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Domain of validity of the evolution of perturbations in Newtonian cosmology with pressure
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It has been argued that by removing a pressure gradient term in the continuity equation, it is possible to
obtain, with a semiclassical formulation, the same expression for the density contrast growing mode, as
obtained in a full relativistic treatment. In this context, we reinvestigate the evolution of perturbations in an
expanding Newtonian universe with pressure, but we consider a general scenario in which the equation of state
parameter is time dependent and the perturbations are not necessarily adiabatic. We verify that, in this case, the
suggested modification of the continuity equation does not provide equivalence between the relativistic and
Newtonian descriptions.
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I. INTRODUCTION

In 1934, McCrea and Milne@1#, by generalizing a previ-
ous study of Milne@2#, developed what later has been call
Newtonian cosmology@3#. By considering the cosmologica
principle, assuming that pressure is negligibly small and
ing Newtonian dynamics and gravitation, they showed h
the correct relativistic equations for the evolution of the u
verse could be obtained with a mathematically more sim
treatment. Later, McCrea@4# modified their basic equation
to take into account pressure. He showed that the ana
between Newtonian and relativistic approaches is comple
restored if two physical notions from relativity theory a
adopted: the convertibility of mass and energy, mediated
the factorc2, and the possibility of distinction between ine
tial and gravitational mass@5#. In 1965, Harrison@6# ob-
tained the same result, without any concepts from gen
relativity. The significance, limitations, and validity of New
tonian cosmology have been discussed by many authors@7#.
As described above, here we will follow the more tradition
and widespread approach and will not consider more g
metrical and formal ones@8#.

The basic equations of Newtonian cosmology are

S ]uW

]t
D

r

1~uW •¹Wr !uW 52¹Wrf2~r1P!21¹Wr P, ~1.1!

¹ r
2f54pG~r13P!, ~1.2!

S ]r

]t D
r

1¹Wr•~r1P!uW 50, ~1.3!

wherer, P, uW , andf are, respectively, the density, pressu
velocity field, and gravitational potential of the cosmic flui
and now we are consideringc51. Equations~1.1!, ~1.2!, and
~1.3! are the Euler equation, the Poisson equation, and
continuity equation, respectively.

The above set of equations lead to the correct relativi
equations for the cosmic evolution, if spatial curvature
zero,K50. However, if we study perturbation theory in th
framework, the results do not agree with the relativistic a
proach@9#. The equivalence is obtained only forP50.
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To circumvent this problem, in Ref.@10# it was proposed
a modification of the continuity equation such that

S ]r

]t D
r

1¹Wr•~ruW !1P¹Wr•uW 50. ~1.4!

However, to get the correct result they restricted th
analysis to adiabatic perturbations and, in addition, con
ered only a constant equation of state.

The goal of this paper is to reanalyze this problem witho
these restrictions. The recent observational evidence for
celeration in the cosmic expansion makes it important
investigate the evolution of perturbations in a universe wit
exotic component described by a time-varying equation
state.

This paper is organized as follows. In Sec. II, we obta
the evolution equations of the perturbations, in the line
regime, for the Newtonian approach. In Sec. III, we study
problem from the relativistic point of view, still in the linea
regime, and considering only scalar perturbations. In Sec.
we discuss our results and conclude.

II. COSMOLOGICAL PERTURBATIONS
IN AN EXPANDING NEWTONIAN UNIVERSE

We start with the basic hydrodynamical equations t
describe the motion of a Newtonian cosmic fluid: the Eule
equation~1.1!, the Poisson’s equation~1.2!, and the modified
continuity equation~1.4!,

S ]uW

]t
D

r

1~uW •¹Wr !uW 52¹Wrf2~r1P!21¹Wr P, ~2.1!

¹ r
2f54pG~r13P!, ~2.2!

S ]r

]t D
r

1¹Wr•~ruW !1P¹Wr•uW 50. ~2.3!

As usual in perturbation theory, we assume small per
bations around the homogeneous background solution in
form

r5r01dr, ~2.4!
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P5P01dP,

f5f01w,

uW 5uW 01vW .

We use a subscript ‘‘0’’ to denote background quantiti
Placing Eqs.~2.4! in the Euler equation~2.1! and keeping
only first order terms, we obtain

S ]vW

]t
D

r

1~uW 0•¹Wr !vW 1~vW •¹Wr !uW 052¹Wrw2~r01P0!21¹Wr~dP!.

~2.5!

Doing the same with the Poisson and the continuity eq
tions we have

¹2w54pG~dr13dP!, ~2.6!

S ]dr

]t D
r

1~r01P0!¹Wr•vW 1¹Wr•~druW 0!1dP¹Wr•uW 050.

~2.7!

For convenience, we make a change to comoving coo
nates such that

rW5RxW , ~2.8!

¹x5R¹r , ~2.9!

S ]

]t D
x

5S ]

]t D
r

1
Ṙ

R
~xW•¹x!,

~2.10!

where the overdot denotes time derivative.
Using Eqs.~2.9! and~2.10! in Eqs.~2.5!, ~2.6!, and~2.7!,

and introducing the density contrastd[dr/r0, we obtain the
following system:

vẆ 1
Ṙ

R
vW 52

1

R
¹W w2

1

R

1

r01P0
¹W ~dP!, ~2.11!

¹2w54pGR2~dr13dP!, ~2.12!

r0ḋ23
Ṙ

R
~r01P0!d

52
r01P0

R
¹W •vW 23

Ṙ

R
~dr1dP!. ~2.13!

We can define the quantities:w5P0 /r0 , ce f f
2 5dP/dr.

The quantityce f f
2 is what gives the critical scale for stabil

zation of perturbations in the general case@11#.
Now, we can rewrite the above equations as

vẆ 1
Ṙ

R
vW 1

1

R
¹W w1

ce f f
2

R

1

11w
¹W ~d!50, ~2.14!
08730
.

-

i-

¹2w24pGR2r0d~113ce f f
2 !50, ~2.15!

ḋ13
Ṙ

R
~ce f f

2 2w!d1
11w

R
¹W •vW 50, ~2.16!

where we considered thatce f f5ce f f(t).
Time differentiating Eq.~2.16!, taking the divergence o

Eq. ~2.14!, and using Eq.~2.15!, we obtain the evolution
equation for the density contrast:

d̈1 ḋH 3H~ce f f
2 2w!2

ẇ

11w
12HJ 1dH 3

R̈

R
~ce f f

2 2w!

13H2~ce f f
2 2w!13H@~ce f f

2̇ !2ẇ#24pG~113ce f f
2 !

3~11w!r023Hẇ
ce f f

2 2w

11w J 2ce f f
2 ¹2d

R2
50. ~2.17!

By using now the following equations~valid for the back-
ground!:

R̈

R
52

4pG

3
r0~113w!, ~2.18!

H25S Ṙ

R
D 2

5
8pG

3
r0 , ~2.19!

ẇ

11w
523H~cs

22w!, ~2.20!

we can rewrite Eq.~2.17! as

d̈2@3~2w2cs
22ce f f

2 !22#H ḋ13H2

3H F3

2
w224w2

1

2
13cs

2G
13ce f f

2 ~3cs
226w21!1

ce f f
2̇

H
J d

5
ce f f

2

R2
¹2d. ~2.21!

III. RELATIVISTIC COSMOLOGICAL
PERTURBATION EQUATIONS

To treat the problem through general relativistic fram
work, we have to introduce perturbations of the metric a
the energy-momentum tensor. Following the work
Kodama and Sasaki@12#, we have

g̃0052a2@112AY#, ~3.1!

g̃0 j52a2BYj , ~3.2!

g̃i j 5a2@g i j 12HLYg i j 12HTYi j #, ~3.3!
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T̃0
052r@11dY#, ~3.4!

T̃j
05~r1P!~v2B!Yj , ~3.5!

T̃0
j 52~r1P!vYj , ~3.6!

T̃j
i 5P@d j

i1pLd j
i1pTYj

i #, ~3.7!

whereY are scalar harmonic functions satisfying the eq
tion (D1k2)Y50, A, B, HL , HT are the perturbations in th
lapse function, the displacement vector, the isotropic, and
anisotropic parts of the metric, respectively; andd, v, pL ,
and pT are the relative perturbations in the energy dens
the velocity, the isotropic, and the anisotropic pressures.

The quantities that represent the perturbations, as wri
above, are not gauge invariants. However, we can build
variant quantities from them, such as

C5A1k21S a8

a D ~B2k21HT8 !1k21~B82k21HT9 !,

~3.8!

P5pT , ~3.9!

G5pL2
cs

2

w
d5~ce f f

2 2cs
2!

d

w
, ~3.10!

V5v2k21HT8 , ~3.11!

D5d13~11w!S a8

a D k21~v2B!. ~3.12!

In this section, we keep the notation of@12#, in particular
the prime denotes differentiation with respect to the conf
mal time (dh5dt/R).

Equation ~3.10! defines the difference betweence f f
2

5dP/dr andcs
25 Ṗ/ ṙ. These two quantities are equal on

in the case of adiabatic pressure perturbations, characte
by G50.

To obtain the relativistic equivalent of Eq.~2.21!, we have
to study perturbations in the Einstein equations

dGn
m58pGdTn

m . ~3.13!

Using Eqs.~3.1!–~3.7! and the definitions~3.8!–~3.12! we
obtain, for the gauge invariantV andD, the following system
@12#:

V81
a8

a
V52kS 4pG

a2r

k2
2

cs
2

11wD D1
w

11w
kG,

~3.14!

D823w
a8

a
D52~11w!kV, ~3.15!
08730
-

e

,

n
-

r-

ed

where we took, both, the spatial curvature~K! and the aniso-
tropic pressure perturbation (P) equal to zero.

A second-order equation forD is obtained by eliminating
V from Eqs.~3.14! and ~3.15!:

D92@3~2w2cs
2!21#

a8

a
D813H F3

2
w224w2

1

2
13cs

2G
3S a8

a D 2

1
k2

3
cs

2J D52k2wG. ~3.16!

IV. COMPARING THE RESULTS

In order to compare Eq.~3.16! with the corresponding
Newtonian second-order equation for the density cont
~2.21!, we use Eq.~3.10!, and reexpress Eq.~3.16! as

D̈2@3~2w2cs
2!22#

ȧ

a
Ḋ13H F3

2
w224w2

1

2
13cs

2G
3S ȧ

a
D 2J D52

k2

a2
ce f f

2 D, ~4.1!

where now the derivatives are taken with respect to the t
t.

Comparing Eq.~4.1! with Eq. ~2.21!, using the properties
of the harmonic functionsY @12#, and considering that, ifK
50, the operatorD[g i j s¹W i

s¹W j is equivalent to¹2, it is clear
that there is only one case where those equations are eq
lent. It occurs whence f f

2 5cs
25w, that is, the case in which

there is only adiabatic pressure perturbation and the equa
of state parameter is constant. This is the case investigate
@10#. For a discussion of the Newtonian limits of the relati
istic cosmological perturbations in the case of adiabatic p
sure perturbations but withw5w(t), see@13#.

In summary, we have shown that the modification in t
continuity equation, suggested in@10#, to obtain equivalence
between Newtonian and relativistic approaches only wo
in the very special case, where adiabatic pressure pertu
tions and constant equation of state parameter are con
ered. In addition, the equivalence is complete, in this ca
for every gauge in whichD5d.
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