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Finite temperature renormalization group effective potentials for the linear sigma model

J. D. Shafer and J. R. Shepard
Department of Physics, University of Colorado, Boulder, Colorado 80309-0446

~Received 7 May 2002; published 28 April 2003!

We derive an approximate renormalization group~RG! solution for the linear sigma model of Gell-Mann and
Levy at finite temperature. For our purposes, the Fermionic degrees of freedom of the model are interpreted as
quarks which interact via thes andp mesons to provide a phenomenological description of hot nuclear matter
at temperatures from 1 GeV to approximately 100 MeV. Our solution consists of two coupled, nonlinear flow
equations for the Yukawa coupling,g, of the model and the Bosonic effective potential,U. These equations are
solved numerically to study the behavior of the model as it evolves from high to low energy scales at finite
temperatureT. This allows us to determine the critical temperature,Tc , at which chiral symmetry breaking
occurs, and to assess the relative sensitivity of this quantity with respect to variations in the input parameters
of the model. Our results are consistent with values forTc obtained from other theoretical approaches such as
lattice gauge theory or other RG techniques.
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I. INTRODUCTION

In recent years, considerable effort has gone into the st
of relativistic quantum field theories at finite temperatu
Issues addressed in these studies range from the evoluti
the early universe to the deconfinement phase transitio
QCD. A powerful tool for understanding the structure
such theories is the renormalization group~RG! as originally
formulated by Wilson and co-workers@1#. Much recent work
on this subject~see, e.g., Ref.@2# for a collection of many
relevant references! has been based on the local effecti
potential approximation originally proposed in Ref.@3#. In
the present work, we extend our RG local effective poten
approach for finite temperature systems@4# to treat the linear
sigma model at finite temperature.

The linear sigma model of Gell-Mann and Levy w
originally formulated by Schwinger@5# in 1958. Since that
time, it has been thoroughly studied using a variety of te
niques, and has recently enjoyed a resurgence of popul
as the ‘‘chiral quark meson’’ model,@6,7# in which the Fer-
mion fields correspond to valence quarks. For our purpo
we will consider only the case of finite temperature spon
neous chiral symmetry breaking for the model, leaving
more complex case of finite temperature dynamical sym
try breaking for future work.

It is well known that the strong interactions in therm
equilibrium are significantly different at high temperatu
than at low temperature. For example, a phase transitio
some critical temperature may separate high and low t
perature physics@8#. In particular, it was realized early o
that such a transition should be closely connected to a qu
tative change in the chiral condensate^c̄c& in accordance
with the observation that spontaneous symmetry break
tends to be absent at sufficiently high temperatures. In a
tion, it has been pointed out that for small values of the
and down quark masses, the chiral transition is expecte
0556-2821/2003/67~8!/085025~13!/$20.00 67 0850
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share the universality class of theO(4) Heisenberg mode
@9,10#.

Our intent here is to determine the temperature,Tc , at
which chiral symmetry is spontaneously broken in the line
sigma model, to determine the order of the associated ph
transition, and to analyze the RG flow of the couplings as
temperature is raised. For our purposes, we assume the
son fields of the linear sigma model are approximations
degrees of freedom which would result from integrating o
the gluon degrees of freedom of QCD and introducing co
posite operators for the mesonic bound states@11,12#. Our
Fermionic fieldsc may then be identified as quark degre
of freedom which acquire a massM by virtue of the appear-
ance of a nonzero vacuum expectation value of the sc
field, f, of the model. The interesting part of the flow of th
resulting action is then due to quark and meson fluctuati
about the tree-level ground state, as well as the thermal fl
tuations which appear at nonzero temperature.

Such techniques may prove to be particularly useful
e.g., the study of high temperature phase transitions in
Higgs sector of the standard model and their possible c
nection to the generation of baryonic asymmetry in the u
verse. Lattice Monte Carlo methods have been the prim
means used to determine the nonperturbative content of
effective potential in such problems to date. We expect t
our finite temperature RG techniques will be a use
complement to lattice MC calculations especially since,
the analysis which follows, we take pains to make care
comparisons between RG and lattice calculations through

II. REVIEW OF LINEAR SIGMA MODEL

Our model involves a Fermionic isodoublet fieldc with
zero bare mass, a triplet of pseudoscalar pions, and a s
field f. The Lagrangian is written as
©2003 The American Physical Society25-1
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L5
1

2
@~]mf!21~]mpW !2#2U~r!1c̄@ iZ~r!gm]m2V~r!#c,

~1!

where

U~r!5
m2

2
~f21pW 2!1

l

4
~f21pW 2!2 ~2!

and

V~r!5g~r!G5g~r!~f1 i tW•pW g5!. ~3!

Here, we have defined

r2[f21pW 2, ~4!

and explicitly included the Fermionic wave-function reno
malizationZ(r). This Lagrangian is invariant under the o
erations of parity, charge conjugation and time reversal,
it is renormalizable@13–15#. In addition, the model has sym
metries under the groupsSUV(2) andSUA(2).

We now briefly examine the issue of spontaneously b
ken symmetry. When the quantitym2 of Eq. ~2! is negative,
the potentialU(r) has a minimum for a nonzero value ofr,
namely

r25v2[f21p252
2m2

l
. ~5!

We can now rewrite the Lagrangian of Eq.~1! in terms of the
shifted fieldf85f2v as

L5c̄@ iZ~r!gm]m1gv1g~f1 i tW•pW g5!#c1
1

2
@~]mf8!2

1~]mpW !2#1
1

2
~m213lv2!f821

1

2
~2m21lv2!pW 2

1lvf8~f821pW 2!2
l

4
~f821pW 2!21f8~m2v1lv3!.

~6!

Inspection of this familiar expression reveals that the p
field remains massless, while the fermion and scalar fie
have acquired masses given by

mc5gv, ~7!

m25m213lv2, ~8!

respectively. Thus, even though our Lagrangian is invar
underSUL(2)3SUR(2), thef andpW fields no longer form
a multiplet with equal masses. This chiral symmetry has b
‘‘spontaneously’’ broken. It is our objective to determin
how fluctuations alter this simple tree-level picture of t
broken symmetry ground state.

We note that chiral symmetry may also be broken ‘‘d
namically’’ by the addition of a new termcf to the linear
sigma model Lagrangian. The application of zero tempe
08502
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ture RG techniques~which constitute the starting point of ou
finite temperature RG approach! to the linear sigma mode
with dynamical symmetry breaking has recently been und
taken by Johnson, Shepard and McNeil@16#. However, in the
present work we focus solely on spontaneous chiral sym
try breaking. Extension of the formulation presented here
include dynamical symmetry breaking is straightforward b
results in a considerable increase in algebraic complex
Moreover, the presence of dynamical symmetry break
should have little influence on the properties of the grou
state at temperatures nearTc , the chiral transition tempera
ture.

III. DERIVATION OF THE RG FLOW EQUATIONS

We begin the derivation of our finite temperature RG flo
equations with the Euclidean action for the linear sigm
model at finite temperature, obtained from Eq.~1! by means
of the usual Wick rotation:

SE5E
0

b

dtE d3xH 1

2
~]Ef!21

1

2
~]EpW !21U~r!

1c̄FZ~r!S g0
]

]t
2 igW •¹ D1V~r!GcJ . ~9!

Here we have employed the Euclidean, or imaginary tim
approach of Matsubara@18,19#, with the boson~fermion!
fields periodic~antiperiodic! in thet direction with periodb.

The fieldsf(x) andc(x) are expanded in terms of the
Fourier components as

f~xW ,t!5f01w~xW ,t!

5f01S b

VD 1/2

(
n,qW iÞ0

ei (qW i•xW12np/bt)fn~qW i !, ~10!

and

c~xW ,t!5x1eip/bt1
1

AV
(

n,qW iÞ0

ei [qW i•xW1(2n11)p/bt]xn~qW i !,

~11!

while pW (x) is expanded similarly as

pW ~xW ,t!5pW 01S b

VD 1/2

(
qW i ,nÞ0

jWn~qW i !e
i (qW i•xW12np/bt). ~12!

Normalization of the fields is chosen so that the Fourier a
plitudes are dimensionless, and so that standard therm
namic identities are recovered using the present path inte
formalism.

The potentials are also expanded via a Taylor series.
bosonic potentialU becomes
5-2
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U~r!5U~r0!1Uf uf0 ,pW 0
f1UpW uf0 ,pW 0

jW1
1

2!
UffU

f0 ,pW 0

f2

1
1

2!
Ufp i

U
f0 ,pW 0

fj i1
1

2!
Up ifU

f0 ,pW 0

j if

1
1

2!
Up ip j

U
f0 ,pW 0

j ij j1 . . . , ~13!

with a similar expression forV.
After a bit of algebra, we find the following expression

for derivatives of the potentialsU andV:

]U

]f
5m2f1lfr2, ~14!

]U

]p i
5m2p i1lp ir

2, ~15!

]2U

]f2
5m21l~f21r2!, ~16!

]2U

]p i]p j
5m2d i , j1ld i , jr12lp ip j , ~17!

]2U

]f]p i
5

]2U

]p i]f
52lfp i , ~18!

and

]V

]f
5g8

f

r
G1g, ~19!

]V

]p i
5g8

p i

r
G1 i t ig

5g, ~20!

]2V

]f2
5Fg9S f

r D 2

1
g8

r
2

g8f2

r3 GG12
g8f

r
, ~21!

]2V

]p i]p j
5Fg9

p ip j

r2
1

g8d i , j

r
2

g8p ip j

r3 GG

1
g8

r
~p it j1p jt i !ig

5, ~22!

]2V

]f]p i
5

]2V

]p i]f
5Fg9

p if

r2
2

g8fp i

r3 GG

1
g8f

r
i t ig

51
g8p i

r
, ~23!

where it is understood that in what follows, all the deriv
tives are to be evaluated atf5f0 andpW 5pW 0, as indicated
in Eq. ~13!, and that primes denote derivatives with resp
to r.
08502
-

t

By virtue of the expansions of Eqs.~10!–~23! and the
orthogonality of the field components, the Bosonic portion
the action,

SEB
5E

0

b

dtE d3xH 1

2
~]Ef!21

1

2
~]EpW !21U~r!J ,

~24!

may be written as

bVU~r0!1
bV

2 (
qW i ,nÞ0

@fn* ~qW i !j1n* ~qW i ! j2n* ~qW i ! j3n* ~qW i !#

3S qi
21Uff Ufp1

Ufp2
Ufp3

Up1f qi
21Up1p1

Up1p2
Up1p3

Up2f Up2p1
qi

21Up2p2
Up2p3

Up3f Up3p1
Up3p2

qi
21Up3p3

D
3S fn~qW i !

j1n~qW i !

j2n~qW i !

j3n~qW i !

D ~25!

to second order in the field amplitudes. Here,qi
2[qW i

21vn
2

and vn[2np/b is the nth Matsubara frequency. We wil
henceforth refer to the above matrix of derivatives ofU asU.

In a similar fashion, we now consider the Fermionic po
tion of Eq. ~9!, consisting of

SEF
5E

0

b

dtE d3xH c̄FZ~r!S g0
]

]t
2 i g¢•¹ D1V~r!GcJ .

~26!

Proceeding as in the case of Eq.~24!, the kinetic term of this
expression may be written as

bVZH x̄1g0x1i
p

b
1

1

V (
qW i ,nÞ0

x̄n~qW i !

3F ig0S vn1
p

b D1gW •qW i Gxn~qW i !J , ~27!

where we now omit ther dependence ofZ. In addition, we
have terms quadratic in the Bosonic field amplitudes wh
involve the uniform Fermionic amplitudesx̄1 andx1 from
the expansion of the Fermionic potentialV. We denote the
resulting matrix of these terms asW, with

W5x̄1~W11W21W31W4!x1 ~28!

where
5-3
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W15
b

2

g9

r2
GS 1

p2f p2p1 p2
2 p2p3

p3f p3p1 p3p2 p3
2
D , ~29!

W25
b2

2

g8

r
GS 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
D , ~30!

W352
b2

2

g8

r3
GS f2 fp1 fp2 fp3

p1f p1
2 p1p2 p1p3

p2f p2p1 p2
2 p2p3

p3f p3p1 p3p2 p3
2
D , ~31!

and

W452
b2

2

g8

r S 2f ift1g51p1 ift2g51p2 ift3g51p3

ift1g51p1 3ip1t1g5 p1t31p3t1 p1t31p3t1

ift2g51p2 p1t21p2t1 3ip2t2g5 p2t31p3t2

ift3g51p3 p1t31p3t1 p2t31p3t2 3ip3t3g5
D . ~32!
ic
We may now integrate over the nonuniform Fermion
field amplitudesx̄n(qW i) and xn(qW i), via the following RG
flow relation:

e2SE(L2DL)5)
qW i ,n

8(L)E dfn* ~qW i !dfn~qW i !djWn* ~qW i !

3djWn~qW i !dx̄n~qW i !dxn~qW i !e
2SE(L). ~33!

Making use of Eq.~A17! of Appendix A, and noting that
here

M5b@ iZg0~vn1p/b!1ZgW •qW i1g~r!~f1 i tW•pW g5!#,

~34!

J52b3/2Ffn~qW i !S g8f
G

r
1gDx1

1j1n~qW i !S g8p1

G

r
1git1g5Dx1

1j2n~qW i !S g8p2

G

r
1git2g5Dx1

1j3n~qW i !S g8p3

G

r
1git3g5Dx1G , ~35!
08502
and

J̄52b3/2F x̄1S g8f
G

r
1gDfn* ~qW i !

1x̄1S g8p1

G

r
1git1g5D j1n* ~qW i !x1

1x̄1S g8p2

G

r
1git2g5D j2n* ~qW i !

1x̄1S g8p3

G

r
1git3g5D j3n* ~qW i !G , ~36!

we may write that

detM5bNfCdH Z2FqW i
21S vn1

p

b D 2G1g2r2J NfCd/2

,

~37!

and

M215
1

b S g~f2 i tW•pW g5!2 iZg0~vn1p/b!2ZgW •qW i

Z2@qW i
21~vn1p/b!2#1g2r2 D

5
1

bDF
$gG†2Z@ ig0~vn1p/b!2gW •qW i #%, ~38!

where
5-4
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DF[Z2@qW i
21~vn1p/b!2#1g2r2

5Z2@L21~4n11!p2/b2#1g2r2 ~39!

since we are integrating over Fermionic modes satisfying
shell constraint defined by

qi
2[qW i

21S 2np

b D 2

5L2. ~40!

We may now write the productJ̄M21J asN1K whereN
denotes the matrix formed withgG†/DF andK identifies the
matrix containing the quantity2 iZg0(vn1p/b)/DF . We
note that the termgW •qW i /DF may be disregarded here sinc
the spherical symmetry of theqW i will cause this term to van-
08502
e

ish when we integrate over the spatial wave vectorsqW i in the
shell.

In order to facilitate computation and the increase the e
with which the equations may be written down, we break
matricesN andK into sums:

N5b2
x̄1

DF
~N11N21N3!x1 , ~41!

K52b2x̄1~K11K21K31K41K5!
iZg0~vn1p/b!

DF
x1 .

~42!

Here,
N15gg82 GS f2 fp1 fp2 fp3

p1f p1
2 p1p2 p1p3

p2f p2p1 p2
2 p2p3

p3f p3p1 p3p2 p3
2
D , ~43!

N25 ig2g8rS 22if ft1g52 ip1 ft2g52 ip2 ft3g52 ip3

f i t1g52 ip1 3p1t1g5 ~p1t21p2t1!g5 ~p1t31p3t1!g5

ft2g52 ip2 ~p1t21p2t1!g5 3p2t2g5 ~p2t31p3t2!g5

ft3g52 ip3 ~p3t31p3t1!g5 ~p2t31p3t2!g5 3p3t3g5
D , ~44!

N35g3S G† G†i t1g5 G†i t2g5 G†i t3g5

i t1g5G† 2t1G†t1 2t1G†t2 t1G†t3

ig5t2G† 2t2G†t1 t2G†t2 2t2G†t3

2 ig5t3G† 2t3G†t1 2t3G†t2 2t3G†t3

D , ~45!

with the explicit form of the more complexK matrices given in Appendix B.
Completing the integration over the Fermionic field amplitudes, we arrive at the expression

e2S(L2DL)5expH 2bVF x̄1g~r!Gx11x̄1Zg0
ip

b
x1G J FZ2S L21~4n11!

p2

b2D 1g2r2GNfCd/2

3)
qW i ,n

8(L)E dfn* ~qW i !dfn~qW i !djWn* ~qW i !djWn~qW i !

3exp5 2bVF U~r!1 (
qW i ,nÞ0

@fn* ~qW i !j1n* ~qW i !j2n* ~qW i !j3n* ~qW i !#S U1W2
2b

V
(N1K ) D S fn~qW i !

j1n~qW i !

j2n~qW i !

j3n~qW i !
D G 6 .

~46!
5-5
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We now perform the remaining integrations over the am
tudes of thepW and f fields. By means of the formulas o
Appendix A, we find

e2S(L2DL)5expH 2bVS x̄1g~r!Gx11x̄1Zg0
ip

b
x1D J

3)
qW i ,n

8(L)FZ2S L21~4n11!
p2

b2D
1g2r2GNfCd/2

3$det@U1W22~N1K !#%21/2, ~47!

which leads to

U (L2DL)1x̄1S g(L2DL)G1Zg0
ip

b Dx1

5U (L)1x̄1S g(L)GZg0
ip

b Dx1

2
1

bV (
qW i ,nÞ0

8(L)ln~DF!NfCd/21
1

2bV

3 ln det@U1W22~N1K !#. ~48!

Now, in order to facilitate the evaluation of the above det
minant of the matricesU, W, N andK , we perform a simi-
larity transformation on them, as outlined in Appendix
The determinant of the transformed matrices,U8, W8, N8
andK 8 may be written as

det@U81W822~N81K 8!#

5detU8•det$11U821@W822~N81K 8!#%,

~49!

and, by virtue of the Grassmann character ofW8, N8 and
K 8,

det$11U821@W822~N81K 8!#%

511 (
m51

4

Umm821@W822~N81K 8!#mm. ~50!

Consequently, we may evaluate the determinant ofU8 and
expand the log of the above expression to arrive at

ln det@U81W822~N81K 8!#

5 ln detU81x̄1H 1

Df
F S g912

g8

r D
22

~gg82r212g2g8r1g3!

DF
08502
-

-

.

12~g82r212gg8r1g2!
iZg0~vn1p/b!

DF
G

1
3

DpW
F S g8

r
1

2g3

DF
DG12g2

iZg0~vn1p/b!

DF
G J x1 ,

~51!

where we have retained only terms to lowest order inx̄1x1

and have defined

Df5qi
21U9(L)5L21U9(L), ~52!

DpW 5qi
21U8(L)/r5L21U8(L)/r. ~53!

Now, equating coefficients of like powers ofx̄1x1 , we
obtain the following system of coupled equations:

U (L2DL)5U (L)1
1

2bV (
qW i ,n

8(L)@ ln~L21U9(L)!

13 ln~L21U8(L)/r!#2
1

bV (
qW i ,n

8(L)

3 ln$Z2@L21~4n11!p2/b2#1g(L)2r2%NfCd/2

~54!

g(L2DL)5g(L)1
1

2bV (
qW i ,n

8(L)F 1

Df
S g912

g8

r
22D G

3
~gg82r212g2g8r1g3!

DF
1

3

DpW
F S g8

r
1

2g3

DF
D G .
~55!

Z(L2DL)5Z(L)H 12
1

2bV (
qW i ,n

8(L)

3F 1

Df
~2g82r212gg8r1g2!1

6g2

DpW
G

3
~2n11!

DF
J . ~56!

Here, in Eqs.~54!–~56!, we have omitted the superscriptL
for couplings and potentials in the summands, as well
their explicit r dependence, for the sake of brevity. Th
convention is observed in the following expressions.

We disregard the flow ofZ(L) and set it equal to unity. We
do this because it simplifies the numerical solution of t
flow equations, and also because our explicit calculati
including the flow ofZ show its influence to be of the orde
of 1–2%, with little if any effect on the critical temperatur
at which chiral symmetry breaking occurs. Then, in the co
tinuum limit, the flow equations for theO(N) linear sigma
model at finite temperature are:
5-6
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dU(L)

dL
52

Ad21

2b (
n52N

N

L~L22v2!1/2

3H NfCdlnFL21~4n11!
p2

b2
1g(L)2r2G

2 ln~L21U9(L)!2~N21!ln~L21U8(L)/r!J
~57!

dg(L)

dL
52

Ad21

2b (
n52N

N

L~L22v2!1/2H 1

L21U9(L)

3S g912
g8

r
22

~gg82r212g2g8r1g3!

DF
D

1
~N21!

L21U (L)8/r
Fg8

r
1

2g3

DF
G J . ~58!

Now, asb→0, the fermions decouple from the theory sin
the lowest lying fermion mode will then lie outside th
sphere of integration of radiusL. In that case, only the
Bosonic potentialU flows, according to

dU(L)

dL
52

Ad21

2
Ld22@ ln~L21U9(L)!

2~N21!ln~L21U8(L)/r!#, ~59!

a result consistent with the phenomenon of dimensional
duction @17#. Moreover, asb→`, we recover the expecte
zero temperature result of Johnson, Shepard and Mc
@16#, which is

dU(L)

dL
5

Ad

2
Ld21@NfCdln~L21g2r2!2 ln~L21U9(L)!

2~N21!ln~L21U (L)8/r!# ~60!

dg(L)

dL
52

Ad

2
Ld21F 1

Df
S g912

g8

r D
22

~gg82r212g2g8r1g3!

DF
G

1
~N21!

DpW
F S g8

r
1

2g3

DF
D G . ~61!

So, we see that our equations readily reduce to the appro
ate expressions in the limit of both high and low tempe
tures.

IV. EVALUATION OF Tc

Having derived the RG flow equations for the model
accordance with the local potential approximation, we n
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proceed to calculate the temperatureTc at which chiral sym-
metry breaking spontaneously occurs. To accomplish this,
numerically integrate Eqs.~57! and~58! using a power series
expansion forU(f) of the form

U (L)~f!5(
j 51

M U2 j~L!

2n
f2 j , ~62!

with a similar expression for the Yukawa couplingg. Bound-
ary conditions forU are specified by

U2~L0!5m0
2 , U4~L0!5l0 ,

and

U2 j~L0!50 for j >3, ~63!

while g(L0) is simply g0. Dividing the range of theL inte-
gration intoN equal length intervals, we have

Ln5L02nDL, ~64!

with

DL5
~L02L IR!

N
. ~65!

The field variable,f, is discretized in a similar fashion
ranging over theI 11 valuesf0 to f I . Integration is then
accomplished by fitting the quantitiesU and g with expan-
sions of the form of Eq.~62!, and computingg8, g9, U9,
etc., from the expansion coefficients. Then,U and g at the
new momentum scaleLn11 are computed for eachf i . This
process is iterated untilL IR is reached andU (L IR)(f i) and
g(L IR)(f i) are determined for each of theI 11 values off i .
For the calculations shown here, the number of fitting ter
used is 10, with 4000 integration steps alongL. The inde-
pendent variabler ranges from 0 to 1.5 and is divided int
50 subintervals.

OnceU (L IR)(f) andg(L IR)(f) have been determined nu
merically, we extract observables as follows: dropping
(L IR) superscripts, the expectation value of the scalar fie
^f&, satisfies

U8~f5^f&!50. ~66!

The effective scalar massm is determined by

m25U9~f5^f&! ~67!

while the quartic scalar self-coupling is

l5U+~f5^f&!. ~68!

The effective Yukawa coupling is given by

g5g~f5^f&!. ~69!

We have yet to specify the value of any of the input p
rameters of the model and thereby set the scale for our
culations. Clearly, it is necessary to do so to make physic
meaningful predictions. Therefore, due to the dearth of t
5-7
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oretical or experimental constraints at the scale of the
cutoff, we look to observables at the IR scale to constrain
free parameters of the model. It may be argued that on
the parameters most rigidly constrained by low energy d
is the value of the pion decay constant,f p . For this reason,
we tune the input bare scalar massm0 so that atT50, the
vacuum expectation value of the scalar field is 92.4 M
i.e., ^f&5 f p .

For our UV cutoff, we select a value of 1 GeV since
this energy the dynamics of the strong interactions begin
be dominated by nonlocal mesonlike effective four qua
interactions which are not computable by means of pertu
tive methods@20#. Moreover, below this scale, at approx
mately 600 MeV, it is thought that quarks are supplemen
by additional degrees of freedom in the form of meso
bound states. We note that this is well above the confinem
scale ofLQCD.200 MeV, implying that at this scale ther
exists a mixture of quarks and mesons. Presumably, the
son dynamics may be described by light quarks with
Yukawa coupling, with leading order gluon effects accoun
for by the formation of the mesonic bound states. It is e
pected that other hadronic bound states provide only s
leading contributions to the dynamics since their masses
greater than those of the light scalar mesons. Conseque
we believe that our implementation of the linear sigm
model constitutes an effective description of some of
dynamics of QCD at scales below 1 GeV. In addition, due
the decoupling of the quarks, and the entire colored secto
the theory with them, the matter of confinement likely h
little influence on the meson dynamics at scales less than
MeV. We therefore set our IR scale at 135 MeV since
flow of the couplings effectively stops at scales below
pion mass.

This leaves us with two bare parameters still unfixed:
quartic scalar couplingl0 and the Yukawa couplingg0.
Since preliminary work with scalar only models@22# sug-
gests that the values ofl0 andm0 are not entirely indepen
dent, we calculateTc for a variety of values ofl0, tuningm0
for each case to ensure that atT50, ^f&5 f p . In this way
we assess the sensitivity of our value ofTc with respect to
l0.

Finally, although our zero-density model does not inclu
nucleons, we know that the Goldberger-Treiman relation
serts thatg.MN/3f p.3.7. Thus, since we are aware th
the quark-meson coupling is strong atL IR , our calculations
use values ofg0 such that renormalized values ofg lie in the
range 2.0,g,4.0 ~see, e.g., Ref.@16# for more discussion!.
We may therefore assess the variation ofTc with g0 for a
physically relevant range of values of the renormalized c
pling g. This is similar to the approach of Berges@20# which
fixes g0 and usesMN as phenomenological input.

In this way, we have computed the expectation value
the scalar field̂f& and the renormalized values of the sca
massm, the quartic couplingl, the Yukawa couplingg for
temperatures ranging from 60 to 180 MeV. Figures 1–4 d
play these four quantities as functions of temperature o
this range. These plots correspond to the following value
the input parameters:l0510.0; g053.0; m058.5. They are
representative of the results obtained for a wide range
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values ofl0 (0<l0<30) and a physically relevant range o
values ofg0 (2<g0<3.5). Renormalized parameters we
calculated for a series of values ofT.

We have plotted in Fig. 1 the renormalized expectat
value of the scalar field as a function of temperature. It
apparent that this quantity goes to zero continuously as
approach the critical temperature, thereby characterizing
phase transition as second order. Calculation of this quan
using a very fine mesh over the interval containingTc con-
firms this assertion. According to Wilczek@23#, this is some-
thing of a special case, occurring only when two flavors
quarks are modeled. For three or more quark flavors,
chiral phase transition appears to be discontinuous. Thi
supported by a number of numerical@24# and analytical@25#
works addressing this problem. A likely interpretation of th
is that forNf>3, fluctuations grow so large nearTc that they
induce a first order transition@26#.

Further examination of Fig. 1 clearly shows that the va
of Tc is approximately 118 MeV, which compares favorab
with the result of Berges,et al. @20#, who have obtained a

FIG. 1. Vacuum expectation value off vs T.

FIG. 2. Renormalized scalar mass vsT.
5-8
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FINITE TEMPERATURE RENORMALIZATION GROUP . . . PHYSICAL REVIEW D 67, 085025 ~2003!
value of 115 MeV for a calculation similar to ours, but in
volving a smooth cutoff approach. Our result is also reas
ably consistent with the results of lattice gauge theory.
example, Karsch@27#, using Monte Carlo techniques, find
that for Nf52, Tc.150 MeV.

We also note the appearance of a slight cusp in the fig
at about 80 MeV, as well as in Figs. 2–4. This is a con
quence of the last Fermionic mode decoupling from our s
tem as the temperature rises, implying that the Fermio
sector of the theory has decoupled before the critical te
perature has been reached.

In Fig. 2, we have plotted the renormalized scalar masm
as a function of temperature. We see that the signature o
phase transition is clearly visible at the minimum of 1
MeV. That the value ofm does not reach zero in the graph
due to the fact that the values ofT for which m was calcu-
lated did not include the exact value ofT for which m50.
However, a calculation of the value ofm in the neighborhood
of T using a fine mesh shows thatm does actually go to zero
at T5Tc , as we expect. Due to the temperature depende

FIG. 3. Renormalized quartic coupling vsT.

FIG. 4. Renormalized Yukawa coupling vsT.
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of ^f&, we observe a monotonic increase ofm in the sym-
metric phase. This is expected sincem corresponds to a rel
evant operator of the RG flow.

Figure 3 displays the renormalized quartic couplingl as a
function of temperature. We observe that the value ofl rises
rapidly with T up to the temperature at which the fermio
decouple from the theory. We expect lambda to be a relev
operator atT not equal to zero since our four-dimension
theory becomes effectively three-dimensional for nonzeroT.
The signature of the phase transition is readily evident, w
the value ofl leveling off in the symmetric phase.

In Fig. 4 we see the temperature dependence of the re
malized Yukawa coupling,g. The value of this coupling is
monotonically decreasing as the system heats up, and
signature of the phase transition is also visible as an ab
change in the slope ofg. However, the running Yukawa cou
pling depends only modestly on temperature forT
<120 MeV, losing less than 10% of its value betweenT
560 MeV andT5120 MeV. Moreover, a sizeable Yukaw
coupling improves the predictive capability of our meth
since it implies the rapid approach of the running couplin
to infrared fixed points@28#. For this reason, the specifi
form of U(r) at the UV cutoff scale is irrelevant, with th
exception of the value ofm0

2, the one relevant parameter o
the model. These results compare quite well with the work
Berges @20#, particularly when we correct for the wave
function renormalization by which he rescales this couplin

Variation of the bare quartic couplingl0 of the model for
fixed g0 shows a modest dependence of the value ofTc on
l0. This dependence is shown in Fig. 5 forl0
50.0,10.0,20.0 and 30.0, withg053.0 for all values ofl0.
Clearly, the value ofTc increases monotonically withl0.
However, this increase is relatively small given the sizea
range ofl0 over which it occurs. This is consistent wit
results obtained by similar methods@20#. Plots for other val-
ues ofg0 reveal approximately the same dependence ofTc
on l0.

In Fig. 6, we see the dependence ofTc on a physically
relevant range of values ofg0, with l0 fixed at a typical

FIG. 5. Variation ofTc with l0.
5-9
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J. D. SHAFER AND J. R. SHEPARD PHYSICAL REVIEW D67, 085025 ~2003!
value of 10.0. Here, as in Fig. 5, we observe thatTc increases
with g0, though the change is relatively minor. We ha
found this behavior to be consistent for different values
l0. For smaller values ofl0, the curve is effectively trans
lated down by a few MeV. Conversely, forl0.10.0, the
curve is translated up by a corresponding amount.

Given the relatively limited sensitivity of our value ofTc
to changes in the quartic and Yukawa couplings, we beli
that our method provides a reasonably robust determina
of this quantity. However, the absence of any specific c
finement mechanism in our treatment of the problem m
need to be addressed. Specifically, it has been remarked
the effective QCD gauge coupling increases more rapidl
high temperature@21#, leading to an increase ofLQCD with
this parameter. Thus, as the renormalization scaleL gets
closer to LQCD , the effects of quark sector confineme
should be increasingly significant. This observation may
tempered by the recollection that the fermions decouple fr
our RG flow asT reaches the valueL/p; i.e., the decoupling
obviously occurs earlier in the flow for higher temperatur
In the end, though, we cannot be certain that significant c
finement related corrections to the meson physics of
model can be ignored ifLQCD exceeds the valueL/p.

V. SUMMARY AND OUTLOOK

The focus of this work has been the application of t
local potential RG approximation to the linear sigma mo
at finite temperature. We have shown that this technique
ables us to account for the essential dynamics of the the
while effectively including the effects of thermal fluctua
tions. In particular, we have observed the existence of a t
mally induced phase transition, and have been able to d
mine the critical temperatureTc at which chiral symmetry
breaking spontaneously occurs, which as we have explai
is of some relevance to the real world of QCD. Our effo
yielded values forTc ranging from approximately 105 to 13
MeV, with a weak dependence upon the bare quartic
Yukawa couplings of the model. These observations are c
sistent with results obtained by means of similar RG meth

FIG. 6. Variation ofTc with g0.
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@20#, as well as lattice gauge techniques@27#.
Although our consideration of the linear sigma model

the limit of exactSU(2) symmetry constitutes an effectiv
test to assess the application of our approach to a the
relevant to modern nuclear physics, the work presented
this paper is only a beginning for the application of t
present RG technique using a sharp momentum cutoff.
easy to see that our work could readily be extended in s
eral ways. The most obvious extension is the considera
of dynamically broken chiral symmetry; i.e., the addition
explicit quark mass terms to the Lagrangian of Eq.~1!. This
would allow us to make calculations involving a nonze
pion mass, and would therefore permit the calculation ofp
2p scattering lengths at finite temperature. In fact, this wo
has been done for the case of zero temperature by John
Shepard and McNeil@16#, and is of considerable algebra
complexity, even atT50. It is therefore likely that consid-
eration of this problem atTÞ0 would constitute a major
research effort, although it is almost certainly feasible a
has been investigated by others using somewhat diffe
methods@20#.

Another possibility is the inclusion of finite density in ou
calculation, permitting an analysis of nuclear phenome
We speculate that it might be possible to do this by phas
out the flow of Fermionic modes in the neighborhood of t
Fermi momentum,kF , in accordance with the Fermi-Dira
distribution, with Bosonic modes continuing to flow. In th
way, we could presumably directly account for finite tem
perature effects.

It may also be possible to include strangeness in our w
by extending it toSU(3)3SU(3). As remarked by Jung-
nickel and Wetterich@28#, this would require the addition o
two more field variants. Due to the significantly larger ma
of the strange quark, this symmetry is much more broken
nature though it is still of real phenomenological utility.

Finally, also worth consideration is the application of o
technique to NJL models at finite temperature@29#, the well
known Skyrme Lagrangian@30#, or, in the interest of includ-
ing specific mechanisms for the confinement characteristi
QCD, the MIT bag model@31#. Thus, there are a conside
able number of phenomenological models, and individ
variations of them, which may be investigated using o
technique.

ACKNOWLEDGMENT

This work was supported by the DOE under Contract N
DE-FG03-93ER40774.

APPENDIX A: GAUSSIAN INTEGRALS

This appendix provides detailed derivations of Gauss
integral formulas used to formally evaluate path integral
pressions in the text.

It is a familiar fact that

È`

dxe2ax2
5Ap

a
. ~A1!
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This result may be generalized to a Gaussian integral on
real variables:

I ~b!5 È`

dx1 . . . dxnexp$2xibi j xj%, ~A2!

where thebi j are elements of a matrixB. If I (b) is to be real,
thenB must be Hermitian. We assume that this is the cas
what follows. We may perform a similarity transformation b
means of the unitary matrixU, to the diagonal matrix

B85U†BU. ~A3!

The Hermiticity ofB implies that the matrixU may always
be constructed from the eigenvectors ofB. We now define
new variables of interest:xi5Ui j zj . Our integral becomes

I ~b!5 È`

dz1 . . . dznJ~z!expH 2(
i 51

n

l izi
2J , ~A4!

with l i the i th eigenvalue ofB andJ(z) the Jacobian asso
ciated with the unitary transformation. However, the Ja
bian of a unitary transformation is simply unity~up to an
irrelevant phase which may be absorbed into the definition
the transformation matrixU). By virtue of this fact,I (b)
may now be evaluated as a product of simple Gaussian
grals of the form of Eq.~A1!:

I ~b!5pn/2)
i 51

n

~l i !
1/25S pn

detBD 1/2

. ~A5!

We note, however, that each of the simple Gaussian integ
contributing to the above expression is well defined only
the associated eigenvalue is nonzero and positive.

The preceding example may be extended to include in
exponential a term linear inxi . To do this, we translatexi by
a constanta i /2, so thata defines ann-dimensional vector.
Since the limits of integration are infinite, this leaves t
value of the integral unchanged, and we have

I ~b!5 È`

dx1 . . . dxnexpS 2xibi j xj6a iai j xj2
1

4
a ibi j a j D .

~A6!

Assuming that the matrixB has an inverseB21 and defining
ci5a jbj i , it is apparent thata ibi j a j5ci(B

21) i j cj . Insert-
ing this result into Eq.~A6! yields

I ~b!5 È`

dx1 . . . dxnexp~2xTBx6cTx!

5S pn

detBD 1/2

expS 1

4
cTB21cD . ~A7!

If we wish to consider a Gaussian integral over comp
variables of the formzn5xn1yn , the preceding results ma
be readily extended to give
08502
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È`

dz1dz1* . . . dzndzn* exp~ ix j* bjkzk1 id j* zj1 id jzj* !

5
~2p!n

detB
exp~ id†B21d!, ~A8!

whereB is again assumed to be an invertible Hermitian m
trix, anddi is a complex constant.

Finally, we must consider Gaussian integrals of Gra
mann variables, i.e., variables obeying the relation

$ha ,hb%50. ~A9!

This, together with the definition of Grassman integration

E dhh5E dh* h* 51, ~A10!

E dh5E dh* 50, ~A11!

leads to

E dh* dhe2h* h51 ~A12!

for a complex Grassmann variableh. This is readily ob-
tained by means of a power series expansion of the expo
tial, together with the above definition of Grassmann integ
tion.

For the case ofN complex Grassmann variables, we ha

I 5E dh1* dh1 . . . dhN* dhNexp~2h i* Mi j h j !, ~A13!

whereMi j are the elements of ann3nc-number matrixM .
We assume thatM is Hermitian so thatI is a realc number.
The Hermiticity ofM implies that it may be diagonalized b
means of some unitary matrixV so that the matrixP
5VMV † is diagonal with elements

Pi j 5l ( i )d i j . ~A14!

The Grassmann variables are then transformed toh i5Vi j jk
and, as above, by virtue of the unitarity ofV, the Jacobian of
this transformation is unity. The integral may then be writt
as

I 5)
r 51

N E dj r* dj rexp~2l (r )j r* j r !. ~A15!

By means of Eq.~A12! this becomes

I 5)
r 51

N

l (r )5detM . ~A16!

This result may be readily extended to show that
5-11
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E dh1* dh1 . . . dhN* dhNexp~2h†Mh1J†h1h†J!

5detM exp~J†M21J!, ~A17!

for a Hermitian matrixM and complex Grassmann constan
$Ji%.

APPENDIX B: THE K MATRICES

This appendix shows the specific form of theK matrices
which are part of the derivation of the RG flow equations
08502
From Eq.~42! we have the matrixK defined as

K52b2x̄1~K11K21K31K41K5!
ig0~vn1p/b!

DF
x1 ,

~B1!

where the matricesK i are given by the following expres
sions:
K15S g82f2 g82fp1 g82fp2 g82fp3

g82p1f g82p1
2 g82p1p2 g82p1p3

g82p2f g82p2p1 g82p2
2 g82p2p3

g82p3f g82p3p1 g82p3p2 g82p3
2
D , ~B2!

K251
2gg8

r
f21g2

2gg8

r
fp1

2gg8

r
fp2

2gg8

r
fp3

2gg8

r
p1f

2gg8

r
p1

21g2
2gg8

r
p1p2

2gg8

r
p1p3

2gg8

r
p2f

2gg8

r
p2p1

2gg8

r
p2

21g2
2gg8

r
p2p3

2gg8

r
p3f

2gg8

r
p3p1

2gg8

r
p3p2

2gg8

r
p3

21g2
2 , ~B3!

K35
gg8

r
i t1g5S 0 2~f21p1

2!2a2 2p1p2 p1p3

~f21p1
2!1a2 0 fp2 p3f

p1p2 2fp2 0 2~p21p3
2!2a2

2p1p3 2p3f ~p21p3
2!2a2 0

D , ~B4!

K45
gg8

r
i t2g5S 0 2p1p2 2~f21p2

2!2a2 p2p3

p1p2 0 2fp1 2~p1
21p3

2!2a2

~f21p2
2!1a2 fp1 0 p3f

2p2p3 ~p1
21p3

2!2a2 2p3f 0
D , ~B5!

K55
gg8

r
i t3g5S 0 2fp2 2fp1 ~f21p3

2!1a2

fp2 0 ~p1
21p2

2!1a2 fp1

fp1 2~p1
21p2

2!2a2 0 2p2f

2~f21p3
2!1a2 2fp1 p2f 0

D , ~B6!
5-12
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with a2[g2r/gg8.

APPENDIX C: SIMILARITY TRANSFORMATION

This appendix contains details of the similarity transfo
mation used to facilitate the derivation of the RG flow equ
tions.

From Eq.~49!, we must evaluate

detU•det$11U21@W22~N1K !#%, ~C1!

which, owing to the Grassman nature of the matricesW, N
and K , only requires explicit evaluation of the diagon
terms of each of these three matrices. However, calcula
of detU is more complex, and for this reason we employ
similarity transformationS, given by
,

08502
-
-

n

S[
1

r S f p1 p2 p3

2p1 f 0 0

2p2 0 f 0

2p3 0 0 f
D , ~C2!

which diagonalizesU and leaves the value of detU un-
changed. The transformed matrices, denoted by primes,
then given by, e.g.,

U85SUS21

5S qi
21U9 0 0 0

0 qi
21U8/r 0 0

0 0 qi
21U8/r 0

0 0 0 qi
21U8/r

D ,

~C3!

with the other matricesW, N and K , transforming in an
identical fashion.
ys.
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