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Aspects of causality and unitarity and comments on vortexlike configurations in an Abelian mode
with a Lorentz-breaking term
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The gauge-invariant Chern-Simons-type Lorentz- andCPT-breaking term is here reassessed and a spin-
projector method is adopted to account for the breaking~vector! parameter. Issues such as causality, unitarity,
spontaneous gauge-symmetry breaking, and vortex formation are investigated, and consistency conditions on
the external vector are identified.
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I. INTRODUCTION

Symmetries are fundamental guides when one intend
systematize the study of any theory. In this sense, Lore
andCPT invariances acquire supreme importance in mod
quantum field theory, both symmetries being respected
the standard model for particle physics. A standard mo
description, where possible violations of such invariances
considered, was developed by Colladay and Kostelecky@1,2#
and by Coleman and Glashow@3,4#. The main term that in-
corporates these features involves the gauge field and ha
Chern-Simons form

SCS52
1

4E dx4emnabcmAnFab , ~1!

wherecm is a constant four-vector that selects a space-t
direction@5–8#. One can easily show that such a term ori
nates in a vacuum optical activity. Astrophysical resu
@9,10#, nevertheless, contradict this possibility, putting ve
restrict limits on the magnitude of thecm four-vector.

An interesting discussion originated from the investig
tion of the possibility that this Chern-Simons part be rad
tively generated from the fermionic sector of ordinary QE
whenever an axial term,bmC̄gmg5C, that violates Lorentz
and CPT symmetries, is included@11–22#. The discussion
took place around some questions: Does this generated
depend on the regularization scheme? May the vanishin
this term be a result of gauge invariance and unitarity
quirements? Do the astrophysical observations impose li
on the radiative correction generated by the axial term in
fermionic sector?

As shown in Ref.@18#, and argued in Ref.@20#, the finite
radiative correctionDcm comes from cancellation of diver
gences and therefore is regularization dependent. The co
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tion for gauge invariance can be stated in a weak way, si
bm is a constant four-vector: it is the action that must
invariant under this transformation and not necessarily
Lagrangian density. It also means that it is not necessar
be considered a source for the violating term. In Ref.@20#, it
was shown that an indetermination in the radiative correct
Dcm is not relevant for the physical content of the theo
since considering an effective constant

cm
e f f5~c1Dc1dc!m , ~2!

wheredcm is a finite counterterm~given some normalization
condition!, one can always adjust the counterterm in order
obtain the experimentally observed result.

We are then left with a careful analysis of limit situation
to which the four-vectorcm could be submitted, in order to
verify if there is physical consistency in some of these cas
In Ref. @8#, the quantization consistency of an Abelian theo
with the inclusion ofSCS is thoroughly analyzed. The au
thors study the implications on the unitarity and causality
the theory in cases where, for small magnitudes,cm is time-
like and spacelike. The analysis shows that the behavio
these gauge field theories depends drastically on the sp
time properties ofcm . According to Ref.@8#, for a purely
spacelikecm , one finds a well-behaved Feynman propaga
for the gauge field, and unitarity and microcausality a
maintained. On the other hand, a timelikecm spoils unitarity
and causality.

In this work, we analyze the possibility of having consi
tency of the quantization of an Abelian theory which inco
porates the Lorentz- andCPT-violating term of Eq. ~1!,
whenever gauge spontaneous symmetry breaking~SSB!
takes place. The analysis is carried out by pursuing the
vestigation of unitarity and causality as read off from t
gauge-field propagators. We therefore propose a discus
at tree approximation, without going through the canoni
quantization procedure for field operators. In this investig
tion, we concentrate on the analysis of the residue matrice
each pole of the propagators. Basically, we check the p
tivity of the eigenvalues of the residue matrix associated t
given simple pole in order that unitarity may be undertak
Higher-order poles unavoidably plague the theory w
©2003 The American Physical Society21-1
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ghosts; this is why our analysis of the residues is restricte
the case of the simple poles. We shall find that only forcm
spacelike both causality and unitarity can be ascertained
the other hand, considering that SSB is interesting in suc
situation~since the mass generation mechanism induced
the Higgs scalar presupposes that the theory is Lorentz
variant!, we obtain that, once Lorentz symmetry is violate
there is the possibility of evading this mechanism, such t
a gauge boson mass is not generated even if SSB of the
U~1! symmetry takes place.

In order to improve our comprehension of the phys
presented by this theory, we also study vortexlike configu
tions, analyzing the influence of the direction selected bycm
in space-time. The presence of the Chern-Simons term
duces interesting modifications on the equations of mo
that yield a vortex formation.

This work is outlined as follows: in Sec. II, we study th
SSB and present our method to derive the gauge-field pr
gators. In Sec. III, we set our discussion on the poles
residues of the propagators. We study the formation of v
tices in Sec. IV, and, finally, in Sec. V, we present our co
cluding comments.

II. GAUGE-HIGGS MODEL

We propose to carry out our analysis by starting off fro
the action

S5E d4xH 2
1

4
FmnFmn1~Dmw!* Dmw2V~w!J

1Sc1Scs , ~3!

where Sc is some Fermionic action~we do not introduce
fermions in our considerations here!,

Scs52
m

4E d4x«mnklvmAnFkl ~4!

is the Chern-Simons-like term,m is a mass parameter, an
vm is an arbitrary four vector of unit length which selects
preferred direction in the space-time (cm5mvm). The poten-
tial, V, given by

V~w!5m2uwu21luwu4, ~5!

is the most general Higgs-like potential in four dimensio
Setting suitably the parameters such that thew field acquires
a nonvanishing vacuum expectation value~VEV!, the mass
spectrum of the photon would get shift upon the spontane
breaking of local gauge symmetry by means of such VE
The Higgs field is minimally coupled to the electromagne
by means of its covariant derivative under U~1!-local gauge
symmetry: namely,

Dmw5]mw1 ieQAmw. ~6!

This symmetry is spontaneously broken, and the n
vacuum is given by

^0uwu0&5a, ~7!
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where

a5S 2
m2

2l D 1/2

; m2,0. ~8!

As usual, we adopt the polar parametrization

w5S a1
s

A2
D eir/A2a, ~9!

wheres e r are the scalar quantum fluctuations. Since
are actually interested in the analysis of the excitation sp
trum, we choose to work in the unitary gauge, which is
alized by settingr50. Then, the bilinear gauge action
given as below:

Sg5E d4xH 2
1

4
FmnFmn2

m

4
vmAnFkl«mnkl1

M2

2
AmAmJ ,

~10!

whereM252e2Q2a2.
Its is noteworthy to stress that the SSB introduces

mass termM2 in addition to the topological Lorentz
breaking term.m. As we shall see throughout this sectio
this term will simply shift the pole induced byvm. If no SSB
takes place, thena50 and we reproduce the particle spe
trum given in Ref.@8#. Another relevant issue to be tackle
along this section regards the residues of the propagato
the poles, which inform about the eventual existence
negative-norm one-particle states. Later on, suitable co
tions on the parameters of the model will be adopted in or
that tachyon and ghost modes be suppressed from the s
trum.

We now rewrite the linearized action~10! in a more con-
venient form: namely,

Sg5
1

2E d4xAmO mnAn, ~11!

whereOmn is the wave operator. The propagator is given

^0uT@Am~x!An~y!#u0&5 i ~O 21!mnd4~x2y!. ~12!

The wave operator can be written in terms of spin-project
operators as follows:

Omn5~h1M2!umn1M2vmn1mSmn , ~13!

whereumn andvmn are respectively the transverse and lo
gitudinal projector operators

umn5gmn2
]m]n

h
, vmn5

]m]n

h
, ~14!

and

Smn5«mnklvk]l .

In order to invert the wave operator, one needs to add
other two new operators, since the above ones do not for
closed algebra, as the expression below indicates:
1-2
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TABLE I. Multiplicative table fulfilled by u, v, S, L, andS. The products are supposed to obey t
order ‘‘row times column.’’

ua
n va

n Sa
n La

n Sa
n Sn

a

uma umn 0 Smn
Lmn2

l

h
Snm

Smn2lvmn 0

vma 0 vmn 0 l

h
Snm

lvmn Snm

Sma Smn 0 f mn 0 0 0
Lma

Lmn2
l

h
Smn

l

h
Smn

0 v2Lmn v2Smn lLmn

Sma 0 Smn 0 lLmn lSmn Lmnh

Sam Snm2lvmn lvmn 0 v2Snm v2hvmn lSnm
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SmaSa
n5@v2h2l2#umn2l2vmn2hLmn1l~Smn1Snm!

[ f mn , ~15!

with

Smn5vm]n , l[Sm
m5vm]m, Lmn5vmvn . ~16!

These results indicate that two new operators, namely,S and
L, must be included in order to have an operator alge
with closed multiplicative rule. The operator algebra is d
played in Table I.

Using the spin-projector algebra displayed in Table I,
propagator may be obtained after a lengthy algebraic
nipulation. Its explicit form in momentum space is

^AmAn&5
i

D H 2~k22M2!umn1S D

M2
2

m2~v•k!2

~k22M2!
D vmn

2 imSmn2
m2k2

~k22M2!
Lmn

1
m2~v•k!

~k22M2!
~Smn1Snm!J , ~17!

whereD(k)5(k22M2)21m2v2k22m2(v•k)2.
Now, that the gauge-field propagator is known, we

ready to discuss the particle content of the theory. We t
the viewpoint that the elementary stable particles displa
in the spectrum of a Lagrangian model appear as the pole
the field propagators. However, there are issues like caus
and unitarity that have to be analyzed once the poles h
been identified. This matter shall be next discussed.

The result above enables us to set our discussion on
nature of the excitations present in the spectrum. At fi
sight, the denominator (k22M2) appearing in connection
with the operatorsv, L, S, once multiplying the overall
denominatorD, could be the origin for dangerous multip
poles that plague the quantum spectrum with ghosts. For
reason, a careful study of this question is worthwhile. W
this purpose, it is advisable to split our discussion into th
cases: timelike, null~lightlike!, and spacelikevm .
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In the casevm is timelike, one can readily check that the
will always be possible to find momentakm such thatk2

5M2 appears as a double pole in the transverse sectou
and S) and a triple pole in thev, L, and S sectors. This
shows that in these situations nonphysical states are pre
that correspond to negative norm particle states. There is
need therefore to discuss the residue matrix at these po

In the casevm is lightlike, it can be seen that tachyon
poles~that are simple poles! always appear; this also invali
dates the model in this quantum version, for supralumi
excitations are always present in the spectrum.

However, ifvm is a spacelike vector, no higher-order po
comes out; it can be shown thatk25M2 is not a zero of
D(k). It only appears as a simple pole for thev, L, andS
sectors. So, the model exhibits nontachyonic massive ex
tions associated to three simple poles: two of them com
from D(k), the other beingk25M2. The fact that only the
spacelike case is physically acceptable confirms the deta
study carried out by Adam and Klinkhammer in the work
Ref. @8#. Nevertheless, we should still investigate the resid
at these poles so as to be sure that no ghosts are present
shall carefully be done in the next section.

III. UNITARITY ANALYSIS IN THE SPACELIKE CASE

Our present task consists in the check of the characte
the poles present forvm spacelike. Knowing that three dif
ferent poles show up, we have to go through the study of
residue matrix of the vector propagator at each of its~time-
like! polesk25M2, k25m̃1

2, andk25m̃2
2, wherem̃1 andm̃2

correspond to the zeroes ofD(k), that is,M2, m̃1
2, andm̃2

2

are the physical masses at the tree approximation.
To infer about the physical nature of the simple poles,

have to calculate the eigenvalues of the residue matrix
each of these poles. This is done in the sequel. Before q
ing our results, we should say that, without loss of genera
we fix our external spacelike vector as given byvm

5(0;0,0,1). The momentum propagator,km, is actually a
Fourier-integration variable, so we are allowed to pick a re
resentative momentum wheneverk2.0. We pursue our
analysis of the residues by takingkm5(k0;0,0,k3).

With k0
25m1

2, we have that
1-3
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m1
25

2~M21k3
2!1m21mAm214~M21k3

2!

2
; ~18!

the residue matrix reads as below:

R15
1

Am214~M21k3
2!

3S 0 0 0 0

0 m1
22~M21k3

2! imm1 0

0 2 imm1 m1
22~M21k3

2! 0

0 0 0 0

D .

~19!

We calculate its eigenvalues and find only a single nonvan
eigenvalue:

l5
2um1u

Am214~M21k3
2!

.0. ~20!

The same procedure and the same conclusions
through for the second zero ofD(k) (k25m̃2

2 with k0
2

5m2
2):

m2
25

2~M21k3
2!1m22mAm214M2

2
; ~21!

there comes out a unique nonvanishing eigenvaluel
52um2uAm214(M21k3

2).0) as above.
The calculations above confirm the results found by

autors of Ref.@8#: for a spacelikevm, the poles ofD(k)
respect causality~they are not tachyonic! and correspond to
physically acceptable one-particle states with one degre
freedom, since the residue matrix exhibits a single posi
eigenvalue

Finally, we are left with the consideration of the polek0
2

5(M21k3
2). The residue matrix reads as follows:

RM5S k3
2

M2
0 0

uk3u~M21k3
2!1/2

M2

0 0 0 0

0 0 0 0

uk3u~M21k3
2!1/2

M2
0 0

~M21k3
2!

M2

D ,

~22!

and again we have obtained only a nonvanish eigenva
l5(1/M2)(M212k3

2).0. This opens up a very interestin
conclusion: theM2 pole, appearing in the longitudinal sect
(wmn), describes a physically realizable scalar mode. We
before a very peculiar result: The vector potential accomm
dates three physical excitations~with massesm1

2, m2
2, and

M2), each of them carrying a single degree of freedom;
the external background influences the gauge field by dra
08502
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cally changing its physical content: instead of describing
three-degree of freedom massive excitation, it rather
scribes three different massive excitations, each carrying
physical degree of freedom.

We would like to report on one more possibility. As w
know, the Higgs mechanism for mass generation for ga
bosons presupposes Lorentz invariance of the theory. Th
no longer our case. So, we want to exhibit that, for a fix
background spacelike vector,vm, there may appear massle
modes depending on the direction of the wave propagat
Indeed, the condition for a massless pole,D(k)50 with k2

50, can be written as

c•k56M2. ~23!

Taking a spacelikecm of the formcm5(0;cW ), the condi-
tion above reads

cW•kW57M2.

With K250, ukW u5k0, wheneverk0&0; then, we see that

cW• k̂52
M2

k0
.

So, givencW , we can always find akm such thatk250 is
compatible with the condition above; for this to take plac
the propagation must be along a direction with an angle b
ger than 90°. The conclusion is that, according to the dir
tion of the wave propagation, a massless pole shall alw
show up. This confirms the breaking of isotropy and illu
trates that, despite spontaneous breaking of a local symm
massless excitations may be present in the spectrum.

After the technical details exposed previously, we sho
clarify better our analysis of the unitarity. In the paper
Ref. @8#, the authors raise the question of the unitarity a
they conclude that, exclusively for a spacelikevm, the
Hamiltonian admits a semipositive self-adjoint extensio
giving therefore rise to a unitary time evolution operator.

Here, the unitarity alluded to is not in the sense of
self-adjoint extension, but rather in the framework of t
Hilbert space of particle states. Our analysis reveals the
istence of one-particle states with negative norm square,
one-particle ghost states, whenevervm is time or lightlike.
On the other hand, whenvm is spacelike, the poles of th
vector propagator are physically acceptable and the mo
may be adopted as a consistent theory.

IV. A DISCUSSION ON VORTEXLIKE CONFIGURATIONS

Once our discussion on the consistency of the quant
mechanical properties of the model has been settled do
we would like to address to an issue of a classical orien
tion, namely, the reassessment of vortexlike configuration
the presence of Lorentz-breaking term as the one we ta
here.

In our case, with the Chern-Simons-like term include
we get, from the action~3!, the equations of motion
1-4
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DmDmw52m2w22lwuwu2 ~24!

and

]nFmn5 ie~w]mw* 2w* ]mw!12e2Amuwu2

1m«mnklvn]kAl , ~25!

so that we can explicitly derive the modified Maxwell equ
tions

“•E52 ie~wẇ* 2w* ẇ !12e2uwu2F2mv"B, ~26!

“3EÄ2
]B

]t
, ~27!

and

“•B50 ~28!

2
]E

]t
1“3B5 ie~w“w* 2w* ¹w!22e2uwu2A2mv0B

1mv3E. ~29!

Before going on to analyses vortex configurations,
would like to handle the modified Maxwell equations abo
@Eqs. ~26!–~29!# to understand that there is no room for
magnetic monopole once the Lorentz-breaking Che
Simons term is switched on. For this purpose, we remove
charged scalar field and see that the presence of a s
monopole immediately leads to

v0B5v3E. ~30!

Now, by applying the operator“• to this equation, we come
to a direct contradiction with Eq.~28!. So, the modified Max-
well equations~26!–~29! do not support the presence of
Dirac-like magnetic monopole.

To analyze the vortex-type solutions, we consider a sc
field in two-dimensional space. The asymptotic solution t
is proposed to be a circle (S1),

w5aeinu; ~r→`!, ~31!

where r and u are polar coordinates in the plane,a is a
constant andn is an integer. The gauge field assumes
form

A5
1

e
“~nu!; ~r→`!, ~32!

or, in term of its components,

Ar→0, Au→2
n

er
; ~r→`!, ~33!

will be analyzed with our solution of the fieldF.
The breaking of Lorentz covariance prevents us from s

ting Am as a pure gauge at infinity, as usually done for
Nilsen-Olesen vortex. This means thatA05F(r ), as r
→`. The asymptotic behavior ofF shall be fixed by the
08502
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field equations, as shown in the sequel. Returning to
problem, in this situation, the magnetic field presents a
lindrical symmetry and

w5x~r !einu. ~34!

To avoid singularity forr→0 and to keep an asymptoti
solution, we make

lim
r→0

x~r !50 ~35!

and

lim
r→`

x~r !5a. ~36!

In the static case, Eq.~24!, after summing over the compo
nents, becomes

1

r

d

dr S r
dx

dr D2F S n

r
1eAD 2

1m212lx22e2F2Gx50,

~37!

while the modified Maxwell equations take the form

¹2F12e2x2F2mv•B50 ~38!

and

d

dr S 1

r

d

dr
~rA ! D12ex2S n

r
2eAD2mv3

dF

dr
50. ~39!

In the asymptotic region, Eqs.~38! and ~39! become

¹2F22a2e2F50 ~40!

and

d

dr S 1

r

d

dr
~rA ! D22e2a2A2mv3

dF

dr
50, ~41!

whereB has been set to zero, forA is a gradient at infinity.
We then find

F5Ce2A2a2e2r ~42!

and

A~r !5CK1~A2aueur !2 iA2mv3aeK1~A2aueur !

3E rdrI 1~A2aueur !e2A2aueur . ~43!

So, bothF and A falls down to zero exponentially in the
asymptotic region. Note that asymptotically the complex s
lar field w5x(r )einu goes to a nontrivial vacuum and be
comesw5aeinu . Then the topology of the vacuum manifol
is S1. A relevant discussion at this point is the issue of t
stability of the vortex configuration we have identified. Th
question has to be answered if we have some elements a
the energy of the system. Following the results of the wo
of Ref. @9#, we understand that, oncevm is chosen to be
1-5
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spacelike~and, according to the results of our discussion
Sec. III, this is the unique sensible situation!, the energy is
limited from below, which assigns to our vortex the status
stable configuration.

More generally than in the case of Nielsen-Olesen vo
ces @23#, Eq. ~38! plays an important role as long as th
electric field is concerned. If the magnetic field vortex~sup-
posed such thatB5Bẑ) is orthogonal to the external vecto
v, thenF50 is always a trivial solution that is compatib
with the whole set of field equations.

However, wheneverv"BÞ0, F must necessarily be non
trivial, and an electric field appears along with the magne
flux. If this is the situation, in the asymptotic regionF falls
off exponentially, as exhibited in Eq.~42!.

The appearance of an electrostatic field attached to
magnetic vortex, wheneverv"BÞ0, is not surprising. Its ori-
gin may be traced back to the Lorentz-breaking term: inde
being a Chern-Simons-like term, the electrostatic probl
induces a magnetic field and the magnetostatic regime
mands an electric field too. So, a nonvanishingF, therefore
a nontrivial E response to the Chern-Simons Loren
breaking term.

V. CONCLUDING COMMENTS

The main purpose of our work is the investigation of tw
aspects: the first one is the quantization consistency o
Abelian model with violation of Lorentz andCPT symme-
tries, contemporarily with the spontaneous breaking of ga
symmetry. The other one concerns the study of classical
texlike configurations eventually present in such a mode

The analysis carried out with the help of the propagato
derived thanks to an algebra of extended spin operators
veals that unitarity is always violated forvm timelike and
null. Whenever the external vector is spacelike, physica
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consistent excitations can be found that present a single
gree of freedom each.

The analysis of the classical vortexlike configuratio
shows some interesting aspects. First, if the magnetic fi
vortex is orthogonal to the plane which contains the cons
vectorvm, then a trivial solution for the scalar potential,F
50, is allowed. In this case, the vortex configuration will b
similar to the one of the usual Abelian model. However,
v•BÞ0, we have a nontrivial solution forF and an electric
field appears in connection with the magnetic flux. As w
have already pointed out, the appearance of an electric
attached to the magnetic vortex is not surprising. It is
counterpart of what happens in a Chern-Simons theory
three dimensions, where the electrostatic problem induc
magnetic field and the magnetostatic regime demands
electric field too.

In connection with this phenomenon, the analysis of
dynamics of electrically charged particles, magnetic mo
poles, and neutrinos in the region outside the vortex c
becomes a well-motivated idea, for the presence of the e
tric field interferes now~at least for charged particles an
monopoles! and alter our knowledge about the concentrat
of the particles in the region dominated by the vortex.

Finally, in view of the interesting results presented
Berger and Kosteleky´ in the paper of Ref.@24#, it would be a
relevant task to incorporate the~gauge-invariant! Lorentz-
breaking term in the action~1!, in a supersymmetric frame
work and therefore to study the gaugino counterpart of
action term given by Eq.~4!. Results in this direction shal
soon be presented elsewhere@25,26#.
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@18# A. P. Baêta Scarpelli, M. Sampaio, B. Hiller, and M. C

Nemes, Phys. Rev. D64, 046013~2001!.
@19# O. A. Battistel and G. Dallabona, Nucl. Phys.B610, 316

~2001!.
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