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We discuss the breakdown of the perturbative unitarity of nhoncommutative quantum field theories in an
electric-type background in the light of string theory. We consider the analytic structure of string loop two-
point functions using a suitable off-shell continuation, and then study the zero slope limit of Seiberg and
Witten. In this way we pick up how the unphysical tachyonic branch cut appears in noncommutative field
theory. We briefly discuss discontinuities and cutting rules for the full string theory amplitude and relate them
to the noncommutative field theoretical results, and also discuss the insight one gains into the magnetic case
too.
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[. INTRODUCTION string becomes unstable. In particular an electric field along
the string can strecht it and balance its energy, reducing its
The problem of the perturbative unitarity of noncommu- effective tension to zero, making pair production possible
tative quantum field theories has been faced since the appedfrom the vacuum without energy loss. The limit of Seiberg
ance of these theories as an effective description for opeand Witten precisely forces the electric field to overcome this
string theory amplitudes in an antisymmetric constant backeritical value; therefore the corresponding field theory de-
ground[1]. The absence of a straightforward Hamiltonian scribes an unstable string. There is no way to reach a com-
formulation for the case of an electric-type noncommutativ-plete decoupling without overcoming this critical point,
ity (in which the time variable is involvedand the bizarre therefore the resulting low energy truncated effective theory
dynamical features of its scattering amplitud2ssoon cast is necessarily tachyonic, even if the full string theory from
doubt on the consistency of this kind of theories. One of thevhich one starts is taken in the region of stability.
first confirmations of the breakdown of perturbative unitarity ~Our aim is to make this situation clear from the point of
was given in Ref[3] for a noncommutative scalar theory: view of the analytical structure of the full string theory am-
Cutkoski’s rules were found to hold only in the magnetic plitude, namely, we want to reproduce the result of R&f.
case; in the electric case an additional tachyonic branch cut #om the string two point function, precisely looking at what
present. An analogous result was found in Rg5] for non-  happens to the branch cuts when one performs the Seiberg-
commutative gauge theories: here again the cutting rule¥/itten limit. We want to explain why it is necessarily prob-
hold if the noncommutativity does not involve the time vari- lematic to go down from the string theory amplitudes onto
able, otherwise new intermediate tachyonic states call fothe field theoretical ones from the point of view of the branch
being inserted in order to explain the analytic structure of thecuts they both exhibit. We see that the string theory two-
vacuum polarization tenséiThese new possible states were point amplitude, when viewed as a function of the squared
considered in Ref[7]: the claim is that unitarity can be re- momentump? of the external leg, has two positive branch
covered provided one add the appropriate intermediate exeuts in the complex plane below the critical value of the
changes. This is related to the fact that in the electric case theectric field. Our off-shell continuation of the string ampli-
Seiberg-Witten limit does not succeed in decoupling thetude is performed in the spirit of Di Vecchigt al. [19-21]
open massive string states, as well as the closed string sectésee also Refd22-24)) and of Ref.[25], which is the way
The best one can do in general in this situation is to send there use to refer the result of Ref3] to the string theory
electric field at its critical value, ending with a theory of only calculation. One of the two branch cuts is parametrized by a
open strings [noncommutative open stringgNCOS)], quantity that changes sign when the electric field overcomes
namely decoupling all closed strings but keeping the opeiits critical value, and this situation is reflected in the analyti-

massive tower of statd$8,9] (see also Refd.10,11)). cal structure of the field theory amplitudes. This enforce the
From the point of view of the behavior of open strings in convinction that the anomalous spectral features of NC quan-
electric backgrounds the situation is well understppd—  tum field theory have a correspondence at the level of the

18]: there is a critical value of the field beyond which the related string model, and we consider it remarkable that the
breaking of unitarity of the effective field theory corresponds
to the breaking of stability of the original theory. Otherwise

*Email address: torrielli@pd.infn.it stated, the breaking of perturbative unitarity in the NC

The case of a light-like noncommutativity is peculiar and waseélectric-type field theory is due to the fact that its amplitudes
discussed in Ref4]. are precisely equal to the amplitudes of an open string in an

2For a discussion on the role of UV-IR mixing in relation to uni- electric background, when one forces them in the limit of
tarity in NC field theories see Rdf6]. Seiberg-Witten: this is an illicit operation, since an effective
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field theory for this situation does not exist, and the result ican be gauged away, we are interested only in the brane
not a field theory, which is what happens to timelike non-action. The propagator we will adopt in this situation, with
commutative QFT. the new boundary conditions imposed by ®aerm in Eq.

We further comment on the relevance of our kind of (1), has been constructed in Ref43,14,27. If one setsw
analysis in the magnetic case too, where the existence of thex+iy, the relevant propagator on the boundary of the cil-
Seiberg-Witten decoupling limit and the formal recoveringinder (x=0,1) can be written a27]

[3] of the cutting rules in the NC limit does not reveal the

nature of the infrared singularities extraneous to the elemen—G N gl

tary massive scalar particles one starts with. We relate it to (y.y')= 2® 9 7094

an off-shell manifestation of the closed string sector, related
to the abovementioned problem. We end with a calculation
of the discontinuities across the branch cuts of the full string

ly—y’| i

1/4 -

q ‘94( 5y 7 D(7)
amplitude in opportune approximations and with some re- ,

marks. X#X, @

—2a'G tlog

Il. ANALYSIS OF THE BRANCH CUTS G(y,y')= t%i Oe, (y—y')

Let us begin considering one-loop tachyon amplitudes in o
bosonic open string theory in the presence of a constant 9 ly—y'| ! D(7)
B-field living on a Dp-brane® These amplitudes have al- W27 7 7
ready been studiefl27,28,25,29,3]) in particular in Ref. .
[27] it was shown that the noncommutative effective field X=X, ©)
thseory on the brane in the zero-slope limit was pr(_ecisely NCWhereqze* w7+ correspond tox=1 andx=0, respec-
¢°. This was also one of the cases examined in [Ref. tively, ande, (y) =sgnfy) —y/ 7. The open string parameters
where the breakdown of cutting rules was found. are as in Ref[1];

We therefore start from writing the string amplitude for a ’
generic dimensiorp of the brane, governed by the sigma
model action G=(g—2ma’'B)g *(g+2ma’'B) 4

—2a'G tlog

is the open string metric and
S

f 022(gij 9, X' X1 = 2i ma' By €229, X 3pX1).
C,
1)

4ma’ 9= —(2ma’)2(g+2ma’'B) " B(g—2ma’'B)" ! (5
is the noncommutativity parameteit, (v,7) are Jacobi
The string world sheet is conformally mapped into the cil-theta functions, whilD(7) =7~ »(i/7)]3, wherey is the
inder C,={0<Rew=1w=w+2i7}; 7 is the modulus of Dedekind eta functiofn31].
the cilinder and the metrig and the antisymmetric tensér With this propagator and the suitable modular measure,
are constant closed-string sector backgrounds. The indiceshe amplitude for the insertion &f tachyonic vertex opera-
andj live on the brane: since outside the brane a con®ant tors atx=1 andM —N atx=0 has been calculatd@7]:

OCdT . ’ — M Ya—1
AN.M:MZW)d(aI)AGQAJO TT_d/Z[ﬂ(IT)]Z_dqm“ Ko 1K(al;[1 fo dYa>

N M . .o~ 1.
lyi—yjl i 2ekaG
X 1/419 ( J - D
i]':'[lj:l;'[-#l R R P e (7)

N |y_y| | Za’kinlkj
x [1 e—(1/2)iei(yi—yj)ki9k{01(;,;)/D(T)}

i<j=1 27
M , lyi—yi| i 2a'kiG™ X,
Xi<jH\l+1 e(1/2)lq(yi_)’j)ki0kj[1?1<|2—TJ,;)/D(T)} +noncycl. perm. (6)

3For the derivation of amplitudes for photon-vertex operators the reader is referred td%e?§).
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Here NV is the normalization constant,=p+1, A=M[(d 2mia’ 2ma
—2)/4]—d/2, Gy is the open string coupling constait, al VT A
=3N k is the sum of all momenta associated with the ver-

tex operators on th&=1 boundary, and/,=27. One can The field theory coupling constant is related to the open
see that whemN,M+#0, this amplitude corresponds to non- string parameters ag;~Gga’ @ /4 and the mass isn

planar graphs: this is most easily realized when mapping the- (2 —d/244’. Furthermore in the Seiberg-Witten limit
cilinder into an annulus whose internal boundary correy~1— _[1/(27a')2]0G#. Putting everything together, one
sponds, say, at=0 and the external one at=1. We have  gptains[27]

also omitted in the amplitude the global delta function due to

r\ —1/2
) et/277a'[—7r/4+77(v—112)]

momentum conservation and the traces of the Chan-Paton o (7 ot aio e miekoconat [t G-k
matrices. A1_2~ng0 dttt~d2e™m JO dve (1) ,
We want to discuss the case Ni=1, M=2, that is, a ®)

diagram with two vertex inserted on opposite boundaries,

which, in the field theory limit, will become the nonplanar \;here some unimportant constants have been omitted. This
contnbgtlon to the two-point funcngn. Th|s was the first ex- is exactly the expression for the two-point function in the
ample in Ref[27], Sec. 2.2: we will give here a more de- o commutatives® theory, and we see that the dimension of
tailed derivation, using a suitable rescaling and in order to se},a prane world volume may serve as a parameter of dimen-
the asymptotic formulas useful for the subsequent analysigiqng| regularization for the effective field theory. An impor-
Nonplanar diagrams are the ones in which the dependence @it hoint is that now we choose the brane to be actually a
noncommutativity does not factor out the loop integral andgyring thereforai=2. This case is peculiar since the tachyon
therefore they are substantially different from their COMMU- - oo squared goes to zero from beldiad>2 the effective
tative counterpart32]; they are indeed the diagrams we aretheory is naturally tachyonian?=(2—d)/24a’, we recall

interested in. We rescate=2ma’ 7 andvy ;=y; o/27. AREr a4 this represents a two-tachyon amplitude in string
this we setv,=0 to fix the residual invariance. The result we theory).

obtain is In this situation the limit(8) equals the nonplanar ampli-
AllzzNegzsdIZWSdlz—2a/d/2—3 tude of a massless scalar in two-dimensional §Ttheory

. 2—d % 1
< | “qiir-oz It o (72’ ?)kg ™k A1_2(d=2)~gf2J' dtJ dye 1L MkG ek (1UankoGok
0 7 2wa’ 0 0
9
2 2mia’| ] 2a'ke K . . . . . .
e “'/Ztﬁ4<y, ) In two dimensionsé is proportional to the antisymmetric
% fldv t tensoro*”= fe*". \We are therefore in the right situation to
0 2ma’ 2mia’\|® ' study the effects of electric-type backgrourfdShe open
i 7/( t ) string metric is proportional to the flat Minkowski metric

7., and we define a constan® such that G™'k?
(7) = k#[G‘l]’“’k,,, wherek? is the usual Minkowski invariant.

) The amplitude(9) can then be written as
k being the external momentum.

Now we perform the zero-slope limi¢' —0, following (1 S S
the lines sketched in the introduction, keeping, 6 andG Al.z(d=2)~9f2f dtf dveKI6 Tnmm=omac A,
fixed: this can be done setting ~ €2 and the closed string o 7o (10
metric g~ ¢, and then sending—0 [1]. The formulas for
the asymptotic values of the functions in the integrand are ag, he commutative case such massless scalar theories al-
follows: from the expressiony(s)=x"*417_;(1-x") ready have severe infrared problems. Therefore we add a

wherex=exd 2mis], we deduce the behavior small positive mass as a regulator and get
it t . “ 1 20 1 2ra—1 2 40-1
7 P ex e’ |’ Al,z(d=2)~gff0 dtfO dyeMot—KG Mtu(1-v) - 6%/4G 1]

. -1 (11

by using the property thag(s)=(—is) ~“n(—1/s) we get
i PYNIRST Setting for the momenG=1 for simplicity, we see that the
,7< ma )N T ) exd — v ' integral in Eq. (11) is convergent in the strip{—4m3
t t 240’ <Rek?<0}

and finally, since one has the property,(v,7)
(i 12 ;
=(=in* _exq_'f”z/ﬂﬂZ(V/T’_llT)i and  95(p,0) “We also notice that the noncommutative nonplanar diagram
=37 emotl2y+2mip(nt1i2) e obtain equals the planar one if we s@t0.
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and the duality for the functiow which relates the open and
the closed channels. At smaJithe integrand behaves as

_ 'k2 / 2_ 1Ry 2
) 2a'kgl[g°—(2ma’B)]} r{ sza/z
exp —k ;

gt J’

1
A1_2(d=2)~fodu

» Ky{\— 02K m2+K2p(1—v)]}
X

( t
V=P mi+kev(1-v)] | 2me! (15

12

therefore we have convergence fpRek?>0 and a branch
>0}. One of these is necessarily tachyonic and cutting rule& linear term, with a net result
Let us analize now the full string theory diagram. We
Vecchiaet al. [19,21], Refs.[22—24, and[25] in the non-  g/[g®— (27a’B)?]=(1/g)[1/(1—E?)] where we have de-
concrete mathematical correspondence. The complete stri

and after analytic continuation it defines an analytic func-CUt along j[he OppOSIte,aXIS. At largehe argument of the log
tions with two branch cutsRek?<—4m2} and {Rek? behaves like'!" "2« therefore the log actually produces
are invalidated. If we send the regulator to zero, the two
branch points get closer and closer and eventually coalesce. eXp( — K2t 9 »(1— V)) . (16)
[9°—(2ma'B)?]
refer to the remarks made in the introduction about the spirit _ . _
we adopt in continuing the string amplitude off-sh@iee Di  We see that the branch cut is parametrized by the quantity
commutative context taking it as the natural tool to inter- fineq the effective electric fiel=27a'B/g. This is ex-
pret the features of the field theory limit, as shown by theacyly the ratioE/E,, of Ref. [8] which discriminates the
amplitude, before performing any limit, in the case af
=2, is easily found from Eq(7) to be
8m (= 1 , _
A1_2(d=2)=NG§Ff dtf dpe (m*a kg
0 0

2mia’

. —2a'kG™ Yk
_ r
e T /21,&4( v, )

2mia’
KA

We set consistently,,=g7,, andB,,=Be,,. A simple

H — 2 ’ 2
calculation shows .thaG,w— ;/g[g —(.27m B)“ 17, We
can therefore rewrite the string amplitude as

2ma’ 8

t

13

7720[/2

gt

2877 ® 1
A1.2(d=2)=NGs—2f dtf dvexpg —k2
a'?J)o 0

—2a'gk?

“OP [g=(27a'B)7]

2 0
e 7T(1//2t,8,4(y’

2mia’
g t

27Tia')

Xlog - 3 (14

2T«

t

nsgi’ability of the string in this background:-1E? must be
positive in order to avoid tachyonic instability. This condi-
tion is precisely what we find from cutting rules: if this pa-
rameter is positive, the region of convergencygifRek?

>0, and the branch cut is superimposed to the one coming
from the smallt analysis® therefore the total amplitude ex-
hibits a single “physical” branch cut. If, on the contrary, this
parameter becomes negative, as it does in the Seiberg-Witten
limit becauseg®~ €% anda’2~ €, a new branch cut appears
on the opposite axis, which is just the unphysical one we find
in the limit.

Ill. CALCULATION OF DISCONTINUITIES AND
CUTTING RULES

In this section we perform some explicit calculations of
the discontinuities across the branch cuts we have found in
the previous analysis, and compare them with the related tree
level phase space according to the cutting rules, in order to
gain more insight into the correspondence between the string
theory amplitude and the noncommutative field theory one.
When the electric field overcomes its critical value we have
seen that already at the level of the full open string amplitude
a tachyonic branch cut appears: no phase space of particles
belonging to the actual string spectrum will be able to repro-
duce the discontinuity across it, therefore the cutting rules
are manifestly violated. Therefore we will restrict our subse-

quent analysis to the case|&f|<1. We recall that the open
string spectrum on th® p-brane under consideration is de-
termined bym?=(N—a)/a’, wherea=(d—2)/24 andd
=p+1 is the space-time dimension of the brane over which
the indices,j in Eq. (1) run.

When the electric field is smaller than the critical value,
we found a single physical branch cut for the string. The
amplitude in the Seiberg-Witten limit manifests, however, an

There are two regions we have to study in order to evaluate

the convergence of the integral owen Eq. (14), namely, the

ones close to the two extremes. We use again the asymptotiBecause of the smalt infrared singularityd=2 is quite pecu-
expressions we have reported above for the elliptic functiondiar. See the next section for specifications on this point.
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v, does not give any problem. We remark that, going to

come larger than 1. Again in the limit there is no hope tocomplex dimensions 2 (d—2), we have chosen to keep the
have an optical theorem, which reproduces the conclusion gintisymmetric field still of electric type, and, together with
Ref. [3]. This would not be the case, could we start with athe momentum, in the 2 dimensions with zero components in

magneticlike theorywhich is impossible id=2). The non-

the otherd—2 ones. The main change is therefore the ap-

commutative field theory analysis of cutting rules was per-Pearance of a small positive mass which regulates the inte-

formed in Ref[3]. Focusing on the full string theory result,

an analysis of factorization of the loop amplitude for a gen-

eral M-point function in the presence of ttiefield was car-

gral overv.
Our results show, therefore, that the two branch cuts of
the string amplitude, which are superimposeddin2, are

ried out in[27].° Their analysis showed the appearance of theseparated in the strig<<2. They have also different nature:

closed string channel as usual whg27a'=7—0. This

the first one, coming from the corner of smaltorrespond-

was obtained in the standard way of putting all external moing to the internal radius of the annulus becoming negligible,
menta on shell, and using momentum conservation, such thig driven by the closed string metrg; while the second one,

ZiM<j:12a’kiG_lkj=—M. The analysis of singularity is

coming from the corner in which the modulusf the annu-

then performed in the Mandelstam variables. The two pointus is very large, is driven by the open string met@cand
function is quite peculiar in this respect, as we have alreadytarts well below the first one.

remarked above, since it depends on the only invafant

Evaluating the discontinuities from the full analytic for-

As in the previous section, we will perform an off-shell mulas is quite a formidable task, therefore we choose to per-

analysis onk?, and will start directly from the formula for
the two point function.

The amplitude(13) is quite complicated, moreover it ex-
hibits an infrared singularity in the largecorner of integra-

form the calculation in the approximation in which the mo-
mentum of the incoming external tachyon is just above the
starting point of the lower cut of a very small amount. In this
situation the higher cut is not yet active, as well as the higher

. . ! H H 2__ ’.
tion whenv(1— ) is very small, as one can see looking at String levels, which start from”=[1—(d—2)/24)/a’: we

Eq. (16): integration ovett leads to a logarithmically diver-

break the integration region in order to separate shfatim

gent integral. This is peculiar to the two dimensions. In factiarget, then only this second piece develops a discontinuity,

we choose to consider the varialdeas a complex variable,
and go to a strip in the complex plane in which we do not

the first one resulting in an entire function of the momentum.
Here o' is finite, but the momentum is at the threshold,

have this problem, treating the dimension of the world vol-therefore only very high's are important, and the disconti-
ume of the brane as a parameter of dimensional regulariz&ity is the one of the field theorylike expression

tion. The amplitude we study now is therefore K@), and

the same procedure we used to single out the asymptotic
behaviors(15) and (16) leads us to the following results: at

smallt,
¢\ 2 K¥lolg® - (2ma’B)]}
=]
m2a'?  wla’(2—d)
Xex"(kz ot e ) 7

where we have assumegpnegative. We select the strip (2
—d)>0, which corresponds tm?=(2—d)/24a’>0. The
branch cut is for R&?>4m?|g|. At large t we have the
behavior

ti-d2 exp( k2t —|g|
[g°~(27a’B)?]

The branch cut is for Re*>4m?g%—(27a’'B)?]/|g|
where we recall that we restrict the analysis
—(2ma'B)?>0. As long asB+0 this branch cut starts be-
low the previous one, beirg?— (27a'B)?]/|g|?<1. Now
we see that, integratingin this region, and then integrating

v(1—v)—mt

(18

1 o0
NG§23d/27T3d/2*2ard/2*3J‘ dyf d tl*d/Z
0

]

xexp( k2t [gz—(ZTB)Z] v(1l— V)—mzt

(19

Integrating ovett we exploit the freedom we have in choos-
ing the lower extreme, which we fix at i/ y=|g|/[g?
—(27a’'B)?], and get

NG§23d/2,n_3d/272ard/273,yd/272

1
s
0

wherel' is the incomplete gamma functiom=2—(d/2),
and u?=m?/y. The discontinuity is found to be of a loga-
rithmic type, and, using transformation propertied ofit is
explicitly evaluated near the threshold

IMow,u?—kK2v(1-v)]
TR

(20

DiSCA]_.ZOC iNG§23d/27T3d/271ard/273,yd/272

I'[1/2] (kz)w<

I3 -] 4

4/.L2 (1/2)~ @
- _kf)

5The reader is also referred to the fundamental treatment of Ref.

[33].

X O(K2—4u?). (21)
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Expression(21) equals the phase space of one scalar particlevhich is aside from the standard domain of perturbative
going into two with a3 dynamics ind dimensions and with ~ string theory. We identify this fact, namely that the anoma-
a massu. We see therefore that at the threshiofe- 4% the  lous field theory singularity can be put in correspondence
cutting rules are satisfied with@?* dynamics: higher string  with the problematic operation of going off-shell at the string
levels cannot contribute since they are too high in energy, agerturbative level, as the key in the interpretation of the ana-
well as the second cut, and only two scalar particles can bgtic structure of the noncommutative two point function.
exchanged, with a field theorylike vertex in first approxima-  \we notice also that foB=0 the two branch cuts are

tion. ) ] ] o superimposed even fat<2, and the open string metric co-
We will try now to isolate also the discontinuity across thejncige with the closed one. In this situation one should in-

second cut. We will use the same trick as before, focusingye,q perform the effective field theory limit keeping this
this time on the smalt region. We analyze the leading be- metric fixed. and one would obtain the commutati®e
havior at smallt theory. ,

1 ( t
J' dvj dt
0 o \2ma’ . .
We have shown how the breakdown of perturbative uni-
w ek?(m2a’ 2|glt) —m%a’ (2 d)/6t (22) tarity in noncommutative electric-type field theories can be
related, from the point of view of cutting rules, to the appear-
ance of a tachyonic branch cut in the corresponding string
make the change— 1/t to reduce the integral to the already €2l value. We have analyzed the simple case of a two dimen-
analyzed form(19). In so doing we also freezein the ex-  Sional brane-world volume which is effectively described by
ponent of (/Zﬂ_a/)—Za’kz{\g|/[g2—(Zwa’B)Z]} to be at the ac- & massless scalar noncommutati¢&theory. The string am-

tual threshold: this combination cannot interfere with the sin-pl'tUde’ when viewed as a function of the external squared

gularity coming from the exponential. After redoing the same\r?eocrgﬁigtgtmalm[ ;gizsﬁ Izgeoef ;T:o Opfjgénz_cg%?nﬁgm tcrjmfeDI
analysis as above, we find that the discontinuity is prOporE:ritical field has two branch cuts, both positive, but the zero-

IV. CONCLUSIONS

) 2a'K*|gl/[g?~(2ma’'B)?]}

tional to slope limit forces the electric field to overcome its critical
value. At the same time the quantity that parametrizes one of
5\ 1+]g/2{(2—d)/3[g?— (2ma’B)?]} the branch cuts becomes negative, and the amplitude enters
( 1- 4lglm 0 (k2—4m?|g|) the region of instability. The crucial point is that this forced
k2 ' limit exactly coincides with the amplitude derived from a

(23 noncommutative timelike field theory action. The corre-
sponding noncommutative field theory violates unitarity in
this situation.

It is interesting in particular to refer this last analysis to the This is in our opinion a remarkable correspondence. Fur-
field theory limit. We know that this higher cut embracesthermore, when the magnetic case is reconsidered in the light
Rek?>4m?|g|. When we perform the Seiberg-Witten limit of our kind of analysis, one realizes new insight into the
the quantity 4n?|g| goes to zero, and the branch cut startsproblem that, in spite of the existence of the Seiberg-Witten
from k=0 in the field theory, as we can easily see from Eq.decoupling limit, the magnetic theory presents anomalous
(8). This singularity is a feature which was generally foundsingularities coming from the closed string sector, as origi-
in the purely noncommutative field-theoretical approachesally pointed out by Ref.32]. We have therefore studied the
even in the magnetic case, where a decoupligiberg- discontinuities of the full string theory amplitude across the
Witten) limit does exists: in Ref[5], namely, in NC gauge branch cuts, keeping the electric field below the critical value
theories, it was accompanied in the magnetic case by a ciunt order to have a stable string, and then we have related
starting from zero, due to noncommutative massless gluonshem to what one finds in the effective field theory. These
while in Ref.[3] it was well separated from the cut due to two branch cuts have different nature and, in dimensions of
massive scalars. If we consider this last case, the formal rehe brane world volume different from two, start from differ-
covering of the cutting rules by implementation of a treeent points. This separation, furnished by Bdield, allows
level phase space with honcommutative dynamics did notis to put ourselves in the approximation of an incoming
reveal the nature of these singularities. Our string theorynomentum just above the lower threshold, the upper one, as
analysis reveals a fact that was already pointed out in thevell as the higher string levels, being not still active. In this
earlier investigationgsee, for example, Ref32]), namely, situation we have recovered, for a small region beyond the
that they have to be related to the closed string sector, whiclower cut, the cutting rules for simplé® phase space. We

in the usual on-shell analysis manifests itself as poles in thbave also discussed the features of the upper threshold,
smallt corner. The two point function needs, however, anwhich in the case oB=0 would result superimposed to the
off-shell analysis, as we have diffusely pointed out above, ifower one: even in the magnetic case it is related in the
order to relate it to the natural analysis in field theory, butSeiberg-Witten limit to the anomalous singularity mentioned
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above and starting from zero momentum, and in the fullhocsubtraction. Next, to get rid of the tachyon directly from
string theory amplitude it is driven by the closed string met-the spectrum, one has to pass to the case of superstrings.
ric. We have discussed the extent to which it is related to an
off-shell manifestation of the closed string sector, corre-
sponding to the problematic continuation ps already re-
marked. | wish to thank Antonio Bassetto for useful discussions
The perspectives opened are, first, to apply our analysis tand invaluable collaboration during all the work, and for

amplitudes among external states belonging to higher leveleading the manuscript. | wish to thank Loriano Bonora for
in the string spectrum, such as the vec{@5,26], in orderto  reading the first version of the manuscript and for sugges-
interpret the result of Ref5]. In this case, the tachyon con- tions. | wish to thank C. S. Chu, J. Gomis, and S. Kar for
tribution of the bosonic open string can be treated witladn very useful suggestions.
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