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The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath
is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski
coordinates. In the general coordinates the metric tegggris nondiagonal. The Kubo-Martin-Schwinger
condition requires periodicity in thermal correlation functions when the temporal variable changes by an
amount—i/(T+\ggg). Light-front quantization fails sincggz=0; however, various related quantizations are
possible.
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I. INTRODUCTION Alves, Das, and Perd8] showed that a thermal average
performed in the rest frame but using light-front variables

) o ~ does work. Using?®= (P "+ P~)/ 2 the partition function
For many years light-front quantization has been applieds

to deep inelastic scattering and the Wilson operator product
expansion. More recently it has been used in QCD to com- Triexp(— (P*+ P )/\2T}], 1.2
pute hadron structurgl—4]. Light-front quantization brings

both conceptual and computational simplifications to certain,siead of Eq(1.10. They performed one-loop calculations
hadronic process€$,6]. o of the self-energy in scalar field theories with eithegpd
Much of the computational simplification occurs becaus€nteraction or ap® interaction. The final results for both cal-

the mass shell+cond(;t|on3expre'ssed in terms of the momeny|ations were exactly the same as the conventional answers.
tum variablesp™ = (p°+p%) /42 is

A. The light front and thermal field theory

p2 +m? B. Thermal field theory in generalized coordinates
_ 1

2p* ' (1.13 In order to explore the various possible options it is most
efficient to consider quantization in a general set of space-
~ 00 3 . time coordinates and later examine light-front quantization
;[)m?a%pierﬁthoaﬁ) it g(eieraljeg/m\/ienggfui?oenrglfetﬁfetgzlgs ri?:ltheas a special case. The metric f5|gna_1ture4+s{— ’_’_.)' .
: I N ) The conventional approach is to impose quantization con-
coordinatex " = (x’+x%)//2: ditions on fields at a fixed value of’. The operator that
generates time evolution B,. The partition function is

- 9P
[P.d(0]=~i—%. (1.1 Trlexp{—Po/T}], (13

Recently Brodsky suggestdd] that the computational as is appropriate for a heat bath at rest. If this system is
advantages of quantizing in light-front coordinates mightviewed from a Lorentz frame with velocity and four-
carry over to statistical mechanics and thermal field theoryelocity u“=(y,0,0,yv), then the quantization will be at a
done on the light front and proposed as the appropriate pafixed value ofx“u,; the evolution operator will bé ,u“,
tition function and the partition function will be Texp(-pgP,u®)]. The

fact thatu® serves as both the vector normal to the surface of
Trl exp{—P /T .c}]. (1.19  quantization and the velocity vector of the heat bath is a
unique feature of Lorentz boosted coordinates and is not true
The relation ofT ¢ to the usual invariant temperatufewas ~ in more general coordinates.
unspecified. The present paper investigates the dependence of thermal

The suggestion was pursued by Alves, Das, and A&ilez field theory on the surface of quantizatiqn ar_1d on the veloc-
For a free field theory they found an immediate problem thaity of the heat bath. Subsequent analysis will show that for
results from the Vanishing of the on-shell energy, E_qla, any V.ectorna that is timelike or |Ight|lke, it is pOSSibIe to
asp.—. The breakdown is not specific to the canonicalduantize at a fixed value af,x*,
ensemble. In the microcanonical ensemble the entropy is a
measure of the multiparticle phase space available to a gas of [7(x),$(0)] 8(nx*—c)=—i 8*x), (143
particles whose total energy is fixed. To any configuration
with a fixed value of the totaP~ one can add any number of and employ the partition function
zero-energy particles each having an infinite valugpof
The entropy of such a configuration diverges. Trlexp{—P,u®/T}], (1.4b
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appropriate to a heat bath moving with four-velocity  convenient that forA” the superscrip is neither a first

=(7.0.0;yv), provided only than, andu® satisfy index nor a second index singecannot be confused with.

It is misleading to refer to the general coordinate transfor-
mations as a change in the reference frame. A change in the
physical reference frame can only be done by rotations and

u“n,>0. (1.40

The conventional rest frame choice i®=u’=1 andn’ | ‘o " o0

=u'/=0. A Lorentz boost from the rest frame still givas " .

—u®. The equality of these two vectors is not general, as 1 "e 16 real number must have a nonzero determi-

various examples will show. One can see that light-fronthant. To guarantee that is a time coordinate, it is necessary

quantization using the partition function in E@.10 fails,  to require that the covariant Lorentz vects} be timelike or

even apart from the divergence issues mentioned previouslyightlike:

because it requires—1 in order that® ,u® be proportional o

to P_. This makesT, c=T\1—v?/2—0. In contrast, the A A geF=0, (2.2

successful approach of Alves, Das, and P¢&m Eq. (1.2

fits into the general framework above witffi=(1,0,0,1) and  whereg,z=diag(1-1,—1,—1) is the Minkowski metric. It

u®=(1,0,0,0). is sometimes useful to express the transformation matrix in
The purpose of this paper is to investigate thermal fielderms of partial derivatives:

theory formulated in general coordinates that are arbitrary

linear combinations of the Cartesityx,y, andz and to de- — gx*

termine if there are any computational advantages to other Ae= . 2.3

formulations. The method is conservative in that the new

coordinates are restricted to be linear combinations of th

Cartesian coordinatg®], a restriction which guarantees that

physical consequences will be the same for the followin

reason. The Lagrangians of fundamental field theories a

invariant under arbitrary nonlinear coordinate transforma-

tions in accord with the principle of equivalence, and thus .

are trivially invariant under the linear coordinate transforma- Yooox”

tions considered here. Physically interesting quantities in

thermal field theories are either scalars, spinors, or tensorghe transformations satisfy

Whether calculated in Cartesian coordinates or more general _ — _

linear coordinates, the scalar quantities should be identical AgA%= 5%, AL AE= 5. (2.5

and the spinor and tensor quantities should be simply related a

by the chosen transformations. The differential length element in Cartesian coordinates is
Section Il develops the formalism of thermal field theory g,,, dx“dx?= (dt)?— (dx)?— (dy)?—(d2)% In the new co-

in the general coordinates in order to determine the possiblerdinates there is a new metiig; given by

choices for the surface of quantization and the velocity of the

heat bath. Section Il treats several examples that are specifi- U =A Af Jup (2.6

cally related to light-front quantization, and it may be read a

independently of Sec. Il. Section IV provides some concluyhich satisfiesg,; dx“dx*=g; dx“dx”. If all 12 of the

& he relation(2.1) can be inverted to find the Cartesian ‘coor-

dinatesx”? as linear combinations of the new coordinatés
» hese partial derivatives are denoted by

B
50X

(2.9

slons. off-diagonal entries irg,; vanish, the new coordinates are
orthogonal. This occurs, for example, if teare Lorentz
Il. THERMAL FIELD THEORY IN OBLIQUE transformations. In general thg;; are not diagonal and in
COORDINATES general the new coordinates are oblique. It will be conve-

A Transformed coordinates and metric nient for later purposes to denote the determinant of the co-
' variant metric by

From the Cartesian coordinate8=t, x!, x2, andx® a

new set of coordinates’, x*, x?, andx® can be formed by 9=Det[g;7]<0. 2.7)

taking linear combinations: The Jacobian of the coordinate transformation

— A My -
XE= A, @ dxdxidxCdxe = IdPdx dx2dx®
where theA% are a set of 16 real constants. The notationis therefore
used is due to Schoutdi0]. It expresses the fact that the
space-time point specified by the four-vectordoes not J=Det[Aﬁ]=\/—_g. (2.9
change under a coordinate transformation; only the labels "
used to indentify the components change. For example, the It will also be necessary to use the contravariant metric
light-front choice is expressed a8= (x°+x%)/\2. Itis also  g*”, related to the Minkowski metric by

085027-2



THERMAL FIELD THEORY AND GENERALIZED LIGHT . .. PHYSICAL REVIEW D 67, 085027 (2003

gM_V:AE Ag g*b. (2.9  Consider a shift in the oblique time, i.&%—x°+ 6x° with
) . fixed values ofx!,x?,x%. In terms of the Cartesian coordi-
The requirement in E2.2) can be stated as nates, X%—x+ ox® with 5x“=A§ SxC. Using P, ox®
g%=0. (2.10  =Pyox? the shifted field operator is

B. Four-momentum operators POXH OX) = eXRIP 4 OX7) p(x)eXP 1P 1 Ox7)
In the conventional quantization at fixed the momen- =exr1iPa§x6)¢(x)exq—iPg&xa).
tum operatorsP, are the generators of space-time transla-

tions. For a scalar field operatdi(x) they satisfy For evolution in imaginary values afx° to be equivalent to

thermal averaging requires that the density operator involve
[P, ,b]=—i a_‘i_ only Py and notPj. Therefore the spatial components of the

contravariant velocity must vanisbi*=u?=u®=0. This de-
scribes a heat bath that is at rest in the oblique coordinates.

The linear combination of these generators defined by The normalized velocity vector is

_ A
PL=AL Py, (2.11 B ( 1 )
u’=|—,0,0,0. (2.195
with A% given in Eq.(2.4), will satisfy Vdoo
oxN 9 d¢ Note that this imposes a new requirement on the metric,
[P;,qb]:—l—M =i (2.12
XM 9X X 055> 0, (2.19

In particular,Py generates the evolution in the variabi&  that is different from Eq.(2.10. This condition prevents
Appendix B shows that if one quantizes at fixetithen the  standard light-front quantization singgp would vanish. In
Hamiltonian is this same operatBr . ~ all subsequent discussions it will be assumed that(E4.6
Note that the temporal evolution is in the variabie IS satisfied. The density operator is
=A? x* but the evolution operator is in a different linear A _
o D A g - ¢ =exp{—BPo/V9m}, (217
combination:Py=A P, . These two vectors are reciprocal

in the sense thaa’ A,=1. Lorentz transformations are spe- or equivalently, Eq(2.13) if the velocity vector is expressed
cial in that the metrics are the santg;z=g,,, and the two  in Cartesian coordinates:

vectors are the same,‘;z o AL @ 4 s
9as"0 u=A%uk = Ag/\ g (2.18

C. Density operator o 0
The vector normal to the quantization surfacejs= A, and

Field theory at finite temperature requires a density Operag o reforen .ue=1/ :
. : JMU“=1/\Jgg5>0, as stated in Eq1.40.
tor gnd exactly vv_hat the densny_ operator S.hOUId be is not The density operg(t)or is used to define the thermal aver-
obvious when using general oblique coordinates. For Conéged Wightman function:

ventional quantization at fixex the density operator has the

form D..(x)=Trlexp{— BP5 /gm0 $(x) $(0)11Z,
0 =exp{—BP.u}, (2.13

where u® is some four-velocity. Rewriting this in general whereZ=Tr[¢] is the partition function. Under imaginary

coordinates give® =exp{— BP-u"}. The appropriate value Shifts in the oblique time of the formdx°=ia/\/gg the

of u? is undetermined but since the Minkowski four-velocity behavior is

satisfiesu“uﬁgaﬁ=1, the velocity in oblique coordinates

(2.19

. b - +a Pi

must satisfy Do X0+ il Gagx)) = Tr exp{— (B g_) o} $(x)

— = 00

u’utgg,=1. (2.19
% plapa} 60)|/z.  (2.20
Marfin , . exp — . .
1. Kubo-Martin-Schwinger relation \/ﬁ
With a partition function of the above form, the thermal

Wightman function is The spectrum oPjy is bounded from below but will always

. A have arbitrarily large positive eigenvalues. If the two expo-

D-(xX)=Tr[o ¢(X)p(0)]/Tr[e]. nents are negative then the infinitely large energies will be
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suppressed. In other words, E@®.20 is analytic for— 3 in accordance with Eq2.11). The three-dimensional, differ-
<a<0. For the choicea=—8 or equivalently 5x*  ential surface element is
=—iBu” the result is o

B B - dS,=\—g Aldx'dx%dx®. (2.23

Do (X°—i BI\ggsx}) =D (—x°, —xI). 2.2
> AlNgaox') =D { ) @21 This surface of quantization is orthogonal to three contra-

This is the Kubo-Martin-Schwinger relatidi1] expressed Vvariant vectorsAFdS,=0 for j=1,2, and 3 Contracting
in oblique coordinates. P, with u* and using Eq(2.15 gives the density operator in

covariant form:
2. Tolman’s law

The dependence of the partition functi¢é®.17) on the ézexp[ —ﬂf dSaT“_AuxJ. (2.24
combinationPy /T \ggg merits further discussion. One expla-

nation comes from perturbation theory in which at each order

the eigenvalues of the operat®y are the sum of single D. Thermal field theory in real time

particle energie®y, each satisfying a mass shell condition
g“’pLp,= m?, for various masses. Among the allowed co-
ordinate transformations are scale transformations. Rescali

To quantize a field theory at a fixed valuexfis straight-
forward but there are some unfamiliar aspects that originate
. . 0 0 om the oblique metrig,; being nondiagonal. Appendix B
the contravariant time by a factar, as inx”—\ x°, would  yerforms the explicit quantization for a scalar field theory. It
rescale the covariant energy py— po/A. The combination s most natural to deal with contravariant space-time coordi-

Po/T would not be invariant under this transformatmn.nqatesxﬂ and covariant momentum variables so that the

However, the scale transformation changes the covarial . ' . i

_ 5 L _ solutions of the field equations are superpositions of plane
metric, 9gg— 9o/, and the combinatio®y/T/ggg IS in- . . .
variant. waves of the form expfip,x*). For spinor particles the

There is another way to understand why the partitionDirac_matrices arey*=A%y* and they satisfy{y",y"}
function (2.17) depends on the combinatioiy/ggs. A con-  =2g*”. For gauge boson propagators there are natural gen-
dition necessary for thermal equilibrium in inertial coordi- eralizations of Coulomb gauge, axial gauge, and covariant
nates is that the temperature should be uniform in space arghuges. This section will summarize some familiar results
time. Tolman[12] investigated the conditions for thermal expressed in oblique coordinates. Either canonical quantiza-
equilibrium in a gravitational field and showed that a tem-tion or functional integration may be us¢t6,17).
perature gradient is necessary to prevent the flow of heat
from regions of higher gravitational potential to regions of 1. Propagators
lower gravitational potential. The quantitative result is sum- At zero temperature the free propagator for a scalar field
marized by the statement that the prodiigfggg must be s
constant and it is known at Tolman’s Igd3].

An alternative derivation is given by Landau and Lifshitz 1
[14], who discussed how to compute the entropy in the mi- D(po.pj) = —_— . (2.295
crocanonical ensemble in a general curvilinear coordinate 9*"pup,—m tie
system(with or without gravity. In the microcanonical en- _ . .
semble, the temperature is computed by differentiating thd "€ intégration measure over loop momenta is
entropy with respect to the energy and this leads to the result B
that T/ggg must be constant. dpod p1d pd Ps (2.26

V=-g(2m)*

3. Covariant density operator
t nonzero temperature the propagator has the usixe 2
atrix structure[16,17], and the Bose-Einstein or Fermi-
Dirac functions become

For later purposes it is convenient to express the densi
operator(2.17) in a covariant form in terms of the conserved
energy-momentum operatdr’ o The generators of transla-
tions are 1

n= .
expl Bl pol/ Vo) F 1

As discussed later, the most interesting possibility is to
choose a coordinate transformation such th&t=0. This
We rewrite this in terms of the energy-momentum operator iNnakes the denominator of the propagator lineapgnand
Cartesian coordinate3,’ , , as therefore there is only one pole in E@.25.

If g°+0 then the propagator has poles at two values of
pg but the positive and negative values gy will have dif-
ferent magnitudes. It is sometimes convenient to express the

(2.27)
P.= \/—_gf dxtdx2dxE T° Py

— o A
Pﬂ=f ds, T*, AL, (2.22
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propagator in a mixed form, in terms of the covariant energythe temperaturd and the velocityu” of the heat bath are

po but with the contravariant momengé. To do this, we use
the identity

95P*P"= — (9o P°+ gor P2+ 97— L_’) p'p!
9oo
_(po? oo
Jao i '
where y;; is given by
g+ 290 (2.28
doo

The determinant is Détyg]=
the effective energy to be

—9/g955>0 [18]. We define

E=[m+y7 p'p/]*2 (229
The same propagator in these variables is
- J0o
D(po.p))= (2.30

(po)?—gas E>+ie’

and the poles are now py= = \/ggg E; the Bose-Einstein or
Fermi-Dirac functions become

1

= W (2.32

The integration over covariant energy and contravariant

three-momenta is

Vol

2. Statistical mechanics

dpy dp'dp?dp?

— o (2.32

independent of space-time and so there is no heat flux or
viscosity. The thermal average of the energy-momentum op-
erator has the perfect fluid form:

TroT"]
Trle]

wherep is the energy density. The first law of thermodynam-
ics guarantees that there is an additional state function, the
entropy densityr, related to energy density and pressure by

(2.39

This relation is equivalent to the more familiar differential
relationTdS=dU+PdV.

It is convenient to express the right-hand side of Eg.
(2.33 as the trace of the covariant density operd@@4).
The left-hand side of Eq2.33 can be written covariantly in
terms of the differential surface elemer2.23 using

V=g dx'dx2dx®/gag=dS,u® as an integral over the free
energy densityb:

= (p+P)g"— Pu"U¥, (2.39

To=p+P.

F/\/g_@zf ds,ud.

The manifestly covariant statement of Eg.33 is

exp[ —,Bf dSa<I>u“] =Tr exp{ —,Bf dSaT“,xu”] )
(2.37)

Now we apply this to two different equilibrium states with
infinitesimally differentg andu®. The difference gives the
differential relation

Trle T,]

- (2.39
Trie ]

d(BPu®) = d(put).

The partition function provides a direct calculation of the t1,q gifferential on the left-hand side is

thermodynamic functions via the Helmholtz free enekgy

exp{ — BF/\/goo} = Tr[exp{— BPo/\gm}]. (2.33

The free energyF(T,V) then allows computation of the

pressure and entropy:
(a )
AY -

o (aF)
aT ),

and the energy iV =F+TS.

(2.343

(2.34b

3. Covariant statistical mechanics

The prescriptions in Eq.2.34 can be derived rather el- relation

d(B®)u+ (BD)duc.

Using the thermal average of the energy-momentum tensor
(2.39, the right-hand side is

[(p+P)u®u,—Psy](dBur+ Bdut) = pdBu“— PBdu®,

where u,du*=0 has been used. Equating the left- and
right-hand sides and noting that anddu® are orthogonal
vectors gives the two relations

b=-"P, (2.393

d(BP)=pdp.

The first relation is the same as E@.343. The second
implies d®=(®—p)dT/T=—(P+p)dT/T

(2.39h

egantly from the partition function if it is formulated covari- =—odT. Thereforeoc=—d®/JT, which is the same as Eq.
antly[13,15. In global thermal equilibrium considered here, (2.34h, but expressed in terms of densities.
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E. Thermal field theory in imaginary time x3=cx0+ dxé, (3.13

It is also interesting to quantize in imaginary oblique time _ _
by letting x°= —ir with 0<7<p/\/ggs. As shown in Eq. with x}=x* andx?=x? always understood. All the examples
(2.20 the thermal Wightman function is analytic ferin this  in this section will result from special choices @fb,c, and
region. Since the Cartesian coordinates are linear combingt, If |a|>|b| and|d|>|c| thenx? is a true time coordinate

tions of the oblique coordinate;”=A’ x*, making x°  and x® is a true space coordinate. Light-front coordinates
purely imaginary makes some of the Cartesian coordinategiolate this, viz.,|a|=|b| and|c|=|d|. The inverse transfor-
complex. In other words, going to imaginary time does notmation to Eq.(3.13 is
commute with the coordinate transformations. L

The Euclidean propagator comes from the replacement x9=(dx°—bx3)/N,
Po— —iw, in EQ. (2.25 wherew,=27nT g

1 3= (— X0+ axd)/N, (3.1b
D = — — = . 2.4
e(P) g%w2+2ig% w, pi—g' pipj+ m? (240 whereN=ad—bc#0. The two conditions
Note that the denominator has an imaginary part because of d
the nondiagonal metric but the real part of the denominator is a>0, N>0 (3.19

positive as always. In perturbation theory the summation/

integration over loop momenta is guarantee that increasing values8fcorrespond to increas-

" 3 ing x°.
TV9% j dprdpzdps (i) Metric. The contravariant metric is
[ n=—co (2,”_)3 !
a’-b?> 0 0 ac—bd
One can canonically quantize in imaginary time, in which L 0 -1 0
case the field operators obey equations of motion. Alterna- gtt= , (3.29
tively one can use a Euclidean functional intedti#8,17,19 0 0 -1 0
in which case the fields are periodic under 7+ B8/\ggg. accbd 0 0 c*-d?
The partition function is . o
and the covariant metric is
ZZJ , ‘[D¢]exp{f d*xg E], (241 d>-c?> 0 0 ac—hd
periodic
0 -N?2 0 0 1
where the integration element in four-dimensional Euclidean 9= 0 0 —N2 0 m

space-time is given by bd O 0 b2— g2
ac— -a
(3.2b

G T 3.3
f d4xE=x/—gf ‘°°d7f dxtdx2dxC.
0 The necessary requiremeggs#0 implies |d|#|c|; how-

o ever, there is nothing wrong with choosiftg =|b|. The 3
Thermodynamics is computed from the Helmholtz free en- 3 matrix defined in Eq(2.28 is

ergy F(T,V),

10 0
exp{~ BF/\guo} =2, (2.42
yi=|0 1 0 : (3.3
using Eq.(2.34. 0 0 (d?-c?)?
. EXAMPLES (i) Momenta. The contravariant form of the oblique mo-

menta isp”=A,, p*, parallel to Eq.(3.1a. From this, the
%ovariallt momenta are obtained by applying the meprc,

=g, p’, with the result

It is easy to see that time-independent transformation

will not yield anything new. More specifically, ¥°=x° then

the quantization is at fixed® and if x!, x?, and x* are

independent ok° thenAJO—:O so thatu!=0 and the density po=(dp°+cp)/N,
operator will be exg—BPo}.
This section deals with a general class of examples based pz=—(bp®+ap?)/N, (3.9

on transformations of the forms
_ and, of coursep;=—pt, p;=—p2.
x9=ax?+bx3, (iii) Density operator. The time evolution operator is
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IX@ dPy—CP5 where — 7/2< 6<mw/2. These would be light-front coordi-
Paz—oPa:T, nates if @ were allowed to take the value 7/2. The cova-
X riant and contravariant metrics are equal:
and therefore the density operator is cosd O 0 sing

0 -1 0 0
|d|Po—cP35(d)]

d?—c?

N _ET
%= o o -1 o |79 39

sing 0 0 —cos#

expl - BP5 /G p[ -

after using Eq(3.19. Heree(d)=*1 is the sign function.
As expected|d|=|c| is excluded. One can understand the
form of the density operator in a more physical way. Since
the heat bath is at rest in the coordinate, its laboratory
velocity is v=dx*/dx’=—c/d from Eq. (3.19. Using y
=(1—v?) Y2 gives the four-velocity

The density operator is

, (310

- Pocog 6/2) + P3sin( 6/2)
e=exp —p cosd

and it obviously fails ath= /2. Alternatively, one can use

) Id| —¢ e(d) v=tan(#/2) and express the transformation as
I 00m)= Va?—c? T dP-c? | o9 x0= (x4 0x3) T +07?,
Thus the density operator @5= exp(=pBP,UY. ng (UXQ_Xg)/\/l_’_—Uz, (3.11)
A. Lorentz transformations and generalizations so that the density operator is expBy(Py+vPs)!.

(i) Quantization at rest but with a moving heat bath. The (i) Choice of Alves, Das, and Peré&DP). The calcula-
most intuitive situation physically is to quantize convention-tions in Ref.[8] can be stated as the choices b=d=1,c

ally at fixedx? but to have a velocity for the heat bath. =0:
This is easily accomplished by the choicas=1,b=0, -~
=+yv, andd= vy so that X0=x0+ %3,
0_,0 _
X=X x3=x3 (3.12
x*=y(C+vx°). (38 The density operator becomes dxB8P}. The covariant
metric is
The density operator is eXp- By (Py—vPs3)}.
(if) Quantization surface and heat bath moving differently. 1 0 0 -1
A more general option is to give the gquantization surface a
velocity v’ and the heat bath a velocity. 9= 0 -1 0 (3.13
B e 0 0 -1 0]’ '
x0=7'(x%+0v'x3), -1 0 0 0
3= y(x3+vx). (3.7 and so the covariant coordinates araacgoyx =x% andxg
=g:x'=—(x"+x%)=— J2x*. The corresponding covari-
However, only the velocity enters into the density operator: ant momentum components are
o =exp{—By(Py—vP3)}. Note that the metric will depend
onv andv’. po=p°,
B. Light front and generalizations _
o gene _ _ p3=—(p°+p*)=—2p".
As stated previously, strict light-front coordinates in
which |d|=|c| are forbidden. The contravariant metric is
(i) Front moving atv <1. An interesting case is the trans-
formation 0 0 0 -1
x0=x%cog 6/12) + x3sin( 6/2), il 0 -1 0 © (3.14
g o o0 -1 o '
x3=x0in( 6/2) — x3cog 6/2), (3.8 -1 0 o0 -1
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Becauseg® vanishes, the momentum space propagator is APPENDIX A: LORENTZ INVARIANCE OF g
linear in pg: The general nondiagonal metrg; 5 is always invariant
57— — 2 — (pD2— (p)%— (P3)? under three rotations and three Lorentz boosts. However, the
g PPy PoPs™(P1 P2 Ps representation of these six transformations depends on the
=2.20%" — (12— (p?)2—2(p+)2. coordinate systerm*. . .
\/—p pr (P (PY) (P") The usual representation of a Lorentz transformation from
In the Euclidean formulation the contravariant time becomesne set of Cartesian coordinates to another,= A% x*,
negative and imaginarkx®— —i r; the covariant energy be- leaves invariant the Minkowski metric tensor:
comes discrete and imaginarypo— —iw, Wwith o,

=2mnT. (Note ggz=1.) The Euclidean propagator used in AgrAg’ 9o’ =Yap- (A1)
Ref.[8] is
As before, the index notation of Schoutel®] is used. Here
1 . (315 a' runs over 0,1',2', and 3. The Minkowski metric is
2i\/§ o, pT—(pH2—(pH2—2(pT)2—m? invariant:gg o =0oo=1, 91/1=911= — 1, etc.

Each Lorentz transformation of the Cartesian coordinates
(iii) ADP with a moving heat bath. It is simple to modify induces a Lorentz transformation of the oblique coordinates,
the previous case to allow for a moving heat bath. We choos;,L:WﬂXp’ where
a=b=1, c=yv, andd=y so that P

7 W= AZ,AgIA%. (A2)
x0=x2+x3,

_ Because\ keeps the Cartesian metric invariavit,automati-
x3=y(vx®+x3). (3.1 cally keeps the obliquE nletric invariant:

AA Y N — y—
The density operator is eXp- B8y (Po—vP5)}, corresponding W;W;gﬂv_gﬂ"' (A3)

to a moving heat bath. As beforg”®=0 but now gg

=J1+v/J1—v. APPENDIX B: QUANTIZATION IN OBLIQUE
COORDINATES

IV. CONCLUSIONS This section will show how to perform the explicit quan-

In standard light-front quantizatiagys=g . =0 and this tization in an arbitrary oblique coordinate system for the free
—Y++= ;
makes it impossible to formulate statistical mechanics anc§calar field and then calculate the thermal average of the free

thermal field theory. Physically, the problem is the infinite energy-momentum tensor.
velocity of the light front. . .

The most interesting possibility is to choose oblique co- 1. Equation of motion
ordinates which satisfgg#0 butg®=0 as in Eq.(3.12, The action expressed as an integral over contravariant co-
which is the case studied by Alves, Das, and Pé8§zThe  qrginates isy— g dx°dx dx?dx3£ with Lagrangian density
advantage of choosing™=0 is that the denominator of the
propagatorg” "p,p,— m?, will be linear in the energy vari-
able py. Consequently the propagator will have only one L 2
pole and not two. This reduces the computational effort re-
quired for multiloop diagrams. Any diagram for which the The field equation that follows from the Lagrangian density
kinematics allowsN propagators to be on shell would nor- jg
mally produce 2 contributions. However iig®=0, there 5
will be only one contribution. ny "¢ =m?¢ (B2)

A very straightforward application would be to compute IXF x> '
the quark and gluon propagators in the hard thermal loop
approximation using E¢3.12 and verify the rotational in- The solution to this will be a superposition of plane waves of
variance of the dispersion relations7]. A more ambitious the form exp{ip,x®), with the phase expressed in terms of
task would be to compute the vertex functions in the harctontravariant spatial coordinates and covariant momentum
thermal loop approximation. coordinates. The equation of motion gives the mass shell

condition
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= S04 — —— M7 (B1)
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wherel'7 is the 3x 3 matrix
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3. Microcausality

It is easy to verify microcausality. The commutator of two

_ o fields is
Il =ggf_o —g. (B5)

B dpdpzdps e e
= - [¢(X)v¢(0)]_ 3 O[e PaX" — glPa ]
The two solutions are exp(ipo.X’—ipjx)). The energies V=9(2m)°2p
po- are not invariant under momentum inversion, but rather
Po—— —Po+ Whenpj changes sign. Therefore one can useWe change to Minkowski integration variables by defining

for the second plane wave the negative momentum solutiop_=p, 9x*/9x* so thatp_x*=p,x*. The integration mea-

eprp3+x°+ipj—xj). The solution to the field equation can be sure is invariant and therefore

expanded as

dprdpzdps . |
PP (pye P a(p) e ),

P07 ] e
(86)

where p-x=pg,x°+pjx. The contravariant energigs’*
are equal in magnitude:

=+ /gO_O [m2+ pi—pj—l—*ﬁ]lm,
(B7)

and|p6| will be denoted simply b)pa[18].

2. Canonical quantization

For quantization on the surfaces of constaft the ca-
nonical momentum is

oL —9d
()= ————F=g% PR
d(d Pl ax) axt  9xg

(B8)
The explicit mode expansion is

0= i dpdpzdps
V=g(2m)32

If the mode operators are required to satisfy

[a(p)e P *—a(p)Te'PX].

3
[a(p).a'(p)]=V~-g2p’(2m 1 o(pi—pp. (BY)
then the equal time commutator has the correct value:

[7(X), (x") 0%
— i f

i Fy ZN o5 2N a ’
=— —— S(x*—x Hs(x>—x D) 8(x3—x 3.

V=g

dp7dpzdps

(2m)32 e it x4 giojtd =y
ar

dpdpadps i

X),(0)]= | ————[e P *-€'P].
[600.6(01= | ~5 5, 5 ]
This is the conventional answer for the commutator. It van-
ishes for spacelike separations<* <0. Sincexx=x,x" it
vanishes fox_x“<0.

4. Hamiltonian

The canonical Hamiltonian density is

J
H=7T—¢—£.

pw: (B10)

It is convenient to express this in terms of mixed contravari-
ant and covariant derivatives:

1
2

dp dp dp P

Xg X0 axy axt  oxz Ix®  Ixz X

dp dp dp dPp
—3+m2¢2 .

The Hamiltonian requires integrating over the contravariant
three-volume,

Po= \/—gf dxtdx2dx3H.
Working this out explicitly gives

dpidpzdps o

— t t
Po —g(2m)32p° 2 [a'(p)a(p)+a(p)a’(p)].

(B11)

Note that the covariant energpyg in the numerator does not

cancel the contravariant energy in the denominator. The
commutation relation

- 99
[P0'¢(X)]:_|a?

verifies that the Hamiltonian is the generator of translations
in the contravariant time variabbe.
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5. Energy and momentum Bose-Einstein statistics gives for the thermal average of

The canonical energy-momentum tensor is the energy-momentum tensor of a free gas of scalar particles,

T ¢ ¢

-~ _>:J dprdpzdps PuPy
o axt 2

V=9(2m)%p° exp(Bpo/Vogn —1
(B18)

(B12)

and satisfies the conservation laws” /ax =0. Thepu

=aand;=ﬁcomponents of this equatlon are To perform this integration, we change to Minkowski mo-

mentak,, where

&T?a &Tha
0= WﬂL P (B13) Pr=AKq- (B19)
T I The mass shell condition requirdg=(k*+m?)2, and
-m -m
0= 0 + P (B14)  pg/ggo=kyu with u"=A% u®, the oblique velocity given

by Eg.(2.15. The change of variables gives

From Eq.(B10), H= T o and thusT is the energy density.
dk,dk,dks KoKp
(2m)3%ky exp(Bkut)—1
(B20)

The first of the above equatlons mdentle%as the energy (T =A AYA ﬁf
e - v Pas

flux. From the second,'?; is the momentum density aer_]a
is the momentum flux. Integrating the energy and momentum

densities over a contravariant three-volume gives o
whose evaluation is standard:

P.=\—g f dx'ddCTY (B15) "
(T = ASAL((p+ P)UUs— PGap)
These integrals are independent of the contravariant time:

— 0__ - . .
3PM/QX =0. They generate translations in the contravariant =(p+P)u u,—Pg;. (B21)
coordinates:

a The final result is expressed in terms of the oblique velocity
[Py, d(X)]=—i—. (B16) vector and the oblique metric tensor. The most physical
axt quantity is the mixed tensor,

The explicit form for the three-momentum operators is

p 0
dpdpdps  pi
\/_pzp 3230 2[aT(p)a (p)+a(p)a’(p)]. (TE>: (p+P)gsi/des —P O
zm vl (p+P)Om/de O —P 0 |

(B17)
(p+P)gme/ge 0 0 —P

6. Thermal averages (B22)

This section will show that despite the somewhat compli- . o

cated dispersion relations in Eq&4) and(B7), the thermal where Eq(2.19 has been used. The off- dlagonal entries in

average of the energy-momentum tensor can be computdfeé metric give a nonzero momentum density’ w=(p

directly to give the conventional answer. +P)0or/955-
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