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Thermal field theory and generalized light front quantization

H. Arthur Weldon
Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315

~Received 24 December 2002; published 29 April 2003!

The dependence of thermal field theory on the surface of quantization and on the velocity of the heat bath
is investigated by working in general coordinates that are arbitrary linear combinations of the Minkowski
coordinates. In the general coordinates the metric tensorgmn is nondiagonal. The Kubo-Martin-Schwinger
condition requires periodicity in thermal correlation functions when the temporal variable changes by an
amount2 i /(TAg00). Light-front quantization fails sinceg0050; however, various related quantizations are
possible.
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I. INTRODUCTION

A. The light front and thermal field theory

For many years light-front quantization has been app
to deep inelastic scattering and the Wilson operator prod
expansion. More recently it has been used in QCD to co
pute hadron structure@1–4#. Light-front quantization brings
both conceptual and computational simplifications to cert
hadronic processes@5,6#.

Much of the computational simplification occurs becau
the mass shell condition expressed in terms of the mom
tum variablesp65(p06p3)/A2 is

p25
p'

2 1m2

2p1
. ~1.1a!

The operatorP25(P02P3)/A2 plays the role of the Hamil-
tonian in that it generates the evolution of the fields in
coordinatex15(x01x3)/A2:

@P2,f~x!#52 i
]f

]x1 . ~1.1b!

Recently Brodsky suggested@7# that the computationa
advantages of quantizing in light-front coordinates mig
carry over to statistical mechanics and thermal field the
done on the light front and proposed as the appropriate
tition function

Tr @ exp$2P2/TLC%#. ~1.1c!

The relation ofTLC to the usual invariant temperatureT was
unspecified.

The suggestion was pursued by Alves, Das, and Perez@8#.
For a free field theory they found an immediate problem t
results from the vanishing of the on-shell energy, Eq.~1.1a!,
as p1→`. The breakdown is not specific to the canonic
ensemble. In the microcanonical ensemble the entropy
measure of the multiparticle phase space available to a ga
particles whose total energy is fixed. To any configurat
with a fixed value of the totalP2 one can add any number o
zero-energy particles each having an infinite value ofp1.
The entropy of such a configuration diverges.
0556-2821/2003/67~8!/085027~11!/$20.00 67 0850
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Alves, Das, and Perez@8# showed that a thermal averag
performed in the rest frame but using light-front variabl
does work. UsingP05(P11P2)/A2 the partition function
is

Tr @exp$2~P11P2!/A2T%#, ~1.2!

instead of Eq.~1.1c!. They performed one-loop calculation
of the self-energy in scalar field theories with either af4

interaction or af3 interaction. The final results for both ca
culations were exactly the same as the conventional answ

B. Thermal field theory in generalized coordinates

In order to explore the various possible options it is m
efficient to consider quantization in a general set of spa
time coordinates and later examine light-front quantizat
as a special case. The metric signature is (1,2,2,2).

The conventional approach is to impose quantization c
ditions on fields at a fixed value ofx0. The operator that
generates time evolution isP0. The partition function is

Tr @exp$2P0 /T%#, ~1.3!

as is appropriate for a heat bath at rest. If this system
viewed from a Lorentz frame with velocityv and four-
velocity ua5(g,0,0,gv), then the quantization will be at a
fixed value ofxaua ; the evolution operator will bePaua,
and the partition function will be Tr@exp(2bPa ua)#. The
fact thatua serves as both the vector normal to the surface
quantization and the velocity vector of the heat bath is
unique feature of Lorentz boosted coordinates and is not
in more general coordinates.

The present paper investigates the dependence of the
field theory on the surface of quantization and on the vel
ity of the heat bath. Subsequent analysis will show that
any vectorna that is timelike or lightlike, it is possible to
quantize at a fixed value ofnaxa,

@p~x!,f~0!# d~naxa2c!52 i d 4~x!, ~1.4a!

and employ the partition function

Tr @exp$2Paua/T%#, ~1.4b!
©2003 The American Physical Society27-1
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appropriate to a heat bath moving with four-velocityua

5(g,0,0,gv), provided only thatna andua satisfy

uana.0. ~1.4c!

The conventional rest frame choice isn05u051 and nj

5uj50. A Lorentz boost from the rest frame still givesna

5ua. The equality of these two vectors is not general,
various examples will show. One can see that light-fro
quantization using the partition function in Eq.~1.1c! fails,
even apart from the divergence issues mentioned previo
because it requiresv→1 in order thatPaua be proportional
to P2 . This makesTLC5TA12v2/A2→0. In contrast, the
successful approach of Alves, Das, and Perez@8# in Eq. ~1.2!
fits into the general framework above withna5(1,0,0,1) and
ua5(1,0,0,0).

The purpose of this paper is to investigate thermal fi
theory formulated in general coordinates that are arbitr
linear combinations of the Cartesiant,x,y, andz and to de-
termine if there are any computational advantages to o
formulations. The method is conservative in that the n
coordinates are restricted to be linear combinations of
Cartesian coordinates@9#, a restriction which guarantees th
physical consequences will be the same for the follow
reason. The Lagrangians of fundamental field theories
invariant under arbitrary nonlinear coordinate transform
tions in accord with the principle of equivalence, and th
are trivially invariant under the linear coordinate transform
tions considered here. Physically interesting quantities
thermal field theories are either scalars, spinors, or tens
Whether calculated in Cartesian coordinates or more gen
linear coordinates, the scalar quantities should be iden
and the spinor and tensor quantities should be simply rel
by the chosen transformations.

Section II develops the formalism of thermal field theo
in the general coordinates in order to determine the poss
choices for the surface of quantization and the velocity of
heat bath. Section III treats several examples that are spe
cally related to light-front quantization, and it may be re
independently of Sec. II. Section IV provides some conc
sions.

II. THERMAL FIELD THEORY IN OBLIQUE
COORDINATES

A. Transformed coordinates and metric

From the Cartesian coordinatesx05t, x1, x2, and x3 a
new set of coordinatesx0̄, x1̄, x2̄, andx3̄ can be formed by
taking linear combinations:

xm̄5Aa
m̄xa, ~2.1!

where theAa
m̄ are a set of 16 real constants. The notat

used is due to Schouten@10#. It expresses the fact that th
space-time point specified by the four-vectorx does not
change under a coordinate transformation; only the lab
used to indentify the components change. For example,
light-front choice is expressed asx0̄5(x01x3)/A2. It is also
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convenient that forAa
m̄ the superscriptm̄ is neither a first

index nor a second index sincem̄ cannot be confused witha.
It is misleading to refer to the general coordinate transf

mations as a change in the reference frame. A change in
physical reference frame can only be done by rotations
Lorentz boosts.

The 16 real numbersAa
m̄ must have a nonzero determ

nant. To guarantee thatx0̄ is a time coordinate, it is necessa

to require that the covariant Lorentz vectorAa
0̄ be timelike or

lightlike:

Aa
0̄ Ab

0̄ gab>0, ~2.2!

wheregab5diag(1,21,21,21) is the Minkowski metric. It
is sometimes useful to express the transformation matrix
terms of partial derivatives:

Aa
m̄5

]xm̄

]xa
. ~2.3!

The relation~2.1! can be inverted to find the Cartesian coo
dinatesxb as linear combinations of the new coordinatesxn̄.
These partial derivatives are denoted by

An̄
b
5

]xb

]xn̄
. ~2.4!

The transformations satisfy

Aa
m̄An̄

a
5d n̄

m̄ , Aa
m̄ Am̄

b
5da

b . ~2.5!

The differential length element in Cartesian coordinate
gab dxadxb5(dt)22(dx)22(dy)22(dz)2. In the new co-
ordinates there is a new metricgmn given by

gm̄n̄5Am̄
a

An̄
b

gab , ~2.6!

which satisfiesgab dxadxb5gmn dxm̄dxn̄. If all 12 of the
off-diagonal entries ingmn vanish, the new coordinates ar
orthogonal. This occurs, for example, if theA are Lorentz
transformations. In general thegmn are not diagonal and in
general the new coordinates are oblique. It will be con
nient for later purposes to denote the determinant of the
variant metric by

g5Det@gmn#,0. ~2.7!

The Jacobian of the coordinate transformation

dx0dx1dx2dx35Jdx0̄dx1̄dx2̄dx3̄

is therefore

J5Det@Am̄
a
#5A2g. ~2.8!

It will also be necessary to use the contravariant me
gmn, related to the Minkowski metric by
7-2
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gm̄n̄5Aa
m̄ Ab

n̄ gab. ~2.9!

The requirement in Eq.~2.2! can be stated as

g00>0. ~2.10!

B. Four-momentum operators

In the conventional quantization at fixedx0 the momen-
tum operatorsPl are the generators of space-time trans
tions. For a scalar field operatorf(x) they satisfy

@Pl ,f#52 i
]f

]xl
.

The linear combination of these generators defined by

Pm̄5Am̄
l

Pl , ~2.11!

with Am̄
l given in Eq.~2.4!, will satisfy

@Pm̄ ,f#52 i
]xl

]xm̄

]f

]xl
52 i

]f

]xm̄
. ~2.12!

In particular,P0̄ generates the evolution in the variablex0̄.
Appendix B shows that if one quantizes at fixedx0̄ then the
Hamiltonian is this same operatorP0̄ .

Note that the temporal evolution is in the variablex0̄

5Aa
0̄ xa but the evolution operator is in a different line

combination:P0̄5A0̄
a
Pa . These two vectors are reciproc

in the sense thatAa
0̄ A0̄

a
51. Lorentz transformations are sp

cial in that the metrics are the same,gab5gab , and the two

vectors are the same,Aa
0̄5gabA0̄

b .

C. Density operator

Field theory at finite temperature requires a density ope
tor and exactly what the density operator should be is
obvious when using general oblique coordinates. For c
ventional quantization at fixedx0 the density operator has th
form

%̂5exp$2bPaua%, ~2.13!

where ua is some four-velocity. Rewriting this in genera
coordinates gives%̂5exp$2bPs̄ us̄ %. The appropriate value
of us̄ is undetermined but since the Minkowski four-veloci
satisfiesuaubgab51, the velocity in oblique coordinate
must satisfy

us̄um̄gsm51. ~2.14!

1. Kubo-Martin-Schwinger relation

With a partition function of the above form, the therm
Wightman function is

D.~x!5Tr @%̂ f~x!f~0!#/Tr @%̂#.
08502
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Consider a shift in the oblique time, i.e.,x0̄→x0̄1dx0̄ with
fixed values ofx1̄,x2̄,x3̄. In terms of the Cartesian coord
nates, xa→xa1dxa with dxa5A0̄

a dx0̄. Using Padxa

5P0̄dx0̄ the shifted field operator is

f~x1dx!5exp~ iPadxa!f~x!exp~2 iPadxa!

5exp~ iP 0̄dx0̄!f~x!exp~2 iP 0̄dx0̄!.

For evolution in imaginary values ofdx0̄ to be equivalent to
thermal averaging requires that the density operator invo
only P0̄ and notPj̄ . Therefore the spatial components of th
contravariant velocity must vanish:u1̄5u2̄5u3̄50. This de-
scribes a heat bath that is at rest in the oblique coordina
The normalized velocity vector is

us̄5S 1

Ag00

,0,0,0D . ~2.15!

Note that this imposes a new requirement on the metric,

g00.0, ~2.16!

that is different from Eq.~2.10!. This condition prevents
standard light-front quantization sinceg00 would vanish. In
all subsequent discussions it will be assumed that Eq.~2.16!
is satisfied. The density operator is

%̂5exp$2bP0̄ /Ag00%, ~2.17!

or equivalently, Eq.~2.13! if the velocity vector is expresse
in Cartesian coordinates:

ua5Am̄
a
um̄5A0̄

a/Ag00. ~2.18!

The vector normal to the quantization surface isna5Aa
0̄ and

thereforenaua51/Ag00.0, as stated in Eq.~1.4c!.
The density operator is used to define the thermal av

aged Wightman function:

D.~x!5Tr @exp$2bP0̄ /Ag00%f~x!f~0!#/Z,
~2.19!

whereZ5Tr @%̂# is the partition function. Under imaginar
shifts in the oblique time of the formdx0̄5 ia/Ag00, the
behavior is

D.~x0̄1 ia/Ag00,x
j̄ !5TrFexpH 2

~b1a!P0̄

Ag00
J f~x!

3expH aP0̄

Ag00
J f~0!G /Z. ~2.20!

The spectrum ofP0̄ is bounded from below but will always
have arbitrarily large positive eigenvalues. If the two exp
nents are negative then the infinitely large energies will
7-3
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suppressed. In other words, Eq.~2.20! is analytic for 2b
<a<0. For the choicea52b or equivalently dxa

52 ibua the result is

D.~x0̄2 ib/Ag00,x
j̄ !5D.~2x0̄,2xj̄ !. ~2.21!

This is the Kubo-Martin-Schwinger relation@11# expressed
in oblique coordinates.

2. Tolman’s law

The dependence of the partition function~2.17! on the
combinationP0̄ /TAg00 merits further discussion. One expla
nation comes from perturbation theory in which at each or
the eigenvalues of the operatorP0̄ are the sum of single
particle energiesp0̄ , each satisfying a mass shell conditio
gmnpm̄pn̄5m2, for various masses. Among the allowed c
ordinate transformations are scale transformations. Resca
the contravariant time by a factorl, as inx0̄→l x0̄, would
rescale the covariant energy byp0̄→p0̄ /l. The combination
P0̄ /T would not be invariant under this transformatio
However, the scale transformation changes the covar
metric, g00→g00/l2, and the combinationP0̄ /TAg00 is in-
variant.

There is another way to understand why the partit
function ~2.17! depends on the combinationTAg00. A con-
dition necessary for thermal equilibrium in inertial coord
nates is that the temperature should be uniform in space
time. Tolman @12# investigated the conditions for therm
equilibrium in a gravitational field and showed that a te
perature gradient is necessary to prevent the flow of h
from regions of higher gravitational potential to regions
lower gravitational potential. The quantitative result is su
marized by the statement that the productTAg00 must be
constant and it is known at Tolman’s law@13#.

An alternative derivation is given by Landau and Lifsh
@14#, who discussed how to compute the entropy in the
crocanonical ensemble in a general curvilinear coordin
system~with or without gravity!. In the microcanonical en
semble, the temperature is computed by differentiating
entropy with respect to the energy and this leads to the re
that TAg00 must be constant.

3. Covariant density operator

For later purposes it is convenient to express the den
operator~2.17! in a covariant form in terms of the conserve

energy-momentum operatorT
• m̄

n̄ . The generators of transla
tions are

Pm̄5A2gE dx1̄dx2̄dx3̄ T
• m̄

0̄ .

We rewrite this in terms of the energy-momentum operato
Cartesian coordinates,T

• l
a , as

Pm̄5E dSa T
• l

a Am̄
l , ~2.22!
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in accordance with Eq.~2.11!. The three-dimensional, differ
ential surface element is

dSa5A2g Aa
0̄dx1̄dx2̄dx3̄. ~2.23!

This surface of quantization is orthogonal to three cont
variant vectors:Aj̄

a
dSa50 for j̄ 51̄,2̄, and 3̄. Contracting

Pm̄ with um̄ and using Eq.~2.15! gives the density operator in
covariant form:

%̂5expH 2bE dSaT
•l

a ulJ . ~2.24!

D. Thermal field theory in real time

To quantize a field theory at a fixed value ofx0̄ is straight-
forward but there are some unfamiliar aspects that origin
from the oblique metricgmn being nondiagonal. Appendix B
performs the explicit quantization for a scalar field theory
is most natural to deal with contravariant space-time coo
natesxm̄ and covariant momentum variablespm̄ so that the
solutions of the field equations are superpositions of pl
waves of the form exp(6ipm̄xm̄). For spinor particles the

Dirac matrices aregm̄5Aa
m̄ga and they satisfy$gm,gn%

52gmn. For gauge boson propagators there are natural g
eralizations of Coulomb gauge, axial gauge, and covar
gauges. This section will summarize some familiar resu
expressed in oblique coordinates. Either canonical quant
tion or functional integration may be used@16,17#.

1. Propagators

At zero temperature the free propagator for a scalar fi
is

D~p0̄ ,pj̄ !5
1

gmnpm̄pn̄2m21 i e
. ~2.25!

The integration measure over loop momenta is

E dp0̄dp1̄dp2̄dp3̄

A2g~2p!4
. ~2.26!

At nonzero temperature the propagator has the usual 232
matrix structure@16,17#, and the Bose-Einstein or Ferm
Dirac functions become

n5
1

exp~bup0̄u/Ag00!71
. ~2.27!

As discussed later, the most interesting possibility is
choose a coordinate transformation such thatg0050. This
makes the denominator of the propagator linear inp0̄ and
therefore there is only one pole in Eq.~2.25!.

If g00Þ0 then the propagator has poles at two values
p0̄ but the positive and negative values ofp0̄ will have dif-
ferent magnitudes. It is sometimes convenient to express
7-4
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propagator in a mixed form, in terms of the covariant ene
p0̄ but with the contravariant momentapj̄ . To do this, we use
the identity

gmnpm̄pn̄5
1

g00
~g00 p0̄1g0i pī !21S gi j 2

goig0 j

g00
D pī p j̄

5
~p0̄!2

g00
2g i j p

ī p j̄ ,

whereg i j is given by

g i j 52gi j 1
goig0 j

g00
. ~2.28!

The determinant is Det@g i j #52g/g00.0 @18#. We define
the effective energy to be

E5@m21g i j pī p j̄ #1/2. ~2.29!

The same propagator in these variables is

D~p0̄ ,pj̄ !5
g00

~p0̄!22g00 E21 i e
, ~2.30!

and the poles are now atp056Ag00 E; the Bose-Einstein or
Fermi-Dirac functions become

n5
1

exp~bE!71
. ~2.31!

The integration over covariant energy and contravari
three-momenta is

A2g

g E dp0̄ dp1̄dp2̄dp3̄

~2p!4
. ~2.32!

2. Statistical mechanics

The partition function provides a direct calculation of t
thermodynamic functions via the Helmholtz free energyF:

exp$2bF/Ag00%5Tr @exp$2bP0̄ /Ag00%#. ~2.33!

The free energyF(T,V) then allows computation of the
pressure and entropy:

P52S ]F

]VD
T

, ~2.34a!

S52S ]F

]TD
V

, ~2.34b!

and the energy isU5F1TS.

3. Covariant statistical mechanics

The prescriptions in Eq.~2.34! can be derived rather el
egantly from the partition function if it is formulated covar
antly @13,15#. In global thermal equilibrium considered her
08502
y

t

the temperatureT and the velocityum̄ of the heat bath are
independent of space-time and so there is no heat flux
viscosity. The thermal average of the energy-momentum
erator has the perfect fluid form:

Tr @%̂Tnm#

Tr @%̂#
5~r1P!gnm2Pun̄um̄, ~2.35!

wherer is the energy density. The first law of thermodynam
ics guarantees that there is an additional state function,
entropy densitys, related to energy density and pressure

Ts5r1P. ~2.36!

This relation is equivalent to the more familiar differenti
relationTdS5dU1PdV.

It is convenient to express the right-hand side of E
~2.33! as the trace of the covariant density operator~2.24!.
The left-hand side of Eq.~2.33! can be written covariantly in
terms of the differential surface element~2.23! using
A2g dx1̄dx2̄dx3̄/Ag005dSaua as an integral over the fre
energy densityF:

F/Ag005E dSauaF.

The manifestly covariant statement of Eq.~2.33! is

expH 2bE dSaFuaJ 5TrFexpH 2bE dSaT
•l

a ulJ G .
~2.37!

Now we apply this to two different equilibrium states wit
infinitesimally differentb and ua. The difference gives the
differential relation

d~bFua!5
Tr @%̂ T

• l
a #

Tr @%̂ #
d~bul!. ~2.38!

The differential on the left-hand side is

d~bF!ua1~bF!dua.

Using the thermal average of the energy-momentum ten
~2.35!, the right-hand side is

@~r1P!uaul2Pdl
a#~dbul1bdul!5rdbua2Pbdua,

where uldul50 has been used. Equating the left- a
right-hand sides and noting thatua anddua are orthogonal
vectors gives the two relations

F52P, ~2.39a!

d~bF!5rdb. ~2.39b!

The first relation is the same as Eq.~2.34a!. The second
relation implies dF5(F2r)dT/T52(P1r)dT/T
52sdT. Therefores52]F/]T, which is the same as Eq
~2.34b!, but expressed in terms of densities.
7-5
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E. Thermal field theory in imaginary time

It is also interesting to quantize in imaginary oblique tim
by letting x0̄52 i t with 0<t<b/Ag00. As shown in Eq.
~2.20! the thermal Wightman function is analytic fort in this
region. Since the Cartesian coordinates are linear comb
tions of the oblique coordinates,xa5Am̄

a
xm̄, making x0̄

purely imaginary makes some of the Cartesian coordin
complex. In other words, going to imaginary time does n
commute with the coordinate transformations.

The Euclidean propagator comes from the replacem
p0̄→2 ivn in Eq. ~2.25! wherevn52pnTAg00:

DE~p!5
21

g00vn
212ig0 jvn pj̄ 2gi j pī p j̄ 1m2

. ~2.40!

Note that the denominator has an imaginary part becaus
the nondiagonal metric but the real part of the denominato
positive as always. In perturbation theory the summati
integration over loop momenta is

TAg00

A2g
(

n52`

` E dp1̄dp2̄dp3̄

~2p!3
.

One can canonically quantize in imaginary time, in whi
case the field operators obey equations of motion. Alter
tively one can use a Euclidean functional integral@16,17,19#

in which case the fields are periodic undert→t1b/Ag00.
The partition function is

Z5E
periodic

@Df#expH E d4xE LJ , ~2.41!

where the integration element in four-dimensional Euclide
space-time is given by

E d4xE5A2gE
0

b/Ag00
dtE dx1̄dx2̄dx3̄.

Thermodynamics is computed from the Helmholtz free
ergy F(T,V),

exp$2bF/Ag00%5Z, ~2.42!

using Eq.~2.34!.

III. EXAMPLES

It is easy to see that time-independent transformati
will not yield anything new. More specifically, ifx05x0̄ then
the quantization is at fixedx0 and if x1, x2, and x3 are
independent ofx0̄ thenA0̄

j
50 so thatuj50 and the density

operator will be exp$2bP0%.
This section deals with a general class of examples ba

on transformations of the forms

x0̄5ax01bx3,
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x3̄5cx01dx3, ~3.1a!

with x1̄5x1 andx2̄5x2 always understood. All the example
in this section will result from special choices ofa,b,c, and
d. If uau.ubu and udu.ucu thenx0̄ is a true time coordinate
and x3̄ is a true space coordinate. Light-front coordinat
violate this, viz.,uau5ubu anducu5udu. The inverse transfor-
mation to Eq.~3.1a! is

x05~dx0̄2bx3̄!/N,

x35~2cx0̄1ax3̄!/N, ~3.1b!

whereN5ad2bcÞ0. The two conditions

a.0,
d

N
.0 ~3.1c!

guarantee that increasing values ofx0̄ correspond to increas
ing x0.

~i! Metric. The contravariant metric is

gm̄ n̄5S a22b2 0 0 ac2bd

0 21 0 0

0 0 21 0

ac2bd 0 0 c22d2

D , ~3.2a!

and the covariant metric is

gm̄n̄5S d22c2 0 0 ac2bd

0 2N2 0 0

0 0 2N2 0

ac2bd 0 0 b22a2

D 1

N2
.

~3.2b!

The necessary requirementg00Þ0 implies uduÞucu; how-
ever, there is nothing wrong with choosinguau5ubu. The 3
33 matrix defined in Eq.~2.28! is

g i j 5S 1 0 0

0 1 0

0 0 ~d22c2!21
D . ~3.3!

~ii ! Momenta. The contravariant form of the oblique m

menta ispn̄5Aa
n̄ pa, parallel to Eq.~3.1a!. From this, the

covariant momenta are obtained by applying the metric,pm̄

5gmn pn̄, with the result

p0̄5~dp01cp3!/N,

p3̄52~bp01ap3!/N, ~3.4!

and, of course,p1̄52p1, p2̄52p2.
~iii ! Density operator. The time evolution operator is
7-6
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P0̄5
]xa

]x0̄
Pa5

dP02cP3

N
,

and therefore the density operator is

exp$2bP0̄ /Ag00%5expH 2b
uduP02cP3e~d!

Ad22c2 J ,

after using Eq.~3.1c!. Heree(d)561 is the sign function.
As expected,udu5ucu is excluded. One can understand t
form of the density operator in a more physical way. Sin
the heat bath is at rest in thex3̄ coordinate, its laboratory
velocity is v5dx3/dx052c/d from Eq. ~3.1a!. Using g
5(12v2)21/2 gives the four-velocity

Ua5~g,0,0,gv !5F udu

Ad22c2
,0,0,

2c e~d!

Ad22c2 G . ~3.5!

Thus the density operator is%̂5exp(2bPaUa).

A. Lorentz transformations and generalizations

~i! Quantization at rest but with a moving heat bath. T
most intuitive situation physically is to quantize conventio
ally at fixed x0 but to have a velocityv for the heat bath.
This is easily accomplished by the choicesa51,b50,c
5gv, andd5g so that

x0̄5x0,

x3̄5g~x31vx0!. ~3.6!

The density operator is exp$2bg (P02vP3)%.
~ii ! Quantization surface and heat bath moving differen

A more general option is to give the quantization surfac
velocity v8 and the heat bath a velocityv:

x0̄5g8~x01v8x3!,

x3̄5g~x31vx0!. ~3.7!

However, only the velocityv enters into the density operato
%̂5exp$2bg (P02vP3)%. Note that the metric will depend
on v andv8.

B. Light front and generalizations

As stated previously, strict light-front coordinates
which udu5ucu are forbidden.

~i! Front moving atv,1. An interesting case is the tran
formation

x0̄5x0cos~u/2!1x3sin~u/2!,

x3̄5x0sin~u/2!2x3cos~u/2!, ~3.8!
08502
e

e
-

.
a

where 2p/2,u,p/2. These would be light-front coordi
nates ifu were allowed to take the value6p/2. The cova-
riant and contravariant metrics are equal:

gm n5S cosu 0 0 sinu

0 21 0 0

0 0 21 0

sinu 0 0 2cosu

D 5gm n. ~3.9!

The density operator is

%̂5expH 2b
P0cos~u/2!1P3sin~u/2!

cosu J , ~3.10!

and it obviously fails atu5p/2. Alternatively, one can use
v5tan(u/2) and express the transformation as

x0̄5~x01vx3!/A11v2,

x3̄5~vx02x3!/A11v2, ~3.11!

so that the density operator is exp$2bg (P01vP3)%.
~ii ! Choice of Alves, Das, and Perez~ADP!. The calcula-

tions in Ref.@8# can be stated as the choicesa5b5d51,c
50:

x0̄5x01x3,

x3̄5x3. ~3.12!

The density operator becomes exp$2bP0%. The covariant
metric is

gm n5S 1 0 0 21

0 21 0 0

0 0 21 0

21 0 0 0

D , ~3.13!

and so the covariant coordinates arex0̄5g0n xn̄5x0 and x3̄

5g3n xn̄52(x01x3)52A2x1. The corresponding covari
ant momentum components are

p0̄5p0,

p3̄52~p01p3!52A2p1.

The contravariant metric is

gm n5S 0 0 0 21

0 21 0 0

0 0 21 0

21 0 0 21

D . ~3.14!
7-7
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Becauseg00 vanishes, the momentum space propagato
linear in p0̄ :

gm npm̄pn̄522p0̄p3̄2~p1̄!22~p2̄!22~p3̄!2

52A2p0p12~p1!22~p2!222~p1!2.

In the Euclidean formulation the contravariant time becom
negative and imaginary:x0̄→2 i t; the covariant energy be
comes discrete and imaginary:p0̄→2 ivn with vn
52pnT. ~Note g0051.! The Euclidean propagator used
Ref. @8# is

1

2iA2 vn p12~p1!22~p2!222~p1!22m2
. ~3.15!

~iii ! ADP with a moving heat bath. It is simple to modif
the previous case to allow for a moving heat bath. We cho
a5b51, c5gv, andd5g so that

x0̄5x01x3,

x3̄5g~vx01x3!. ~3.16!

The density operator is exp$2bg (P02vP3)%, corresponding
to a moving heat bath. As beforeg0050 but now g00

5A11v/A12v.

IV. CONCLUSIONS

In standard light-front quantizationg005g1150 and this
makes it impossible to formulate statistical mechanics
thermal field theory. Physically, the problem is the infin
velocity of the light front.

The most interesting possibility is to choose oblique c
ordinates which satisfyg00Þ0 but g0050 as in Eq.~3.12!,
which is the case studied by Alves, Das, and Perez@8#. The
advantage of choosingg0050 is that the denominator of th
propagator,gm npm̄pn̄2m2, will be linear in the energy vari-
able p0̄ . Consequently the propagator will have only o
pole and not two. This reduces the computational effort
quired for multiloop diagrams. Any diagram for which th
kinematics allowsN propagators to be on shell would no
mally produce 2N contributions. However ifg0050, there
will be only one contribution.

A very straightforward application would be to compu
the quark and gluon propagators in the hard thermal l
approximation using Eq.~3.12! and verify the rotational in-
variance of the dispersion relations@17#. A more ambitious
task would be to compute the vertex functions in the h
thermal loop approximation.
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APPENDIX A: LORENTZ INVARIANCE OF gµn

The general nondiagonal metricgm n is always invariant
under three rotations and three Lorentz boosts. However
representation of these six transformations depends on
coordinate systemxm̄.

The usual representation of a Lorentz transformation fr

one set of Cartesian coordinates to another,xa85La
a8xa,

leaves invariant the Minkowski metric tensor:

La
a8Lb

b8 ga8b85gab . ~A1!

As before, the index notation of Schouten@10# is used. Here
a8 runs over 08,18,28, and 38. The Minkowski metric is
invariant:g08085g0051, g18185g11521, etc.

Each Lorentz transformation of the Cartesian coordina
induces a Lorentz transformation of the oblique coordina

xm̄5Wr̄
m̄
xr̄, where

Wr̄
m̄

5Aa8
m̄ La

a8Ar̄
a . ~A2!

BecauseL keeps the Cartesian metric invariant,W automati-
cally keeps the oblique metric invariant:

Wr̄
m̄
Ws̄

n̄
gmn5grs . ~A3!

APPENDIX B: QUANTIZATION IN OBLIQUE
COORDINATES

This section will show how to perform the explicit quan
tization in an arbitrary oblique coordinate system for the fr
scalar field and then calculate the thermal average of the
energy-momentum tensor.

1. Equation of motion

The action expressed as an integral over contravariant
ordinates isA2g*dx0̄dx1̄dx2̄dx3̄L with Lagrangian density

L5
1

2
gm n

]f

]xm̄

]f

]xn̄
2

1

2
m2f2. ~B1!

The field equation that follows from the Lagrangian dens
is

gm n
]2f

]xm̄]xn̄
5m2f. ~B2!

The solution to this will be a superposition of plane waves
the form exp(2ipā xā), with the phase expressed in terms
contravariant spatial coordinates and covariant momen
coordinates. The equation of motion gives the mass s
condition

gm npm̄pn̄5m2. ~B3!

This is a quadratic equation forp0̄ with two solutions,

p0̄652
g0 j p j̄

g0̄ 0̄
6Fm21pī p j̄G

i j

g00 G 1/2

, ~B4!
7-8
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whereG i j is the 333 matrix

G i j 5
g0ig0 j

g00
2gi j . ~B5!

The two solutions are exp(2ip0̄6x0̄2ipj̄ x
j̄). The energies

p0̄6 are not invariant under momentum inversion, but rat
p0̄2→2p0̄1 when pj̄ changes sign. Therefore one can u
for the second plane wave the negative momentum solu
exp(ip0̄1x0̄1ipj̄ x

j̄). The solution to the field equation can b
expanded as

f~x!5E dp1̄dp2̄dp3̄

A2g~2p!32up0̄u
@a~p!e2 ip•x1a~p!†eip•x#,

~B6!

where p•x5p0̄1x0̄1pj̄x
j̄ . The contravariant energiesp0̄6

are equal in magnitude:

p0̄65g00p0̄61g0 j p j̄

56Ag00 @m21pī p j̄G
i j #1/2,

~B7!

and up0̄u will be denoted simply byp0̄ @18#.

2. Canonical quantization

For quantization on the surfaces of constantx0̄, the ca-
nonical momentum is

p~x!5
]L

]~]f/]x0̄!
5g0m

]f

]xm̄
5

]f

]x0̄

. ~B8!

The explicit mode expansion is

p~x!52 i E dp1̄dp2̄dp3̄

A2g~2p!32
@a~p!e2 ip•x2a~p!†eip•x#.

If the mode operators are required to satisfy

@a~p!,a†~p8!#5A2g2p̄0~2p!3)
j 51

3

d~pj̄ 2pj̄
8!, ~B9!

then the equal time commutator has the correct value:

@p~x!,f~x8!#x0̄5x80̄

52 i E dp1̄dp2̄dp3̄

~2p!32
@e2 ip j̄ (x

j̄ 2x8 j̄)1eip j̄ (x
j̄ 2x8 j̄)#

52
i

A2g
d~x1̄2x81̄!d~x2̄2x82̄!d~x3̄2x83̄!.
08502
r
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3. Microcausality

It is easy to verify microcausality. The commutator of tw
fields is

@f~x!,f~0!#5E dp1̄dp2̄dp3̄

A2g~2p!32p0̄
@e2 ip āxā

2eip āxā
#.

We change to Minkowski integration variables by defini
pā5pl]xl/]xl̄ so thatpāxā5plxl. The integration mea-
sure is invariant and therefore

@f~x!,f~0!#5E dp1dp2dp3

~2p!32p0
@e2 ip•x2eip•x#.

This is the conventional answer for the commutator. It va
ishes for spacelike separationsxlxl,0. Sincexāxā5xlxl it
vanishes forxāxā,0.

4. Hamiltonian

The canonical Hamiltonian density is

H5p
]f

]x0̄
2L. ~B10!

It is convenient to express this in terms of mixed contrava
ant and covariant derivatives:

H5
1

2 F ]f

]x0̄

]f

]x0̄
2

]f

]x1̄

]f

]x1̄
2

]f

]x2̄

]f

]x2̄
2

]f

]x3̄

]f

]x3̄
1m2f2G .

The Hamiltonian requires integrating over the contravari
three-volume,

P0̄5A2gE dx1̄dx2̄dx3̄H.

Working this out explicitly gives

P0̄5E dp1̄dp2̄dp3̄

A2g~2p!32p0̄

p0̄

2
@a†~p!a~p!1a~p!a†~p!#.

~B11!

Note that the covariant energyp0̄ in the numerator does no
cancel the contravariant energyp0̄ in the denominator. The
commutation relation

@P0̄ ,f~x!#52 i
]f

]x0̄

verifies that the Hamiltonian is the generator of translatio
in the contravariant time variablex0̄.
7-9
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5. Energy and momentum

The canonical energy-momentum tensor is

T
• m̄

n̄
5

]f

]xn̄

]f

]xm̄
2dm̄

n̄ L ~B12!

and satisfies the conservation laws]T
• m̄

n̄ /]xn̄50. The m̄

50̄ and m̄5m̄ components of this equation are

05
]T

•0̄
0̄

]x0̄
1

]T
•0̄
n̄

]xn̄
, ~B13!

05
]T

•m̄
0̄

]x0̄
1

]T
•m̄
n̄

]xn̄
. ~B14!

From Eq.~B10!, H5T
•0̄
0̄ and thusT

•0̄
0̄ is the energy density

The first of the above equations indentifiesT
•0̄
n̄ as the energy

flux. From the second,T
•m̄
0̄ is the momentum density andT

•m̄
n̄

is the momentum flux. Integrating the energy and momen
densities over a contravariant three-volume gives

Pm̄5A2gE dx1̄dx2̄dx3̄T
•m̄
0̄ . ~B15!

These integrals are independent of the contravariant ti
]Pm̄ /]x0̄50. They generate translations in the contravari
coordinates:

@Pm̄ ,f~x!#52 i
]f

]xm̄
. ~B16!

The explicit form for the three-momentum operators is

Pj̄ 5E dp1̄dp2̄dp3̄

A2g~2p!32p0̄

pj̄

2
@a†~p!a~p!1a~p!a†~p!#.

~B17!

6. Thermal averages

This section will show that despite the somewhat com
cated dispersion relations in Eqs.~B4! and~B7!, the thermal
average of the energy-momentum tensor can be comp
directly to give the conventional answer.
.J.

,
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Bose-Einstein statistics gives for the thermal average
the energy-momentum tensor of a free gas of scalar partic

^Tmn&5E dp1̄dp2̄dp3̄

A2g~2p!3p0̄

pm̄pn̄

exp~bp0̄ /Ag00!21
.

~B18!

To perform this integration, we change to Minkowski m
mentaka , where

pm̄5Am̄
a
ka . ~B19!

The mass shell condition requiresk05(k21m2)1/2, and
p0̄ /Ag005klul with ul5A0̄

l
u0̄, the oblique velocity given

by Eq. ~2.15!. The change of variables gives

^Tmn&5Am̄
a
An̄

bE dk1dk2dk3

~2p!3k0

kakb

exp~bklul!21
,

~B20!

whose evaluation is standard:

^Tmn&5Am̄
a
An̄

b
~~r1P!uaub2Pgab!

5~r1P!um̄un̄2Pgmn . ~B21!

The final result is expressed in terms of the oblique veloc
vector and the oblique metric tensor. The most physi
quantity is the mixed tensor,

^T
• n̄
m̄

&5S r 0 0 0

~r1P!g01/g00 2P 0 0

~r1P!g02/g00 0 2P 0

~r1P!g03/g00 0 0 2P

D ,

~B22!

where Eq.~2.15! has been used. The off-diagonal entries

the metric give a nonzero momentum density:^T
• n̄

0̄
&5(r

1P)g0n /g00.
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