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Explicit formulas for Neumann coefficients in the plane-wave geometry
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We obtain explicit formulas for the Neumann coefficients and associated quantities that appear in the
three-string vertex for type IIB string theory in a plane-wave background, for any value of the mass parameter
m. The derivation involves constructing the inverse of a certain infinite-dimensional matrix, in terms of which
the Neumann coefficients previously had been written only implicitly. We derive asymptotic expansions for
largem and find unexpectedly simple results, which are valid to all orders in 1/m. Using BMN duality, these
give predictions for certain gauge theory quantities to all orders in the modified ’t Hooft couplingl8. A
specific example is presented.
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I. INTRODUCTION

This paper continues the study of the light-cone gau
string field theory formulation of type IIB superstring theo
in the maximally supersymmetric plane-wave geome
@1–7#. Its purpose is to derive and analyze explicit formu
for the Neumann coefficients that enter in the three-str
interaction vertex that describes the process in which str
No. 1 and No. 2 join to form string No. 3. In particular@1#,
this requires an explicit formula for the inverse of a certa
infinite-dimensional matrix calledG1(m,y) ~and defined be-
low!. Here, m is the mass parameter that appears in
plane-wave metric. It becomes physically meaningful on
we specify the coordinate frame, since only the productP2m
is invariant under a longitudinal boost. The combinati
a8P2 for the r th string is conventionally denoteda r , with
the momentum taken to be negative for the outgoing str
so that( ra r50. We makem a meaningful dimensionles
parameter by choosing a frame for whicha3521. When
strings No. 1 and No. 2 join to form string No. 3, string N
1 carries momentum fractiona15y and string No. 2 carries
momentum fractiona2512y, with 0<y<1.

Previously @4,5#, the inverse ofG1 was determined in
terms of a certain infinite component vector call
Ym(m,y)5„G1

21B(y)…m and a scalar functionk(m,y)
5BTG1

21B. HereBm(y) is a known infinite component vec
tor. ~The formula will be given later.! In this paper we obtain
explicit formulas forYm andk, and hence also forG1

21 . The
first step is to derive a first-order differential equation th
determines the dependence ofYm on the mass parameterm.
Since the value ofYm for m50 is known from previous
analysis of the flat-space problem, that knowledge can
used to fix the ‘‘initial condition.’’ The resulting integrate
expression forYm is expressed in terms ofk(m,y), which
still needs to be determined. Knowledge of the leading la
m asymptotic behavior ofYm , for all m, is sufficient to com-
pletely determine that function. The resulting equation
volves a certain integral transform. The equation is solved
the inverse integral transform. The particular integral tra
0556-2821/2003/67~8!/086005~14!/$20.00 67 0860
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form that appears does not seem to be contained in the s
dard mathematical references~such as Bateman!, but we
have not done an exhaustive search of the literature.

The formulas obtained at this point in the analysis a
explicit and complete, but they are not yet in a form that
convenient for exploring largem expansions. The largem
limit is of particular interest in light of the proposed corr
spondence@8# between type IIB superstring theory in th
plane wave background and a certain sector ofN54 SU(N)
gauge theory, since the dual gauge theory is believed to
effectively perturbative in the parameterl851/m2. In the
final section of this paper we present explicit formula
which are valid to all orders inl8 perturbation theory, but
omit non-perturbative terms of ordere22pmuar u. The latter
terms can in principle be extracted from our results w
sufficient effort. We use these formulas to make a spec
gauge theory prediction to all orders inl8.

II. REVIEW OF BASIC FORMULAS

The three-string interaction vertex for type IIB supe
strings in flat space was worked out in@9,10# and generalized
to the plane-wave geometry in@1,2#. This vertex is repre-
sented as a state in the tensor product of three string F
spaces, where the individual strings are labeled by an in
r 51,2,3. Any particular three string coupling is then o
tained by contracting it with three specific string states. T
formula for the three-string interaction vertex contains
bosonic factor

uVB&5expS 1

2 (
r ,s51

3

(
m,n52`

`

(
I 51

8

arm
I† N̄mn

rs asn
I†D u0&. ~1!

The quantitiesN̄mn
rs are called Neumann coefficients. Th

three-string vertex also contains a similar fermionic fac
uVF& made out of the fermionic oscillators and a ‘‘prefacto
that is polynomial in the various oscillators. We will no
discuss either of these in this paper. However, aside from
overall factorv(m,y) that does not involve the oscillators
©2003 The American Physical Society05-1
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they are constructed out of essentially the same quantitie
the formulas that will be derived here determine them al

In describing the Neumann matrices, it is convenient
consider separately the cases in which each of the ind
m,n are either positive, negative or zero. Henceforth,
symbolsm,n will always denote positive integers. One res
of @1#, for example, using matrix notation for the blocks wi
positive indices, is

N̄rs5d rs22~CrC
21!1/2A(r )TG1

21A(s)~CsC
21!1/2. ~2!

HereCmn5mdmn and (Cr)mn5v rmdmn are diagonal matri-
ces, with

v rm5Am21~ma r !
2. ~3!

The definitions of the matricesA(r ) and G1 will be given
shortly.

The blocks with both indices negative are related in
simple way to the ones with both indices positive by

N̄2m2n
rs 52~UrN̄

rsUs!mn , ~4!

where

Ur5C21~Cr2ma r !5C~Cr1ma r !
21. ~5!

In the case ofN̄33 these are the only nonvanishing terms. F
the remaining Neumann coefficients the other nonvanish
terms are

N̄m0
rs 5N̄0m

sr 5A2mas esta t@~CrC
21!1/2A(r )TG1

21B#m ,

s,tP$1,2%,r P$1,2,3%,

N̄00
rs5~21!r 1s11~11mak!

a

Aa ras

, r ,sP$1,2%,

N̄00
3r5N̄00

r352Aa r , r P$1,2%, ~6!

wherea5a1a2a352y(12y), andk5k(m,y) will be de-
fined shortly.

The matricesA(r )(y) and the vectorB(y) do not depend
on m, so they are the same as in flat space. Namely,

Amn
(1)5

2

p
~21!m1n11Amn

y sinmpy

n22m2y2
,

Amn
(2)5

2

p
~21!mAmn

~12y!sinmpy

n22m2~12y!2
,

Amn
(3)5dmn ,

Bm5
2

p
~21!m11

sinmpy

y~12y!m3/2
. ~7!
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A number of useful identities relating these matrices are
cluded in Appendix A. Out of these and the diagonal ma
cesUr we construct

G15(
r 51

3

A(r )UrA
(r )T. ~8!

Note that the onlym dependence enters viaUr .
The quantities that we especially would like to evalua

explicitly are the matrixG1
21(m,y), the vector

Ym~m,y!5~G1
21~m,y!B~y!!m , ~9!

and the scalar

k~m,y!5BTG1
21B. ~10!

In the case of flat space (m50) the results are known. Spe
cifically, the Neumann matrices in Eq.~2! may be written as

N̄mn
rs 52

mna

mas1na r
N̄m

r N̄n
s for m50, ~11!

where

N̄m
r 5

Am

a r
f m~2a r 11 /a r !e

mt0 /ar for m50, ~12!

wherea45a1 is understood,

f m~g!5
G~mg!

m!G~mg112m!
~13!

and

t05(
r 51

3

a r lnua r u5y ln y1~12y!ln~12y!. ~14!

In particular, still form50, G1
215 1

2 (12N̄33), Ym52N̄m
3 ,

andk52t0 /a. In other words,

Ym~m50,y!5
Am G~my!

m!G~my112m!
e2mt0

5
G~11my!G„11m~12y!…

2 G~11m!
e2mt0Bm ~15!

and

k~m50,y!522S ln y

12y
1

ln~12y!

y D . ~16!

In @4,5# the following identity was derived for arbitrarym:

$G1
21 ,C3%5C1

1

2

a1a2

11mak
CU3

21YYTCU3
21 . ~17!

Note that this determinesG1
21(m,y) in terms ofY(m,y) and

k(m,y). In particular, this formula was shown to imply tha
the generalization of Eq.~11! to nonzerom takes the form
5-2
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N̄mn
rs 52

mna

11mak

N̄m
r N̄n

s

asv rm1a rvsn
~18!

where

N̄m
r 52@~C21Cr !

1/2Ur
21A(r )TY#m , ~19!

but neither it nork(m,y) was determined explicitly at non
zerom.

Some preliminary analysis of largem asymptotics was
initiated in @2–4,12#, though not much can be done witho
additional explicit formulas. It was found that the leadin
~largem) term in the expansion ofG1

21 is given by the first
term on the right-hand side of Eq.~17!. DefiningR by

G1
215

1

2
CC3

211R, ~20!

it is easy to see that the leading term inR is of orderm24.
Specifically,

R→aRp
y2~12y!2

m4
C3BBTC31••• ~21!

whereaR is a constant and the next term in the expansion
of orderm26. Similarly,

k~m,y!→ 1

my~12y!
2

ak

p@my~12y!#2
1•••. ~22!

Inserting these expansions into Eq.~17!, one learns that

aRak5
1

64
. ~23!

It is very difficult to determineaR andak separately without
additional explicit formulas. The asymptotic expansion oY
was found to have the structure

Ym→ 1

m F1

2
m2S 1

4
2xDm3

m2
1•••GBm . ~24!

The value ofx is of particular interest. It was estimated n
merically to be approximately 1/16 in@3#, and we will show
below that this is correct.

III. THE DIFFERENTIAL EQUATION

This section describes the derivation of a different
equation involvingYm(m,y) andk(m,y). For the benefit of
the reader who would like to skip the details of the deriv
tion, and move on to the next section, the result is sta
here:

]Ym

]m
5F1

2

]F

]m S 12
m

vm
D2

m

vm
2 GYm , ~25!

wherevm5v3m5Am21m2 and
08600
is

l

-
d

F~m,y!5 ln@11mak~m,y!#5 ln@12my~12y!k~m,y!#.
~26!

This has the formal solution

Ym~m,y!5
m

vm
expF1

2E0

m]F

]m S 12
m

vm
DdmGYm~0,y!.

~27!

Thus, if we knewk(m,y), we would knowF(m,y), and then
Ym(m,y), and hence all the Neumann coefficients.

The derivation of Eq.~25! is rather involved. Let us
sketch the derivation here and then fill in some of the det
in Appendix B. The matrixG15(A(r )UrA

(r )T only depends
on m through the dependence ofUr on m. Its derivative can
be written in the form

]G1

]m
52

1

2
aBBT1mN, ~28!

where

N5(
r 51

3

a r
2A(r )C21Cr

21A(r )T. ~29!

It follows that

]Y

]m
5

1

2
kaY2mG1

21NY. ~30!

But NY can be recast in the form

NY5g1C3
22B1g2B, ~31!

where the coefficientsg1 andg2 are scalar quantities:

g15
2~11mak!

21mak1m2ak1

,

g25S a

2 Dak21makk112k1

21mak1m2ak1

, ~32!

and

ki5BTC3
2 iY. ~33!

The above equations imply that

]k

]m
5BT

]Y

]m
5

1

2
ak22mg2k2mg1k2 . ~34!

This is not very useful as it stands, since there is no ot
apparent way to determinek2. (k1 could be determined, bu
that will turn out not to be necessary.! Substituting the equa
tion for NY and an identity for@C3

22 ,G1
21# deduced from

Eq. ~17!, one can recast the derivative ofY in the form

]Y

]m
5~F01F1C3

211F2C3
22!Y, ~35!
5-3
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where the scalar functionsFi are given by

F05
1

2
ak2mg21

1

2
mg1

a

11mak
~k12mk2!,

F152
1

2
mg1

a

11mak
~k2m2k2!,

F252mg11
1

2
m2g1

a

11mak
~k2mk1!. ~36!

Using Eq.~32! for g1 andg2, and Eq.~34! to eliminatek2 in
favor of k8, we find

F252m, F152mF0 , F05
a

2

1

11mak
~k1mk8!,

~37!

so that Eq.~35! can be written in the form~25!.
As a first application of Eq.~25!, let us consider it for

largem. The expansion in Eq.~22! implies that at largem the
leading behavior of]F/]m is 21/m. Substituting this into
Eq. ~24!, one deduces thatx51/16.

IV. AN INTEGRAL TRANSFORM

In this section we show that the known largem behavior
Ym;(m/2m)Bm , together with Eq.~27!, is sufficient to de-
duce an integral transform, whose solution we are able
determine explicitly, thereby obtaining explicit formulas f
k(m,y), F(m,y) and henceYm(m,y).

SinceYm;(m/2m)Bm for largem, Eq. ~27! implies that

expH 1

2E0

`]F

]m S 12
m

vm
DdmJ 5

Bm

2Ym~0!
. ~38!

Taking the logarithm of both sides and integrating by pa
this becomes

E
0

`

~m21m2!23/2F~m,y!dm5G~m,y!, ~39!

where, using Eq.~15!,

G~z,y!5
2t0

z
1

2

z2
lnS G~11z!

G~11zy!G„11z~12y!…D .

~40!

Equation~39!, which must hold form51,2, . . . , and 0<y
<1, determinesF(m,y) and hencek(m,y).

The functionG(z,y) is holomorphic in the right-halfz
plane and goes to 0 asz→` in that half plane like a powe
(1/z2). These properties make this extrapolation from
positive integers to a continuous variablez unique. More-
over, they are exactly what is needed to construct an inv
transformation givingF in terms ofG. Let us state this as:

Theorem.Suppose thatg(z) is holomorphic in the right-
half z plane and vanishes like a power at infinity in that h
plane. Then the solution of the equation
08600
to

,

e

se

f

E
0

`

~z21x2!23/2f ~x!dx5g~z! ~41!

@for Re(z).0] is given by the inverse integral transform

f ~x!52 i
x2

p E
0

p

g~2 ix cosu!cosu du

52 i
x2

p E
0

p/2

@g~2 ix cosu!2g~ ix cosu!#cosu du.

~42!

We refer the reader to Appendix C for the proof of this the
rem.

Applying the theorem to the problem at hand, we lea
that

F~m,y!52 i
m2

p E
0

p

G~2 im cosu,y!cosu du. ~43!

Substituting the formula forG,

F~m,y!52mt01
2i

p E
0

p du

cosu

3 lnF G~12 im cosu!

G~12 imy cosu!G„12 im~12y!cosu…G .
~44!

The formula forYm also requires the derivative

]F~m,y!

]m
52t01

2

pE0

p

du@c~12 im cosu!2yc~12 imy

3cosu!2~12y!c„12 im~12y! cosu…#,

~45!

where, as usual,c5(ln G)8.
Substituting the expansion

c~11z!52g1z(
n51

`
1

n~z1n!
~46!

and using the integral

E
0

p du

a1b cosu
5

p

Aa22b2
~47!

gives the result

]F~m,y!

]m
52t012(

n51

`

(
r 51

3
a r

v rn
. ~48!
5-4
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SinceF(0,y)50, this integrates to

F~m,y!52t0m12(
n, r

ln@~v rn1ma r !/n#52t0m

22 ln det~U1U2U3!. ~49!

Note that det(U1U2U3) is convergent even though the ind
vidual det(Ur) diverge. We can regulate them in a way th
does not change the product~since(a r50) by recastingF
in the form

F~m,y!52t0m12(
r

f~ma r !, ~50!

where

f~x!5 (
n51

` F lnSAn21x21x

n D 2
x

nG5 (
n51

` Farc sinhS x

nD2
x

nG .
~51!

The regulated determinant ofUr is then exp@2f(ma r)#.
Substituting the expansion of]F/]m into the formula forYm
gives

Ym~m,y!5expF ~m2vm!t01(
r 51

3

~f r2fmr!G m

2vm
Bm ,

~52!

wheref r5f(ma r) and

fmr5 (
n51

` F lnS v rn1vma r

n D2
vma r

n G , ~53!

where, we remind the reader,vm5Am21m2 and v rm

5Am21(ma r)
2.

The formulas~50! and ~52! are explicit expansions ofF
and Ym which converge for all finitem. Thus, in a sense
they solve our problem. However, they are not yet in
most convenient form for exploring largem expansions.

V. ASYMPTOTIC EXPANSIONS FOR LARGE µ

In this section we develop asymptotic largem expansions
for all quantities that appear in the three-string vertex
turns out that the quantities all have essential singularitie
m5` arising from terms proportional toe22pmuar u. The ex-
istence of such terms, which correspond to non-perturba
effects in the dual gauge theory, has been noted in@3#. We
proceed under the assumption thatmua r u is sufficiently large
~for all r ) that these terms can be neglected, and we use
symbol ' to denote this approximation. We stress that
formulas we present encapsulate all orders in a power se
expansion aroundl850 from the dual gauge theory point o
view. However, they do not match smoothly with the know
flat space results atm50 because the omitted terms becom
important in this limit. Finally, the limity→0 ~at fixedm) is
also of interest, because it can be used to extract vertex
erators for the emission of on-shell particles@9#. Our
08600
t

e

t
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e

he
e
ies

p-

asymptotic formulas are not well-suited for studying th
limit because we omit terms of ordere22pmy.

Let us demonstrate how to use the integral equation~39!
directly to find the constantak introduced in Eq.~22!. It
follows from Eq.~22! that

F~m,y!52 ln@pmy~12y!/ak#1••• ~54!

at large m. Let us define F̃(m,y)5F(m,y)1 ln@pmy(1
2y)/ak#. Then Eq.~39! implies that

E
0

`

~m21m2!23/2F̃~m,y!dm

5G~m,y!1
1

m2
lnS mpy~12y!

2ak
D . ~55!

Now let m5nl andm5lw. After scaling outl, we find

E
0

`

~w21n2!23/2F̃~lw,y!dw

5l2FG~ln,y!1
1

l2n2
lnS lnpy~12y!

2ak
D G .

~56!

In the limit l→` the left-hand side goes to zero, while fro
Eq. ~40! it is easy to check using Stirling’s approximatio
that the right-hand side goes to (1/n2)ln(4ak). This deter-
minesak51/4 and, from Eq.~23!, aR5 1

16 .

A. F „µ,y… and k„µ,y…

Let us proceed by studying the functionf(x) defined in
Eq. ~51!. Sincef is clearly odd, it is sufficient to conside
large positivex here. Taking two derivatives gives

f9~x!52x(
n51

`
1

~x21n2!3/2
'2

1

x
1

1

2x2
, ~57!

where we have used Eq.~E5! to evaluate the sum@the exact
result is given in Eq.~F4!#. Integrating twice with respect to
x leads to

f~x!'2S x1
1

2D ln x1c1x1c2 , ~58!

whereci are constants of integration. Inserting Eq.~58! into
Eq. ~50! gives

F~m,y!'2 ln@my~12y!#12c2 . ~59!

The constantc1 has dropped out since(a r50, and we can
determinec25 1

2 ln 4p by comparing Eq.~59! to Eq. ~54!
with ak5 1

4 , obtaining thereby

F~m,y!'2 ln@4pmy~12y!#. ~60!

We emphasize that Eq.~60! is much stronger than Eq.~54!:
when we wrote the latter, we might have expected corr
tions involving powers of 1/m, but in Eq. ~60! we have
proven that the only corrections are exponentially small.
5-5
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alternative derivation of this result is presented in Appen
D, where we show that the absence of power law correcti
follows from a simple contour integral argument. In Appe
dix F we derive the exact formula

F~m,y!52 ln@4pmy~12y!#1J~my!1J„m~12y!…

2J~m!, ~61!

where

J~x!5
2

pE1

` ln~12e22pxz!

zAz221
dz. ~62!

It is easy to read off all the exponential corrections to E
~61! by writing out the series expansion of the logarith
However, we will not keep track of these exponential corr
tions in the following sections, and instead simply use E
~60! and the definition~26! to write

k~m,y!'
1

my~12y!
2

1

4pm2y2~12y!2
. ~63!

B. Ym„µ,y…

Although it is straightforward to develop an asympto
expansion for the functionfmr defined in Eq.~53!, a more
direct route is simply to rewrite Eq.~27! as

Ym~m,y!5
m

vm
expF1

2E0

`]F

]m S 12
m

vm
Ddm

2E
m

`]F

]m S 12
m

vm
DdmGYm~0,y!. ~64!

The first integral is just Eq.~38!, and the second integral i
elementary after substituting the asymptotic expansionF8
'21/m. The final result is

Ym~m,y!'Am1vm

2m

m

2vm

Bm

5
1

2A2m

Am1Am21m2

Am21m2
mBm , ~65!

which can be conveniently summarized as

Y'
1

2A2m
U3

1/2C3/2C3
21B. ~66!

C. The Neumann vectors

The final step in the construction of the Neumann ma
ces involves evaluating the matrix productsA(r )TY which
appear in the Neumann vectors in Eq.~19!. From Eq.~65!
we have
08600
x
s

-

.
.
-
.

-

~A(1)TY!n

'A2

m

~21!n11An

p2y2~12y!
(

m51

`
sin2~pmy!

m22n2/y2

Am1Am21m2

Am21m2
.

~67!

Using Eq.~E9!, we find

~A(r )TY!n'
1

py~12y!2A2m

3~21!r (n11)21Aa rv rn
21Urn

1/2, r P$1,2%.

~68!

The Neumann vectors in Eq.~19! can therefore be expresse
as

N̄n
r '

1

2py~12y!
~21!r (n11)Aa r~2mnv rnUrn!21/2,

r P$1,2%,

N̄n
3'2

n

2
~2mv3nU3n!21/2Bn . ~69!

Actually we can combine these expressions in a useful w
If we define

s1m5s2m51, s3m522 sin~pmy!, ~70!

then we have simply

N̄n
r '

~21!r (n11)

2py~12y!
A ua r u

2mnv rnUrn
srn , r P$1,2,3%.

~71!

D. Consistency checks

We should check that the vectorY we have found indeed
satisfiesBTY'k andG1Y'B. First we have

BTY'
4

p2

1

y2~12y!2

1

2A2m

3 (
m51

`
sin2~pmy!

m2

Am1Am21m2

Am21m2
. ~72!

With the help of Eq.~E10!, it immediately follows that this
expression equals Eq.~63!.
5-6
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In @3# it was shown thatG152C3C212H, whereH is
given up to exponential corrections by

Hmn'
8

m2p2
~21!m1nAmnsin~pmy!sin~pny!

3E
1

`

dz
Az221

~z21m2/m2!~z21n2/m2!
. ~73!

@The integral is easily evaluated, but it is convenient to lea
Eq. ~73! in this form for the calculation.# The condition
G1Y5B which we would now like to check is equivalent t

HY52C3C21Y2B. ~74!

Using Eqs.~73! and ~65! we can write

~HY!n'
2A2n2Bn

p2Am
E

1

` Az221

z21n2/m2

3 (
m51

` sin~pmy!2

m21z2m2

Am1Am21m2

Am21m2
. ~75!

After substituting Eq.~E11! for the sum, the remaining inte
gral overz is elementary and takes the form

ReE
1

`

dz
A211 iAz221

z~z21a2!

52
p

A2a2
F 12

1

A2
A11A11a2G ~76!

for a5n/m. Assembling all factors from Eqs.~75!, ~76! and
~E11!, we find

~HY!n'2BnF12
1

A2
A11A11n2/m2G . ~77!

Recalling Eq.~65!, we see that the desired relation Eq.~74!
is indeed satisfied up to exponential corrections.

E. Some remaining quantities

The Neumann matrices are completely determined, to
orders in 1/m, by the factorization identity~18! and the Neu-
mann vectors given in Eq.~71!. For the sake of complete
ness, we catalog here two more quantities of interest, wh
follow easily from our results. The first is the matrixR de-
fined in Eq.~20!. By comparing the expressions~2! and~18!
for r 5s53 we can determineG1

21 , and henceR, in terms of
Ym . Using Eq.~66!, we arrive at

Rmn5~G1
21!mn2

1

2

m

Am21m2
dmn

'
1

p
mn~21!m1n

sin~pmy!sin~pny!

vnvm~vm1vn!AUmUn

, ~78!
08600
e

ll

h

where~as before!

vm5Am21m2, Um5
vm1m

m
. ~79!

Finally, we remarked above that the prefactor is polyn
mial in quantitiesX and Y which are constructed out o
bosonic and fermionic oscillators respectively~see@2,5,7#!.
The normalization ofX andY involves a factor calledf (m)
in @5#. It may be obtained from the formula@2,5#

f ~m!5A22pa2a3 lim
n→`

~21!n~CA(1)TG1
21B!n . ~80!

It follows immediately from Eq.~68! that

f ~m!'
1

A4pmy~12y!
'A11mak. ~81!

In fact, closure of the supersymmetry algebra requiresf (m)
5A11mak @7#. Note that thisf (m) is separate from a stil
undetermined functionv(m), to appear below, which ap
pears as an overall factor in the cubic part of the Hamilton
and supersymmetry generators.

F. Summary of Neumann matrices

We summarize here the final expressions for the Neum
matrices obtained in this paper. As before, we use the n
tion

a15y, a2512y, a3521, ~82!

s1m5s2m51, s3m522 sin~pmy!, ~83!

andv rm5Am21(ma r)
2. Then form,n.0 we have

N̄mn
rs '

1

2p

~21!r (m11)1s(n11)

asv rm1a rvsn

3Aua rasu~v rm1ma r !~vsn1mas!

v rmvsn
srmssn ,

~84!

N̄2m,2n
rs '2

1

2p

~21!r (m11)1s(n11)

asv rm1a rvsn

3Aua rasu~v rm2ma r !~vsn2mas!

v rmvsn
srmssn . ~85!

As before, the symbol' denotes that we have omitted term
of ordere22pmuar u ~for all r ). For r 5s53 these are the only
nonzero components. If we define

s105s205
1

A2
, s3050, ~86!

then Eq. ~84! continues to hold whenm is zero andn is
positive ~or vice versa!. Finally, if n5m50 we have
5-7
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N̄00
rs'

1

4pm

~21!r 1s

Aa ras

, r ,sP$1,2%, ~87!

N̄00
3r5N̄00

r352Aa r , r P$1,2%. ~88!

We remark here that we have been assuming throug
this work thatm is positive, since it is clear from the analys
of @1# that only the absolute value ofm enters into the
bosonic matrix elements. The behavior of various quanti
underm→2m was exploited in@4# to derive several usefu
identities. Although we have not considered this involuti
here, it may be worthwhile to do so.

VI. A MATRIX ELEMENT

In this section we use our result to calculate, to all ord
in l8, a particular matrix element of the Hamiltonian whic
has so far only been computed to first order inl8 in the dual
gauge theory@6,15,19#. We then explain in detail how this
matrix element is encoded in the gauge theory.

A. String field theory

Consider form,n.0 the three states1

^1u5 10
1 ^0u~am

i 2 ia2m
i !~am

j 1 ia2m
j !,

^2u5^0u,

^3u5 10
1 ^0u~an

i 2 ia2n
i !~an

j 1 ia2n
j !, ~89!

wherei and j are SO~4! indices. The two-impurity stateŝ1u
and ^3u decompose into the1, 6 and 9 representations o
SO~4!. For definiteness, we fixiÞ j , and we could choose to
symmetrize or antisymmetrize inij at the end of the calcula
tion. Actually, it turns out that the matrix element vanish
when either two-impurity state is in the6.

We have not discussed the prefactor in this paper, bu
has been shown in@2,6# that for states of the form~89! ~in
particular, for states with no fermionic excitations!, the three-
string couplinguH& in the Hamiltonian is given effectively
by

uH&5v~m,y!PuVB&, ~90!

whereuVB& was defined in Eq.~1! and we have defined2

P5
a

2 (
r 51

3 F (
m52`

`
v rm

ma r
e~m!arm

† armG ,

e~m!5H 1 m>0,

21 m,0,
~91!

1We caution the reader that the basis of oscillators employed
and in @1,2# differs from that used by@8# and most gauge theor
papers by the transformationan

BMN5(1/A2)„aunu2 i sgn(n)a2unu…

for nÞ0.
2The apparent discrepancy between this formula and the one g

in @6# is entirely due to the change of basis in footnote 1.
08600
ut

s

s

it

where the SO~4! index ~which we have suppressed! is con-
tracted betweena† and a. Finally, the functionv(m,y) is a
measure factor which has not yet been determined. It ar
from the path integral which defines the cubic string vert
In flat space, the function can be determined by Lorentz
variance~it is 1 in the supersymmetric theory, and some ve
complicated function ofy in the bosonic theory!. The plane
wave superalgebra does not have enough generators t
this overall factor, although comparison with gauge theo
requires thatv(m,y)→1 for largem. The corresponding fac
tor in the supergravity vertex in the plane wave backgrou
has been determined to be a constant@11#.

For the states~89! we find the matrix element

Hnmy[^1u^2u^3uH&5v(m,y)
1

4

a

2 S v1m

ma1
1

v3n

ma3
D [2(N̄mn

13 )2

22~N̄2m,2n
13 !2]. ~92!

Using Eqs.~84! and~85!, we find after dramatic cancellatio
the simple result

Hnmy'
1

2m2
~12y!

sin2~pny!

p2 Fv~m,y!m2y

v1mv3n
G . ~93!

The quantity in brackets is equal to 1 at leading order
large m, reproducing the result presented in@6#. As is now
standard in the literature, it should be understood that
cubic interactionH considered here enters the full Ham
tonian with a coefficient equal to the effective string co
pling, g254pgsm

2.

B. Relation to gauge theory

The result~93! provides a concrete all-loop prediction fo
the gauge theory, which we now explain. Consider~in the
largeJ limit ! the normalized Berenstein-Maldacena-Nasta
~BMN! @8,14–16# operators

On5
1

AJNJ12 (
k50

J

e2p ikn/JTr~f iZkf jZJ2k!,

Tn
y5

1

AJy~12y!

1

AJNJ12

3 (
k50

Jy

e2p ikny/J:Tr~f iZkf jZJy2k!Tr~Z(12y)J!:,

Ty5
1

ANJ12
:Tr~f iZ(12y)J!Tr~f jZyJ!:, ~94!

where iÞ j P$1,2,3,4% are SO~4! indices@see the discussion
below Eq.~89!# labelling four of the six scalar fields ofN
54 SU~N! gauge theory, andZ5(1/A2)(f51 if6).

At zero string coupling (g250), the single-~double-!
trace operatorsO ~T! defined in Eq.~94! correspond respec
tively to one-~two-! string states and have definite conform
dimensions

re

en
5-8
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Dn5J12A11l8n2, Dn
y5J12A11l8n2/y2, Dy5J12.

~95!

For finite g2, these operators mix@14–16#, and the state-
operator correspondence has been worked out to orderg2 in
@6,15# ~see also@19#!. The operators which correspond to th
desired one- and two-string states are

Õp5Op2
g2

2 (
k52`

` E
0

1

dyCpky Tk
y2

g2

2 E
0

1

dyCpyT
y

1O~g2
2!,

T̃ k
y5Tk

y2
g2

2 (
p52`

`

CpkyOp1g2~ triple trace!1O~g2
2!,

~96!

where

Cpky5A12y

Jy

sin2~ppy!

p2~p2k/y!2
, Cpy52

sin2~ppy!

AJp2p2
.

~97!

The triple-trace operators in Eq.~96! will not be important
for this calculation. The anomalous dimension matrix e
ment between the single-string stateÕ and the two-string
stateT̃ is read off from the two-point function

~2px!Dn1Dm
y
^Ȭn~x!T̃m

y ~0!&52g2hmnyln~xL!2. ~98!

The prediction from Eq.~93!, when expressed in gaug
theory variables, is simply

hmny5
Hmny

AJy~12y!

'
l8

2
A12y

Jy

sin2~pny!

p2
@11l8n2#21/2

3@11l8m2/y2#21/2, ~99!

up to the overall functionv(m,y) discussed in the previou
subsection. The leadingl8 term in this result agrees with th
one-loop field theory calculations of@13,14,16# when the ap-
propriate operator redefinition in Eq.~96! is taken into ac-
count. Note that since Eq.~99! is already proportional tol8,
probing the subleading terms in this expression would
quire a two-loop gauge theory calculation, which has not
been reported in the literature.

VII. CONCLUSION AND DISCUSSION

The primary results of this paper are twofold. First, w
have shown through a quite intricate analysis that it is p
sible to determine all Neumann coefficients in the pla
wave background exactly in terms of a single functi
F(m,y), for any value of the mass parameterm, and we
have provided an explicit formula forF in Eq. ~50!. Sec-
08600
-

-
t

-
e

ondly, we have investigated the largem behavior of these
coefficients and presented simple formulas in Sec. V F wh
give the Neumann matrices to all orders in a 1/m expansion.
Note that although we have not discussed the matrix
ments of the prefactor~nor the fermionic Neumann matrices!
in detail, they are very easily obtained from the Neuma
vectors~71! using the results of@1,2,5,7#.

Perhaps the most remarkable fact about our results is
although the Neumann matrices are very complicated fu
tions of m, the final expressions~84! and ~85! for the 1/m
expansion are very simple. Ours was a long~and perhaps
circuitous! road, and although we have derived a number
nontrivial identities along the way, one cannot help but wo
der whether there is a more direct path which yields the sa
final result. In particular, our prediction~99! for a particular
gauge theory calculation is so simple that it cries out
explanation by some clever argument, perhaps along
lines of @17#.

The origin of this simplicity is the fact that the functio
F(m,y) behaves for largem like

F~m,y!52 ln@4pmy~12y!#

1O~e22pm,e22pmy,e22pm(12y)!, ~100!

with no perturbative corrections~i.e., inverse powers ofm).
This remarkable fact, which we have proven in two differe
ways ~in Appendices C and D!, is reminiscent of various
non-renormalization theorems. Indeed, although the BM
operators in Eq. ~94! are non Bogomol’nyl-Prasad
Sommerfield~BPS! in general, their anomalous dimension

D~On!2J2252A11l8n222, l85
gYM

2 N

J2
~101!

are nevertheless finite in the limit of large ’t Hooft couplin
provided thatJ is simultaneously taken to infinity so thatl8
remains finite. This suggests that there should be some
sidual ‘‘effective supersymmetry’’ protecting these operato
and their interactions.

We have not worked out explicit formulas for the no
perturbative terms in Eq.~99!, although these could in prin
ciple be obtained by extending the analysis of the appe
ces. Finally, the presence of fractional powers ofl8 in
certain string field theory observables has been noted
@2,3#. These surprising powers appear in matrix eleme
when the total number of ‘‘impurities’’ is not conserved. F
example, a matrix element in which two impurities are c
ated or destroyed is in general a factor ofm51/Al8 larger
than a similar matrix element with conserved impurity nu
ber. Although this seems enigmatic from the dual gau
theory point of view, it has been stressed@3,18# that there is
no reason why the largeJ limit of the l expansion has to
agree, order by order inl, with the l8 expansion—
especially in light of the fact that the BMN limit require
taking l→`, which need not be a trivial extrapolation. Fo
the anomalous dimensions Eq.~101! it seems to work, but in
order to reproduce impurity non-conserving interactions
5-9
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the gauge theory side one might have to sum thel expansion
to all orders and then take the largeJ limit.
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APPENDIX A: BASIC IDENTITIES

The infinite matricesAmn
(r ) , C and the infinite vectorBm

satisfy a number of useful relations which we record her

A(r )TCA(s)5
1

a r
Cd rs, r ,sP$1,2%, ~A1!

A(r )TC21A(s)5a r C21d rs, r ,sP$1,2%, ~A2!

A(r )TCB50, r P$1,2%, ~A3!

and

BTCB5
2

y~12y!
, ~A4!

where we have useda3521. Some additional useful iden
tities are

(
r 51

3
1

a r
A(r )CA(r )T50, ~A5!

(
r 51

3

a rA
(r )C21A(r )T5

a

2
BBT, ~A6!

where, as before,

a5a1a2a352y~12y!. ~A7!

APPENDIX B: DERIVATION OF THE DIFFERENTIAL
EQUATION

In this appendix we fill in the details of the derivation
Sec. III, making frequent use of the identities presented
Appendix A.

We start by deriving Eq.~31!. Using Eq.~A1! to simplify
G1CA(r ) gives the identity

G1
21C3A(r )5CA(r )2

1

a r
G1

21A(r )Cr , r P$1,2%. ~B1!

It follows from this that
08600
s-

as
ts

9

n

YTCU3
21A(r )52

1

a r
YTA(r )Ur

21C, r P$1,2%. ~B2!

Multiplying Eq. ~17! on the right byA(r ) and using Eqs.~B1!
and ~B2! then gives

G1
21A(r )Cr2a rC3G1

21A(r )

52
1

2

a

11mak
CU3

21YYTA(r )Ur
21C, r P$1,2%.

~B3!

Comparing this to Eq.~17!, we can write the following for-
mula for all r:

G1
21A(r )Cr2a rC3G1

21A(r )

5Cd r32
1

2

a

11mak
CU3

21YYTA(r )CUr
21 .

~B4!

Multiplying this further by BTC3
21 on the left and by

a rC
21Cr

21A(r )T on the right, then summing overr, gives

1

2
ak1BT2YTN52BTC3

222
1

2

a

11mak
~k2mk1!

3S 1

2
akBT1mYTND . ~B5!

The transpose of Eq.~B5! is a linear equation forNY whose
solution is Eq.~31!.

Next we obtain Eq.~35!. We start by using a variant o
Eq. ~17! to obtain an identity for @C3

22 ,G1
21#

5@C3
21 ,$G1

21 ,C3
21%# which yields

@C3
22 ,G1

21#B52
1

2

a

11mak
@~k2mk1!~C3

212mC3
22!

2~k12mk2!~12mC3
21!#Y ~B6!

and hence

G1
21C3

22B5
1

2

a

11mak F ~k2m2k1!1~k2m2k2!C3
21

1S 2

a
1km1k1m2DC3

22GY. ~B7!

Then we can substitute Eq.~31! into Eq. ~30! and use Eq.
~B7! to arrive at Eq.~35!.

APPENDIX C: ON AN INTEGRAL TRANSFORM

In this appendix we show that the general solution of
Fredholm integral equation of the first kind

E
0

`

dx
f ~x!

~x21z2!3/2
5g~z! ~C1!
5-10
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is

f ~x!5 i
x2

p E
0

p/2

@g~ ix cosu!2g~2 ix cosu!#cosudu.

~C2!

For the amusement of the reader we present two derivat
of this result. The first is a set of manipulations that indic
how we arrived at the solution, while the second is a m
rigorous proof of the theorem as stated in the text.

1. An elementary manipulation

As integral equations of the first kind are notoriously d
ficult to solve, let us attempt to circumvent the problem. T
method used here does not seem to be in the canonical
and is hoped to be of some use.

Consider the following integral identity@20#:

E
0

` xJ0~x j !dx

~x21z2!3/2
5

e2z j

z
, j .0, Re~z!.0. ~C3!

Next suppose thatzg(z) can be expanded as a power ser
in e2z21:

zg~z!5(
j 50

`

aj~e2z21! j5(
j 50

`

aj (
k50

j S j

kD ~21! j 2ke2zk.

~C4!

Therefore by Eq.~C3!, we have

g~z!5(
j 50

`

aj (
k50

j S 

kD ~21! j 2k
e2zk

z

5(
j 50

`

aj (
k50

j S 

kD ~21! j 2kE
0

` xJ0~xk!dx

~x21z2!3/2
,

from which we can directly read off the solution

f ~x!5x(
j 50

`

aj (
k50

j S j

kD ~21! j 2kJ0~xk!. ~C5!

This formidable sum can actually be performed due to
identity @20#

J0~kx!5
1

pE0

p

eikx cosudu, ~C6!

from which we obtain

f ~x!5
x

p (
j 50

`

aj (
k50

j S j

kD ~21! j 2kE
0

p

~eix cosu!kdu

5
x

pE0

p

(
j 50

`

aj~ei cosxu21! jdu

5
2 ix2

p E
0

p

du cosu g~2 ix cosu!. ~C7!
08600
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Therefore all dependence on the coefficientsaj drops out and
we have a generalized Fourier transform of rather sim
form.

The main shortcoming of this derivation is that it assum
the existence of a rather peculiar expansion, which might
be necessary. The alternative approach presented in th
mainder of this appendix is clearer in this regard.

2. Representation of a delta function

Here we consider the integral

x~y,y8!5
Ay

4p i EC

dw

A11w

1

~wy1y8!3/2
, ~C8!

where y,y8.0 and C is the contour shown in Fig. 1. Fo
y8,y the singularity structure is shown in Fig. 1~a!, and the
contour can be pushed off to infinity, giving zero for th
integral. Fory8.y, the contour encloses no singularity@Fig.
1~b!#, so the result is again zero.

Sincex(y,y8) vanishes fory8Þy, let us check whether it
is a delta function~and in particular, that it does not involv
any derivatives of delta functions! by integrating it against
the test functione2ty8:

E
0

`

dy8 x~y,y8!e2ty85
1

2p i EC

dw

A11wAw
@11etwy

3Aptwy„F~Atwy!21…#,

~C9!

where the result of they8 integral involves the error function

F~x!5
2

Ap
E

0

x

e2t2dt. ~C10!

Next we make use of the elementary integral

1

2p i EC

dw

A11wAw
wk5S 2

1

2

k
D . ~C11!

In particular, note that this is zero whenk is a positive half-
integer since the branch cut then runs from21 to 2`, so
there is no singularity within the contour. The term in E
~C9! proportional to ‘‘21’’ therefore integrates to zero, sinc
it contains only half-integer powers ofw. For the remaining
terms we use the expansion

FIG. 1. The contourC for Appendices C and D. In~a! and~b! we
show the singularity structure of Eq.~C8!, with branch points at21
and2y8/y. In ~c! we show the structure of Eqs.~C11! ~for integer
k) and ~D4!.
5-11
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11exApxF~Ax!5 (
k50

`
2kxk

~2k21!!!
. ~C12!

Note that (21)!! 51. Combining Eqs.~C12! and ~C11!
leads to

E
0

`

dy8 x~y,y8!e2ty85 (
k50

`
2k~ ty!k

~2k21!!! S 2
1

2

k
D

5 (
k50

`
~21!k

k!
~ ty!k5e2ty,

~C13!

where we have used the identity (2k21)!! 5
(22)kk!( k

21/2). If x contained any terms proportional to d
rivatives of delta-functions, we would have obtained a po
nomial in t timese2ty in Eq. ~C13!. Since this did not hap-
pen, we have proven that

x~y,y8!5
Ay

4p i EC

dw

A11w

1

~wy1y8!3/2

5d~y2y8!, y,y8.0. ~C14!

More precisely, we have proved that*x(y,y8) f (y8)dy8
5 f (y) for any f that can be written as a convergent Lapla
transform. It is not excluded that an even weaker condit
would suffice.

3. Formal proof

To verify our solution let us substitutef (x) from Eq.~C2!
into the integral equation~C1! and replace the integratio
variablex by t5x cosu. This gives

2
i

pE0

`

dtE
0

p/2

du
t2@g~2 i t !2g~ i t !#cosu

~ t21z2cos2u!3/2

52
i

pE0

`

dt
t@g~2 i t !2g~ i t !#

~ t21z2!
, ~C15!

where we have used

E
0

p/2 cosudu

~ t21z2cos2u!3/2
5

1

t~ t21z2!
. ~C16!

We can now recast the remaining integral in Eq.~C15! as a
contour integral with the contourC8 enclosing the positiveu
axis. This gives

1

2p i EC8
du

g~2 iAu!

~u1z2!
5g~z!, ~C17!

where we have used the assumed analytic and asymp
properties ofg, which are just what are needed to deform t
08600
-

n

tic

contour into one that encircles the pole at2z2, thereby re-
ducing the integral to exactlyg(z).

We have proven that the functionf (x) given in Eq.~C2!,
when substituted into Eq.~C1!, indeed givesg(z). It remains
to show that the result is unique, in other words that wh
g(z) from Eq. ~C1! is substituted into Eq.~C2!, we recover
f (x). To this end, we define first

f ~x!5x f̃~x2!, ~C18!

and letv85x2 so that the integral equation~C1! becomes

1

2E0

`

dv8~z21v8!23/2f̃ ~v8!5g~z!. ~C19!

Our proposed solution is, in terms off̃ (v),

f̃ ~v !52
iAv
p E

0

p

g~2 iAv cosu!cosudu. ~C20!

Letting Aw52 i cosu gives

f̃ ~v !5
Av
2p i EC

dw

A11w
g~Awv !, ~C21!

where the contourC is as in Fig. 1. Substituting Eq.~C1! for
g(z) and using the delta-function representation Eq.~C14!
establishes Eq.~C21! and hence completes the proof.

APPENDIX D: ASYMPTOTIC BEHAVIOR OF F „µ,y…

The analysis of Appendix C was completely general, a
we only used rather weak assumptions about the form
g(z). Here we use the contour integral techniques above
study the particular case of interest, withg(z) given by
G(z,y) from Eq. ~40!. Recall Stirling’s asymptotic expan
sion

ln G~11z!'S z1
1

2D ln z2z1
1

2
ln 2p1 (

n50

`
cn

z2n11
.

~D1!

The coefficientscn may be expressed in terms of Bernou
numbers, but they will turn out to be irrelevant. The cruc
fact is that only odd inverse powers ofz appear in Eq.~D1!.
It follows that

G~z,y!'2
1

z2
ln„2pzy~12y!…1 (

n51

`
bn~y!

z2n11
. ~D2!

Now letting Aw52 i cosu in Eq. ~43!, as in the previous
subsection, gives

F~m,y!5
m2

2p i EC

dw

A11w
G~mAw,y!. ~D3!

Consider first the inverse odd powers in Eq.~D2!. They lead
to integrals of the form
5-12
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E
C

dw

A11w

1

wn11/2
~D4!

for n a positive integer. The branch cut is now as shown
Fig. 1~c!, so the contour may be pulled off to infinity, givin
zero. Therefore only the first term in Eq.~D2! contributes, so

F~m,y!'2
1

2p i EC

dw

wA11w
ln„2pmAwy~12y!…

'2 ln„2pmy~12y!…
1

2p i EC

dw

wA11w

2
1

4p i EC

ln w

wA11w
dw. ~D5!

The first integral gives 1 since it just picks off the pole
w50. It is an interesting though straightforward exercise
check that the second term gives2 ln 2. This completes the
direct proof of Eq.~60!.

APPENDIX E: ADVANCED SUMS

Let us review an elementary trick which can be used
evaluate certain infinite sums. Consider first the sum

(
n52`

`

f ~n!, f ~z!5
1

z21x2v2

1

Az21x2
, ~E1!

for x.0 andv.1. This sum can be written as the conto
integral

1

2p i EC
dz f~z!p cotpz, ~E2!

whereC passes from2`2 i e to 1`2 i e slightly below the
real axis, and then returns slightly above the real axis~see
Fig. 2!. The contour may be deformed away from the po
of f (z)p cotpz on the real axis to pick up the other sing
larities instead. In this case the only other singularities
branch cuts from6 ix to 6 i`, and poles atz56 ixv sitting
on the branch cuts. Rescalingz and combining the two cuts
we find therefore that

(
n52`

`
1

n21x2v2

1

An21x2
52

2

x2
PE

1

` dz

Az221

coth~pxz!

z22v2
,

~E3!

where P stands for the principal value. This is an exact
mula, but if we are not concerned with terms vanishing
ponentially for largex, then we can set coth(pxz)51 in the
integral, which is then easily evaluated to give

(
n52`

`
1

n21x2v2

1

An21x2
'

2

x2

arc cosh~v !

vAv221
. ~E4!
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As in Sec. V, the symbol' denotes that we have droppe
terms of ordere22px. Taking the limit v→1 from above
finally gives the result

(
n52`

`
1

~n21x2!3/2
'

2

x2
. ~E5!

For sums in whichf (z) itself contains trigonometric func
tions, it is convenient to expand these and write the sum
the form

(
n52`

`

@ f 1~n!1~21!nf 2~n!#. ~E6!

The term withf 1(z) can be evaluated using the above tric
while the second term can be evaluated by deforming
contour integral off 2(z)p cscpz. Applying this method and
taking into account both the contribution from the poles
6n/y and the discontinuity across the branch cuts gives

(
m51

` sin2~pmy!

m22n2/y2

Ax1Ax21m2

Ax21m2

52
1

2x3/2
ReE

1

` dz

Az221

A11 iAz221

z21n2/~x2y2!

1

F~x,y,z!
~E7!

when 0,y,1, x.0, andn is a non-zero integer. We hav
defined the function

FIG. 2. This figure shows the contours relevant for analyzing
various sums and integrals in Appendix E. In each case, the con
is deformed from the one enclosing the real axis to the one enc
ing the branch cuts on the imaginary axis. Note that the integra
in Eqs. ~E3! and ~E11! have two additional poles on top of th
branch cuts, while the integrand in Eq.~E7! has two additional
poles on the real axis.
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F~x,y,z!5
1

2
@coth~pxyz!1coth„px~12y!z…#. ~E8!

Ignoring exponentially small corrections, we can setF51
and evaluate the integral in Eq.~E7! explicitly, arriving at

(
m51

` sin2~pmy!

m22n2/y2

Ax1Ax21m2

Ax21m2

'2
py3/2

4n

AAn21x2y22xy

An21x2y2
. ~E9!

The casen50 must be considered separately since the po
at m256n/y are then lost. The result in this case is

(
m51

` sin2~pmy!

m2

Ax1Ax21m2

Ax21m2
'

p2y~12y!

A2x
2

p

4A2x3/2
.

~E10!

A combination of all of the above techniques is needed
tackle the final sum

(
m51

`
sin2~pmy!

m21x2v2

Ax1Ax21m2

Ax21m2

'2
2

x3/2
Re PE

1

` dz

Az221

A11 iAz221

z22v2

52
p

2x3/2

ImA12 iAv221

vAv221
, ~E11!
B

v-

E

08600
s

o

which is valid forv.1.

APPENDIX F: SOME EXPONENTIAL CORRECTIONS

In this appendix we derive the exact formula~61! which
allows systematic determination of the exponential corr
tions toF(m,y). It follows from Eq. ~E3! that

f9~x!52x(
n51

`
1

~x21n2!3/2
5

1

2x2
1

1

x
I ~x! ~F1!

where

I ~x!5PE
1

` coth~pxz!

~z221!3/2
dz52

1

2 R
uz21u5e

coth~pxz!

~z221!3/2
dz

1E
11e

` coth~pxz!

~z221!3/2
dz. ~F2!

Integrating the second term by parts gives a divergent p
that cancels the divergent piece from the first term, leavi

I ~x!5212pxE
1

` zdz

Az221

1

sinh2~pxz!
. ~F3!

Therefore

f9~x!52
1

x
1

1

2x2
2pE

1

` zdz

Az221

1

sinh2~pxz!
. ~F4!

Integrating twice with respect tox as in Sec. V A and using
Eq. ~50! yields the formulas~61! and ~62!.
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