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Domain of validity of the evolution of perturbations in Newtonian cosmology with pressure
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It has been argued that by removing a pressure gradient term in the continuity equation, it is possible to
obtain, with a semiclassical formulation, the same expression for the density contrast growing mode, as
obtained in a full relativistic treatment. In this context, we reinvestigate the evolution of perturbations in an
expanding Newtonian universe with pressure, but we consider a general scenario in which the equation of state
parameter is time dependent and the perturbations are not necessarily adiabatic. We verify that, in this case, the
suggested modification of the continuity equation does not provide equivalence between the relativistic and
Newtonian descriptions.

DOI: 10.1103/PhysRevD.67.087301 PACS nuni®er98.80.Jk

[. INTRODUCTION To circumvent this problem, in Ref10] it was proposed
a modification of the continuity equation such that

In 1934, McCrea and Miln¢l], by generalizing a previ-
ous study of Milng 2], developed what later has been called ( P
Newtonian cosmology3]. By considering the cosmological
principle, assuming that pressure is negligibly small and us-
ing Newtonian dynamics and gravitation, they showed how However, to get the correct result they restricted their
the correct relativistic equations for the evolution of the uni-analysis to adiabatic perturbations and, in addition, consid-
verse could be obtained with a mathematically more simpleered only a constant equation of state.
treatment. Later, McCrep4] modified their basic equations The goal of this paper is to reanalyze this problem without
to take into account pressure. He showed that the analogyese restrictions. The recent observational evidence for ac-
between Newtonian and relativistic approaches is completelgeleration in the cosmic expansion makes it important to
restored if two physical notions from relativity theory are investigate the evolution of perturbations in a universe with a
adopted: the convertibility of mass and energy, mediated bgxotic component described by a time-varying equation of
the factorc?, and the possibility of distinction between iner- state.
tial and gravitational masg5]. In 1965, Harrison[6] ob- This paper is organized as follows. In Sec. I, we obtain
tained the same result, without any concepts from generdhe evolution equations of the perturbations, in the linear
relativity. The significance, limitations, and validity of New- regime, for the Newtonian approach. In Sec. Ill, we study the
tonian cosmology have been discussed by many auffigrs  problem from the relativistic point of view, still in the linear
As described above, here we will follow the more traditionalregime, and considering only scalar perturbations. In Sec. 1V,
and widespread approach and will not consider more geowe discuss our results and conclude.
metrical and formal onei3].

The basic equations of Newtonian cosmology are II. COSMOLOGICAL PERTURBATIONS

IN AN EXPANDING NEWTONIAN UNIVERSE

+V,-(pu)+PV,-u=0. (1.4
)

(&_u +(Uu-Vyu=-V.¢—(p+P)"W.P, (1.2 We start with the basic hydrodynamical equations that
s, describe the motion of a Newtonian cosmic fluid: the Euler’s
5 equation(1.1), the Poisson’s equatigii.2), and the modified
Vi¢=4nG(p+3P), (1.2 continuity equation(1.4),
ap = - au IO > e
> +V,-(p+P)u=0, 1.3 r +(Uu-VH)u=—-V,¢—(p+P)" VP, (2.1
r r

wherep, P, u, and¢ are, respectively, the density, pressure, V,2¢=47TG(p+3P), (2.2
velocity field, and gravitational potential of the cosmic fluid,
and now we are considerirgg=1. Equationg1.1), (1.2), and ap - - - -
(1.3) are the Euler equation, the Poisson equation, and théﬁ +Vi-(pu) + PVr-u=0. 23

continuity equation, respectively. '

The above set of equations lead to the correct relativistic aAs ysual in perturbation theory, we assume small pertur-

equations for the cosmic evolution, if spatial curvature ispations around the homogeneous background solution in the
zero,K=0. However, if we study perturbation theory in this form

framework, the results do not agree with the relativistic ap-
proach[9]. The equivalence is obtained only fBr=0. p=po+ p, (2.9
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P=Py+ 5P,
=0t o,
U=Uy+u.

We use a subscript “0” to denote background quantities.
Placing Egs.(2.4) in the Euler equatior{2.1) and keeping
only first order terms, we obtain

|

v
at

- -

) +(Up- Vv +(v- V) U
)

—V,0—(po+Po) 1V, (5P).
(2.5
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V2p—47GR2po8(1+3c2) =0, (2.15

R, 1+w . -
6+3§(Ceff_w)5+TV'U:O! (2.1
where we considered thatst= Cey4(t).

Time differentiating Eq.(2.16), taking the divergence of
Eqg. (2.14), and using Eq(2.15, we obtain the evolution
equation for the density contrast:

w
—+2H

5+ 8 3H(c2—w)— TTw

h 2
+5] 30 (cB—w)

+3H?(c2—w) +3H[(c2;) —W]—47G(1+3c2;)

Doing the same with the Poisson and the continuity equa-

tions we have

(aé

V2o=47G(8p+36P), (2.6)

+(po+Po)V,- v+ V.- (5plg) + 8PV, - Ug=0.
)
(2.7

at

2 2
eff — W

1+w

2
— Cety

.C
X (1+w)py—3HwW = =0.

(2.17

]

By using now the following equation®alid for the back-
groung:

For convenience, we make a change to comoving coordi-

nates such that

r=RX, (2.9
V,=RV,, 2.9
(a) _( J R .
r X— = r+ ﬁ(X'Vx),
(2.10

where the overdot denotes time derivative.

Using Egs.(2.9) and(2.10 in Eqgs.(2.5), (2.6), and(2.7),
and introducing the density contra®t 6p/po, we obtain the
following system:

. R. 1. R
U+§U——§V@—§pO+POV(5P), (2.1)
V2p=47GR?(5p+36P), (2.12
. R
pod—35(potPo)d
+Py. - R
_—p"R 2V 5 =30(3p+ oP). 2.13

We can define the quantitiesi=Pg,/pg, Cﬁff: 6P/ ép.
The quantityc?,; is what gives the critical scale for stabili-
zation of perturbations in the general cq&].

Now, we can rewrite the above equations as
R - 1o
R"R

5+ +@—V*(5)=o (2.14
v TR 1w ' '

08730

R__476 113 2.1
, [R)® 8nG
H*=| g =—3Po. (2.19
_ 2_
Ty =~ 3H(ci-w), (2.20
we can rewrite Eq(2.17) as
5—[3(2w—c2—cZ;)—2]H 6+ 3H?
3 1
X[ §W2—4W—§+3C§
Céff
+3c§”(3c§—6w—1)+% 5
2
C
= ly2s (2.21)

Ill. RELATIVISTIC COSMOLOGICAL
PERTURBATION EQUATIONS

To treat the problem through general relativistic frame-
work, we have to introduce perturbations of the metric and
the energy-momentum tensor. Following the work of
Kodama and Sasakil2], we have

Goo= —a%[1+2AY], (3.1)
goj=—a?BY;, (3.2
Elij:az[Vij+2HLY7ij+2HTYij], 3.3
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-|-8: —p[1+6Y], (3.4) whe.re we took, both, the.spatial curvatke® and the aniso-
tropic pressure perturbatiodl() equal to zero.
A second-order equation fat is obtained by eliminating

F0__
Ti=(p+P)(v—B)Y}, 39 v from Egs.(3.14 and(3.15:
Th=—(p+P)vYl, (3.6
A"—[3(2w—c?) 1a,A’+3 3 w2 4 1+3 2
Fi= P[5+ m 6, + mrY,'], 3.7 [3(2w=c)—1l5 W AT TG
1\ 2 2
whereY are scalar harmonic functions satisfying the equa- a k_ 20 A — 2
tion (A+k?)Y=0, A B, H_, Hr are the perturbations in the % * 3G A Kowr (3.19

lapse function, the displacement vector, the isotropic, and the

anisotropic parts of the metric, respectively; af\dv,

and 71 are the relative perturbations in the energy density,

the velocity, the isotropic, and the anisotropic pressures.
The quantities that represent the perturbations, as written In order to compare Eq(3.16 with the corresponding

above, are not gauge invariants. However, we can build inNewtonian second-order equation for the density contrast

IV. COMPARING THE RESULTS

variant quantities from them, such as (2.21), we use Eq(3.10, and reexpress E@3.16 as
a!
W=A+kTH | (B=kTHY) +kTH(B —k HY), .
. a. 1
(3.9 A—[3(2w—c§)—2]5A+3 Ew2—4w— E+3c§
H:7TT, (39) a_ 2 k2
I=mx —(:—§5=(c2 —cz)E (3.10
L W eff s'w'’ '

where now the derivatives are taken with respect to the time
V=v—-k H}, (3.1) t.
Comparing Eq(4.1) with Eq. (2.21), using the properties
a of the harmonic function¥ [12], and considering that, K
g) k™ v-B). (312 =0, the operatoa=ySV}V, is equivalent tov?, it is clear
that there is only one case where those equations are equiva-
In this section, we keep the notation[df2], in particular  lent. It occurs where3=cZ=w, that is, the case in which
the prime denotes differentiation with respect to the conforthere is only adiabatic pressure perturbation and the equation
mal time d7=dt/R). of state parameter is constant. This is the case investigated in
Equation (3.10 defines the difference betweec?,,  [10]. For a discussion of the Newtonian limits of the relativ-
= 5P/ 5p andc§= P/p. These two quantities are equal only istic cosmological perturbations in the case of adiabatic pres-

in the case of adiabatic pressure perturbations, characteriz&4"® perturbations but witW=w(t), see[13]. e
by I'=0. In summary, we have shown that the modification in the

To obtain the relativistic equivalent of E@.21), we have continuity equation, suggested_ ﬁ?‘lol to obtain equivalence
to study perturbations in the Einstein equations petvveen Newtoman and relat|V|st|q approaches only works
in the very special case, where adiabatic pressure perturba-
tions and constant equation of state parameter are consid-
ered. In addition, the equivalence is complete, in this case,
for every gauge in whickh = 4.

!

A=5+3(1+w)

5G F=8m7GST . (3.13

Using Eqgs(3.1)—(3.7) and the definition$3.8)—(3.12 we
obtain, for the gauge invariamtandA, the following system

[12]:
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