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Helicity-dependent twist-two and twist-three generalized parton distributions
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We investigate the helicity-dependent twist-two and twist-three generalized parton distributions in light-front
Hamiltonian QCD for a massive dressed quark target. Working in the kinematical régirri1, we obtain
the splitting functions for the evolutions of twist-two quark and gluon distributions in a straightforward way.
For the twist-three distribution, we find that all contributions are proportional to the quark mass and thus the
twist-three distribution is directly related to the chiral symmetry breaking dynamics in light-front QCD. We
also show that the off-forward Wandzura-WilczékW) relation is violated in perturbative QCD for a massive
dressed quark. We calculate the quark mass correction to the WW relation in the off-forward case and show
that it is related tdh,(x) in the forward limit. We extract the “genuine twist-three” part of the matrix element
in the forward case and verify the Burkhardt-Cottingham and Efremov-Leader-Teryaev sum rules.
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[. INTRODUCTION proton target in the presently accessiQié range[8—11], it
is of primordial importance to understand the effect of higher
The generalized parton distributio§PD9 [1] have twist components. The perpendicular or twist-three compo-
been studied intensively in recent years. GPDs are hybrids dgfent of the operator has been investigated using the
the usual parton distributions measured in inclusive proWandzura-Wilczek approximatiofl2], where the explicit
cesses such as deep inelastic scatte@i§) and form fac- interaction-dependent parts of the operator as well as the
tors measured in elastic exclusive processes. In general, théjark mass terms were neglected. In this case, the twist-three
can be expressed axf-forward matrix elements of light- Mmatrix element can be expressed solely in terms of twist-two

conebilocal operators. In the forward limit, GPDs reduce to GPDS- In the forward limit, these relations reduce to the
normal parton distributions, which can then be expressed ay/andzura-Wilczek relation for the transversely polarized
forward matrix elements of light-cone bilocal operators. The Structure functiorgy [13]. There is no theoretical justifica-

moments of GPDs over the parton momentum frackigive tion for this approximation. In the forwarq case, recent ex-
. : . . perimental results for the transverse polarized structure func-
form factors, which are given in terms of off-forward matrix

elements ofocal operators. Thus. GPDs have a much richertion indicate that the deviation from the Wandzura-Wilczek
P ' ' proximated form is substantial in some kinematic range

. X a
strgcturT af‘d thehy conne_czjt various p:jrqcesses, b_Otfh 'nCIU_S'\féJr a nucleon targetl4]. Therefore, it is interesting to make
and exclusive. They provide new and important information, | calculation of the off-forward twist-three matrix ele-

about the structure of the hadron. They can be probed ifhent within the context of perturbative QCD, taking into
deeply virtual Compton scatterin@VCS) and hard exclu- account the explicit interaction dependence of the operator,
sive production of vector mesorior recent reviews on  the mass as well as the intrinsic transverse momentum of the
GPDs and hard exclusive reactions; f2e4] and references partons. A convenient tool is based on the light-front Hamil-
therein. tonian description of composite systems utilizing many-body
The GPDs have been investigated recently in the lightwave functions. Instead of a hadron target, here we consider
cone formalism by several authors, and an overlap represea-simpler target like a quark dressed with a gluon and calcu-
tation of the plus component in terms of light-cone wavelate the off-forward matrix elements within the context of
functions has been giveld,6]. GPDs have also been con- perturbative QCD. The two-particle wave function is given
structed using light-cone model wave functiofig. The in terms of the light-front QCD Hamiltoniafl5]. This ap-
transverse and the minus components are somewhat compfiroach has been used extensively in the recent years to cal-
cated since they involve the constraint fieJd . They are culate polarized and unpolarized distribution functions in
usually called “bad” components, since the operators inDIS, twist two [16,17], twist three[18,19, and twist four
these cases involve interaction terms and are higher twigR0], as well as the transversity distributig@1], and the
objects. In other words, they involve direct quark-gluon dy-transverse-momentum-dependent distributiof22]. Re-
namics. To interpret the experimental results for DVCS on aently we have also extended it to calculate the off-forward
matrix elements of light-front bilocal vector operatd&3].
We verified the helicity sum rule in perturbation theory and
*Email address: asmita@physik.uni-dortmund.de showed the effect of quark mass in the twist-three matrix
TEmail address: marcvdh@kph.uni-mainz.de element, which is absent in the forward limit.
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In this work, we investigate the helicity-dependent generskewednesg = —AT/2PT. Without any loss of generality,
alized distributions, which are the off-forward matrix ele- we takeé>0. We also get\ ™= ¢P2/P+ .

ments of light-front axial vector operators, in light-front

o . The above matrix element is conventionally parametrized
Hamiltonian perturbation theory for a dressed quark target. . .
. L — in terms of the helicity-dependent distributioH$x, £,t) and
We restrict ourselves to the regi@xx<<1 of the general-

ized distributions, wheré is the skewedness. In this region, E(x,g,t), wheret is the invariant mom?”t“m transfer. The
the contributions come from the overlaps of two-body wavenatrix element can a!so be expressed In terms of overlaps of
functions uptoO(«s). We obtain the splitting functions cor- light-front wave functions. The operator is given by
responding to the evolution of the twist-two helicity-

fetrii ; ; dz= — - z z
dependent distributions in a straightforward way. In the f Ee.xp z ’ZJ(——) 7,+y5¢(?)

twist-three distribution, we show the contributions from the 2

guark-gluon interaction-dependent part, the quark mass, and 1 _ _

the intrinsic transverse-momentum-dependent parts of the :_f dzeixP+z‘lzl/j+T( _Z_> ysl//+(z_>_
operator explicitly. We find that all three contributions are 4 2 2
proportional to quark mass. We find that the Wandzura- 2.2)

Wilczek (WW) relation is not satisfied in perturbative QCD

in the off-forward case for a massive quark, analogously tq4qre 4" =A*y and A==1/2y°y*. The above expression
its forward counterpart. Our results also show that the twistiS given in the light-front gaugé*=0, where the path-
three distribution is directly related to the dynamical effect of 5. yareq exponential between the fermion fields in the bilocal

chiral symmetry breaking in light-front QCD. We calculate onerator is unity. For simplicity we suppress the flavor indi-
the mass correction to the WW relation in the off-forward ces. In the two-component representation, we have the dy-

case. This contribution is related to(x) in the forward  amical fermion field
limit. Using the quark mass correction to the WW relation,

we also obtain the “genuine twist-three” part of the matrix do* d2p
element. We show that the first and second moments of this v (2)=> Xxf l[b(pyx)e—iqz
are zero, which give the Burkhardt-CottinghdiBC) [24] X 2(2m)3\p*
and Efremov-Leader-Teryad¥LT) [25] sum rules, respec- 4
+df(p,\)eP?] (2.3

tively.

The plan of the paper is as follows. In Sec. Il, we inves- . _
tigate the twist-two helicity-dependent distributions, involv- and the dynamical gauge field
ing both the quark and the gluon operators, for a dressed

quark state. In Sec. lll, we calculate the off-forward matrix (=3 dg*d*q* i ~iqz
element of the transverse component of the axial vector cur- A(z)= = 2(27)3q+[6ka(q’)‘)e +Hcl.

rent. We investigate the WW relation in the off-forward case (2.4)
and the quark mass correction to it in Sec. IV. A summary

and discussion are given in Sec. V. The light-front spinors fofyere 4, is the eigenstate af, in the two-component spinor

longitudinally and transversely polarized quarks are given iny¢ . We have used the light-front matrix representation:
Appendix A. An outline of the derivation of the quark mass
term in the WW approximation is given in Appendix B. 0 i 0 i =i 0
- — o
0_ 3_ i
7 (i 0)' 7 (i 0)’ 7 ( 0 i}i>'
(2.9

with o'=¢? and?= — . €()) is the polarization vector
of the transverse gauge field.
The Fock space expansion of the operator is given by

Il. HELICITY-DEPENDENT TWIST-TWO DISTRIBUTIONS
A. Quark distribution

The twist-two helicity-dependent generalized distribution
is given by

~ dzm —. z7\ z"
F)\)\’:J’Eelxp z /2<P’7\,|E(_7)7 y51ﬁ<7)|P)\>.
(2.1

dk*d%k* [ dk'*td2k’*
202m)3\Vk*) 2(2m)3Jk'*

O+5:22 f
s,s’

X[8(2xPT—k'* —k)b'(k,s)b(k’,s")
Here,P,P’ are the four-momenta ard\’ are the helicities

of the initial and final states, respectively. +8(2xP* +k' " +k)d(k, —s)dt(k’,—s")
We work in the so called symmetric frani&,6]. The mo- _
mentum of the initial state i®* and that of the final state is +8(2xPT +k" =k’ ")d(k,—s)b(k’,s")

P’#. The average momentum between the initial and final SIXP 4K — kM bk s)dT (K ot
state is therP#=(P*+P’'#)/2. The momentum transfer is +o(2xPT A+ )bk, S)dT(K", =s") xsoaxs -
given by A#=P'*—PK P/ =-P =A /2, and (2.6)
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We havek*>0, k'*>0, k" —k'T=p*—p’*=2¢p™. In two-partigle sector of the state. Using the_ Iigh.t-fro.nt QCD
Hamiltonian, the two-particle wave function is given in

the kinematical regio <;<1, only the first term in Eq.
giorg y d | terms ofyy as

(2.6) contributeg 6]. We restrict ourselves to this kinematica
region.

We take the statfP, o) of momentunP and helicityo to W92 (x,qh)=— x(1—>2<) Ta 1 9 )
be a dressed quark consisting of bare states of a quark and a’ -+ (g") V(1—x) VJ2(2m)3 "1
quark plus a gluon:
q -CF(;l o= (17%)
|P.0)=¢1b"(P,0)|0) et o m
dk; d%ky dk; d%k; XXafi* U1, (2.12

+ 3+ 3+
ke ) V22m k) 22’k whereg is the coupling constant;? is the usual ¢ of Gell-
XN2(2m)3PT83(P—k;—ky) Mann) color matrix andm is the bare mass of the quark. In
_ . ‘ the denominator of the above expression, we have neglected
X ¢o(P,0lky, 01k, N 2)b (kg ,07)a’(kz,\2)[0). terms of ordem? compared to ¢)2. Using Eq.(2.1) and
(2.7  Ed.(2.12, we see that the linear mass terms which cause
helicity flip are suppressed in the matrix element. The terms
Herea' andb' are bare gluon and quark creation operatorsguadratic in mass do not flip helicity, but they are suppressed
respectively, andp, and ¢, are the multiparton wave func- also. We calculate the helicity nonflip part.
tions. They are the probability amplitudes to find, respec- Using Eq.(2.12 we get
tively, one bare quark and one quark plus gluon inside the 2 (14326
dressed quark state. Up to one loop, if one considers all ~ — —  as Xo—=
kinematical regions, there will be nonvanishing contributions Fr=y1-¢|a1—x+ EC" IOg;f (1-x)(1— &%)
from the overlap of three-particle and one-particle sectors of
the state; this situation is similar to QEB)]. In the kinemati- XYy by, (2.13
cal region we are considering, this kind of overlap is absent
and it is sufficient to consider dressing only by a singlewhere C;=(N?~1)/2N for SU(N). We have cut off the
gluon. The state is normalized as transverse momentum integral at some s€glandu is the
factorization scale separating hard and soft dynarfié€s.
(P' \N'|PNy=2(2m)3P* 8, \ S(PT=P' ") 4 (P —P'4). Also, we have takeA*| to be small. For convenience, we
2.9 takeA?=0. It is important to note that the entiee, depen-

) o ' dency in Eq.(2.13 comes from the state and the operator is
¢, actually gives the normalization constant of the statg§ndependent of the interaction. The single particle matrix el-
[16]: ement receives a contribution up @(«g) from the normal-

N e 14x2 Q2 ization of the statéet. Taking into account the normalization
|a|2=1— chfk dx Ty |09F' (2.9 contribution, we g

-3+ 2 cioa | 2 513
(1=x)+5— 1log- 2| 5 (1-x)

s . Et— ./ 2
within order ag. Heree is a small cutoff ornx. Fr=yJ1-¢ p

The matrix element becomes

(1+x2—2¢?)
- _ | (2.19
Fr=J1-& g} y8(1-x) (1-%)4+(1=¢&%)
— 1-% The end point singularity at=1 is canceled by the contri-
+ > d2q, o] x—§ L —X AL bution from the normalization of the state to the single par-
q, ¥3s, 2| 7—2:0 — 2 . . ; L
1 Sy 1M 1-§ 1-¢ ticle matrix element, as in the helicity-independent d&sa.
_ ; The splitting function can easily be extracted from the above
X+ expression:
X X$,0%Xs,Whs 1T§,CIL) - (2.10 P
P, =C Gt 2.1
We have introduced Jacobi momen¢gg g such thatSx; aa f(l_;)+(1_§2)' (219

=1 and=;q; =0, and the boost invariant wave functions
This agrees with the known result §26] (when ¢ in Ref.

Y1=d1, Po(%,a)=P (k" k). (21D  [26]is replaced by 2).

The first term in Eq(2.10) is the contribution from the single
particle sector and the second term is the contribution of the *Here 1/(1-x), is the usualprincipal valug plus prescription.
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Turning next to the helicity flip part of the matrix element,  The Fock space expansion of the relevant part of the op-
we find that it arises solely from the mass term in the expreserator is given by
sion Eq.(2.12 for the two-particle wave function. The form

of the wave function shows that this contribution is sup- 4 42 LJ 42l
pressed. Og_—ﬂ[z(zﬂ_) ] ; Af dk; doky | dk; dok;

The helicity-dependent off-forward matrix element is con- L
ventionally parametrized in terms of the generalized quark ><aT(kl,)\)a(kz,)\)é(ZxW—kf—kg). (2.2)

distributions,

Here,\ is the gluon helicity. We calculate the matrix element
=~y 1 e = L s for a quark state dressed with a gluon. The Fock space ex-
Fn'_ﬁuh’(P ) Hex.EDy Y pansion of the state is given by EQ.7). The single particle

sector does not contribute to the matrix element and the only
contribution comes from the two-particle sector.
A(P), (2.16 The matrix element is given by

S5A+

+Eq(;,§,t) W U

whereU, (P) is the quark spinor in our case. The light-front [~:+:1 2 )\f &g’ 1-x |
spinors for longitudinally polarized quarks are given in Ap- N a2 1 §’q
pendix A. Using Eq.(A3), and also the fact that the linear

mass-dependent helicity flip terms give a suppressed contri- 1-x 1-x B ——
bution to the matrix element, we obtain tfatis suppressed Xt 1+g'q (1-2) AT VX" €%
(it has no logarithmic divergent paytrovidedA* is small.

We therefore get (2.22

2(3 We have suppressed the quark helicity dependence of the
S(1— x)+ Cf log— ( —5(1—x) wave functions and the sum over them. Using the full form
2 of the two-particle wave function, we find that the helicity
flip terms proportional to the quark mass give a suppressed
2.17) contribution and the helicity nonflip part is given by

proMz& A Q 1
g ; 2 f gMZ

H(X§t)_

L (-2 )
(1-x). (1= |
The forward limit is easily obtained by putting=0:

i
1-a)

(2.23

2

1 3 — i i
5(1 x)+ Cf log Q2 ( 25(1_)() where the first(second term in the square brackets comes

H(x,00= from the state with gluon helicit-1 (—1). So we have

(1+x2) - Q?[1-(1-x)?—&%]
1. (2.18 Fo=5_ 5= Clog>, 2 i (2.24

The above expression can be identified wigh(x) for a  Using the parametrization cﬁfg in terms ofF|g andEg, one
dressed quark target, as calculated[17]. This gives the can write
intrinsic helicity distribution for a quark dressed with a gluon

in perturbation theory.

~ 1 - —
ng’kzﬁuk/(P,)[Hg(Xagvt)y+75

B. Gluon distribution

- — SAT
In this section, we calculate the gluon distribution +Eg(x,§,t)72—M U,(P). (2.295
T:g*}\m: - +f dz elP 'z x2 The fact that the helicity flip part of the matrix element is
4mxP suppressed means t@g is also suppressed. So we get
zZ \~.(Z
><<P'>\’|F+“(——>F*(—)|P>\>, (2.19 - Q2[1 2_ ¢
2) %\ 2 _S
Hg(x,f,t) Cfl g— X(l §2)
where (2.26
_ 1 The splitting function can easily be extracted and is given by
Frr=Z et R, e't?=2. (2.20 _
~ [1-(1-x)2-¢&%]
Pqg=C , (2.27

We use the light-front gauga™ =0 X(1— &2)
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which again agrees witf26] when making the replacement | ) ol — ot
in & of [26] by 2¢. Also, in the forward limit, Eq.(2.26) Op=me —r®+m| 5 CDT)CD. (3.6
gives
~ — a Q?[1—(1-x)?] et L 2.y L z
Hg(X,O.O):ﬁCf IOQ?T' (2.29 O=2'| — 5 |(=d"Flogd )i&—ﬁb >
or +| (P+iozdt ! ot z o z 3
(0°+io30 )Io"_+ > > (3.7
Hy(1—-x,0,00= s cilo Q—2(1+7) (2.29
g 1y - 271_ f gMZ . . . : 27 1 - . Z,
Og=g(I> —? i(?_+(IA +o3AN)D 7
This gives the gluon intrinsic helicity distribution for a - -
dressed quark target. In ER.29, we have taken £ x as I T _ Z_) _iA2L 1 Z_)
the momentum fraction of the gluon, in order to compare 9 —ia*q) 2 (ZiATFosAT) | @ 2/
with [17]. 3.9
lll. TWIST-THREE DISTRIBUTION Here,® is the two-component fermion field
We now calculate the twist-thregransversgcomponent
of the helicity-dependent off-forward distribution in pertur- ()
bation theory. The matrix element of the transverse compo- b= 0}. (3.9

nent is given by

~ Z ST z" z- The Fock space expansion @f is given by Eq.(2.3), with
Fron= j Ee'P ZX2pry IJ( - 7) 7L75¢(7>|P)\>- x, being the two-component spinor. The operator has three
(3.0) parts: Oy, is the quark mass contributiomﬁL is the quark

transverse momentum contribution, aﬁlg is the quark-
We calculate the above matrix element for a transverselyjyon interaction effect. The light-front expression clearly
polarized dressed quark state. As before, we work in thehows each contribution separately in the light-front gauge.
light-front gaugeA™=0. The bilocal operator in this case  The longitudinally polarized dressed quark state is given
can be written as in Eq. (2.7). The transversely polarized state is expressed in
z z z
f?’sl/f( ?) = llf”( - 7) at 7’59’1(7)

B terms of the helicity states as
z
OLSZE( _?
1
_ |k*,ki,sl>=E(|k+,ki,T)t|k*,ki,l)), (3.10

+1//T( —%) aly51//+<%>. (3.2

with s'=*+mg, wheremg is the renormalized mass of the
quark. Without any loss of generality, we take the state to be
polarized along the direction.

The contributions to the matrix element coming from the
three parts of the operator are given by

The operator involves the constrained field (z~/2) and
therefore it is called higher twist. In the light-front gauge,
can be eliminated using the constraint equation

1
Wzm[aL'(iﬁlﬂLgAl)Jr?’Om]W, 3.3
. . . . . ﬁl—ﬂ 5(1_;) * +E d2gt X
where the operator 4/ is defined, using the antisymmetric mT 5 Y1 , q ;2_52
boundary condition, as 7
X—§& 1-x
1 B 1 0 _ B 3 B X *(_, L+ AL)
St00)=5] ay ey re. @4 VT T
. o . - x+& |
The operator, in terms of the dynamical fields, can be written XXoT Xo' 2 1+§,q : (3.1
as
O'5=0p+ OtﬁrOl, (3.5  We have suppressed the quark helicity dependence of the
wave function. Using the explicit form of the two-particle
where wave function,
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~, m 1 .
szﬁ \/1_—‘;_.;21101‘#1
—  as Q?[ 2x(x—2¢%)
X 5(1_X)+ECf|OgM— m) ,
(3.12
Fo=—iX | d wf*(i L+ _;Ai)
KL et q ¢, 1_§,0| 1_62
x+& | 9? &
G 1+§'qi)ﬁ;2 2
x—§ X
(o%q") X+ ¢
Tt 17
XX{)' E+ XU"/IZ 1+§!ql);2_§2 (313)
This gives

o mo 1 Qs (100 2xE?)
KL Pt V1-& f g,u2 27 () (1)
(3.14

The interaction part gives the overlap contribution in terms

of two- and one-particle wave functions and is given by

Q% ag m 1
pe2m opt \[1— ¢
As before, we have takeA' to be small. The interaction

gives a contribution only at the end poﬁt: 1. Considering
the normalization contribution to the single-particle matrix
element, we get the total contribution

Fi=Cslog S(1—x). (3.19

2

1 — Q
8(1—x)+C; IOQF

-7

m

P+

as

2m

I

Fio

1+2x(1— £2)—x?

X —
(1-%)4(1- %)

25(1—x)+

(3.19

Here, we have also considered the contribution of the nor.

malization condition to the single-particle matrix element,

PHYSICAL REVIEW D67, 085020 (2003

ated with explicit chiral symmetry breaking@8]. Also, from

the above results, we find that the three contributions, includ-
ing the quark transverse momentum effect and the quark
gluon interaction effect, are proportional to the quark mass,
which shows that the twist-three distribution is directly re-
lated to the dynamical effect of chiral symmetry breaking. In
terms of the renormalized mass, we get

2

m _
R S(1—X)+C; Iog%

1
Ny

As

2w

| o

Fio

X)+

v 1 _ £2\_ 2
x(%ﬁ(l—) 142x(1— &) —x

(1-x)4(1- &)

In the forward limit, this gives

~ mR — Q2 g
1__ " _ - >
F == S(1—x)+C; Iog,“2 oy
«| 2501 _)+(1+2;_;2) (3.19
by _X — . .
2 (1=x) 4

By comparing the right-hand sid®HS) of the above equa-
tion with the transversely polarized structure functgnfor
a dressed quark targgt8], one obtains that

2mg  2S;

El:ﬁgTzﬁgT.

(3.20

since for a transversely polarized dressed quagk S; (see
Appendix A).

IV. EXAMINATION OF THE WANDZURA-WILCZEK
RELATION IN PERTURBATION THEORY

The twist-three matrix element is parametrized 28]

- 1 ~ At ANYS ~
L_ / 5 5 5
F E+U(P )('yi'y H+2M'yE+ 5M G, + v y°G,
Y x Y <
+AL§‘)/SG3'H6¢VAV§G4 U(P). 4.1

The light-front spinors for a transversely polarized quark are
given by Eq. (A4) in Appendix A. Using Egs.
(4.1),(A5),(A6) we get

which cancels the end point singularity, as in the twist-two
case. Herem is the bare quark mass. The above expression
has no singularity ak=¢. In light-front theory, the linear
mass term appearing in the light-front QCD Hamiltonian is
renormalized a$27]

2M

Nero

which in the forward limit gives (3;/P")g;, since
H(x,0,0)=g,(x) and G,(x,0,0)=g,(x) in the forward
limit. Comparing with the result in the previous section, we
see that Eq4.2) is in agreement with our result for a dressed
Heremg is the renormalized mass of the quark. The linearquark.

mass terms in the light-front QCD Hamiltonian are associ- Using Eqs.(2.17) and(3.18 we get

Fl= (H+G,), 4.2

3 2
mg=m| 1+ EaSCf Iog;z .

(3.17
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s — 2(x+8)
W22 T e )

4.3

1 Q% «

Ga(x.£1)= 5 Cylog

which in the forward limit gives

I 1 Q? aq -
GZ(X,O,O)zchlogFZ[—&(l—x)+2x]. (4.4)

The above expression agrees with for a transversely po-
larized dressed quark targeit8].

PHYSICAL REVIEW D 67, 085020 (2003

Using the light-front spinors given in Appendix A, we find,
for x>¢ and A*=A', A%=0, that the WW relation for

Fyw reduces to

=l

B 2mg ~ O(x—&)O(u—Xx)
FWW_—Eﬂ/ﬁZf duH(u,§) ——

u—¢
(4.9

In the forward limit, the RHS  becomes
(ZmR/PJ“)fidygl(y)/y, which gives the well known
Wandzura-Wilczek relation for the transversely polarized
DIS structure functiorgy. The twist-three vector distribu-

In the Wandzura-Wilczek approximation, where the quarktion F* is similarly expressed in terms of a Wandzura-
mass as well as the quark-gluon interaction terms are neaflczek relation; however, it vanishes in the forward limit.

glected, the twist-three matrix element is given in terms Osting the expression fdfl for a massive dressed quark in

twist-two matrix elements g4 2]

"aAD

_ AH -
y B~ g 7" PFI0GH|U(P)

=WW —_11/D’
P06 =U(P)| S

1
+f71duG,L(U,§)W+(X’U'§)

1
+ielﬂkﬁlduek(u,g)w_(x,u,g), (4.5

where

o

1
7f(H+E)(U,§)+2—§M

AN
E(U,ﬁ)—z—gf

GH¥(u,&)=U(P’")

( d d
X U%'i‘fa—g

J 0
X u£+gﬁ—§ (H+E)(u,&)|U(P), (4.6

A¥ yg

GH(u,&)=U(P")| Yy (U6 +—5 17

d
¢
g d

U%-f-ga—g

J ~
X 1+u£+§ E(u,é)

A,U«
I
25?’ Vs

H(u,&) [U(P).
4.7

W, (x,u,€) are the Wandzura-Wilczek kernels given by

WL (00.8) = 00 ) o gy T
- (u=§) (u=§)
| O(x>—¢§) 6(u>%)
o)
—0(x<—§)—0(u<x) . (4.8
o

perturbation theory,

L ame 1 (-
g 2 9[ 19
o QY301-8H 1
22T T

2
¢ —1@

x—¢

X

(1+ g)log(

] . (4.10

Comparing the above expression with E8.18, we see that
the WW relation is not satisfied for a dressed quark state in
perturbation theory, as in the forward case. This is not sur-
prising because in the WW approximation the mass of the
quark as well as the explicit interaction dependence of the
operator are neglected, whereas we have obtained the full
result in perturbative QCD for a massive quark.The effect of
quark transverse momentum gy was investigated in a co-
variant parton model approach[i@0]. Also, it is known that
in the forward limit the WW relation is violated in perturba-
tion theory[18]. However, the BC sum rule is satisfied
[31,18,32.

The quark mass effect can be incorporated in the deriva-
tion of the off-forward WW relatiorf29]. This gives an ad-

ditional contribution toF- which is of the form(see Appen-
dix B)
X
x2—¢?

2m

= fH(x,£,A)

'"IfJ_

mass:

1 y2+§2 .
+f_dny (y,6,4)

X

4.1)

for ¢<x<1, where

fl(zg,A) — %f %e—i5+27;/2

z i+l 5 z
><<P')\’|l/l —7)“7' y¢7)|P)\>.
(4.12
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where a"= [3dx x'a(x). Using the expressions fag;(x),
0,(x), andh(x), the moments can be directly calculated:

We use the parametrizatigB84]

dz- z z
—iPTzx2 _ - i 5
2J 4ﬂ_e (P)\|E( )Ia’ y¢(2>|P)\> 1013 Q2
n
1_ , ie"1oBA Py o
=—U(P'\")|HYig"yS+HI——>~=
Pt M2
2
. . i N IogQ—
,€+JaBAa7ﬁ _ i€+1a[>’pa7ﬁ 9173 2m TR 2
+EYj +ES U(P,\).
2M M 1 1 N+l
(4.13 x __+(n+l)(n+2)_2j22 T” (4.20
Here M is the mass of the state. We calculate the above "1y
matrix element for a transversely polarized dressed quark a1 Q?(3
state in perturbation theory. Using the relations of light-cone hi=5|1+ 5 Cf log—> 2 _22 - (42)

spinors and also using the normalization of the transversely

polarized state, we obtain

Zas

HY o(1— x)wLCrogQ22

NII—\

2(x—¢£2)
(1-x)4(1—£?)

which in the forward limit givesh,(x) for a dressed quark:

><351_+
E( X)

J s

Q2
8(1— x)+Cf Iog—z 2

2x )
+ — .
(1=x)

1(X)—

(4.195

Next, we investigate the mass corrections to the WW relation

and the “genuine twist-three contribution” to the matrix el-

ement in somewhat more detail. In the forward linfit:
corresponds tgy. We can write, in the forward limit,

hy(x) 1 hy(y)
( X fxdy y*

m
M

gl(Y)

+01(x),
(4.16

gr(X)= f dy

whereg{(x) is the so-called genuine twist-three contribution

to g7. If we neglect this, we get the WW relation with the

quark mass correction,
1 oga(y) h1(x) fl hi(y)
=] d +— - | d .
gr(x) fx y y X § y y2
(4.17

Herem s the quark mass and is the mass of the target. It
is very important to note that in a perturbative calculation
has to be renormalized. Taking théh moment of both sides
of Eq. (4.16 we get

E n hn l
Mn+1

n

9>=— (4.18

mgrl] g?g,

Using these and also the renormalization of the quark mass
given by Eq.(3.17), we obtain

L9 0gS
ng 22 f g 2 n+2
n /3 2n+3 40
Tz Do) | 422

Forn=0, the RHS of the above equation gives zero, which
proves the BC sum rule. Far=1, the RHS of Eq(4.22
also yields zero, which gives the Efremov-Leader-Teryaev
sum rule with the correction due to the quark mass.

Next, we use Eq(4.16 to extract the “genuine twist-
three” part ofgy.
The O(as) part ofgr can be separated into two parts,

gi=gfA+of3. (4.23

Hereg{") is the WW part with the mass corrections agig

is the “genuine twist three part.” Using E@4.16) and also
the expressions fag4(x),h,(x), we get

2
Cf IogT

(H— 3
9re=5 5 5(1—x)—§—logx.

(4.29

It is interesting to compare the RHS of the above equation
with the forward limit of Eq.(3.15. This shows that Eg.
(3.15 does not give the full “genuine” twist-three contribu-
tion but only a part of it. Also from the above expression it is
easy to check that the first and second momentg{Hfare
zero.

We stress that the quark mass plays a very important role
in the twist-three matrix element, and also, in our case, it is
essential to obtain a transversely polarized state, s8ice
=mg, the renormalized mass of the quark. Our result shows
that the twist-three generalized distribution is directly related
to the chiral symmetry breaking dynamics in light-front
QCD.
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V. SUMMARY AND DISCUSSION showed that both the BC and ELT sum rules are satisfied.
It is known that in the kinematical region<Ox<¢, a

f To Zumn:§r|2(la, n tht|s V\ﬁ;‘k vl\_/ehrt\ave |nve§t;gat(atd the Off'contribution comes from the overlap of the three and one-
orward matrix elements ot the ight-cone axial VECIor Opera-p, icle wave functions. The GPDs in this region have a

tor. We have calculated the matrix elements of the plus an ifferent type of evolution(Brodsky-Lepage It will be in-

transverse components of the operator for a dressed quark {Bresting to investigate the GPDs for a dressed quark in this
light-front Hamiltonian perturbation theory. This approach yinematical region using this approach and to check the vari-
allows us to express the distributions in terms of Iight-frontOus moment relations in the whole rangeEf 0<x<1
wave functions. We have restricted ourselves to the kinematia e interesting topic for future work is to investigate the

cal region §<;<1. In this case, the overlaps of three- AL dependence of the GPD’s in the fraie 0.
particle and one-particle wave functions are absent. We ob-

tained the splitting functions for the evolution of the helicity- ACKNOWLEDGMENTS
dependent twist-two quark and gluon distributions in a
We thank M. V. Polyakov for many helpful discussions

straightforward way. We showed that the singularityxat / . _
. - o during the course of this work. We thank D. Kiptily for help-
1 is canceled by the contribution from the normalization of. g Us in the derivation of Eq4.1D. AM. also thanks E.

i o in
the state, as in the helicity-independent case calculated ea'_rzeya and A. Harindranath for helpful discussions and com-

lier. The twist-two distributions reduce to the quark andmentS This work was supported by a grant of the Zentrum
gluon intrinsic helicity distributions for a dressed quark tar-¢;- physikalisch-chemische Verbundforschung at the Univer-
get in the forward limit. The twist-three distribution is ex- sit Mainz and by the Deutsche Forschungsgemeinschaft
pressed entirely in terms of the dynamical fields in the Iight-(SFB 443. At the Universita Dortmund, this work was sup-
front gauge. This calculation shows that for the twist-twoported in part by the Bundesministeriurir fBildung und
distributions the entire interaction dependence comes fromtorschung, Berlin/Bonn.

the state, whereas the operator has free field structure, but in

the case of twist three both the operator and the state intro-

duce interaction dependence. The operator has three parts, an
explicit mass-dependent term, a quark-gluon interaction The light-front spinors for a longitudinally polarized
term, and a term containing the quark transverse momenturuark of massM and momentumP and helicity up and

effect. The calculation of this matrix element for a trans-down, respectively, are given §@5]

versely polarized dressed quark shows that all the three con-

APPENDIX A: LIGHT-FRONT SPINORS

tributions are proportional to the quark mass. Using the P"+M
renormalized quark massg in light-front Hamiltonia~n per- 1 plyip2
turbation theory, we found that in the forward linfit- is Ui(P)=T—=| o+ ,
! : o 2P| PT—M
proportional toS;g, whereSy is the transverse polarization Lo
of the state S;=mg in our case. It is known that in light- P-+iP
front Hamiltonian QCD chirality is the same as helicity, and Lo
the terms that cause helicity flip in the light-front QCD —P*+iP
Hamiltonian are explicit chiral symmetry breaking terms. 1 P*+M
These terms are Iinegr in the quark mass. It is int_e_resting to U (P)= \/=+ pl_ip2 (A1)
note that the quadratic mass terms do not flip helicity; how- 2P
ever, they are suppressed here. Therefore, we concluded that —-P"+M

Flis directly related to the chiral symmetry breaking dy-

namics in light-front QCD and the quark mass plays an im-Using these, we get

portant role. In particular, a finite mass is necessary to have a _

transversely polarized quark state. We have calculated the UT(P’)7+ YSUT(P):Zvl_§2P+'

same off-forward matrix element in the Wandzura-Wilczek

approximation and found that the actual result for a massive — 2&EM

dressed quark deviates from the WW approximated form. U (P y?Uy(P)= \/?gz (A2)
The violation of the WW relation fog; for a massive quark

is known in perturbation theory and our result reducegto Also,
for a massive dressed quark in the forward limit. It is to be
noted that in the case of nucleons, the quark intrinsic trans-
verse momentum effects and the quark-gluon coupling dy-
namics play a more complicated role and the pure quark

U, (P")y" U (P)=0,

1,iA2
mass effects in perturbative QCD may be suppressed by U(P’)ySU (P)= —AT+iA (A3)
m/M whereM is the hadron mass. We have also calculated ! . N

the quark mass correction to the off-forward WW relation
which in the forward limit reduces to a term proportional to Light-front spinors for a transversely polarized quark are
h;(x). We extracted the “genuine twist-three part"@f and  given by[36]
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M+P*—ip?
1 —P?

UT(P):—W pl ,
-M+P*+iP?
~M+P*—ipP?

1 - P

Ui(P):W pl (A4)

M+P*+ip?

Using these, we get the components of the polarization vec-

tor  $#=3U(P)y*y°U(p): S*=0, =0, S'=M, S~
=2(PYPT)M.
Also,

_ 2M
U,(P")y%U,(P)=0, (A5)
and

U (P")y"y°U (P)=0,
o
-2

Ui (P)»'U(P)=
U,(P)U,(P)= —_
U (P)y U (P)=2P"1- £ (AB)

APPENDIX B: MASS TERM IN WW RELATION

In this appendix, we give an outline of the derivation of

Eq. (4.11). Using the approach described[@0], and taking
into account the quark mass, one gets

PHYSICAL REVIEW D67, 085020 (2003

Fo(x&t)= Jd)\ e (P’ S/|4(__)7a75¢( )|P3>

=M9(X, &)+ XX, &), (B1)
M*(x,&,1)

where \=1P*z", is the mass term, and

X%(x,&,t) are all the other terms considered in the WW ap-
proximation. Here we concentrate on the mass term given by

[33]

. dan . 1 _
M“(x,g,t):_”»nf —e*'“)\f du ue't-we
2m 0

. 1 uz-
+e|(lu)§)\]§<P/Sl|E( _ T)

><I0'+“'yst,//<u )lPS} (B2)
If we define
1(dz = _ 7z~
f(x,6,A4)= EJ S-e X’2<P's'|$( - 7)
Xi0'+0‘y5¢(%)|PS>, (B3)
we get, from Eq(B2),
M(x,&t)= + (jx ldu fo M,S,A)
+fa(x_(::—_u)§,§'A) . (B4)

Changing the variabley=[x=*=(1—u)é&]/u we obtain, for
x> £,

M, gt)—_—{——zx F(x,£)
==

é—Z

1 y2+§2 .
+J;( dymf (y,§,A)} (B5)
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