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Finite temperature renormalization group effective potentials for the linear sigma model
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We derive an approximate renormalization grdR®) solution for the linear sigma model of Gell-Mann and
Levy at finite temperature. For our purposes, the Fermionic degrees of freedom of the model are interpreted as
quarks which interact via the and 7 mesons to provide a phenomenological description of hot nuclear matter
at temperatures from 1 GeV to approximately 100 MeV. Our solution consists of two coupled, nonlinear flow
equations for the Yukawa coupling, of the model and the Bosonic effective potentidl,These equations are
solved numerically to study the behavior of the model as it evolves from high to low energy scales at finite
temperaturel. This allows us to determine the critical temperaturg, at which chiral symmetry breaking
occurs, and to assess the relative sensitivity of this quantity with respect to variations in the input parameters
of the model. Our results are consistent with valuesTipoobtained from other theoretical approaches such as
lattice gauge theory or other RG techniques.
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[. INTRODUCTION share the universality class of tl@(4) Heisenberg model
[9,10].

In recent years, considerable effort has gone into the study Our intent here is to determine the temperatirg, at
of relativistic quantum field theories at finite temperature.which chiral symmetry is spontaneously broken in the linear
Issues addressed in these studies range from the evolution sifma model, to determine the order of the associated phase
the early universe to the deconfinement phase transition afansition, and to analyze the RG flow of the couplings as the
QCD. A powerful tool for understanding the structure of temperature is raised. For our purposes, we assume the me-
such theories is the renormalization grdi§5) as originally  son fields of the linear sigma model are approximations to
formulated by Wilson and co-workef&]. Much recent work  degrees of freedom which would result from integrating out
on this subjectsee, e.g., Ref.2] for a collection of many the gluon degrees of freedom of QCD and introducing com-
relevant referencg¢shas been based on the local effective posite operators for the mesonic bound stdfigls12. Our
potential approximation originally proposed in RE8]. In Fermionic fieldsys may then be identified as quark degrees
the present work, we extend our RG local effective potentiabf freedom which acquire a mas by virtue of the appear-
approach for finite temperature systefd$to treat the linear ance of a nonzero vacuum expectation value of the scalar
sigma model at finite temperature. field, ¢, of the model. The interesting part of the flow of the

The linear sigma model of Gell-Mann and Levy was resulting action is then due to quark and meson fluctuations
originally formulated by Schwingel5] in 1958. Since that about the tree-level ground state, as well as the thermal fluc-
time, it has been thoroughly studied using a variety of techtuations which appear at nonzero temperature.
niques, and has recently enjoyed a resurgence of popularity Such techniques may prove to be particularly useful in,
as the “chiral quark meson” modelg,7] in which the Fer- e.g., the study of high temperature phase transitions in the
mion fields correspond to valence quarks. For our purposesiiggs sector of the standard model and their possible con-
we will consider only the case of finite temperature spontanection to the generation of baryonic asymmetry in the uni-
neous chiral symmetry breaking for the model, leaving theverse. Lattice Monte Carlo methods have been the primary
more complex case of finite temperature dynamical symmemeans used to determine the nonperturbative content of the
try breaking for future work. effective potential in such problems to date. We expect that

It is well known that the strong interactions in thermal our finite temperature RG techniques will be a useful
equilibrium are significantly different at high temperature complement to lattice MC calculations especially since, in
than at low temperature. For example, a phase transition @he analysis which follows, we take pains to make careful

some critical temperature may separate high and low temsomparisons between RG and lattice calculations throughout.
perature physic$8]. In particular, it was realized early on

that such a transition should be closely connected to a quali-

tative change in the chiral condens4igy) in accordance Il. REVIEW OF LINEAR SIGMA MODEL
with the observation that spontaneous symmetry breaking

tends to be absent at sufficiently high temperatures. In addi- Our model involves a Fermionic isodoublet figldwith
tion, it has been pointed out that for small values of the upero bare mass, a triplet of pseudoscalar pions, and a scalar
and down quark masses, the chiral transition is expected tiield ¢. The Lagrangian is written as
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1 R —
L= 5[(&M¢)2+(0MW)Z]—U(M+ YLiZ(p)y*d,—V(p) 1,

(1)
where
2
Ulp) =2 (924 7+ 3 (824 772 @
and
V(p)=9(p)T=g(p)(p+iT 79°). 3)
Here, we have defined
p?= P+ 7, @
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ture RG techniquegvhich constitute the starting point of our
finite temperature RG approacto the linear sigma model
with dynamical symmetry breaking has recently been under-
taken by Johnson, Shepard and McN#&#B]. However, in the
present work we focus solely on spontaneous chiral symme-
try breaking. Extension of the formulation presented here to
include dynamical symmetry breaking is straightforward but
results in a considerable increase in algebraic complexity.
Moreover, the presence of dynamical symmetry breaking
should have little influence on the properties of the ground
state at temperatures neBy, the chiral transition tempera-
ture.

Ill. DERIVATION OF THE RG FLOW EQUATIONS

We begin the derivation of our finite temperature RG flow

and explicitly included the Fermionic wave-function renor- €quations with the Euclidean action for the linear sigma
malizationZ(p). This Lagrangian is invariant under the op- M0del at finite temperature, obtained from ). by means

erations of parity, charge conjugation and time reversal, an
it is renormalizablg¢13—15. In addition, the model has sym-

metries under the grouBU,,(2) andSU,(2).

We now briefly examine the issue of spontaneously bro-

ken symmetry. When the quantigy? of Eq. (2) is negative,
the potential(p) has a minimum for a nonzero value @f
namely

2 2
p2=v25¢2+w2=—%. 5)

We can now rewrite the Lagrangian of E@) in terms of the
shifted field¢p’' = ¢p—v as

T - -5 1 "2
L=yliZ(p)y*d,*+gu+g(p+ir-my) [+ 5[(d,¢")

- 1 1 -
+(aﬂw)2]+§(M2+3>\vz)¢'2+§(2M2+>\02)w2
- N -
+)\v¢’(¢'2+ﬂ'2)—Z(¢'2+772)2+¢’(,u,zv+)\v3).

(6)

ef the usual Wick rotation:
B 1 1 -

Se= f drf d3x §(3E¢)2+ 5(07;577)24- U(p)
0

. 9

J -
+E{Z(p)(7°a—7—i7-V +V(p)}df
Here we have employed the Euclidean, or imaginary time,
approach of Matsubarfl8,19, with the boson(fermion
fields periodidantiperiodig in the 7 direction with periods.

The fields¢(x) and ¢(x) are expanded in terms of their
Fourier components as

(X, 7)= o+ ¢(X,7)

172 L
E el(qi~x+2n7T/,B7')¢n(qi)’

n,ai#O

B

v (10

= ot

and

Inspection of this familiar expression reveals that the pion > i 1 o >
p p p l//(X,T):X+e|W/ﬁT+ _ 2 eI[qI X+(2n+l)71'/,87']Xn(qi),

field remains massless, while the fermion and scalar fields

have acquired masses given by
mw: gv, (7)

m?= 2+ 3\v?, (8)

respectively. Thus, even though our Lagrangian is invariant
underSU, (2) X SUx(2), the ¢ and = fields no longer form

n,diio
1D

while 7(x) is expanded similarly as

B\ 12 .
—) 2 Ey(qyerxranmhn (1)
V (ii,n;to

7(X,7)=mo+

a multiplet with equal masses. This chiral symmetry has been

“spontaneously” broken. It is our objective to determine Normalization of the fields is chosen so that the Fourier am-

how fluctuations alter this simple tree-level picture of theplitudes are dimensionless, and so that standard thermody-

broken symmetry ground state. namic identities are recovered using the present path integral
We note that chiral symmetry may also be broken “dy-formalism.

namically” by the addition of a new terma¢ to the linear The potentials are also expanded via a Taylor series. The

sigma model Lagrangian. The application of zero temperabosonic potential becomes
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with a similar expression foy.

After a bit of algebra, we find the following expressions gvu(p,)+ B_

for derivatives of the potentiald andV:

96 uPp+N\dp?,

au
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2

19752: PN (p%+p?),

#*U
(977,19771

:,U«25i,j+7\5i,jp+2>\77i77j’

3?U
9 (9¢>

9?U

dbam 2N i,

and

N_ b

Vv

—= 'EF-HT- 5
g, g P 79,

PV B
Jp?

2 ’ r 42
,,(f) L9 9
p

P p3

PV
(97Ti(?77j_

,Tim 90 9 i,

p> P p?

!

+?(7Ti7'j+’7TjTi)i’)/5,

9V
| (9(1)

PV
&d)&ﬂ',

> P

,,7T|¢ 9’ o r

g'¢

r+2——-,

p

¢2

$0:m0

13

(14

(19

(16)

17

(18)

(19

(20

(21)

(22

(23

PHYSICAL REVIEW D 67, 085025 (2003

By virtue of the expansions of Eq$10)—(23) and the
orthogonality of the field components, the Bosonic portion of

the action,

SE def d3[ (?E(;b += (0"577)2+U(p)

may be written as

2 q, n#0
0 +Uyps  Ugm, Ugm,
2
led) qi + UTrlfrrl U7T1772
X 2
U7'r2q5 U1727T1 qi + U77211'2
U”3¢’ U773771 U”s”z
bn(C)
£1n(Ch)
X -
&on(T)
&3n(dl)

to second order in the field amplitudes.

(29

D [HEADENT)  En(a)  En(a)]

Uy,
U’?Tﬂ'

173
u

273

2
qi +U m3My

(25

Hetd=q?+ w?

and w,=2n/B is the n'" Matsubara frequency. We will
henceforth refer to the above matrix of derivativedJodisU.
In a similar fashion, we now consider the Fermionic por-

tion of Eq.(9), consisting of

Se —f dff d3x HZ(p (‘y ai—wv

+V(p)} ]
(26)

Proceeding as in the case of E&4), the kinetic term of this

expression may be written as

BVZ! x+¥°x > xol)
+ + ,8 Vq o n\Mi
- T SN N

Xy +E + - [ xn(di) ¢, (27)

where we now omit they dependence aZ. In addition, we
have terms quadratic in the Bosonic field amplitudes which

involve the uniform Fermionic amplitudeg. and y., from
the expansion of the Fermionic potenthl We denote the

resulting matrix of these terms &g, with

where it is understood that in what follows, all the deriva-

tives are to be evaluated &t= ¢, and == m,, as indicated

W= x (W3 + Wyt Wa+W,)x

in Eg. (13), and that primes denote derivatives with respect

to p.

where
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#*  Pm PTG
,32 % T 77% T Ty T3
Wy= ??F Tap Twemy W myms | (29)
T3¢ WM WM 77%
1 0 0O
/0 1 0 O
B> g
Wo=%—"Tlo o 1 of (30
0 0 01
4’2 ¢m  Pm,  Pm3
,32 g’ mh 77'% T T T3
W?’___EF Mo memy  my  mymy | (31
m3p  TW T3 77%
and
2¢ ipTY°+a igTytmy igTay + s
Bq ipr Y+, Bimry®  mTatwary miTst T
W4:_?; i¢7275+7T2 7T17'2+7727'1 3i772’7'2’)/5 772T3+’7737'2 (32)
ipTey°+ g WTatwaTy Wtz T, SimaTyy®
|
We may now_integrate over the nonuniform Fermionicand
field amplitudesy,(q;) and x,(q;), via the following RG B
flow relation: =—33’2[ (g d—+g| ok (q;)
~Se(-an = T '™ * 2 Sz -, I
e =1 d¢y, (0i)des(0i)dér (a;) +x+l 9 771;+g|7'1'y £ (A x+
qi.n
Z(avdv.(a T Ve~ Se(A — r
Making use of Eq.(A17) of Appendix A, and noting that . T
here X+ g’m;ﬂﬁm )égn(q. } (36)
M=BliZy (wn+ 7 B)+Zy-Gi+g(p)(p+iT-my°)],  We may write that
(39 ) )2 N¢Cq/2
deth,BNde(Z2 A +| wpt = +gzp2] :
. r B
J:—BS/Z[¢n(Qi)(9’¢;+9 X+ (37)
and
NN . .
+&n(ai| 9 771;"'9'7'1’)’ X+ M*lzi g(p—ir- my?)—iZyw,+ 7l B)—Zy-q
r B Z°[G7 + (w+ 7l B)*]+ g%p’
+§2n(Qi)<g’772;+giTz’)’5)X+
- = 3D; oGl 2o+ B~ 76l (38)
+§3n(ﬁi)(g’m;+gi7375)><+ ; (39 where
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D=7+ (wn+ 7/ B)?]+g%p? ish when we integrate over the spatial wave vectpris the
shell.
=Z’[A?+(4n+1) 7% B2+ g°p? (39) In order to facilitate computation and the increase the ease
with which the equations may be written down, we break the

since we are integrating over Fermionic modes satisfying thﬁwatricesN andK into sums:

shell constraint defined by

- 2nw\? ;
qﬁzq$+(7) — A2 (40) NzﬁzD—*F<N1+N2+N3)X+, (41)
We may now write the produd@M ~1J asN+K whereN — iZy%(wn+ 7/ B)
denotes the matrix formed withl''/Dr andK identifies the K== (K1 +Ky+Kz+Ky+ Ks)D—X+ :
matrix containing the quantity-iZy°(w,+ 7/8)/Dg. We F (42)
note that the termy-q;/De may be disregarded here since
the spherical symmetry of thi: will cause this term to van- Here,
¢2 pm  pm,  Pm3
TP 77% M Ty T1T3
Ni=gg'*l b mem W wpmg | (43
2
T3p WM T3Wy T
—2i¢ ¢7'175_i771 ¢7'275_i772 ¢737’5_i773
ity —im 3mmy’ (mimpt mar)y® (gt mary) Y
—in2n! .
N2=10°0"p| ¢r,y5—im, (mymptmom)y® 31,727 (moratm3TR)y° | (44)
T3y’ —imy  (marztmaT) Y’ (War3t mWaTy) Y 3maTyy”
rf ITiry®  Tliryy®  Tlirgy®
ity Tt -7y -, o ITrg
Ns=g° iV, =TT T, —n T (45)
_i’)’57'3FT _T3FTTJ_ _TsrTTz _T3FT73
with the explicit form of the more compleiX matrices given in Appendix B.
Completing the integration over the Fermionic field amplitudes, we arrive at the expression
. 2 N;Cg/2
—S(A- = = tm 2 m 2 2
e S AA)=6XD{-BV X+g(p)FX++X+ZVO§X+ ] Z?| A +(4n+1)E +g%p
x [T "™ de(a)den(andé (a)dén(a)
gi.n
i $n(a) | ]
S 28 £1n()
xexpt —BV| U(p)+ 2 [dh(a) &R En(d) E5a(a)]| U+W— = (N+K) -
g; .N#0 \% §2n(Q|)
Ean(C)
(46)
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We now perform the remaining integrations over the ampli- - ) iZ v (wn+ 7l B)
tudes of thew and ¢ fields. By means of the formulas of +2(g p*+299'p+9% D-
Appendix A, we find
3[(g" 2¢° iZy%(wn+ 7l
_ N P +—[ g—+Di>F+2gZM}X+,
e_S(A_M)=eXD{ —BV<X+9(p)FX++X+Z~y°§X+)] DilAp e F
(51
71_2
X H ') z2 A2+(4”+1)E) where we have retained only terms to lowest ordey iny .
%N and have defined
N¢Cg/2
+g2p? D,=q7+U "M =A2+y ™), (52)
-=n2 1(A))  — A2 1(A)
X{de(U+W—2(N+ K)]}—1/2’ (47) D,n. ql +U /p A“+U /p (53)

Now, equating coefficients of like powers EL)G , we
obtain the following system of coupled equations:

which leads to

U(A—AA)+;+

i
g(A‘AA)FﬂLZvO?)M

U(A—AA):U(A)+ 1 2 /(A)[ln(A2+ U//(A))
2p Gg.n

—UM 4y,

g(A)sz"i—W)m F3INAPHU )] = S )
B p ﬁv 2

qi.n

1 1
_ W QZ i r(A)|n(DF)Nde/2+ _ZBV XIn{ZZ[A2+(4n+ 1)7T2/,82:|+g(A)2p2}Nfcd/2
gi .n#
(54)
XIndefU+W—2(N+K)]. (48)
1 1 g’
A—=AAN) _ ~(A (A ”
Now, in order to facilitate the evaluation of the above deter- 9 = =9' )+2,8V 2w D, 9 +2?_2”
minant of the matrices), W, N andK, we perform a simi- N
larity transformation on them, as outlined in Appendix C. 2242020 p+ a8 3 ro2g8
The determinant of the transformed matrices, W', N’ X(gg P Dg gr7g )+ _[(g_+ Di) .
andK’ may be written as F DiL\p F
(55)
defU’ +W’'—2(N'+K")]
=detU’-def1+U’ "YW’ —2(N'+K")]}, Z(AAA):Z(A)[l_ 1 1(A)
(49 2pV gi.n
and, by virtue of the Grassmann charactenof, N’ and 1 , , 69°
i x| 5-(29'%p+299 p+ 07+ ——
il ¢ DﬂT
def{1+ U’ "W’ —2(N'+K’ 2n+1
{ [W’—2( )1 N . )]' =6
F

4
=1+ >, U YW =2(N'+K')]mm- (50
m=1 Here, in Eqs(54)—(56), we have omitted the superscrijit

for couplings and potentials in the summands, as well as
their explicit p dependence, for the sake of brevity. This
convention is observed in the following expressions.

We disregard the flow af™) and set it equal to unity. We
do this because it simplifies the numerical solution of the
g’) flow equations, and also because our explicit calculations

Consequently, we may evaluate the determinant/bfand
expand the log of the above expression to arrive at

IndefU’ + W’ —2(N' +K")]

g’ +2>— including the flow ofZ show its influence to be of the order
P of 1-2%, with little if any effect on the critical temperature
2 2 2, 3 at which chiral symmetry breaking occurs. Then, in the con-
_2(99 pTH29°9'p+97) tinuum limit, the flow equations for th®(N) linear sigma
Dr model at finite temperature are:

— 11
:lndetU,+X+{D—[
¢
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N

dut Ag1
= — 2_, 2\1/2
dA 2B n:ZN A(A“— o)
71.2
X1 N¢Cq4ln A2+(4n+1)E+9(A)2p2
_|n(A2+U"(A))—(N—1)In(A2+U’(A)/p)]
(57)
A N
dg_()z_Adﬂ > A(A2— 0?2 ot
dA ZB n=-N A2+U/I(A)
9’ _(99'%p*+29°g'p+g°)
X "y o
9 Dy
N—1 " 293
_(N=D Jg' 207 -
AZ+UM7pl p ' D

PHYSICAL REVIEW D 67, 085025 (2003

proceed to calculate the temperatiireat which chiral sym-
metry breaking spontaneously occurs. To accomplish this, we
numerically integrate Eq$57) and(58) using a power series
expansion folJ(¢) of the form

M
Usi(A) .
U(A)( b)= 2 L) ¢2J , (62)
i=1 2n
with a similar expression for the Yukawa coupliggBound-
ary conditions forU are specified by
Up(Ao)=mh, Us(Ag)=NXo,
and
(63

Upj(Ag)=0 for j=3,

while g‘*0 is simply g,. Dividing the range of the\ inte-
gration intoN equal length intervals, we have

Ap=Ag—NAA, (64)

. . with
Now, asB—0, the fermions decouple from the theory since

the lowest lying fermion mode will then lie outside the

sphere of integration of radiud. In that case, only the
Bosonic potentiall flows, according to

du™ Ay
dA [ %Ad_z[ln(Az‘f‘ UII(A))

—(N=1)In(A2+U"M/p)], (59

a result consistent with the phenomenon of dimensional re?€W momentum scal& ., a
duction[17]. Moreover, ag3—o, we recover the expected Process is iterated until g is reached an
zero temperature result of Johnson, Shepard and McNe§l

[16], which is
du®™ A
T = 5 AT INCAN(AZ+g%p?) —In(A2+U" )
—(N=1)In(A2+UN/p)] (60)
A ’
dg( ):_ﬁ d-1 i(g”—l—Zg—
(99 p2+2g%g' p+g°)
-2
De
(N-1) (g’ 293}
+ —+—| 61
D, p De (6)

_ (Ao—AR)

AA N

(65

The field variable,¢, is discretized in a similar fashion,
ranging over thd +1 values¢, to ¢, . Integration is then
accomplished by fitting the quantities and g with expan-
sions of the form of Eq(62), and computingy’, g”, U”,
etc., from the expansion coefficients. Thé&h,and g at the

, are computed for eacth; . This
dJ(AIR)(d)i) and
(MR)( ;) are determined for each of the- 1 values of¢; .
For the calculations shown here, the number of fitting terms
used is 10, with 4000 integration steps alakg The inde-
pendent variabley ranges from 0 to 1.5 and is divided into
50 subintervals.

OnceUXR)(¢) andg™R)($) have been determined nu-
merically, we extract observables as follows: dropping the
(A r) superscripts, the expectation value of the scalar field,
(@), satisfies

So, we see that our equations readily reduce to the approprirne effective Yukawa coupling is given by
ate expressions in the limit of both high and low tempera-

tures.

IV. EVALUATION OF T,

U’'(¢=(¢))=0. (66)
The effective scalar masa is determined by
mP=U"($=($)) (67)
while the quartic scalar self-coupling is
N=U"(p=(a)). (68)
9=9($=(9)). (69

We have yet to specify the value of any of the input pa-
rameters of the model and thereby set the scale for our cal-

Having derived the RG flow equations for the model in culations. Clearly, it is necessary to do so to make physically
accordance with the local potential approximation, we nowmeaningful predictions. Therefore, due to the dearth of the-
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oretical or experimental constraints at the scale of the UV 1
cutoff, we look to observables at the IR scale to constrain the

free parameters of the model. It may be argued that one o

the parameters most rigidly constrained by low energy date

is the value of the pion decay constaht,. For this reason,

we tune the input bare scalar masg so that atT=0, the 08
vacuum expectation value of the scalar field is 92.4 MeV,
e, (dy="1,.

For our UV cutoff, we select a value of 1 GeV since at *
this energy the dynamics of the strong interactions begin to
be dominated by nonlocal mesonlike effective four quark 92T
interactions which are not computable by means of perturba:
tive methods[20]. Moreover, below this scale, at approxi-
mately 600 MeV, it is thought that quarks are supplemented
by additional degrees of freedom in the form of mesonic
bound states. We note that this is well above the confinemen =02 20 100 120 140 60 180
scale of Aqgcp=200 MeV, implying that at this scale there T (MeV)
exists a mixture of quarks and mesons. Presumably, the me-
son dynamics may be described by light quarks with a
Yukawa coupllng,_wnh leading orde_r gluon effects aCCO_umedvalues of\ g (0=\y=30) and a physically relevant range of
for by the formation of the mesonic bound states. It is X Jlues of (2<g,=<3.5). Renormalized parameters were
pected that other hadronic bound states provide only sub- 9o (£=0o=23.9). P

leading contributions to the dynamics since their masses ar%alculated for a series of values Bf
9 Y We have plotted in Fig. 1 the renormalized expectation

greater than those of the light scalar mesons. Consequentl\yalue of the scalar field as a function of temperature. It is

we believe _that our |mpler_nentat|0n_ O.f the linear Slgmaapparent that this quantity goes to zero continuously as we
model constitutes an effective description of some of thea roach the critical temperature, thereby characterizing the
dynamics of QCD at scales below 1 GeV. In addition, due to PP b ’ y 9

the decoupling of the quarks, and the entire colored sector (Rh_ase transmc_m as second order.. Calculation O.f this quantity
using a very fine mesh over the interval containihgcon-

the theory with them, the matter of confinement likely has.. ms this assertion. According to WilczgR3], this is some-

little influence on the meson dynamics at scales less than 3 gin of a special case. occurring onlv when two flavors of
MeV. We therefore set our IR scale at 135 MeV since the- "9 P ! g only

flow of the couplings effectively stops at scales below thequ_arks are modelfa_d. For three or more qua_rk flavors,_th_e
pion mass chiral phase transition appears to be discontinuous. This is
This leaves us with two bare parameters still unfixed: thesupported by a numper of numenc{;ﬂ] apd analytl_ca[25] .
quartic scalar coupling., and the Yukawa couplingg works addressing this problem. A likely interpretation of this
Since preliminary work Svith scalar only mode]82] sug- is that forN;= 3, fluctuations grow so large ne#g that they

ests that the values af, and g are not entirely indepen- induce a first order transitiof2].
g 0 ¥ to y Indep Further examination of Fig. 1 clearly shows that the value
dent, we calculaté&  for a variety of values ok, tuning g

for each case to ensure that B0, (¢)=1.. In this way of T, is approximately 118 MeV, which compares favorably

we assess the sensitivity of our valueTof with respect to with the result of Bergeset al. [20], who have obtained a

Finally, although our zero-density model does not include °
nucleons, we know that the Goldberger-Treiman relation as-
serts thatg=M/3f ,=3.7. Thus, since we are aware that 5T
the quark-meson coupling is strong/afz, our calculations
use values of, such that renormalized values gfie in the
range 2.8<g<4.0 (see, e.g., Ref.16] for more discussion
We may therefore assess the variationTgfwith g, for a
physically relevant range of values of the renormalized cou-E
pling g. This is similar to the approach of Bergg)] which
fixes gy and usedMy as phenomenological input.

In this way, we have computed the expectation value of
the scalar field ¢) and the renormalized values of the scalar
massm, the quartic coupling\, the Yukawa couplingy for
temperatures ranging from 60 to 180 MeV. Figures 1-4 dis-
play these four quantities as functions of temperature ovel 0

o>

FIG. 1. Vacuum expectation value @f vs T.

this range. These plots correspond to the following values of & 8 100 T(ﬁgv) 140 160 180
the input parametera:;=10.0; go=3.0; uo=28.5. They are
representative of the results obtained for a wide range of FIG. 2. Renormalized scalar mass¥s
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60 . . . . . 140
130 |
a0t
= e o120 f
20 |
110 |
0 . . . . . 100 | s . 2' ' -
60 80 100 120 140 160 180 -10 0 0 0 30 0
T (MeV) A
FIG. 3. Renormalized quartic coupling s FIG. 5. Variation ofT. with Xo.

valu_e of 115 MeV for a calculation similar to_ours, but in- o (¢), we observe a monotonic increaserofin the sym-
volving a _smooth _cutoﬁ approach. Our_ result is also reasonmetric phase. This is expected sinoecorresponds to a rel-
ably consistent with the results of lattice gauge theory. For

example, Karsch27], using Monte Carlo techniques, finds evant operator of the RG flow.
! ’ ' Fi ispl h li i i
that forN,=2, To~150 MeV. igure 3 displays the renormalized quartic couplings a

. : . function of temperature. We observe that the valug oes
We also note the appearance of a slight cusp in the figu b

r . i . .
at about 80 MeV, as well as in Figs. 2—4. This is a ConsefPap|dIy with T up to the temperature at which the fermions

- c . decouple from the theory. We expect lambda to be a relevant
quence of the last Fermionic mo.de dgcoupllng from our.sy%perator atT not equal to zero since our four-dimensional
temt as ;hteh tetrr?perat;lre gses, 'T%Iyéngf tha:hthe .'i.errr'tom(fheory becomes effectively three-dimensional for nonzero
sec ?r 0 h € b eory aﬁ decoup ed betore the critical temy,q signature of the phase transition is readily evident, with
perlal ‘;Te 2as eeﬁ; reealf)tteed the renormalized scalar mmass the value ofA leveling off in the symmetric phase.

9. £, W Ve p 1zed S In Fig. 4 we see the temperature dependence of the renor-
as a function of temperature. We see that the signature of trl%alized Yukawa couplingg. The value of this coupling is

Ip\)/lha\feT:]ratntiltlovn IIS cll?nacrjly V'i'btler at ﬁhf rmlmThum rOf ;1i8monotonically decreasing as the system heats up, and the
ev. Thatthe value omdoes not reach zero € grapn is signature of the phase transition is also visible as an abrupt

ldL:edt%.t:e f?(.:t t:wadt tr;ﬁ valuest ﬁfflor V\_g]‘c'fCh mh\{vis cilgu- change in the slope @. However, the running Yukawa cou-
ated did not include the exact vaiue ofior which m==9. pling depends only modestly on temperature for

However, a calculation of the value ofin the neighborhood  _ ;54 \1ev losing less than 10% of its value betweEn
of T using a fine mesh shows thatdoes actually go to zero —60 MeV éndT= 120 MeV. Moreover. a sizeable Yukawa

atT=T, as we expect. Due to the temperature dependencgoup”ng improves the predictive capability of our method

since it implies the rapid approach of the running couplings
to infrared fixed pointd28]. For this reason, the specific
form of U(p) at the UV cutoff scale is irrelevant, with the
as | ] exception of the value of3, the one relevant parameter of
the model. These results compare quite well with the work of
Berges[20], particularly when we correct for the wave-

4 T T T T T

a6 | ] function renormalization by which he rescales this coupling.
Variation of the bare quartic coupling, of the model for
o fixed gg shows a modest dependence of the valu& obn
a4l | No. This dependence is shown in Fig. 5 fokg

=0.0,10.0,20.0 and 30.0, witlyy=3.0 for all values of\.
Clearly, the value ofT. increases monotonically with .

sz | | However, this increase is relatively small given the sizeable
range of\y over which it occurs. This is consistent with
results obtained by similar methofi20]. Plots for other val-
ues ofgg reveal approximately the same dependencé of

60 80 100 120 140 160 180

T (MeV) on Ao. ) )
In Fig. 6, we see the dependenceTof on a physically
FIG. 4. Renormalized Yukawa coupling s relevant range of values aj,, with A\, fixed at a typical
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140 - - - - [20], as well as lattice gauge techniqyes].

Although our consideration of the linear sigma model in
the limit of exactSU(2) symmetry constitutes an effective
test to assess the application of our approach to a theory
relevant to modern nuclear physics, the work presented in
this paper is only a beginning for the application of the
present RG technique using a sharp momentum cutoff. It is
o 20| | easy to see that our work could readily be extended in sev-
eral ways. The most obvious extension is the consideration
of dynamically broken chiral symmetry; i.e., the addition of
explicit quark mass terms to the Lagrangian of Eq. This
10 1 would allow us to make calculations involving a nonzero
pion mass, and would therefore permit the calculationrof
— 71 scattering lengths at finite temperature. In fact, this work
has been done for the case of zero temperature by Johnson,

130

100

15 2 25 3 35 4 Shepard and McNeil16], and is of considerable algebraic
% complexity, even af=0. It is therefore likely that consid-
FIG. 6. Variation ofT, with go. eration of this problem af #0 would constitute a major

research effort, although it is almost certainly feasible and
value of 10.0. Here, as in Fig. 5, we observe fRaincreases has been investigated by others using somewhat different

with go, though the change is relatively minor. We havemethods20. . . - o
found this behavior to be consistent for different values of Another pOSSIb.I|I"[y is the |nclu5|_on of finite density in our
\o. For smaller values ok o, the curve is effectively trans- calculation, permitting an analysis of nuclear phenomena.

lated down by a few MeV. Conversely, for,>10.0, the We speculate that it might be possible to do this by phasing
curve is translated up by a corresponding amount. out the flow of Fermionic modes in the neighborhood of the

Given the relatively limited sensitivity of our value @, Fermi momentumke, in accordance with the Fermi-Dirac

to changes in the quartic and Yukawa couplings, we believd!Stribution, with Bosonic modes continuing to flow. In this
that our method provides a reasonably robust determinatiof®: W€ Cf?UId presumably directly account for finite tem-
of this quantity. However, the absence of any specific conPerature efiects. . . .

finement mechanism in our treatment of the problem ma It may a}lso _be possible to include strangeness in our work
need to be addressed. Specifically, it has been remarked t extending it tQSU(?’)X_SU(S)' AS rer_narked by_\_]ung-
the effective QCD gauge coupling increases more rapidly a'f"Ckel and _\Netten(_:rﬁ28], this would require the addition of
high temperaturé21], leading to an increase dfocp with two more field variants. Due to the significantly larger mass
this parameter. Thus, as the renormalization Qsahlgets of the strange 'qu.ark,. this symmetry is much more p_roken n
closer 10 \qco, he effects of quark sector confnemen: "L1E louh s ol of e pheriomenologea uly,
should be increasingly significant. This observation may be Y, PP

tempered by the recollection that the fermions decouple frorﬁechnique to NJL model; at finite .tempe.rat@ze], th‘? well
our RG flow asT reaches the valu&/; i.e., the decoupling known Skyrme Lagrangiaf80], or, in the interest of includ-

obviously occurs earlier in the flow for higher temperatures.ing specific mechanisms for the confinement character'istic of
In the end, though, we cannot be certain that significant cothE‘ljD' theleT ?aghmode[Sl]i Thusi, the(;elare adcgn§|q§r- I
finement related corrections to the meson physics of oufto'€ humber of pnenomenoiogical models, and individua

model can be ignored if exceeds the valud/ variations of them, which may be investigated using our
Qcb ' technique.

V. SUMMARY AND OUTLOOK
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The focus of this work has been the application of the

local potential RG approximation to the linear sigma model This work was supported by the DOE under Contract No.
at finite temperature. We have shown that this technique erBE-FG03-93ER40774.

ables us to account for the essential dynamics of the theory
while effectively including the effects of thermal fluctua-
tions. In particular, we have observed the existence of a ther-

mally induced phase transition, and have been able to deter- This appendix provides detailed derivations of Gaussian

mine the critical temperatur&. at which chiral symmetry integral formulas used to formally evaluate path integral ex-
breaking spontaneously occurs, which as we have explaineg@ressions in the text.

is of some relevance to the real world of QCD. Our efforts |t is a familiar fact that
yielded values fofl ; ranging from approximately 105 to 135
MeV, with a weak dependence upon the bare quartic and
* a
f dxe ' = \ﬁ
o0 o

APPENDIX A: GAUSSIAN INTEGRALS

Yukawa couplings of the model. These observations are con-

Al
sistent with results obtained by means of similar RG methods A
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This result may be generalized to a Gaussian integral of % . . - - —
real variables: f dzdzy . ..dz,dz expix] bjz+id] z;+id;z}")

[’

I(b):J’OC Xm .. .anqu_Xibinj}, (AZ) :(dzeﬂt-)BneXF(idTB_ld)v (A8)

where theb;; are elements of a matrB. If 1(b) isto be real, \whereB is again assumed to be an invertible Hermitian ma-
thenB must be Hermitian. We assume that this is the case ifirix, and d; is a complex constant.

what follows. We may perform a similarity transformation by Finally, we must consider Gaussian integrals of Grass-
means of the unitary matri, to the diagonal matrix mann variables, i.e., variables obeying the relation

B'=U'BU. (A3) {72, 76} =0. (A9)

The Hermiticity of B implies that the matriXJ may always  Thjs, together with the definition of Grassman integration
be constructed from the eigenvectorsBxf We now define

new variables of interesk;=U;;z;. Our integral becomes
f dm/=f dy*7*=1, (A10)
n
I(b)=J dz, .. .dsz(z)exp{ —> N2, (Ad)
“ =t f dn:fdn*:o, (A11)
with \; thei®" eigenvalue oB andJ(z) the Jacobian asso-
ciated with the unitary transformation. However, the Jacodeads to
bian of a unitary transformation is simply unityp to an
irrelevant phase which may be absorbed into the definition of N o
the transformation matrixJ). By virtue of this fact,l(b) f dy*dze =1 (A12)
may now be evaluated as a product of simple Gaussian inte-
grals of the form of Eq(A1): for a complex Grassmann variabke This is readily ob-
tained by means of a power series expansion of the exponen-
! " \ 12 tial, together with the above definition of Grassmann integra-
|(b)=a"2[ (\)¥2= ( detB) (A5 tion.

For the case oN complex Grassmann variables, we have

We note, however, that each of the simple Gaussian integrals
contributing to the above expression is well defined only if |:J dypidy, ... dyidyexp— 7 M 7)), (A13)
the associated eigenvalue is nonzero and positive.

The preceding example may be extended to include in the

exponential a term linear iv . To do this, we translate by ~ WhereM;; are the elements of amx nc-number matrixv.
a constant;/2, so thate defines am-dimensional vector. e assume tha¥l is Hermitian so that is a realc number.

Since the limits of integration are infinite, this leaves the The Hermiticity ofM implies that it may be diagonalized by
value of the integral unchanged, and we have means of some unitary matri¥ so that the matrixP
=VMV ' is diagonal with elements

= 1 .
I(b)zJ’x XmaneX[{—le,JX]iala”XJ—Zalb”aj> P”:)\(I)(S” (A14)
(AG) The Grassmann variables are then transformeg; toV;;
and, as above, by virtue of the unitarity éf the Jacobian of

Assuming that the matriB has an invers8 ! and definin . S . . )
g 9 this transformation is unity. The integral may then be written

Ci=ajbj;, it is apparent thatvibijaj=ci(B‘1)ijcj. Insert-

ing this result into Eq(A6) yields as
N
I(b)=J dxg . .. dx,exp(—X"Bxxc'x) |:£[l d&rdéexp —NDg &), (A15)
a0\ 12 1 _— " By means of Eq(A12) this becomes
= m ex ZC Cl. ( ) N
. . o I1=]] \O=detm. (A16)
If we wish to consider a Gaussian integral over complex r=1

variables of the fornz,=x,+Y, , the preceding results may
be readily extended to give This result may be readily extended to show that

085025-11
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From Eq.(42) we have the matriX defined as
f dpidyy ... dyidynexp — 7'M y+3T9+ 5'J)

=detM exp(JTM 1), (A17) - iy w,+ 7 B)
N _ K=-8 X+(K1+K2+K3+K4+K5)—D X+
for a Hermitian matrixM and complex Grassmann constants F (B1)

{3
APPENDIX B: THE K MATRICES where the matrice¥; are given by the following expres-

This appendix shows the specific form of tkematrices  sions:
which are part of the derivation of the RG flow equations.

g!2¢2 IZd)ﬂ, g,2¢772 g,2¢773

12 12 __2 12 12
9'“me¢ g'cmy Q' Cmm, g Cmms

Ky= 9'%mp  9'lmam 9/2775 9'moms | (B2)
9'27T3¢ 9'2773771 9/2773772 92773
299" , , 299 299’ 299’
+ [ —_ —_—
—¢ P by p P p p3
299’ 299’ 299’ 299’
T TW%‘FQZ T T T3
Ka=| 2gg’ 299’ 299' , , 299’ : (B3)
mop Ty TTF2+9 T3
299’ 299’ 299’ 299" ,
—— 7+
P T3 P T3 P 372 m3Tg
—(p?+ m))—a? — WL T3
, (q§2+772)+a 0 X w3
99
K3_7'717 Ty — ¢, 0 —(m?+ 7w —a? | (B4)
— T3 — T3¢ (772+7T§)—a2 0
— LT —(¢p?+ ) —a? T3
/ T o 0 — ¢y —(7r§+w§)—a2
99
K== 1727 (24 md)+a? ¢ 0 T3¢ ! (BS)
—mmy  (mi+wh)—al — T3 0
— ¢, —¢m  (¢*+mh)+a?
, 0 (7T§+7T§)+a2 X
99
Ke== i3’ — (w2 +m)—a? 0 ~mp | (B6)
—(¢2+72)+a — ¢y Ty 0
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with a?=g?p/gg’.

APPENDIX C: SIMILARITY TRANSFORMATION

This appendix contains details of the similarity transfor-

mation used to facilitate the derivation of the RG flow equa-

tions.
From Eq.(49), we must evaluate

(CD

detU- def1+ U~ [W—2(N+K)]},

which, owing to the Grassman nature of the matri¢ésN
and K, only requires explicit evaluation of the diagonal

PHYSICAL REVIEW D 67, 085025 (2003

¢ m m w3

| -m ¢ 0 0
Sol-m 0 ¢ o (€2

—ms 0 0 &

which diagonalizesU and leaves the value of detun-
changed. The transformed matrices, denoted by primes, are
then given by, e.g.,

U'=sus?
qZ+U” 0 0 0
0 a?+U'lp 0 0
0 0 aZ+U’'lp 0 ,
0 0 0 a’?+U'/p

(C3

terms of each of these three matrices. However, calculation_ . _ .
of detU is more complex, and for this reason we employ awith the other matrice®V, N and K, transforming in an

similarity transformatiors, given by

identical fashion.
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