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Helicity-dependent twist-two and twist-three generalized parton distributions
in light-front QCD
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We investigate the helicity-dependent twist-two and twist-three generalized parton distributions in light-front
Hamiltonian QCD for a massive dressed quark target. Working in the kinematical regionj,x,1, we obtain
the splitting functions for the evolutions of twist-two quark and gluon distributions in a straightforward way.
For the twist-three distribution, we find that all contributions are proportional to the quark mass and thus the
twist-three distribution is directly related to the chiral symmetry breaking dynamics in light-front QCD. We
also show that the off-forward Wandzura-Wilczek~WW! relation is violated in perturbative QCD for a massive
dressed quark. We calculate the quark mass correction to the WW relation in the off-forward case and show
that it is related toh1(x) in the forward limit. We extract the ‘‘genuine twist-three’’ part of the matrix element
in the forward case and verify the Burkhardt-Cottingham and Efremov-Leader-Teryaev sum rules.
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I. INTRODUCTION

The generalized parton distributions~GPDs! @1# have
been studied intensively in recent years. GPDs are hybrid
the usual parton distributions measured in inclusive p
cesses such as deep inelastic scattering~DIS! and form fac-
tors measured in elastic exclusive processes. In general,
can be expressed asoff-forward matrix elements of light-
conebilocal operators. In the forward limit, GPDs reduce
normal parton distributions, which can then be expresse
forward matrix elements of light-cone bilocal operators. T
moments of GPDs over the parton momentum fractionx give
form factors, which are given in terms of off-forward matr
elements oflocal operators. Thus, GPDs have a much rich
structure and they connect various processes, both inclu
and exclusive. They provide new and important informat
about the structure of the hadron. They can be probed
deeply virtual Compton scattering~DVCS! and hard exclu-
sive production of vector mesons~for recent reviews on
GPDs and hard exclusive reactions; see@2–4# and references
therein!.

The GPDs have been investigated recently in the lig
cone formalism by several authors, and an overlap repre
tation of the plus component in terms of light-cone wa
functions has been given@5,6#. GPDs have also been con
structed using light-cone model wave functions@7#. The
transverse and the minus components are somewhat co
cated since they involve the constraint fieldc2 . They are
usually called ‘‘bad’’ components, since the operators
these cases involve interaction terms and are higher t
objects. In other words, they involve direct quark-gluon d
namics. To interpret the experimental results for DVCS o
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proton target in the presently accessibleQ2 range@8–11#, it
is of primordial importance to understand the effect of high
twist components. The perpendicular or twist-three com
nent of the operator has been investigated using
Wandzura-Wilczek approximation@12#, where the explicit
interaction-dependent parts of the operator as well as
quark mass terms were neglected. In this case, the twist-t
matrix element can be expressed solely in terms of twist-
GPDs. In the forward limit, these relations reduce to t
Wandzura-Wilczek relation for the transversely polariz
structure functiongT @13#. There is no theoretical justifica
tion for this approximation. In the forward case, recent e
perimental results for the transverse polarized structure fu
tion indicate that the deviation from the Wandzura-Wilcz
approximated form is substantial in some kinematic ran
for a nucleon target@14#. Therefore, it is interesting to mak
a full calculation of the off-forward twist-three matrix ele
ment, within the context of perturbative QCD, taking in
account the explicit interaction dependence of the opera
the mass as well as the intrinsic transverse momentum o
partons. A convenient tool is based on the light-front Ham
tonian description of composite systems utilizing many-bo
wave functions. Instead of a hadron target, here we cons
a simpler target like a quark dressed with a gluon and ca
late the off-forward matrix elements within the context
perturbative QCD. The two-particle wave function is give
in terms of the light-front QCD Hamiltonian@15#. This ap-
proach has been used extensively in the recent years to
culate polarized and unpolarized distribution functions
DIS, twist two @16,17#, twist three@18,19#, and twist four
@20#, as well as the transversity distribution@21#, and the
transverse-momentum-dependent distributions@22#. Re-
cently we have also extended it to calculate the off-forwa
matrix elements of light-front bilocal vector operators@23#.
We verified the helicity sum rule in perturbation theory a
showed the effect of quark mass in the twist-three ma
element, which is absent in the forward limit.
©2003 The American Physical Society20-1
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In this work, we investigate the helicity-dependent gen
alized distributions, which are the off-forward matrix el
ments of light-front axial vector operators, in light-fron
Hamiltonian perturbation theory for a dressed quark targ
We restrict ourselves to the regionj, x̄,1 of the general-
ized distributions, wherej is the skewedness. In this regio
the contributions come from the overlaps of two-body wa
functions uptoO(as). We obtain the splitting functions cor
responding to the evolution of the twist-two helicity
dependent distributions in a straightforward way. In t
twist-three distribution, we show the contributions from t
quark-gluon interaction-dependent part, the quark mass,
the intrinsic transverse-momentum-dependent parts of
operator explicitly. We find that all three contributions a
proportional to quark mass. We find that the Wandzu
Wilczek ~WW! relation is not satisfied in perturbative QC
in the off-forward case for a massive quark, analogously
its forward counterpart. Our results also show that the tw
three distribution is directly related to the dynamical effect
chiral symmetry breaking in light-front QCD. We calcula
the mass correction to the WW relation in the off-forwa
case. This contribution is related toh1(x) in the forward
limit. Using the quark mass correction to the WW relatio
we also obtain the ‘‘genuine twist-three’’ part of the matr
element. We show that the first and second moments of
are zero, which give the Burkhardt-Cottingham~BC! @24#
and Efremov-Leader-Teryaev~ELT! @25# sum rules, respec
tively.

The plan of the paper is as follows. In Sec. II, we inve
tigate the twist-two helicity-dependent distributions, invol
ing both the quark and the gluon operators, for a dres
quark state. In Sec. III, we calculate the off-forward mat
element of the transverse component of the axial vector
rent. We investigate the WW relation in the off-forward ca
and the quark mass correction to it in Sec. IV. A summ
and discussion are given in Sec. V. The light-front spinors
longitudinally and transversely polarized quarks are given
Appendix A. An outline of the derivation of the quark ma
term in the WW approximation is given in Appendix B.

II. HELICITY-DEPENDENT TWIST-TWO DISTRIBUTIONS

A. Quark distribution

The twist-two helicity-dependent generalized distributi
is given by

F̃ll8
1

5E dz2

8p
eix̄P̄1z2/2^P8l8uc̄S 2

z2

2 Dg1g5cS z2

2 D uPl&.

~2.1!

Here,P,P8 are the four-momenta andl,l8 are the helicities
of the initial and final states, respectively.

We work in the so called symmetric frame@5,6#. The mo-
mentum of the initial state isPm and that of the final state i
P8m. The average momentum between the initial and fi
state is thenP̄m5(Pm1P8m)/2. The momentum transfer i
given by Dm5P8m2Pm, P'8 52P'5D'/2, and
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skewednessj52D1/2P̄1. Without any loss of generality
we takej.0. We also getD25j P̄2/ P̄1.

The above matrix element is conventionally parametriz
in terms of the helicity-dependent distributionsH̃(x,j,t) and
Ẽ(x,j,t), where t is the invariant momentum transfer. Th
matrix element can also be expressed in terms of overlap
light-front wave functions. The operator is given by

E dz2

8p
eix̄P̄1z2/2c̄S 2

z2

2 Dg1g5cS z2

2 D
5

1

4pE dz2eix̄P̄1z2/2c1†S 2
z2

2 Dg5c1S z2

2 D .

~2.2!

Here c15L1c and L651/2g0g6. The above expression
is given in the light-front gaugeA150, where the path-
ordered exponential between the fermion fields in the bilo
operator is unity. For simplicity we suppress the flavor in
ces. In the two-component representation, we have the
namical fermion field

c1~z!5(
l

xlE dp1d2p'

2~2p!3Ap1
@b~p,l!e2 iqz

1d†~p,l!eipz# ~2.3!

and the dynamical gauge field

Ai~z!5(
l
E dq1d2q'

2~2p!3q1 @el
i a~q,l!e2 iqz1H.c.#.

~2.4!

Here,xl is the eigenstate ofsz in the two-component spino
of c1. We have used the light-frontg matrix representation

g05S 0 2 i

i 0 D , g35S 0 i

i 0D , g i5S 2 i s̃ i 0

0 i s̃ i D ,

~2.5!

with s̃15s2 ands̃252s1. e i(l) is the polarization vector
of the transverse gauge field.

The Fock space expansion of the operator is given by

O1552(
s,s8

E dk1d2k'

2~2p!3Ak1E dk81d2k8'

2~2p!3Ak81

3@d~2x̄P̄12k812k1!b†~k,s!b~k8,s8!

1d~2x̄P̄11k811k1!d~k,2s!d†~k8,2s8!

1d~2x̄P̄11k12k81!d~k,2s!b~k8,s8!

1d~2x̄P̄11k812k1!b†~k,s!d†~k8,2s8!#xs
†s3xs8 .

~2.6!
0-2



al

n

rs
-
ec
th
a

n
o

en
le

at

th

D
in

n
cted

use
ms
sed

e

is
el-

on

-
ar-

ve

HELICITY-DEPENDENT TWIST-TWO AND TWIST- . . . PHYSICAL REVIEW D 67, 085020 ~2003!
We havek1.0, k81.0, k12k815p12p8152j p̄1. In
the kinematical regionj, x̄,1, only the first term in Eq.
~2.6! contributes@6#. We restrict ourselves to this kinematic
region.

We take the stateuP,s& of momentumP and helicitys to
be a dressed quark consisting of bare states of a quark a
quark plus a gluon:

uP,s&5f1b†~P,s!u0&

1 (
s1 ,l2

E dk1
1d2k1

'

A2~2p!3k1
1E dk2

1d2k2
'

A2~2p!3k2
1

3A2~2p!3P1d3~P2k12k2!

3f2~P,suk1 ,s1 ;k2 ,l2!b†~k1 ,s1!a†~k2 ,l2!u0&.

~2.7!

Herea† andb† are bare gluon and quark creation operato
respectively, andf1 andf2 are the multiparton wave func
tions. They are the probability amplitudes to find, resp
tively, one bare quark and one quark plus gluon inside
dressed quark state. Up to one loop, if one considers
kinematical regions, there will be nonvanishing contributio
from the overlap of three-particle and one-particle sectors
the state; this situation is similar to QED@5#. In the kinemati-
cal region we are considering, this kind of overlap is abs
and it is sufficient to consider dressing only by a sing
gluon. The state is normalized as

^P8,l8uP,l&52~2p!3P1dl,l8d~P12P81!d2~P'2P8'!.

~2.8!

f1 actually gives the normalization constant of the st
@16#:

uf1u2512
as

2p
CfE

e

12e

dx
11x2

12x
log

Q2

m2 , ~2.9!

within orderas . Heree is a small cutoff onx.
The matrix element becomes

F̃15A12j2Fc1* c1d~12 x̄!

1 (
s1 ,s2 ,l

E d2q'c2s1 ,l* ↑ S x̄2j

12j
,q'1

12 x̄

12j2 D'D
3xs1

† s3xs2
c2s2l

↑ S x̄1j

11j
,q'D G . ~2.10!

We have introduced Jacobi momentaxi ,qi
' such that( ixi

51 and( iqi
'50, and the boost invariant wave functions

c15f1 , c2~xi ,qi
'!5AP1f~ki

1 ,ki
'!. ~2.11!

The first term in Eq.~2.10! is the contribution from the single
particle sector and the second term is the contribution of
08502
d a

,

-
e
ll

s
f

t

e

e

two-particle sector of the state. Using the light-front QC
Hamiltonian, the two-particle wave function is given
terms ofc1 as

c2s1 ,l
s,a ~x,q'!52

x~12x!

~q'!2 Ta
1

A~12x!

g

A2~2p!3
xs1

†

3F2
q'

12x
1

s̃'
•q'

x
s̃'2 ims̃'

~12x!

x
G

3xsel
'* c1 , ~2.12!

whereg is the coupling constant,Ta is the usual (12 of Gell-
Mann! color matrix andm is the bare mass of the quark. I
the denominator of the above expression, we have negle
terms of orderm2 compared to (q')2. Using Eq.~2.1! and
Eq. ~2.12!, we see that the linear mass terms which ca
helicity flip are suppressed in the matrix element. The ter
quadratic in mass do not flip helicity, but they are suppres
also. We calculate the helicity nonflip part.

Using Eq.~2.12! we get

F̃15A12j2Fd~12 x̄!1
as

2p
Cf log

Q2

m2

~11 x̄222j2!

~12 x̄!~12j2!
G

3c1* c1 , ~2.13!

where Cf5(N221)/2N for SU(N). We have cut off the
transverse momentum integral at some scaleQ, andm is the
factorization scale separating hard and soft dynamics@18#.
Also, we have takenuD'u to be small. For convenience, w
takeD250. It is important to note that the entireas depen-
dency in Eq.~2.13! comes from the state and the operator
independent of the interaction. The single particle matrix
ement receives a contribution up toO(as) from the normal-
ization of the state. Taking into account the normalizati
contribution, we get1

F̃15A12j2Fd~12 x̄!1
as

2p
Cf log

Q2

m2 S 3

2
d~12 x̄!

1
~11 x̄222j2!

~12 x̄!1~12j2!
D G . ~2.14!

The end point singularity atx̄51 is canceled by the contri
bution from the normalization of the state to the single p
ticle matrix element, as in the helicity-independent case@23#.
The splitting function can easily be extracted from the abo
expression:

P̃qq5Cf

11 x̄222j2

~12 x̄!1~12j2!
. ~2.15!

This agrees with the known result of@26# ~when j in Ref.
@26# is replaced by 2j).

1Here 1/(12x)1 is the usual~principal value! plus prescription.
0-3
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Turning next to the helicity flip part of the matrix elemen
we find that it arises solely from the mass term in the expr
sion Eq.~2.12! for the two-particle wave function. The form
of the wave function shows that this contribution is su
pressed.

The helicity-dependent off-forward matrix element is co
ventionally parametrized in terms of the generalized qu
distributions,

F̃ll8
1

5
1

P̄1
Ūl8~P8!F H̃q~ x̄,j,t !g1g5

1Ẽq~ x̄,j,t !
g5D1

2M GUl~P!, ~2.16!

whereUl(P) is the quark spinor in our case. The light-fro
spinors for longitudinally polarized quarks are given in A
pendix A. Using Eq.~A3!, and also the fact that the linea
mass-dependent helicity flip terms give a suppressed co
bution to the matrix element, we obtain thatẼ is suppressed
~it has no logarithmic divergent part!, providedD' is small.
We therefore get

H̃~ x̄,j,t !5
1

2 Fd~12 x̄!1
as

2p
Cf log

Q2

m2 S 3

2
d~12 x̄!

1
~11 x̄222j2!

~12 x̄!1~12j2!
D G . ~2.17!

The forward limit is easily obtained by puttingj50:

H̃~ x̄,0,0!5
1

2 Fd~12 x̄!1
as

2p
Cf log

Q2

m2 S 3

2
d~12 x̄!

1
~11 x̄2!

~12 x̄!1
D G . ~2.18!

The above expression can be identified withg1(x) for a
dressed quark target, as calculated in@17#. This gives the
intrinsic helicity distribution for a quark dressed with a gluo
in perturbation theory.

B. Gluon distribution

In this section, we calculate the gluon distribution

F̃gl8l
1

52
i

4p x̄P̄1E dz2eiP̄1z2x̄/2

3^P8l8uF1aS 2
z2

2 D F̃a
1S z2

2 D uPl&, ~2.19!

where

F̃mn5
1

2
emnrsFrs , e112252. ~2.20!

We use the light-front gaugeA150.
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The Fock space expansion of the relevant part of the
erator is given by

Og5
4i

@2~2p!3#2(
l

lE dk1
1d2k1

'E dk2
1d2k2

'

3a†~k1 ,l!a~k2 ,l!d~2x̄P̄12k1
12k2

1!. ~2.21!

Here,l is the gluon helicity. We calculate the matrix eleme
for a quark state dressed with a gluon. The Fock space
pansion of the state is given by Eq.~2.7!. The single particle
sector does not contribute to the matrix element and the o
contribution comes from the two-particle sector.

The matrix element is given by

F̃g
15

1

x̄
(
l

lE d2q'c2* S 12 x̄

12j
,q'D

3c2S 12 x̄

11j
,q'1

12 x̄

~12j2!
D'DAx̄22j2.

~2.22!

We have suppressed the quark helicity dependence of
wave functions and the sum over them. Using the full fo
of the two-particle wave function, we find that the helici
flip terms proportional to the quark mass give a suppres
contribution and the helicity nonflip part is given by

F̃g
15

A12j2

x̄

as

2p
Cf log

Q2

m2F12
~12 x̄!2

~12j2!
G , ~2.23!

where the first~second! term in the square brackets com
from the state with gluon helicity11 (21). So we have

F̃g
15

as

2p
Cf log

Q2

m2

@12~12 x̄!22j2#

xA12j2
. ~2.24!

Using the parametrization ofF̃g
1 in terms ofH̃g andẼg , one

can write

F̃gl8l
1

5
1

P̄1
Ūl8~P8!F H̃g~ x̄,j,t !g1g5

1Ẽg~ x̄,j,t !
g5D1

2M GUl~P!. ~2.25!

The fact that the helicity flip part of the matrix element
suppressed means thatẼg is also suppressed. So we get

H̃g~ x̄,j,t !5
as

2p
Cf log

Q2

m2

@12~12 x̄!22j2#

x~12j2!
.

~2.26!

The splitting function can easily be extracted and is given

P̃qg5Cf

@12~12 x̄!22j2#

x̄~12j2!
, ~2.27!
0-4
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which again agrees with@26# when making the replacemen
in j of @26# by 2j. Also, in the forward limit, Eq.~2.26!
gives

H̃g~ x̄,0,0!5
as

2p
Cf log

Q2

m2

@12~12 x̄!2#

x̄
. ~2.28!

or

H̃g~12 x̄,0,0!5
as

2p
Cf log

Q2

m2~11 x̄!. ~2.29!

This gives the gluon intrinsic helicity distribution for
dressed quark target. In Eq.~2.29!, we have taken 12 x̄ as
the momentum fraction of the gluon, in order to compa
with @17#.

III. TWIST-THREE DISTRIBUTION

We now calculate the twist-three~transverse! component
of the helicity-dependent off-forward distribution in pertu
bation theory. The matrix element of the transverse com
nent is given by

F̃l8l
'

5E dz2

8p
eiP̄1z2x̄/2^P8l8uc̄S 2

z2

2 Dg'g5cS z2

2 D uPl&.

~3.1!

We calculate the above matrix element for a transvers
polarized dressed quark state. As before, we work in
light-front gaugeA150. The bilocal operator in this cas
can be written as

O'55c̄S 2
z2

2 Dg'g5cS z2

2 D5c1†S 2
z2

2 Da'g5c2S z2

2 D
1c2†S 2

z2

2 Da'g5c1S z2

2 D . ~3.2!

The operator involves the constrained fieldc2(z2/2) and
therefore it is called higher twist. In the light-front gauge,c2

can be eliminated using the constraint equation

c25
1

i ]1 @a'
•~ i ]'1gA'!1g0m#c1, ~3.3!

where the operator 1/]1 is defined, using the antisymmetr
boundary condition, as

1

]1 f ~x2!5
1

4E2`

`

dy2e~x22y2! f ~y2!. ~3.4!

The operator, in terms of the dynamical fields, can be writ
as

O'55Om
'1Ok'

'
1Og

' , ~3.5!

where
08502
e
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n

Om
'5mF†

s1

i ]1 F1mS 2s1

i ]1 F†DF, ~3.6!

Ok'
'

5F†S 2
z2

2 D ~2]21 is3]1!
1

i ]1 FS z2

2 D
1F ~]21 is3]1!

1

i ]1 F†S 2
z2

2 D GFS z2

2 D . ~3.7!

Og
'5gF†S 2

z2

2 D 1

i ]1 ~ iA21s3A1!FS z2

2 D
1gF 1

2 i ]1 F†S 2
z2

2 D ~2 iA21s3A1!GFS z2

2 D .

~3.8!

Here,F is the two-component fermion field

c15FF

0 G . ~3.9!

The Fock space expansion ofF is given by Eq.~2.3!, with
xl being the two-component spinor. The operator has th
parts:Om

' is the quark mass contribution,Ok'
' is the quark

transverse momentum contribution, andOg
' is the quark-

gluon interaction effect. The light-front expression clea
shows each contribution separately in the light-front gaug

The longitudinally polarized dressed quark state is giv
in Eq. ~2.7!. The transversely polarized state is expressed
terms of the helicity states as

uk1,k',s1&5
1

A2
~ uk1,k',↑&6uk1,k',↓&), ~3.10!

with s156mR , wheremR is the renormalized mass of th
quark. Without any loss of generality, we take the state to
polarized along thex direction.

The contributions to the matrix element coming from t
three parts of the operator are given by

F̃m
1 5

m

P̄1 F d~12 x̄!c1* c11 (
s,s8

E d2q'
x̄

x̄22j2

3c2* S x̄2j

12j
,q'1

12 x̄

12j2 D'D
3xs

†s1xs8c2S x̄1j

11j
,q'D G . ~3.11!

We have suppressed the quark helicity dependence of
wave function. Using the explicit form of the two-particl
wave function,
0-5
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F̃m
1 5

m

P̄1

1

A12j2
c1* c1

3Fd~12 x̄!1
as

2p
Cf log

Q2

m2 S 2x̄~ x̄22j2!

~12 x̄!~ x̄22j2!
D G ,

~3.12!

F̃k'
1

52 i (
s,s8

E d2q'c2* S x̄2j

12j
,q'1

12 x̄

12j2 D'D
3c2S x̄1j

11j
,q'D q2

P̄1

j

x̄22j2

1 (
s,s8

E d2q'c2* S x̄2j

12j
,q'1

12 x̄

12j2 D'D
3xs

† ~s3q1!

P̄1
xs8c2S x̄1j

11j
,q'D x̄

x̄22j2
. ~3.13!

This gives

F̃k'
1

52
m

P̄1

1

A12j2
Cf log

Q2

m2

as

2p

~12 x̄!~ x̄21j212x̄j2!

~ x̄22j2!~12j2!
.

~3.14!

The interaction part gives the overlap contribution in ter
of two- and one-particle wave functions and is given by

F̃g
15Cf log

Q2

m2

as

2p

m

2P̄1

1

A12j2
d~12 x̄!. ~3.15!

As before, we have takenD' to be small. The interaction
gives a contribution only at the end pointx̄51. Considering
the normalization contribution to the single-particle mat
element, we get the total contribution

F̃15
m

P̄1

1

A12j2 Fd~12 x̄!1Cf log
Q2

m2

as

2p

3S 2d~12 x̄!1
112x̄~12j2!2 x̄2

~12 x̄!1~12j2!
D G . ~3.16!

Here, we have also considered the contribution of the n
malization condition to the single-particle matrix eleme
which cancels the end point singularity, as in the twist-t
case. Here,m is the bare quark mass. The above express
has no singularity atx̄5j. In light-front theory, the linear
mass term appearing in the light-front QCD Hamiltonian
renormalized as@27#

mR5mS 11
3

4p
asCf log

Q2

m2D . ~3.17!

Here mR is the renormalized mass of the quark. The line
mass terms in the light-front QCD Hamiltonian are asso
08502
s

r-
,

n

r
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ated with explicit chiral symmetry breaking@28#. Also, from
the above results, we find that the three contributions, incl
ing the quark transverse momentum effect and the qu
gluon interaction effect, are proportional to the quark ma
which shows that the twist-three distribution is directly r
lated to the dynamical effect of chiral symmetry breaking.
terms of the renormalized mass, we get

F̃15
mR

P̄1

1

A12j2 Fd~12 x̄!1Cf log
Q2

m2

as

2p

3S 1

2
d~12 x̄!1

112x̄~12j2!2 x̄2

~12 x̄!1~12j2!
D G . ~3.18!

In the forward limit, this gives

F̃15
mR

P̄1 Fd~12 x̄!1Cf log
Q2

m2

as

2p

3S 1

2
d~12 x̄!1

~112x̄2 x̄2!

~12 x̄!1
D G . ~3.19!

By comparing the right-hand side~RHS! of the above equa-
tion with the transversely polarized structure functiongT for
a dressed quark target@18#, one obtains that

F̃15
2mR

P̄1
gT5

2ST

P̄1
gT , ~3.20!

since for a transversely polarized dressed quarkmR5ST ~see
Appendix A!.

IV. EXAMINATION OF THE WANDZURA-WILCZEK
RELATION IN PERTURBATION THEORY

The twist-three matrix element is parametrized as@29#

F̃'5
1

P̄1
Ū~P8!S g'g5H̃1

D'

2M
g5Ẽ1

D'g5

2M
G̃11g'g5G̃2

1D'
g1

P̄1
g5G̃31 i e'nDn

g1

P̄1
G̃4D U~P!. ~4.1!

The light-front spinors for a transversely polarized quark
given by Eq. ~A4! in Appendix A. Using Eqs.
~4.1!,~A5!,~A6! we get

F̃15
2M

A12j2P̄1
~H̃1G̃2!, ~4.2!

which in the forward limit gives (2ST / P̄1)gT , since
H̃(x,0,0)5g1(x) and G̃2(x,0,0)5g2(x) in the forward
limit. Comparing with the result in the previous section, w
see that Eq.~4.2! is in agreement with our result for a dress
quark.

Using Eqs.~2.17! and ~3.18! we get
0-6
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G̃2~ x̄,j,t !5
1

2
Cf log

Q2

m2

as

2p
F2d~12 x̄!1

2~ x̄1j2!

~12j2!
G ,

~4.3!

which in the forward limit gives

G̃2~ x̄,0,0!5
1

2
Cf log

Q2

m2

as

2p
@2d~12 x̄!12x̄#. ~4.4!

The above expression agrees withg2 for a transversely po-
larized dressed quark target@18#.

In the Wandzura-Wilczek approximation, where the qua
mass as well as the quark-gluon interaction terms are
glected, the twist-three matrix element is given in terms
twist-two matrix elements as@12#

F̃m
WW~x,j!5Ū~P8!FDmg5

2M
Ẽ~x,j!2

Dm

2j
g1g5H̃~x,j!GU~P!

1E
21

1

duG̃m~u,j!W1~x,u,j!

1 i e'mkE
21

1

duGk~u,j!W2~x,u,j!, ~4.5!

where

Gm~u,j!5Ū~P8!Fg'
m~H1E!~u,j!1

Dm

2j

1

M

3S u
]

]u
1j

]

]j DE~u,j!2
Dm

2j
g1

3S u
]

]u
1j

]

]j D ~H1E!~u,j!GU~P!, ~4.6!

G̃m~u,j!5Ū~P8!Fg'
mg5H̃~u,j!1

Dm

2

g5

M

3S 11u
]

]u
1j

]

]j D Ẽ~u,j!

2
Dm

2j
g1g5S u

]

]u
1j

]

]j D H̃~u,j!GU~P!.

~4.7!

W6(x,u,j) are the Wandzura-Wilczek kernels given by

W6~x,u,j!5Fu~x.j!
u~u.x!

~u2j!
2u~x,j!

u~u,x!

~u2j! G
6Fu~x.2j!

u~u.x!

~u1j!

2u~x,2j!
u~u,x!

~u1j! G . ~4.8!
08502
k
e-
f

Using the light-front spinors given in Appendix A, we find
for x.j and D'5D1, D250, that the WW relation for
F̃WW

' reduces to

F̃WW
1 5

2mR

P̄1A12j2E duH̃~u,j!
u~x2j!u~u2x!

u2j
.

~4.9!

In the forward limit, the RHS become
(2mR /P1)*x

1dyg1(y)/y, which gives the well known
Wandzura-Wilczek relation for the transversely polariz
DIS structure functiongT . The twist-three vector distribu
tion F' is similarly expressed in terms of a Wandzur
Wilczek relation; however, it vanishes in the forward lim
Using the expression forH̃ for a massive dressed quark
perturbation theory,

F̃WW
1 5

2mR

P̄1A12j2

1

2
u~ x̄2j!H u~12j!

~12j!

1
as

2p
Cf log

Q2

m2 F3

2

u~12j!

12j
1

1

~12j2!

3F ~11j!logS 12j

x̄2j
D 211 x̄G G J . ~4.10!

Comparing the above expression with Eq.~3.18!, we see that
the WW relation is not satisfied for a dressed quark state
perturbation theory, as in the forward case. This is not s
prising because in the WW approximation the mass of
quark as well as the explicit interaction dependence of
operator are neglected, whereas we have obtained the
result in perturbative QCD for a massive quark.The effect
quark transverse momentum ingT was investigated in a co
variant parton model approach in@30#. Also, it is known that
in the forward limit the WW relation is violated in perturba
tion theory @18#. However, the BC sum rule is satisfie
@31,18,32#.

The quark mass effect can be incorporated in the der
tion of the off-forward WW relation@29#. This gives an ad-
ditional contribution toF̃' which is of the form~see Appen-
dix B!

F̃mass
' 5

2m

P̄1 F2
x̄

x̄22j2
f'~ x̄,j,D!

1E
x̄

1

dy
y21j2

~y22j2!2 f'~y,j,D!G ~4.11!

for j, x̄,1, where

f'~ x̄,j,D!5
1

2E dz2

2p
e2 i P̄1z2x̄/2

3^P8l8uc̄S 2
z2

2 D is1'g5cS z2

2 D uPl&.

~4.12!
0-7
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We use the parametrization@34#

1

2E dz2

4p
e2 i P̄1z2x̄/2^P8l8uc̄S 2

z2

2 D is1 jg5cS z2

2 D uPl&

5
1

P̄1
Ū~P8,l8!FHT

qis1 jg51H̃T
q i e1 j abDaPb

M2

1ET
qi

e1 j abDagb

2M
1ẼT

qi e1 j abPagb

M GU~P,l!.

~4.13!

Here M is the mass of the state. We calculate the ab
matrix element for a transversely polarized dressed qu
state in perturbation theory. Using the relations of light-co
spinors and also using the normalization of the transver
polarized state, we obtain

HT
q5

1

2 Fd~12 x̄!1Cf log
Q2

m2

as

2p

3S 3

2
d~12 x̄!1

2~ x̄2j2!

~12 x̄!1~12j2!
D G , ~4.14!

which in the forward limit givesh1(x) for a dressed quark:

h1~ x̄!5
1

2 Fd~12 x̄!1Cf log
Q2

m2

as

2p

3S 3

2
d~12 x̄!1

2x̄

~12 x̄!1
D G . ~4.15!

Next, we investigate the mass corrections to the WW rela
and the ‘‘genuine twist-three contribution’’ to the matrix e
ement in somewhat more detail. In the forward limit,F̃'

corresponds togT . We can write, in the forward limit,

gT~x!5E
x

1

dy
g1~y!

y
1

m

M S h1~x!

x
2E

x

1

dy
h1~y!

y2 D 1gT
g~x!,

~4.16!

wheregT
g(x) is the so-called genuine twist-three contributi

to gT . If we neglect this, we get the WW relation with th
quark mass correction,

gT~x!5E
x

1

dy
g1~y!

y
1

m

M S h1~x!

x
2E

x

1

dy
h1~y!

y2 D .

~4.17!

Herem is the quark mass andM is the mass of the target. I
is very important to note that in a perturbative calculationm
has to be renormalized. Taking thenth moment of both sides
of Eq. ~4.16! we get

g2
n52

n

n11
g1

n1
m

M

n

n11
h1

n211gTg
n , ~4.18!
08502
e
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n

where an5*0
1dx xna(x). Using the expressions forg1(x),

g2(x), andh1(x), the moments can be directly calculated

g2
n5

1

2

as

2p
Cf log

Q2

m2 S 2
n

n12D , ~4.19!

g1
n5

1

2 F11
as

2p
Cf log

Q2

m2

3S 2
1

2
1

1

~n11!~n12!
22(

j 52

n11
1

j D G , ~4.20!

h1
n5

1

2 F11
as

2p
Cf log

Q2

m2S 3

2
22(

j 51

n11
1

j D G . ~4.21!

Using these and also the renormalization of the quark m
given by Eq.~3.17!, we obtain

gTg
n 5

1

2

as

2p
Cf log

Q2

m2F2
n

n12

1
n

n11S 3

2
2

2n13

~n11!~n12! D G . ~4.22!

For n50, the RHS of the above equation gives zero, wh
proves the BC sum rule. Forn51, the RHS of Eq.~4.22!
also yields zero, which gives the Efremov-Leader-Terya
sum rule with the correction due to the quark mass.

Next, we use Eq.~4.16! to extract the ‘‘genuine twist-
three’’ part ofgT .

The O(as) part of gT can be separated into two parts,

gT
(1)5gTA

(1)1gTB
(1) . ~4.23!

HeregTA
(1) is the WW part with the mass corrections andgTB

(1)

is the ‘‘genuine twist three part.’’ Using Eq.~4.16! and also
the expressions forg1(x),h1(x), we get

gTB
(1)5

1

2

as

2p
Cf log

Q2

m2F1

2
d~12x!2

3

2
2 logxG .

~4.24!

It is interesting to compare the RHS of the above equat
with the forward limit of Eq.~3.15!. This shows that Eq.
~3.15! does not give the full ‘‘genuine’’ twist-three contribu
tion but only a part of it. Also from the above expression it
easy to check that the first and second moments ofgTB

(1) are
zero.

We stress that the quark mass plays a very important
in the twist-three matrix element, and also, in our case, i
essential to obtain a transversely polarized state, sinceST
5mR , the renormalized mass of the quark. Our result sho
that the twist-three generalized distribution is directly rela
to the chiral symmetry breaking dynamics in light-fro
QCD.
0-8
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V. SUMMARY AND DISCUSSION

To summarize, in this work we have investigated the o
forward matrix elements of the light-cone axial vector ope
tor. We have calculated the matrix elements of the plus
transverse components of the operator for a dressed qua
light-front Hamiltonian perturbation theory. This approa
allows us to express the distributions in terms of light-fro
wave functions. We have restricted ourselves to the kinem

cal region j, x̄,1. In this case, the overlaps of thre
particle and one-particle wave functions are absent. We
tained the splitting functions for the evolution of the helicit
dependent twist-two quark and gluon distributions in

straightforward way. We showed that the singularity atx̄
51 is canceled by the contribution from the normalization
the state, as in the helicity-independent case calculated
lier. The twist-two distributions reduce to the quark a
gluon intrinsic helicity distributions for a dressed quark ta
get in the forward limit. The twist-three distribution is ex
pressed entirely in terms of the dynamical fields in the lig
front gauge. This calculation shows that for the twist-tw
distributions the entire interaction dependence comes f
the state, whereas the operator has free field structure, b
the case of twist three both the operator and the state in
duce interaction dependence. The operator has three par
explicit mass-dependent term, a quark-gluon interact
term, and a term containing the quark transverse momen
effect. The calculation of this matrix element for a tran
versely polarized dressed quark shows that all the three
tributions are proportional to the quark mass. Using
renormalized quark massmR in light-front Hamiltonian per-
turbation theory, we found that in the forward limitF̃' is
proportional toSTgT , whereST is the transverse polarizatio
of the state,ST5mR in our case. It is known that in light
front Hamiltonian QCD chirality is the same as helicity, a
the terms that cause helicity flip in the light-front QC
Hamiltonian are explicit chiral symmetry breaking term
These terms are linear in the quark mass. It is interestin
note that the quadratic mass terms do not flip helicity; ho
ever, they are suppressed here. Therefore, we concluded
F̃' is directly related to the chiral symmetry breaking d
namics in light-front QCD and the quark mass plays an
portant role. In particular, a finite mass is necessary to ha
transversely polarized quark state. We have calculated
same off-forward matrix element in the Wandzura-Wilcz
approximation and found that the actual result for a mass
dressed quark deviates from the WW approximated fo
The violation of the WW relation forgT for a massive quark
is known in perturbation theory and our result reduces togT
for a massive dressed quark in the forward limit. It is to
noted that in the case of nucleons, the quark intrinsic tra
verse momentum effects and the quark-gluon coupling
namics play a more complicated role and the pure qu
mass effects in perturbative QCD may be suppressed
m/M whereM is the hadron mass. We have also calcula
the quark mass correction to the off-forward WW relati
which in the forward limit reduces to a term proportional
h1(x). We extracted the ‘‘genuine twist-three part’’ ofgT and
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showed that both the BC and ELT sum rules are satisfie
It is known that in the kinematical region 0, x̄,j, a

contribution comes from the overlap of the three and o
particle wave functions. The GPDs in this region have
different type of evolution~Brodsky-Lepage!. It will be in-
teresting to investigate the GPDs for a dressed quark in
kinematical region using this approach and to check the v
ous moment relations in the whole range ofx̄, 0, x̄,1.
Another interesting topic for future work is to investigate t
D' dependence of the GPD’s in the framej50.
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APPENDIX A: LIGHT-FRONT SPINORS

The light-front spinors for a longitudinally polarize
quark of massM and momentumP and helicity up and
down, respectively, are given by@35#

U↑~P!5
1

A2P1 S P11M

P11 iP2

P12M

P11 iP2

D ,

U↓~P!5
1

A2P1 S 2P11 iP2

P11M

P12 iP2

2P11M

D . ~A1!

Using these, we get

Ū↑~P8!g1g5U↑~P!52A12j2P̄1,

Ū↑~P8!g5U↑~P!5
2jM

A12j2
. ~A2!

Also,

Ū↑~P8!g1g5U↓~P!50,

Ū↑~P8!g5U↓~P!5
2D11 iD2

A12j2
. ~A3!

Light-front spinors for a transversely polarized quark a
given by @36#
0-9
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U↑~P!5
1

A2P1 S M1P12 iP2

2P1

P1

2M1P11 iP2

D ,

U↓~P!5
1

A2P1 S 2M1P12 iP2

2P1

P1

M1P11 iP2

D . ~A4!

Using these, we get the components of the polarization v
tor Sm5 1

2 Ū(P)gmg5U(p): S150, S250, S15M , S2

52(P1/P1)M .
Also,

Ū↑~P8!g'g5U↑~P!5
2M

A12j2
,

Ū↑~P8!g5U↑~P!50, ~A5!

and

Ū↑~P8!g1g5U↑~P!50,

Ū↑~P8!g1U↑~P!5
jD1

A12j2

Ū↑~P8!U↑~P!5
2M

A12j2

Ū↑~P8!g1U↑~P!52P̄1A12j2. ~A6!

APPENDIX B: MASS TERM IN WW RELATION

In this appendix, we give an outline of the derivation
Eq. ~4.11!. Using the approach described in@29#, and taking
into account the quark massm, one gets
J.

/

ar

s.

. C

d

08502
c-

F̃a~x,j,t !5E dl

2p
e2 ilx^P8S8uc̄S 2

z2

2 Dgag5cS z2

2 D uPS&

5Ma~x,j,t !1Xa~x,j,t !, ~B1!

where l5 1
2 P̄1z2, Ma(x,j,t) is the mass term, and

Xa(x,j,t) are all the other terms considered in the WW a
proximation. Here we concentrate on the mass term given
@33#

Ma~x,j,t !52 imE dl

2p
e2 ilxlE

0

1

du u@ei (12u)jl

1e2 i (12u)jl#
1

2
^P8S8uc̄S 2

uz2

2 D
3 is1ag5cS uz2

2 D uPS&. ~B2!

If we define

f a~x,j,D!5
1

2E dz2

2p
e2 i P̄1z2x/2^P8S8uc̄S 2

z2

2 D
3 is1ag5cS z2

2 D uPS&, ~B3!

we get, from Eq.~B2!,

Ma~x,j,t !5
m

P̄1

]

]xE0

1

duF f aS x1~12u!j

u
,j,D D

1 f aS x2~12u!j

u
,j,D D G . ~B4!

Changing the variable,y5@x6(12u)j#/u we obtain, for
x.j,

Ma~x,j,t !5
2m

P̄1 F2
x

x̄22j2
f a~x,j,D!

1E1

dy
y21j2

2 2 2 f a~y,j,D!G . ~B5!

x ~y 2j !
.

@1# D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and
Horejsi, Fortschr. Phys.42, 101 ~1994!.

@2# X. Ji, J. Phys. G24, 1181~1998!.
@3# A. V. Radyushkin, inAt the Frontier of Particle Physics

Handbook of QCD, edited by M. Shifman~World Scientific,
Singapore, 2001!.

@4# K. Goeke, M. V. Polyakov, and M. Vanderhaeghen, Prog. P
Nucl. Phys.47, 401 ~2001!.

@5# S. J. Brodsky, M. Diehl, and D. S. Hwang, Nucl. Phys.B596,
99 ~2001!.

@6# M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, Nucl. Phy
B596, 33 ~2001!.

@7# M. Diehl, T. Feldmann, R. Jakob, and P. Kroll, Eur. Phys. J
8, 409~1999!; B. C. Tiburzi and G. A. Miller, Phys. Rev. C64,
065204~2001!; A. Mukherjee, I. V. Musatov, H. C. Pauli, an
t.

A. V. Radyushkin, Phys. Rev. D~to be published!,
hep-ph/0205315.

@8# HERMES Collaboration, A. Airapetianet al., Phys. Rev. Lett.
87, 182001~2001!.

@9# CLAS Collaboration, S. Stepanyanet al., Phys. Rev. Lett.87,
182002~2001!.

@10# H1 Collaboration, C. Adloffet al., Phys. Lett. B 517, 47
~2001!.

@11# ZEUS Collaboration, P. R. Saullet al., hep-ex/0003030.
@12# A. V. Belitsky and D. Müller, Nucl. Phys.B589, 611 ~2000!;

N. Kivel, M. V. Polyakov, A. Scha¨fer, and O. V. Teryaev, Phys
Lett. B 497, 73 ~2001!.

@13# S. Wandzura and F. Wilczek, Phys. Lett.72B, 195 ~1977!.
@14# E155 Collaboration, P. L. Anthonyet al., Phys. Lett. B553, 18

~2003!.
0-10



D

. D

ry,

.

t. B

B

s,

a,

HELICITY-DEPENDENT TWIST-TWO AND TWIST- . . . PHYSICAL REVIEW D 67, 085020 ~2003!
@15# W. M. Zhang and A. Harindranath, Phys. Rev. D48, 4881
~1993!.

@16# A. Harindranath, R. Kundu, and W. M. Zhang, Phys. Rev.
59, 094013~1999!.

@17# A. Harindranath and R. Kundu, Phys. Rev. D59, 116013
~1999!.

@18# A. Harindranath and W. M. Zhang, Phys. Lett. B408, 347
~1997!.

@19# A. Harindranath, A. Mukherjee, and R. Ratabole, Phys. Rev
63, 045006~2001!.

@20# A. Harindranath, R. Kundu, A. Mukherjee, and J. P. Va
Phys. Lett. B 417, 361 ~1997!; Phys. Rev. D58, 114022
~1998!.

@21# A. Mukherjee and D. Chakrabarti, Phys. Lett. B506, 283
~2001!.

@22# R. Kundu and A. Metz, Phys. Rev. D65, 014009~2002!.
@23# A. Mukherjee and M. Vanderhaeghen, Phys. Lett. B542, 245

~2002!.
@24# H. Burkhardt and W. N. Cottingham, Ann. Phys.~N.Y.! 56, 453

~1970!.
@25# A. V. Efremov, O. V. Teryaev, and E. Leader, Phys. Rev. D55,
08502
4307 ~1997!.
@26# X. Ji, Phys. Rev. D55, 7114~1997!.
@27# R. J. Perry, Phys. Lett. B300, 8 ~1993!; A. Harindranath and

W. M. Zhang, Phys. Rev. D48, 4903~1993!.
@28# K. G. Wilson, T. S. Walhout, A. Harindranath, W. M. Zhang, R

J. Perry, and S. D. Glazek, Phys. Rev. D49, 6720~1994!.
@29# D. V. Kiptily and M. V. Polyakov, hep-ph/0212372.
@30# J. D. Jackson, G. G. Gross, and R. G. Roberts, Phys. Let

226, 159 ~1989!.
@31# G. Altarelli, B. Lampe, P. Nason, and G. Ridolfi, Phys. Lett.

334, 187 ~1994!.
@32# M. Burkardt and Y. Koike, Nucl. Phys.B632, 311 ~2002!.
@33# D. V. Kiptily and M. V. Polyakov~private communication!.
@34# M. Diehl, Eur. Phys. J. C19, 485 ~2001!.
@35# A. Harindranath, in Light-front Quantization and Non-

perturbative QCD, edited by J. P. Vary and F. Wolz~Interna-
tional Institute of Theoretical and Applied Physics, Ame
Iowa, 1997!.

@36# A. Mukherjee, Ph.D. thesis, University of Calcutt
hep-ph/0106167.
0-11


