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Harmonic oscillator with minimal length uncertainty relations and ladder operators
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We construct creation and annihilation operators for deformed harmonic oscillators with minimal length
uncertainty relations. We discuss a possible generalization to a large class of deformations of canonical com-
mutation relations. We also discuss the dynamical symmetry of a noncommutative harmonic oscillator.
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[. INTRODUCTION and references therginrherefore, it is interesting to analyze
the harmonic oscillator case with a general deformation
The existence of a minimal length, at least at the PlancK(x,p). For a large class of smooth deformatiof(x,p),

scale, seems to be a general feature of any quantum theory @he expects a smooth deformation of the ground state
gravity. Test particles of sufficiently high energy for probing (Gaussian functionand a smooth deformation of excited
small scales curve gravitationally, and thereby disturb theétates(Hermite polynomials
very space-time they are probing. Both perturbative string For smooth deformations, one also expects that the corre-
theory considerationfs] and black hole physidg] give rise ~ SPonding Fock space and the creation and annihilation op-
to modified space-momentum uncertainty relaticthat im- erators can be_smoothly deformed. Of course, an important
ply the existence of a minimal length. The investigation ofauestion is to find a general methoq for constructing ladder
the cosmological consequences of these modified Spacgperators for any s_mooth deformatidiix,p). Even When
momentum uncertainty relations has been intensified latel .UCh de_formed osciliators can be .SOIVed e_xactly, there_ IS No
It appears that minimal length uncertainty relatighi UR) ell-defined method for constructing creation and annihila-

can offer some answers to the problem of black hole rem'yon operators for the corresponding Fock space. The “sec-

nants[4], the trans-Planckian problem of inflatigh], and ond quantization” is crucial in the analysis of many-body

. roblems and in discussing the dynamical symmetry algebra
the cosmological constant problel@]. On the other hand, gf the underlying problem.g y y y e
one can discuss MLUR in the context of the deformation of |, thjs Brief Report we concentrate on the special class of

guantum mechanics, since the uncertainty relations and tht?eformationsf(x p)=1+8p2,8=0, and construct ladder
underlying canonical commutation relations are at the hearnerators for the corresponding harmonic oscillator problem.
of quantum mechanics. The generalized quantum theoreticg{,e a1so consider th®-dimensional case with SO rota-
framework which implements the appearance of MLUR was;ona invariance. These deformations are physically moti-
discussed in Refl7], and the formalism obtained was ap- \ated by generalized uncertainty relations implying the mini-
plied to the harmonic oscillator case. Recently, the exact sgy4) length Ax=1_. and possess an interesting UV-IR
lution for the harmonic oscillator in arbitrary dimensions .qnnection. This imsma simple quantum mechanical example

with MLUR has been found8]. , _ inspired by string theory and cosmology.
In one spatial dimension, the generalized commutation

relation can be written dx,p]=if (x,p), with x andp Her-
mitian operators anfif (x,p)]"=f(x,p). Then, in any physi- Il. HARMONIC OSCILLATOR IN ONE DIMENSION

cal state one findAxAp= 3 |f(x,p)|, where we define for
any operatorO, O=(¥|O|¥),A0=(¥|(O—0)?|W¥).
The operator functiorf(x,p) can be treated as a smooth [X,P]=i(1+BP?), (1)
deformation of ordinary quantum mechanics wit§(x,p)

=#. Note that the limit to classical mechanid$x,p)—>0, are represented in  momentum space Dy:i[(]_
is not smooth. In this paper we restrict ourselves to smooth gp?)5/9p+ Bp] and P=p. The Schrdinger equation in

deformations of quantum mechanics only. momentum space corresponding to the harmonic oscflator
A number of physical problems can be expressed as @ith the Hamiltonian p=m=1)

deformed harmonic oscillator with generalized commutation

The position and momentum operators obeyihg()

relations, such as the singular Calogero potential in one di- L 1(p2oy2y_ 1[_ 2 2

mension[9], the Landau problem in two dimensions, the H=z (P*+X%)=z [~ ((1+Bp°)dldp)

harmonic oscillator in a noncommutative plaisee Ref[10] —2B8p((1+ Bp?)dlap)—2B°p*>—B+p?] (2
*Electronic address: dadic@thphys.irb.hr 2t is not quite appropriate to call Hamiltoniat?) a harmonic
"Electronic address: larisa@irb.hr oscillator, since its equations of motion, with the commutation re-
*Electronic address: meljanac@irb.hr lation (1), are not harmonic. It would be more fitting to call it a
ISee Ref[3] for space-time uncertainty relations originating from quadratic oscillator. However, in this paper we use the same termi-

nonperturbative string theory. nology as in Refs[7,8], i.e., (deformed harmonic oscillator.
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leads to the eigenvalue problemhW ,=E, ¥ ,. The exact
solutions[8] are

En=(n+3)V1+38%+(n*+n+3)p/2,

n!(n+)\)\/ﬁ
V,=2"'(\) \| ———— c*"1C)(s), 3
n (N) 2T (n+2)) ¢t Ch(s) ()
where n=0,1,2..., and A=1+.1+4/8% ¢

=1/\J1+Bp?, s=Bp/\J1+ Bp? andC)(s) is the Gegen-
bauer polynomial:
(=)"T(2N+n)T (2N +1)/2)

A _
S = Sy T2OT(2h F D)2+ 1)

(1_ 32)1/27)\

X(d”/ds“)(l—sz)““’l’z,

(4)

satisfying the recursive relationg11] (n+1)C)_ (s)
=[(2\+n)s—c2d/ds]C}(s). For the normalized functions
¥ .(s), the recursive relations are

(N+1)WA,(S)=(N+A—1)(Npy o/ Ny)STA(s)

— (Nps o/ Ny)C3(dIds)Wh(s), (5)

where A, =2 T (V) Vil (n+ M) VBI[ 27T (n+2\)].

Let us define ¥ (s)=(b™/{/n1)|0), n=012...,
whereb' andb are bosonic operatorfb,b']=1, with the
number operatotN=b'b and [N,b"]=b", [N,b]=-b.
Now we easily findb™W (s)=n+1¥ . (s), b¥.(s)
=n¥,_,(s), N¥(s)=n¥ (s). Using the recursive rela-

tions (5) we obtain
/ N+AN+1
(N+N)(N+2)N)'

. (6)

b=

d
s(N+)\—1)—02d—S

b [ N+A+1
— V(N+N)(N+2)N)
From the HamiltonianH=A\(N+3)+38N? we can ex-

press the number operatdi= 3" — B\ +[ B2\2+ B(2H
—B\)1Y2 Inthe limit B—0, B\—1, the Hamiltonian be-

d
2
(N+N)s+c ds

comesH=N+1/2 and the wave functions and the ladder
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with the commutatofA,A™]= B8\ + BN. Then we can write
the Hamiltonian asH= A\ (N+3)+3B8N?=2{A AT}. The
deformed oscillator§7) are examples of a general deformed
oscillator mappingsee Ref[12]). Furthermore, we redefine
the operators A,AT for B>0: J_=\(2/B)A, J.
=\(2/B)AT, Jo=N+X\. In this way they become genera-
tors of SU1,D algebra:[J_, J.]1=2Jp, [Jg, J=]=*J..

The deformed harmonic oscillator in one dimension, Efs.
and(2), possesses a hidden @LL) symmetry for3>0. The
same hidden symmetry was found in the quantum system
with an infinitely deep square-well potentifl3]. For B

<0, the algebra of the operatofs AT has a finite dimen-
sional representation ifR2is an integer. In this case, there is
no minimal length and the system becomes parafermionic. It
corresponds to a hidden &) symmetry.

The benefit of our construction of ladder operators is ob-
vious when considering the many-body problem. The sim-
plest way to consideX free deformed harmonic oscillators is
to defineH=13 =N ,{A;,Al}, with the algebra of multimode
oscillators  [14]  [A A[1=(BN+38N) 8, [ALA(]
=[A] ,A[1=0. The procedure for finding the algebra of ob-
servables and dynamical symmetry algebra is the same as in
Ref.[15].

A large class of smooth deformations of the one-
dimensional harmonic oscillator case can be described by the
wave functionV =V (s)P,(s), wheres=s(p) is an arbi-
trary function of momentunty y(s) is a smooth deformation
of the Gausssian, and the orthogonal polynon®a(s) is
one of the following three types, up to simple deformations:

P(M(s)c(as+b) *(cs+d) #(dVds")[(as+b)**"
X (cs+d)A*n,

P{(s)x(as+b) e PS(d"/ds")[ (as+b)* e ],

P@)(s)oce’ (" A as+ hd/ds]"e (o549, 8)

Using recursive relations for the orthogonal polynomi@s
one can construct creation and annihilation operators for a
large class of deformations, simply by following the proce-
dure outlined in this section.

. HARMONIC OSCILLATOR IN D DIMENSIONS

operators smoothly go to the ordinary harmonic oscillator

case:

limcM t=exp —p?/2),
B—0

lim W ,(s) = N,(0)exp( — p?/2)H(p),
B—0

d
pt -

limb= !
mbp=— dp

B—0 \/E

lim bT=—( - —),
B—0 \/E dp

In more than one dimension, the modified commutation
relation can be generalized to the tensorial form:

[Xi,Pj]=i(8+BP?8;+B'PiP)),

[P;,P;]=0, X/=X;, P/=P;. 9

Then, the commutation relations among the coordinXies
are almost uniquely determined by the Jacobi ideritify to
possible extensions; see Kenjjgl). The operatorX; andP;
satisfying(9) are realized in momentum space as

We can obtain an interesting result if we define the opera-

tors A,A™:

AT=bT\/(1+ﬁ B\, A=1/ 1+l BN b, (7)
28 )P 2\ ’

D+1

X;i=i B"_Tﬁ,)pi},

1+ Bp? i +p’' i +
(L+BPY) 55, B PP G

Pi=p;. (10
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The condition for the existence of a minimal lengthl s,
=DB+B'>0. The Hamiltonian for aD-dimensional de-
formed harmonic oscillator

=
w)

H=%(P2+x2)=52 (PE+XP) (1D

=1

possesses O(2) rotational symmetry in 2D-phase space.

However, the transformation E¢LO) and hence all commu-
tation relations preserve the same form undeDP{ransfor-
mations: Xi, - R”XJ 'Pi’ = R” PJ and Xi’ = R”XJ ’pi’ - R” pJ y
where Re O(D). Hence, the dynamical symmetry of the

problem at hand is @§). Therefore we assume that the en-
ergy eigenstates in the momentum space when expressed in
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2
L2

B B ot
B+B'| \B+p (B+B)%

Interesting cases arg¢) 3=0,8'>0, (i) B+B'=0,8>0,
and (i) 28=8'>0 (see Refs[7,16]). Using recursive re-
lations for the Jacobi polynomiaJd1] we find recursive re-
lations for the energy eigenfunctiofs,, and hence we find
the unique laddefcreation and annihilationoperators for
the radial excitations/(3,8’,D,1) anda,(3,8’,D,l). De-
mandinga,|0)=0 and

A2=\|[1+(D-1)

terms of radial momenta can be written as a product of

spherical harmonics and a radial wave functiobiy(p)
=Y, 1, (QR(P),  p=1p% 1=l
Then one can perform the replacement

|:|D—l>"

% (?2_(92+D—l(9_L2 S 9 w
=1 apiz_ ap? p dp pZ’ i=1 P 5pi_pap’
where L2=I(I+D-2), 1=0,1,2... . Forexample, in

the two-dimensional casé(,(¢)=exp(ime)/\27 and |
=|m|, meZ. Note that ¢/dp)"=—(d/op)—(D—1)/p.

We therefore find that the Schtimger equation for the
D-dimensional
dimensional problem for the radial wave functiBfp). The
energy eigenvalues fg8+ B’ >0 are given by

E,=(n+D/2)J1+ B°L2+(DB+B')%l4

+3{(B+B")(n+D/2)?

+(B—B')(L2+D%4)+B'DI2}, (13
wheren=2n’+1 andn’ andl are non-negative integers. The
D=1 case can be reproduced by settirfg=0 and 3’ =0.
The states withl=0 are even eigenstaten{2n’') and
states withl =1 are odd eigenstates€2n’ +1). The nor-
malized energy eigenfunctions are

- )_\/Z(Zn’+a+b+1)n’!F(n’+a+b+1)
ne(P I'(n’+a+1)(n'+b+1)

><(B+B/)D/4CA+§S€PE15}:b)(Z), (14)
whereP®)(z) is the Jacobi polynomial,
1 VB+B'p
cC=—v— s=—
V1+(B+pB')p? V1+(B+pB')p?
22252_1, 5:w, (15)
B+pB
A 1+,3(D—;)/(,3+,6’ ), b=%+l—1,

and A\ is the positive root of the equation

oscillator can be reduced to the one

(@) (@)
\I’m:?Yb,l---|1,m:ﬁ|oyl>,
n=2n"+1, n’,1=0,12..., (16
and
al W =Vn"+1¥, 5, a¥,=Vn'¥, _,,
ala,=N’, aa/=N'+1,

thea;r(,B,,B’,D,I) anda,(B,8’,D,l) can be constructed. The

states |0J) with energy E;;, Eq. (13, are
[(%37h = (B5!'13)1-fold degenerate, and can be represented

by an irreducible representation of group $Q( If 3=’
=0, the degeneracy of states with enefgy=n+D/2 is

larger, i.e., E“gl‘ll), corresponding to the totally symmetric
irreducible representation of SDJ dynamical symmetry.
Note that one can simply generalize the transformati@as
i.e., the commutation relations Ed9), by taking 36
— Bij » ﬂ,PinHB{jPin to obtain different dynamical
symmetries of the typ&lO(D;), =D;=D.

In the limit 3—0, B’'—0, and G=B/(B+B')<1, we
find

= —2N’'—1+p?+ d !
&= ST PR Ny
d 1
al=| —2N'—1-D+p?—p— | ——x=x. 17)
dpj2N'+1+D/2
ForD=1 andl=0,
! 24 d 2N’}
Q= ——F——— — = :
o N <2 Pdp
al=|p?— i—ZN'—l}; (18
N LT 2N +1/2°

Let us briefly discuss the symmetry aspects of the de-
formed harmonic oscillator , i.e., the harmonic oscillator de-
fined on noncommutative space. The Hamiltonjab is in-
variant under O(D) transformations in phase space.
However, the symmetry of commutation relations may be
quite different for different noncommutative spaces. In the
case of ordinary cannonical variabbesp;, the symmetry is
Sp(2D), so that the dynamical symmetry of an ordinary har-
monic oscillator in D dimensions is O(R)NSp(2D)
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=U(D). A complete analysis of phase space symmetnfion b*=(x—ip)/\/§ valid for the ordinary harmonic oscil-
structure was performed in Ref10] for noncommutative lator. A general approach to the construction of generalized
space in which the commutators of phase space variables ai@dder operators exists only for a certain class of exactly
constants ¢ numbers. In the case of generalized commuta- solvable potentials, namely, the shape-invariant potentials
tion relations implying minimal length uncertainty relations, [19]. The solution of this problem is connected with the re-
Egs.(9) and(10), the commutators are no longenumbers. cursive relations among orthogonal polynomiglg, defined
However, they are invariant under DY transformation X/ asV,=Vv,P,.

=R;;X;,P{=R;;P;. Hence, the dynamical symmetry is We have explicitly constructed deformed ladder operators
0(2D)NO(D)=0(D). Note that the symmetry of the trans- Using the exact solutions found in RéB] and have dis-
formed Hamiltonian in terms of cannonical variablesCcussed the corresponding deformed Fock space. These re-
H(X;(x;,p;),P;=p;) is O(D) and the symmetry preserving Sults represent a step toward finding a general method for
cannonical commutation relation is Sji§2, so, again, the constructing ladder operators for any smooth deformation of
dynamical symmetry for the transformed system isDQ( cannonical commutation relations. The dynamical symmetry
The system defined by cannonical commutation relations anfPr the described problem is a group of rotationdd(and
the Hamiltonian H(X(x: ,p;),P;=p;) is not physically IS defined by a specific choice of deformed commutation
equivalent to the system defined by the Hamiltoriah and ~ relations Eq.(9). A slight generalization that we have sug-
deformed commutation relatior(), although they have a 9gested offers new possibilities for symmetry breaking.
common energy spectrum and a common dynamical symme- Finally, let us note that the caget '<0 butDg+p"
try group. Nonetheless, all physical quantities in a noncom=>0 has not been discussed in the literature. This case might
mutative system can be determined in terms of relevanp€ pPhysically interesting since it indicates that there is sin-
quantities in a transformed system, expressed in terms @ularity in the systenithe transformation Eq10) becomes

cannonical variables. singulail whenp?2,,= — 1/(8+ 8’). This value has to be very
Iarge,pgms Ep, so it implies that relativistic effects have to
IV. CONCLUSION be considered(nonrelativistic quantum mechanics is no

_ _ i _longer applicable This singularity might suggest the gener-
The importance of a consistent Fock-space picture inyjization of special relativity with a newinvariany scale,

physics is well understood, but we wish to stress that thigonnected with the Planck scale, and similar to the generali-
picture is especially suited for the analysis of many-body;ations proposed in Ref20]. The modified relativistic quan-
problems and for the discussion of symmetries in the probg,m mechanics approach to the minimal length uncertainty

Iem. Also, the con_struction of the ladder operator is an interyg|ations is very important in order to get a consistent physi-
esting mathematical problem connected withuantum .4 picture.

group theonyf17], and has its applications in physical chem-
istry [18].

Any eigenvalue problemHW¥,=E, ¥, with a discrete
spectrum bounded from below, can be described in Fock We thank M. Milekovicfor useful discussions. This work
space as{b™|0);n=0,1,2...} with ¥, =b™0)/n!, was supported by the Ministry of Science and Technology of
[b,bT]=1.So far, there has been no simple method of exthe Republic of Croatia under Contracts No. 0098002 and
pressingb’=b'(x,p) that would generalize the simple rela- No. 0098003.
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