladder operators is o
vious when considering the many-body problem. The s
plest way to considerN free deformed harmonic oscillators
to defineH5 1

2 ( i 51
N $Ai ,Ai

†%, with the algebra of multimode
oscillators @14# @Ai ,Aj

†#5(bl1 1
2 bN)d i , j , @Ai ,Aj #

5@Ai
† ,Aj

†#50. The procedure for finding the algebra of o
servables and dynamical symmetry algebra is the same a
Ref. @15#.

A large class of smooth deformations of the on
dimensional harmonic oscillator case can be described by
wave functionCn5C0(s)Pn(s), wheres5s(p) is an arbi-
trary function of momentum,C0(s) is a smooth deformation
of the Gausssian, and the orthogonal polynomialPn(s) is
one of the following three types, up to simple deformation

Pn
(1)~s!}~as1b!2a~cs1d!2b~dn/dsn!@~as1b!a1n

3~cs1d!b1n#,

Pn
(2)~s!}~as1b!2ae1bs~dn/dsn!@~as1b!a1ne2bs#,

Pn
(3)~s!}e1(as21bs)@as1bd/ds#ne2(as21bs). ~8!

Using recursive relations for the orthogonal polynomials~8!
one can construct creation and annihilation operators fo
large class of deformations, simply by following the proc
dure outlined in this section.

III. HARMONIC OSCILLATOR IN D DIMENSIONS

In more than one dimension, the modified commutat
relation can be generalized to the tensorial form:

@Xi ,Pj #5 i ~d i j 1bP2d i j 1b8Pi Pj !,

@Pi ,Pj #50, Xi
†5Xi , Pi

†5Pi . ~9!

Then, the commutation relations among the coordinatesXi
are almost uniquely determined by the Jacobi identity~up to
possible extensions; see Kempf@7#!. The operatorsXi andPj
satisfying~9! are realized in momentum space as

Xi5 i F ~11bp2!
]

]pi
1b8pipj

]

]pj
1S b1

D11

2
b8D pi G ,

Pi5pi . ~10!
1-2
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The condition for the existence of a minimal length isl min
2

5Db1b8.0. The Hamiltonian for aD-dimensional de-
formed harmonic oscillator

H5
1

2
~P21X2!5

1

2 (
i 51

D

~Pi
21Xi

2! ~11!

possesses O(2D) rotational symmetry in 2D-phase spac
However, the transformation Eq.~10! and hence all commu
tation relations preserve the same form under O(D) transfor-
mations: Xi85Ri j Xj ,Pi85Ri j Pj and xi85Ri j xj ,pi85Ri j pj ,
where RPO(D). Hence, the dynamical symmetry of th
problem at hand is O(D). Therefore we assume that the e
ergy eigenstates in the momentum space when express
terms of radial momenta can be written as a product
spherical harmonics and a radial wave function:CD(p)
5Yl D21••• l 2l 1

(V)R(p), p5Ap2, l 5 l D21>••• l 2>u l 1u.
Then one can perform the replacement

(
i 51

N
]2

]pi
2
5

]2

]p2
1

D21

p

]

]p
2

L2

p2
, (

i 51

N

pi

]

]pi
5p

]

]p
, ~12!

where L25 l ( l 1D22), l 50,1,2, . . . . Forexample, in
the two-dimensional case,Ym(f)5exp(2imf)/A2p and l
5umu, mPZ. Note that (]/]p)†52(]/]p)2(D21)/p .

We therefore find that the Schro¨dinger equation for the
D-dimensional oscillator can be reduced to the o
dimensional problem for the radial wave functionR(p). The
energy eigenvalues forb1b8.0 are given by

Enl5~n1D/2!A11b2L21~Db1b8!2/4

1 1
2 $~b1b8!~n1D/2!2

1~b2b8!~L21D2/4!1b8D/2%, ~13!

wheren52n81 l andn8 andl are non-negative integers. Th
D51 case can be reproduced by settingL250 andb850.
The states withl 50 are even eigenstates (n52n8) and
states withl 51 are odd eigenstates (n52n811). The nor-
malized energy eigenfunctions are

Rn,~p!5A2~2n81a1b11!n8!G~n81a1b11!

G~n81a11!G~n81b11!

3~b1b8!D/4cl1ds,Pn8
(a,b)

~z!, ~14!

wherePn
(a,b)(z) is the Jacobi polynomial,

c5
1

A11~b1b8!p2
, s5

Ab1b8 p

A11~b1b8!p2
,

z52s221, d5
b1b8~D11!/2

b1b8
, ~15!

a5l2
11b~D21!/~b1b8!

2
, b5

D

2
1 l 21,

andl is the positive root of the equation
08770
.

in
f

-

l22lF11~D21!
b

b1b8
G2S b

b1b8
D 2

L22
1

~b1b8!2
50.

Interesting cases are~i! b50,b8.0, ~ii ! b1b850,b.0,
and ~iii ! 2b5b8.0 ~see Refs.@7,16#!. Using recursive re-
lations for the Jacobi polynomials@11# we find recursive re-
lations for the energy eigenfunctionsCnl and hence we find
the unique ladder~creation and annihilation! operators for
the radial excitationsar

†(b,b8,D,l ) andar(b,b8,D,l ). De-
mandingar u0,l &50 and

Cnl5
~ar

†!n8

An8!
Yl D21••• l 1 ,m5

~ar
†!n8

An8!
u0,l &,

n52n81 l , n8,l 50,1,2, . . . , ~16!

and

ar
†Cnl5An811Cn12,l , arCnl5An8Cn22,l ,

ar
†ar5N8, arar

†5N811,

thear
†(b,b8,D,l ) andar(b,b8,D,l ) can be constructed. Th

states u0,l & with energy El ,l , Eq. ~13!, are
@( D21

D1 l 21)2( D21
D1 l 23)#-fold degenerate, and can be represen

by an irreducible representation of group SO(D). If b5b8
50, the degeneracy of states with energyEn5n1D/2 is

larger, i.e., (D21
N1 l 21), corresponding to the totally symmetri

irreducible representation of SU(D) dynamical symmetry.
Note that one can simply generalize the transformations~10!,
i.e., the commutation relations Eq.~9!, by taking bd i j

→b i j , b8Pi Pj→b i j8 Pi Pj to obtain different dynamica
symmetries of the type)O(Di), (Di5D.

In the limit b→0, b8→0, and 0<b/(b1b8)<1, we
find

ar5F22N82 l 1p21p
d

dpG 1

2AN81 l 211D/2
,

ar
†5F22N82 l 2D1p22p

d

dpG 1

2AN81 l 1D/2
. ~17!

For D51 andl 50,

a05
1

2AN811/2
Fp21p

d

dp
22N8G ,

a0
†5Fp22p

d

dp
22N821G 1

2AN811/2
. ~18!

Let us briefly discuss the symmetry aspects of the
formed harmonic oscillator , i.e., the harmonic oscillator d
fined on noncommutative space. The Hamiltonian~11! is in-
variant under O(2D) transformations in phase spac
However, the symmetry of commutation relations may
quite different for different noncommutative spaces. In t
case of ordinary cannonical variablesxi ,pi , the symmetry is
Sp(2D), so that the dynamical symmetry of an ordinary h
monic oscillator in D dimensions is O(2D)ùSp(2D)
1-3
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5U(D). A complete analysis of phase space symme
structure was performed in Ref.@10# for noncommutative
space in which the commutators of phase space variable
constants (c numbers!. In the case of generalized commut
tion relations implying minimal length uncertainty relation
Eqs.~9! and~10!, the commutators are no longerc numbers.
However, they are invariant under O(D) transformation,Xi8
5Ri j Xj ,Pi85Ri j Pj . Hence, the dynamical symmetry
O(2D)ùO(D)5O(D). Note that the symmetry of the trans
formed Hamiltonian in terms of cannonical variabl
H„Xi(xi ,pi),Pi5pi… is O(D) and the symmetry preservin
cannonical commutation relation is Sp(2D), so, again, the
dynamical symmetry for the transformed system is O(D).
The system defined by cannonical commutation relations
the Hamiltonian H„Xi(xi ,pi),Pi5pi… is not physically
equivalent to the system defined by the Hamiltonian~11! and
deformed commutation relations~9!, although they have a
common energy spectrum and a common dynamical sym
try group. Nonetheless, all physical quantities in a nonco
mutative system can be determined in terms of relev
quantities in a transformed system, expressed in term
cannonical variables.

IV. CONCLUSION

The importance of a consistent Fock-space picture
physics is well understood, but we wish to stress that
picture is especially suited for the analysis of many-bo
problems and for the discussion of symmetries in the pr
lem. Also, the construction of the ladder operator is an in
esting mathematical problem connected with~quantum!
group theory@17#, and has its applications in physical chem
istry @18#.

Any eigenvalue problemHCn5EnCn with a discrete
spectrum bounded from below, can be described in F
space as $b†nu0&;n50,1,2, . . . % with Cn5b†nu0&/n!,
@b,b†#51.So far, there has been no simple method of
pressingb†5b†(x,p) that would generalize the simple rela
vi

h-
n
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tion b†5(x2 ip)/A2 valid for the ordinary harmonic oscil
lator. A general approach to the construction of generali
ladder operators exists only for a certain class of exa
solvable potentials, namely, the shape-invariant potent
@19#. The solution of this problem is connected with the r
cursive relations among orthogonal polynomialsPn , defined
asCn5C0Pn .

We have explicitly constructed deformed ladder operat
using the exact solutions found in Ref.@8# and have dis-
cussed the corresponding deformed Fock space. Thes
sults represent a step toward finding a general method
constructing ladder operators for any smooth deformation
cannonical commutation relations. The dynamical symme
for the described problem is a group of rotations O(D), and
is defined by a specific choice of deformed commutat
relations Eq.~9!. A slight generalization that we have sug
gested offers new possibilities for symmetry breaking.

Finally, let us note that the caseb1b8,0 but Db1b8
.0 has not been discussed in the literature. This case m
be physically interesting since it indicates that there is s
gularity in the system@the transformation Eq.~10! becomes
singular# whenpcrit

2 521/(b1b8). This value has to be very
large,pcrit

2 &EPl , so it implies that relativistic effects have t
be considered~nonrelativistic quantum mechanics is n
longer applicable!. This singularity might suggest the gene
alization of special relativity with a new~invariant! scale,
connected with the Planck scale, and similar to the gene
zations proposed in Ref.@20#. The modified relativistic quan-
tum mechanics approach to the minimal length uncerta
relations is very important in order to get a consistent phy
cal picture.
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