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Aspects of causality and unitarity and comments on vortexlike configurations in an Abelian model
with a Lorentz-breaking term
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The gauge-invariant Chern-Simons-type Lorentz- @flT-breaking term is here reassessed and a spin-
projector method is adopted to account for the breakuggton parameter. Issues such as causality, unitarity,
spontaneous gauge-symmetry breaking, and vortex formation are investigated, and consistency conditions on
the external vector are identified.
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[. INTRODUCTION tion for gauge invariance can be stated in a weak way, since
b, is a constant four-vector: it is the action that must be
Symmetries are fundamental guides when one intends timvariant under this transformation and not necessarily the
systematize the study of any theory. In this sense, Lorentkzagrangian density. It also means that it is not necessary to
andCPT invariances acquire supreme importance in moderipe considered a source for the violating term. In R2@], it
quantum field theory, both symmetries being respected byas shown that an indetermination in the radiative correction
the standard model for particle physics. A standard modelc,, is not relevant for the physical content of the theory,
description, where possible violations of such invariances areince considering an effective constant
considered, was developed by Colladay and Kostelgti&}

and by Coleman and Glashd®,4]. The main term that in- Ciff=(0+ Ac+éc),,, (2
corporates these features involves the gauge field and has the ) o ) o
Chern-Simons form wheredc,, is a finite counterterngiven some normalization

condition, one can always adjust the counterterm in order to
1 obtain the experimentally observed result.

Ses=— Zf dx*e**Bc AF .5, (1) We are then left with a careful analysis of limit situations,
to which the four-vectoc, could be submitted, in order to
verify if there is physical consistency in some of these cases.

wherec,, is a constant four-vector that selects a space-timgn Ref.[8], the quantization consistency of an Abelian theory
direction[5—8]. One can easily show that such a term origi-with the inclusion of3 g is thoroughly analyzed. The au-
nates in a vacuum optical activity. Astrophysical resultsthors study the implications on the unitarity and causality of
[9,10], neVertheleSS, contradict this pOSS|b|I|ty, puttlng Verythe theory in cases Where, for small magnitudglsis time-
restrict limits on the magnitude of the, four-vector. like and spacelike. The analysis shows that the behavior of
An interesting discussion originated from the investiga-these gauge field theories depends drastically on the space-
tion of the possibility that this Chern-Simons part be radia-jme properties ofc,, . According to Ref.[8], for a purely
tively generated from the fermionic sector of ordinary QED spacelikec,,, one finds a well-behaved Feynman propagator
whenever an axial temb’u\lf‘y'“‘y5\lf, that violates Lorentz for the gauge field, and unitarity and microcausality are
and CPT symmetries, is includefl1-22. The discussion maintained. On the other hand, a timelikg spoils unitarity
took place around some questions: Does this generated teramd causality.
depend on the regularization scheme? May the vanishing of In this work, we analyze the possibility of having consis-
this term be a result of gauge invariance and unitarity retency of the quantization of an Abelian theory which incor-
quirements? Do the astrophysical observations impose limitgorates the Lorentz- an@ P T-violating term of Eq.(1),
on the radiative correction generated by the axial term in thevhenever gauge spontaneous symmetry breakid§B
fermionic sector? takes place. The analysis is carried out by pursuing the in-
As shown in Ref[18], and argued in Ref20], the finite  vestigation of unitarity and causality as read off from the
radiative correctiomc,, comes from cancellation of diver- gauge-field propagators. We therefore propose a discussion
gences and therefore is regularization dependent. The condit tree approximation, without going through the canonical
quantization procedure for field operators. In this investiga-
tion, we concentrate on the analysis of the residue matrices at
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ghosts; this is why our analysis of the residues is restricted tavhere
the case of the simple poles. We shall find that onlydpr
spacelike both causality and unitarity can be ascertained. On

the other hand, considering that SSB is interesting in such a
situation(since the mass generation mechanism induced by o
the Higgs scalar presupposes that the theory is Lorentz iffiS usual, we adopt the polar parametrization
variany, we obtain that, once Lorentz symmetry is violated,
there is the possibility of evading this mechanism, such that
a gauge boson mass is not generated even if SSB of the local
U(1) symmetry takes place.

In order to improve our comprehension of the physicswhereo e p are the scalar quantum fluctuations. Since we
presented by this theory, we also study vortexlike configuraare actually interested in the analysis of the excitation spec-
tions, analyzing the influence of the direction selectectpy trum, we choose to work in the unitary gauge, which is re-
in space-time. The presence of the Chern-Simons term pralized by settingp=0. Then, the bilinear gauge action is
duces interesting modifications on the equations of motiorgiven as below:
that yield a vortex formation. L M2

This work is outlined as follows: in Sec. Il, we study the :f d4x[ _ZF Em ﬁv AF s N —A AR
SSB and present our method to derive the gauge-field propa-? 2 &

m2 1/2
a= ;

_ 2
on| m*<0. (8

(p:

ol . -
a+ E) glr/vea 9

4 e
gators. In Sec. lll, we set our discussion on the poles and (10
residues of the propagators. We study the formation of vor- 5 522

hereM<=2e“Q“a*.

tices in Sec. IV, and, finally, in Sec. V, we present our con-" \ i
Its is noteworthy to stress that the SSB introduces the

cluding comments. 2 o :
mass termM< in addition to the topological Lorentz-

Il GAUGE-HIGGS MODEL breaking term.u. As we shall see throughout this section,

this term will simply shift the pole induced hy“. If no SSB
We propose to carry out our analysis by starting off fromtakes place, thea=0 and we reproduce the particle spec-
the action trum given in Ref[8]. Another relevant issue to be tackled
along this section regards the residues of the propagators at
1 the poles, which inform about the eventual existence of
= LV uv Y P p ,
% j d'x) = ZFw P+ (DLe)"Dre—V(e) negative-norm one-particle states. Later on, suitable condi-
tions on the parameters of the model will be adopted in order
+2,+ 2, @) that tachyon and ghost modes be suppressed from the spec-
. _— . . trum.
}Nher_eElp_ IS Some F%rmmt)_nlc arc]:tlo(lwe do not introduce We now rewrite the linearized actidiO) in a more con-
ermions in our considerations here venient form: namely,

— ~ 4 VKN 1
Ecs— - ZJ d*xe* UMAVFK)\ (4) EQZEJ d4XA,uO,uVAV, (11)

is the Chern-Simons-like termy is a mass parameter, and where©,,, is the wave operator. The propagator is given by

v, is an arbitrary four vector of unit length which selects a
preferreq direction in the space-time (= uv ). The poten- <o|T[AM(X)AV(y)]|o>: IO —1)W54(x—y), (12
tial, V, given by
o 1 . The wave operator can be written in terms of spin-projection
V(e)=m|o|*+\|el%, (5)  operators as follows:
is the most general Higgs-like potential in four dimensions. 0,,=(0O+ |\/|2)9W+ Mzw,er,uS,w, (13

Setting suitably the parameters such thatghield acquires

a nonvanishing vacuum expectation valMEV), the mass whered,,, andw,,, are respectively the transverse and lon-
spectrum of the photon would get shift upon the spontaneougitudinal projector operators

breaking of local gauge symmetry by means of such VEV.

The Higgs field is minimally coupled to the electromagnetic 0 —q — Iudy _9u9y (14

by means of its covariant derivative unde(l}local gauge w=GwT T Cw T

symmetry: namely,
and

D,p=d,p+ieQA, . 6
wP=d,0+1€QA, ¢ (6) G iy g |
This symmetry is spontaneously broken, and the new

vacuum is given by In order to invert the wave operator, one needs to add up

other two new operators, since the above ones do not form a
(0|¢|0)=a, (7) closed algebra, as the expression below indicates:
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TABLE |. Multiplicative table fulfilled by 6, w, S A, andX. The products are supposed to obey the
order “row times column.”

6aV an Say AaV Eall Eya
00 0,0 0 S AHV—AEV E#V—)\ww 0
|:| (g
Oy 0 Wy 0 A Ao, 2,
g
Sua Su» 0 f 0 0 0
Ao A A 0 vZAW 022,“, NA L,
AW—EEW EE‘”’
DI 0 DI 0 AA A, A0
DI 2, ~\o,, Nw,, 0 022,,” UZD(UM,, A,
SWS“V=[UZD _)\2] Hw_)\zww_ OA,,+ )\(zﬂﬁzm) _ Inthe case , is timelike, one can readily check that tgere
will always be possible to find momentg, such thatk
=fu (15 =M? appears as a double pole in the transverse seétor (

and S) and a triple pole in thes, A, and sectors. This
shows that in these situations nonphysical states are present
that correspond to negative norm particle states. There is no
need therefore to discuss the residue matrix at these poles.

Lo In the casev, is lightlike, it can be seen that tachyonic
These results indicate that two new operators, narxebnd poles(that are simple polésalways appear; this also invali-

A, must be included in order to have an operator algebrjaies the model in this quantum version, for supraluminal
with closed multiplicative rule. The operator algebra is dis-gycitations are always present in the spectrum.

played in Table I. _ _ However, ifv , is a spacelike vector, no higher-order pole
Using the spin-projector algebra displayed in Table I, the,;qes out: it can be shown thef=M?2 is not a zero of

propagator may be obtained after a lengthy algebraic maD(k)_ It only appears as a simple pole for the A, and3.

nipulation. Its explicit form in momentum space is sectors. So, the model exhibits nontachyonic massive excita-
tions associated to three simple poles: two of them coming

with

2,0=0,0,, AN=3XE=v,d* A, =v,wv,. (16

(AA,)= i —(K2=M?)0, + b wi(v-k)? © from D(k), the other beingk?=M?2. The fact that only the
v D KroAM2 (kB-m3)) " spacelike case is physically acceptable confirms the detailed
study carried out by Adam and Klinkhammer in the work of
_ w?k? Ref.[8]. Nevertheless, we should still investigate the residue
—iuS,,— WAMV at these poles so as to be sure that no ghosts are present. This
shall carefully be done in the next section.
2
ni(v-k)
Fe (S [ 17
(k>—M?) [ll. UNITARITY ANALYSIS IN THE SPACELIKE CASE
whereD (k) = (k2— M2)2+ 4252k2— (v - K)2. Our present task consists in the check of the character of

Now, that the gauge-field propagator is known, we arethe poles present far,, spacelike. Knowing that three dif-

ready to discuss the particle content of the theory. We takéer?nt poles §how up, we have to go through the stqdy of the

the viewpoint that the elementary stable particles displaye&esldue matzrlx szthi vgcztor progaggtzor at each oftitae-

in the spectrum of a Lagrangian model appear as the poles Jke) Polesk®=M?, k“=mj, andk®=mj;, wherem, andm,

the field propagators. However, there are issues like causaligorrespond to the zeroes B(k), that is,M?, m2, andmj

and unitarity that have to be analyzed once the poles havare the physical masses at the tree approximation.

been identified. This matter shall be next discussed. To infer about the physical nature of the simple poles, we
The result above enables us to set our discussion on tHgave to calculate the eigenvalues of the residue matrix for

nature of the excitations present in the spectrum. At firseach of these poles. This is done in the sequel. Before quot-

sight, the denominatorkf—M?) appearing in connection ing our results, we should say that, without loss of generality,

with the operatorsw, A, 3, once multiplying the overall we fix our external spacelike vector as given by

denominatorD, could be the origin for dangerous multiple =(0;0,0,1). The momentum propagatd;, is actually a

poles that plague the quantum spectrum with ghosts. For thisourier-integration variable, so we are allowed to pick a rep-

reason, a careful study of this question is worthwhile. Withresentative momentum whenev&f>0. We pursue our

this purpose, it is advisable to split our discussion into thre@nalysis of the residues by takitg = (k% 0,0k3).

cases: timelike, nulllightlike), and spacelike ,, . With k3=m3, we have that
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2_2(M2+k§r+ﬂz+ﬂdy?+4(M2+k@_

m? 5 (18)

the residue matrix reads as below:

PHYSICAL REVIEW D 67, 085021 (2003

cally changing its physical content: instead of describing a
three-degree of freedom massive excitation, it rather de-
scribes three different massive excitations, each carrying one
physical degree of freedom.

We would like to report on one more possibility. As we
know, the Higgs mechanism for mass generation for gauge
bosons presupposes Lorentz invariance of the theory. This is
no longer our case. So, we want to exhibit that, for a fixed
background spacelike vectar?, there may appear massless
modes depending on the direction of the wave propagation.
Indeed, the condition for a massless pd)k)=0 with k2
=0, can be written as

c-k=+M?2 (23

Taking a spacelike,, of the formcﬂ=(0;5), the condi-

c-k=¥M2

1
R —
C AP K)
0 0 0 0
0 mi—(M2+kj) i wmy 0
X 0 _| 2_ 2 2 .
pum; m;—(M-+k3) O
0 0 0 0
19
We calculate its eigenvalues and find only a single nonvaniskion above reads
eigenvalue:
2|m,|
A= >0. (20

VuZ+4(M2+K3)

The same procedure and the same conclusions hold

through for the second zero dd(k) (k?=m3 with k3
2
=m3):

) 2(M?+ k%)+ﬂ2—ﬂ\lﬂz+4Mz
m5= . ; (21

there comes out a unique nonvanishing eigenvalde (

=2|my,| Ju2+4(M?+k2)>0) as above.

The calculations above confirm the results found by th

autors of Ref[8]: for a spacelikev”, the poles ofD(k)

respect causalitythey are not tachyonjcand correspond to
physically acceptable one-particle states with one degree %fl
freedom, since the residue matrix exhibits a single positiveR

eigenvalue
Finally, we are left with the consideration of the pdadé
=(M2+ kg). The residue matrix reads as follows:

ks o lkelM?+K)
M2 M2
0 00 0
R —
M 0 00 0 ’
kel (MZ+K9Y2 - (MP4kD)
M2 M?2

(22

With K?=0, |k|=k°, whenevek®)0; then, we see that

So, givenc, we can always find &* such thatk®?=0 is
compatible with the condition above; for this to take place,
the propagation must be along a direction with an angle big-
ger than 90°. The conclusion is that, according to the direc-
tion of the wave propagation, a massless pole shall always
show up. This confirms the breaking of isotropy and illus-

Srates that, despite spontaneous breaking of a local symmetry,

massless excitations may be present in the spectrum.

After the technical details exposed previously, we should
arify better our analysis of the unitarity. In the paper of
ef. [8], the authors raise the question of the unitarity and
they conclude that, exclusively for a spacelik¢, the
Hamiltonian admits a semipositive self-adjoint extension,
giving therefore rise to a unitary time evolution operator.

Here, the unitarity alluded to is not in the sense of a
self-adjoint extension, but rather in the framework of the

Hilbert space of particle states. Our analysis reveals the ex-
istence of one-particle states with negative norm square, i.e.,
one-particle ghost states, whenewéf is time or lightlike.

On the other hand, when* is spacelike, the poles of the
vector propagator are physically acceptable and the model
may be adopted as a consistent theory.

IV. A DISCUSSION ON VORTEXLIKE CONFIGURATIONS

and again we have obtained only a nonvanish eigenvalue: Once our discussion on the consistency of the quantum-
N =(1/M?)(M?+2k3)>0. This opens up a very interesting mechanical properties of the model has been settled down,
conclusion: theM? pole, appearing in the longitudinal sector we would like to address to an issue of a classical orienta-
(w,,), describes a physically realizable scalar mode. We aréion, namely, the reassessment of vortexlike configurations in
before a very peculiar result: The vector potential accommothe presence of Lorentz-breaking term as the one we tackle
dates three physical excitatioiwith massesn?, m3, and  here.

M?2), each of them carrying a single degree of freedom; so, In our case, with the Chern-Simons-like term included,
the external background influences the gauge field by drastiwe get, from the actioi(3), the equations of motion
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DMDMQD:_m2¢_2A¢|¢|2 (24) field equations, as shown in the sequel. Returning to our
problem, in this situation, the magnetic field presents a cy-
and lindrical symmetry and
9, Fr'=lie(@d"e* — o* ")+ 2e°A¥| @|? @=x(r)e"’. (34)
+pet" M 0, A, (25 To avoid singularity forr—0 and to keep an asymptotic

- , e solution, we make
so that we can explicitly derive the modified Maxwell equa-

tions lim x(r)=0 (35)
. . r—0
V.-E=—ie(po* —o* 0)+2€?|p|?®—uv-B, (26)
and
B )
VXE:_E’ (27) limy(r)=a. (36)
r—oo
and In the static case, Eq24), after summing over the compo-
V.B=0 29) nents, becomes
1d/ d n 2
JE , 2 12 ——(r—X —|| = +eA| +m?+2\x*—e?®?|x=0,
— —+VXB=ie(¢Vo*—¢o*Vp)—2e? ¢|°A— uvB rdrl dr r
at (37
+pvxE. (29 while the modified Maxwell equations take the form
Before going on to analyses vortex configurations, we V2D + 262y 2D — uv-B=0 (39)

would like to handle the modified Maxwell equations above

[Egs. (26)—(29)] to understand that there is no room for a and
magnetic monopole once the Lorentz-breaking Chern-

Simons term is switched on. For this purpose, we remove the d(1d
charged scalar field and see that the presence of a static  dr\r dr

n do
(rA) | +2ex? — —eA —pvyg-=0. (39
monopole immediately leads to

r

In the asymptotic region, Eq$38) and (39) become

UoB: vXE. (30)
V2P —2a%e?d=0 (40
Now, by applying the operatd¥ - to this equation, we come
to a direct contradiction with Eq28). So, the modified Max- and
well equations(26)—(29) do not support the presence of a g i
Dirac-like magnetic monopole.
To analyze the vortex-type solutions, we consider a scalar E(? ar(MA) | = 2e%a’A~ mo3 g =0, (41)
field in two-dimensional space. The asymptotic solution that
is proposed to be a circlest), whereB has been set to zero, fér is a gradient at infinity.
_ We then find
p=ae"’ (r—ox), (31)

— o V222
wherer and ¢ are polar coordinates in the plana,is a b=Ce (42)
constant anch is an integer. The gauge field assumes theyng
form
. A(r)=CK;(V2ale|r)—iy2uvzaek(y2ale|r)
A=ZV(ng); (r—=), (32 _
e xf rdrl ,(V2a|e|r)ev2alelr, (43
or, in term of its components,
So, both® and A falls down to zero exponentially in the
asymptotic region. Note that asymptotically the complex sca-
lar field = x(r)e? goes to a nontrivial vacuum and be-
comesp=ae"? . Then the topology of the vacuum manifold
will be analyzed with our solution of the fiekd. is St. A relevant discussion at this point is the issue of the
The breaking of Lorentz covariance prevents us from setstability of the vortex configuration we have identified. This
ting A, as a pure gauge at infinity, as usually done for thequestion has to be answered if we have some elements about
Nilsen-Olesen vortex. This means thAP=d(r), asr the energy of the system. Following the results of the work
—oo. The asymptotic behavior ob shall be fixed by the of Ref. [9], we understand that, onae” is chosen to be

n
A—0, A== (=), (33
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spacelike(and, according to the results of our discussion inconsistent excitations can be found that present a single de-

Sec. lll, this is the unique sensible situatipthe energy is
limited from below, which assigns to our vortex the status of

stable configuration.

gree of freedom each.
The analysis of the classical vortexlike configurations
shows some interesting aspects. First, if the magnetic field

More generally than in the case of Nielsen-Olesen vorti-vortex is orthogonal to the plane which contains the constant
ces [23]' Eq (38) p|ays an important role as |0ng as the VectOI’v“, then a trivial solution for the scalar pOtentiQ,

electric field is concerned. If the magnetic field vortsup-

=0, is allowed. In this case, the vortex configuration will be

posed such the= Bi) is orthogonal to the external vector similar to the one of the usual Abelian model. However, if

v, then® =0 is always a trivial solution that is compatible

with the whole set of field equations.

However, whenevev-B+0, ® must necessarily be non-
trivial, and an electric field appears along with the magneti

flux. If this is the situation, in the asymptotic regidn falls
off exponentially, as exhibited in E¢42).

The appearance of an electrostatic field attached to th
magnetic vortex, wheneverB+ 0, is not surprising. Its ori-
gin may be traced back to the Lorentz-breaking term: indeeddy
being a Chern-Simons-like term, the electrostatic proble
induces a magnetic field and the magnetostatic regime d
mands an electric field too. So, a nonvanishihgtherefore
a nontrivial E response to the Chern-Simons Lorentz-

breaking term.

V. CONCLUDING COMMENTS

The main purpose of our work is the investigation of two
aspects: the first one is the quantization consistency of aH

Abelian model with violation of Lorentz an@PT symme-

tries, contemporarily with the spontaneous breaking of gaug
symmetry. The other one concerns the study of classical vo
texlike configurations eventually present in such a model.

C

v-B+#0, we have a nontrivial solution fab and an electric
field appears in connection with the magnetic flux. As we
have already pointed out, the appearance of an electric field
attached to the magnetic vortex is not surprising. It is the
counterpart of what happens in a Chern-Simons theory in
three dimensions, where the electrostatic problem induces a
magnetic field and the magnetostatic regime demands an
Electric field too.
In connection with this phenomenon, the analysis of the
namics of electrically charged particles, magnetic mono-
oles, and neutrinos in the region outside the vortex core
)ecomes a well-motivated idea, for the presence of the elec-
tric field interferes now(at least for charged particles and
monopoleg and alter our knowledge about the concentration
of the particles in the region dominated by the vortex.
Finally, in view of the interesting results presented by
Berger and Kostelekin the paper of Ref.24], it would be a
relevant task to incorporate thgauge-invariantLorentz-
reaking term in the actiof), in a supersymmetric frame-
work and therefore to study the gaugino counterpart of the
gction term given by Eq4). Results in this direction shall

soon be presented elsewhé¢gs,26].
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